F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz
2017-01-01
Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (
Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat
John Hof; Curtis H. Flather
1996-01-01
This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
Trends in flood and low flows in the US were evaluated using a regional average Kendall's S trend test at two spatial scales and over two timeframes. Field significance was assessed using a bootstrap methodology to account for the observed regional cross-correlation of streamflow...
Quantifying drivers of wild pig movement across multiple spatial and temporal scales
Kay, Shannon L.; Fischer, Justin W.; Monaghan, Andrew J.; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S.; Hartley, Stephen B.; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; Vercauteren, Kurt C.; Pipen, Kim M
2017-01-01
The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
An Empirical Bayes Approach to Spatial Analysis
NASA Technical Reports Server (NTRS)
Morris, C. N.; Kostal, H.
1983-01-01
Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.
Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marre, O.; El Boustani, S.; Fregnac, Y.
We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less
Is a matrix exponential specification suitable for the modeling of spatial correlation structures?
Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha
2018-01-01
This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Big assumptions for small samples in crop insurance
Ashley Elaine Hungerford; Barry Goodwin
2014-01-01
The purpose of this paper is to investigate the effects of crop insurance premiums being determined by small samples of yields that are spatially correlated. If spatial autocorrelation and small sample size are not properly accounted for in premium ratings, the premium rates may inaccurately reflect the risk of a loss.
2009-01-01
Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides), taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains. PMID:19930701
China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-09-18
Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.
Mode analysis of higher-order transverse-mode correlation beams in a turbulent atmosphere.
Avetisyan, H; Monken, C H
2017-01-01
Due to the transfer of the angular spectrum of the pump beam to the two-photon state in spontaneous parametric downconversion, the generated twin photons are entangled in their spatial degrees of freedom. This spatial entanglement can be observed through correlation measurements in any set of modes in which one may choose to perform measurements. Choosing, e.g., a Hermite-Gaussian (HG) set of spatial modes as a basis, one can observe correlations present in their spatial degrees of freedom. In addition, these modes can be used as alphabets for quantum communication. For global quantum communication purposes, we derive an analytic expression for two-photon detection probability in terms of HG modes, taking into account the effects of the turbulent atmosphere. Our result is more general as it accounts for the propagation of both signal and idler photons through the atmosphere, as opposed to other works considering one photon's propagation in vacuum. We show that while the restrictions on both the parity and order of the downconverted HG fields no longer hold, due to the crosstalk between modes when propagating in the atmosphere, the crosstalk is not uniform: there are more robust modes that tend to keep the photons in them. These modes can be employed in order to increase the fidelity of quantum communication.
Correlation analysis of fracture arrangement in space
NASA Astrophysics Data System (ADS)
Marrett, Randall; Gale, Julia F. W.; Gómez, Leonel A.; Laubach, Stephen E.
2018-03-01
We present new techniques that overcome limitations of standard approaches to documenting spatial arrangement. The new techniques directly quantify spatial arrangement by normalizing to expected values for randomly arranged fractures. The techniques differ in terms of computational intensity, robustness of results, ability to detect anti-correlation, and use of fracture size data. Variation of spatial arrangement across a broad range of length scales facilitates distinguishing clustered and periodic arrangements-opposite forms of organization-from random arrangements. Moreover, self-organized arrangements can be distinguished from arrangements due to extrinsic organization. Traditional techniques for analysis of fracture spacing are hamstrung because they account neither for the sequence of fracture spacings nor for possible coordination between fracture size and position, attributes accounted for by our methods. All of the new techniques reveal fractal clustering in a test case of veins, or cement-filled opening-mode fractures, in Pennsylvanian Marble Falls Limestone. The observed arrangement is readily distinguishable from random and periodic arrangements. Comparison of results that account for fracture size with results that ignore fracture size demonstrates that spatial arrangement is dominated by the sequence of fracture spacings, rather than coordination of fracture size with position. Fracture size and position are not completely independent in this example, however, because large fractures are more clustered than small fractures. Both spatial and size organization of veins here probably emerged from fracture interaction during growth. The new approaches described here, along with freely available software to implement the techniques, can be applied with effect to a wide range of structures, or indeed many other phenomena such as drilling response, where spatial heterogeneity is an issue.
Linear-time general decoding algorithm for the surface code
NASA Astrophysics Data System (ADS)
Darmawan, Andrew S.; Poulin, David
2018-05-01
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron
2013-01-01
Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron
2013-01-01
Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.
Dong, Ni; Huang, Helai; Zheng, Liang
2015-09-01
In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.
A geostatistical state-space model of animal densities for stream networks.
Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H
2018-06-21
Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A variance-decomposition approach to investigating multiscale habitat associations
Lawler, J.J.; Edwards, T.C.
2006-01-01
The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.
China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-01-01
Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016
Zhang, Yun; Okubo, Ryuhi; Hirano, Mayumi; Eto, Yujiro; Hirano, Takuya
2015-01-01
Spatially separated entanglement is demonstrated by interfering two high-repetition squeezed pulse trains. The entanglement correlation of the quadrature amplitudes between individual pulses is interrogated. It is characterized in terms of the sufficient inseparability criterion with an optimum result of in the frequency domain and in the time domain. The quantum correlation is also observed when the two measurement stations are separated by a physical distance of 4.5 m, which is sufficiently large to demonstrate the space-like separation, after accounting for the measurement time. PMID:26278478
The relation between navigation strategy and associative memory: An individual differences approach.
Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R
2016-04-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).
Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F.; Beale, Colin M.
2015-01-01
Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation. PMID:25915899
Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F; Beale, Colin M
2015-01-01
Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyi, V.V.; Kukharenko, Y.A.; Wallenborn, J.
Taking into account the first non-Markovian correction to the Balescu-Lenard equation, we have derived an expression for the pair correlation function and a nonlinear kinetic equation valid for a nonideal polarized classical plasma. This last equation allows for the description of the correlational energy evolution and shows the global conservation of energy with dynamical polarization. {copyright} {ital 1996 The American Physical Society.}
Regional nutrient trends in streams and rivers of the United States, 1993-2003
Sprague, Lori A.; Lorenz, David L.
2009-01-01
Trends in flow-adjusted concentrations (indicators of anthropogenic changes) and observed concentrations (indicators of natural and anthropogenic changes) of total phosphorus and total nitrogen from 1993 to 2003 were evaluated in the eastern, central, and western United States by adapting the Regional Kendall trend test to account for seasonality and spatial correlation. The only significant regional trend was an increase in flow-adjusted concentrations of total phosphorus in the central United States, which corresponded to increases in phosphorus inputs from fertilizer in the region, particularly west of the Mississippi River. A similar upward regional trend in observed total phosphorus concentrations in the central United States was not found, likely because precipitation and runoff decreased during drought conditions in the region, offsetting the increased source loading on the land surface. A greater number of regional trends would have been significant if spatial correlation had been disregarded, indicating the importance of spatial correlation modifications in regional trend assessments when sites are not spatially independent.
Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin
2011-01-01
Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292
Hodgkiss, Alex; Gilligan, Katie A; Tolmie, Andrew K; Thomas, Michael S C; Farran, Emily K
2018-01-22
Prior longitudinal and correlational research with adults and adolescents indicates that spatial ability is a predictor of science learning and achievement. However, there is little research to date with primary-school aged children that addresses this relationship. Understanding this association has the potential to inform curriculum design and support the development of early interventions. This study examined the relationship between primary-school children's spatial skills and their science achievement. Children aged 7-11 years (N = 123) completed a battery of five spatial tasks, based on a model of spatial ability in which skills fall along two dimensions: intrinsic-extrinsic; static-dynamic. Participants also completed a curriculum-based science assessment. Controlling for verbal ability and age, mental folding (intrinsic-dynamic spatial ability), and spatial scaling (extrinsic-static spatial ability) each emerged as unique predictors of overall science scores, with mental folding a stronger predictor than spatial scaling. These spatial skills combined accounted for 8% of the variance in science scores. When considered by scientific discipline, mental folding uniquely predicted both physics and biology scores, and spatial scaling accounted for additional variance in biology and variance in chemistry scores. The children's embedded figures task (intrinsic-static spatial ability) only accounted for variance in chemistry scores. The patterns of association were consistent across the age range. Spatial skills, particularly mental folding, spatial scaling, and disembedding, are predictive of 7- to 11-year-olds' science achievement. These skills make a similar contribution to performance for each age group. © 2018 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Signatures of van der Waals binding: A coupling-constant scaling analysis
NASA Astrophysics Data System (ADS)
Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per
2018-02-01
The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.
NASA Astrophysics Data System (ADS)
Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.
2017-10-01
Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.
Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin
2008-01-21
Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.
Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets
2015-01-01
A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
Baker, Jannah; White, Nicole; Mengersen, Kerrie
2014-11-20
Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
Tensor-guided fitting of subduction slab depths
Bazargani, Farhad; Hayes, Gavin P.
2013-01-01
Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.
Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique
2012-01-01
We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254
Geostatistical modelling of household malaria in Malawi
NASA Astrophysics Data System (ADS)
Chirombo, J.; Lowe, R.; Kazembe, L.
2012-04-01
Malaria is one of the most important diseases in the world today, common in tropical and subtropical areas with sub-Saharan Africa being the region most burdened, including Malawi. This region has the right combination of biotic and abiotic components, including socioeconomic, climatic and environmental factors that sustain transmission of the disease. Differences in these conditions across the country consequently lead to spatial variation in risk of the disease. Analysis of nationwide survey data that takes into account this spatial variation is crucial in a resource constrained country like Malawi for targeted allocation of scare resources in the fight against malaria. Previous efforts to map malaria risk in Malawi have been based on limited data collected from small surveys. The Malaria Indicator Survey conducted in 2010 is the most comprehensive malaria survey carried out in Malawi and provides point referenced data for the study. The data has been shown to be spatially correlated. We use Bayesian logistic regression models with spatial correlation to model the relationship between malaria presence in children and covariates such as socioeconomic status of households and meteorological conditions. This spatial model is then used to assess how malaria varies spatially and a malaria risk map for Malawi is produced. By taking intervention measures into account, the developed model is used to assess whether they have an effect on the spatial distribution of the disease and Bayesian kriging is used to predict areas where malaria risk is more likely to increase. It is hoped that this study can help reveal areas that require more attention from the authorities in the continuing fight against malaria, particularly in children under the age of five.
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of computation of estimated crash count.
Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming
2014-07-01
There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001-2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.
Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-01-04
Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.
Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities?
Aldstadt, Jared; Whalen, John; White, Kellee; Castro, Marcia C.; Williams, David R.
2017-01-01
BACKGROUND Multiple and varied benefits have been suggested for increased neighborhood walkability. However, spatial inequalities in neighborhood walkability likely exist and may be attributable, in part, to residential segregation. OBJECTIVE Utilizing a spatial demographic perspective, we evaluated potential spatial inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US). METHODS The independent variables included minority racial/ethnic population percentages and percent of families in poverty. Walkable neighborhood amenities were assessed with a composite measure. Spatial autocorrelation in key study variables were first calculated with the Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were calculated as well as Spearman correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression and spatial autoregressive models, when appropriate, as a final step. RESULTS Significant positive spatial autocorrelation was found in neighborhood socio-demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were not statistically significant, nor were neighborhood socio-demographic characteristics significantly associated with walkable neighborhood amenities in OLS regression models. CONCLUSIONS Our results suggest that there is residential segregation in Boston and that spatial inequalities do not necessarily show up using a composite measure. COMMENTS Future research in other geographic areas (including international contexts) and using different definitions of neighborhoods (including small-area definitions) should evaluate if spatial inequalities are found using composite measures but also should use measures of specific neighborhood amenities. PMID:29046612
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination
Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-01-01
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.
Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-09-14
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.
Valari, Myrto; Menut, Laurent; Chatignoux, Edouard
2011-02-01
Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] < or = 10 microm in aerodynamic diameter) were captured and parametrized. Exposures predicted with this model were used in a time-series study of the short-term effect of air pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.
Goovaerts, Pierre; Jacquez, Geoffrey M
2004-01-01
Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930
Investigation of Influential Factors for Bicycle Crashes Using a Spatiotemporal Model
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Despite the numerous potential advantages of indulging in bicycling, such as elevation of health and environment along with mitigation of congestion, the cyclists are a vulnerable group of commuters which is exposed to safety risks. This study aims to investigate the explanatory variables at transportation planning level which have a significant impact on the bicycle crashes. To account for the serial changes around the built environment, the linear time trend as well as time-varying coefficients are utilized for the covariates. These model modifications help account for the variations in the environment which may escape the incorporated variables due to lack of robustness in data. Also, to incorporate the interaction of roadway, demographic, and socioeconomic features within a Traffic Analysis Zone (TAZ), with the bicycle crashes of that area, a spatial correlation is integrated. This spatial correlation accounts for the spatially structured random effects which capture the unobserved heterogeneity and add towards building more comprehensive model with relatively precise estimates. Two different age groups, the student population in the TAZs, the presence of arterial roads and bike lanes, were observed to be statistically significant variables related with bicycle crashes. These observations will guide the transportation planning organizations which focus on the entity of TAZ while developing policies. The results of the current study establish a quantifies relationship between the significant factors and the crash count which will enable the planners to choose the most cost-efficient, yet most productive, factors which needs to be addressed for mitigation of crashes.
A spatial analysis of social and economic determinants of tuberculosis in Brazil.
Harling, Guy; Castro, Marcia C
2014-01-01
We investigated the spatial distribution, and social and economic correlates, of tuberculosis in Brazil between 2002 and 2009 using municipality-level age/sex-standardized tuberculosis notification data. Rates were very strongly spatially autocorrelated, being notably high in urban areas on the eastern seaboard and in the west of the country. Non-spatial ecological regression analyses found higher rates associated with urbanicity, population density, poor economic conditions, household crowding, non-white population and worse health and healthcare indicators. These associations remained in spatial conditional autoregressive models, although the effect of poverty appeared partially confounded by urbanicity, race and spatial autocorrelation, and partially mediated by household crowding. Our analysis highlights both the multiple relationships between socioeconomic factors and tuberculosis in Brazil, and the importance of accounting for spatial factors in analysing socioeconomic determinants of tuberculosis. © 2013 Published by Elsevier Ltd.
Spatio-temporal representativeness of ground-based downward solar radiation measurements
NASA Astrophysics Data System (ADS)
Schwarz, Matthias; Wild, Martin; Folini, Doris
2017-04-01
Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.
Luan, Hui; Law, Jane; Lysy, Martin
2018-02-01
Neighborhood restaurant environment (NRE) plays a vital role in shaping residents' eating behaviors. While NRE 'healthfulness' is a multi-facet concept, most studies evaluate it based only on restaurant type, thus largely ignoring variations of in-restaurant features. In the few studies that do account for such features, healthfulness scores are simply averaged over accessible restaurants, thereby concealing any uncertainty that attributed to neighborhoods' size or spatial correlation. To address these limitations, this paper presents a Bayesian Spatial Factor Analysis for assessing NRE healthfulness in the city of Kitchener, Canada. Several in-restaurant characteristics are included. By treating NRE healthfulness as a spatially correlated latent variable, the adopted modeling approach can: (i) identify specific indicators most relevant to NRE healthfulness, (ii) provide healthfulness estimates for neighborhoods without accessible restaurants, and (iii) readily quantify uncertainties in the healthfulness index. Implications of the analysis for intervention program development and community food planning are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Grenier, Adeline; Gerard, Lionel; Jouneau, Pierre-Henri; André, Regis; Blavette, Didier; Bougerol, Catherine
2018-02-01
The correlative use of atom probe tomography (APT) and energy dispersive x-ray spectroscopy in scanning transmission electron microscopy (STEM) allows us to characterize the structure of ZnTe/CdSe superlattices at the nanometre scale. Both techniques reveal the segregation of zinc along [111] stacking faults in CdSe layers, which is interpreted as a manifestation of the Suzuki effect. Quantitative measurements reveal a zinc enrichment around 9 at. % correlated with a depletion of cadmium in the stacking faults. Raw concentration data were corrected so as to account for the limited spatial resolution of both STEM and APT techniques. A simple calculation reveals that the stacking faults are almost saturated in Zn atoms (˜66 at. % of Zn) at the expense of Cd that is depleted.
NASA Astrophysics Data System (ADS)
Black, Alice A. (Jill)
Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34%, indicating that the non-majors tested exhibited many Earth science misconceptions and conceptual difficulties. A number of significant results were found when independent t-tests and correlations were conducted among test scores and demographic variables. The number of previous university Earth science courses was significantly related to ESC scores. Preservice elementary/middle majors differed significantly in several ways from other non-majors, and several earlier results were not supported. Results of this study indicate that an important opportunity may exist to improve Earth science conceptual understanding by focusing on spatial ability, a cognitive ability that has heretofore not been directly addressed in schools.
Large-scale changes in network interactions as a physiological signature of spatial neglect
Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L.; Callejas, Alicia; Astafiev, Serguei V.; Metcalf, Nicholas V.; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z.; Carter, Alex R.; Shulman, Gordon L.
2014-01-01
The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n = 84) heterogeneous sample of first-ever stroke patients (within 1–2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. PMID:25367028
Information transfer in auditoria and room-acoustical quality.
Summers, Jason E
2013-04-01
It is hypothesized that room-acoustical quality correlates with the information-transfer rate. Auditoria are considered as multiple-input multiple-output communication channels and a theory of information-transfer is outlined that accounts for time-variant multipath, spatial hearing, and distributed directional sources. Source diversity and spatial hearing are shown to be the mechanisms through which multipath increases the information-transfer rate by overcoming finite spatial resolution. In addition to predictions that are confirmed by recent and historical findings, the theory provides explanations for the influence of factors such as musical repertoire and ensemble size on subjective preference and the influence of multisource, multichannel auralization on perceived realism.
Managing distance and covariate information with point-based clustering.
Whigham, Peter A; de Graaf, Brandon; Srivastava, Rashmi; Glue, Paul
2016-09-01
Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley's K and applied to the problem of clustering with deliberate self-harm (DSH), is presented. Point-based Monte-Carlo simulation of Ripley's K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years' emergency hospital presentations (n = 136) in a New Zealand town (population ~50,000). Study area was defined by residential (housing) land parcels representing a finite set of possible point addresses. Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley's K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for covariate measures that exhibit spatial clustering, such as deprivation, are crucial when assessing point-based clustering.
Interannual Variability of OLR as Observed by AIRS and CERES
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula I.; Iredell, Lena F.; Loeb, Norman G.
2012-01-01
The paper examines spatial anomaly time series of Outgoing Longwave Radiation (OLR) and Clear Sky OLR (OLR(sub CLR)) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. We find excellent agreement of the two OLR data sets in almost every detail down to the x11deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies high stability of both sets of results. Anomalies of global mean, and especially tropical mean, OLR are shown to be strongly correlated with an El Nino index. These correlations explain that the recent global and tropical mean decreases in OLR over the time period studied are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of mean OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions, one to the east of, and one to the west of, the NOAA Nino-4 region. Anomalies of OLR in these two spatial regions are both strongly correlated with the El Nino Index as a result of the strong anti-correlation of anomalies of cloud cover and mid-tropospheric water vapor in these two regions with the El Nino Index.
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
Viladomat, Júlia; Mazumder, Rahul; McInturff, Alex; McCauley, Douglas J; Hastie, Trevor
2014-06-01
We propose a method to test the correlation of two random fields when they are both spatially autocorrelated. In this scenario, the assumption of independence for the pair of observations in the standard test does not hold, and as a result we reject in many cases where there is no effect (the precision of the null distribution is overestimated). Our method recovers the null distribution taking into account the autocorrelation. It uses Monte-Carlo methods, and focuses on permuting, and then smoothing and scaling one of the variables to destroy the correlation with the other, while maintaining at the same time the initial autocorrelation. With this simulation model, any test based on the independence of two (or more) random fields can be constructed. This research was motivated by a project in biodiversity and conservation in the Biology Department at Stanford University. © 2014, The International Biometric Society.
2017-01-01
Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal density and remotely-sensed environmental covariates in shrub-steppe and grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species groups using line transect methods, and used hierarchical distance-sampling to model density in response to variation in vegetation, climate, topographic, and anthropogenic variables, while accounting for variation in detection probability. We created spatial predictions of each species’ density and distribution. Sciurid and leporid species exhibited mixed responses to vegetation, such that changes to native habitat will likely affect prey species differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squirrels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or sagebrush cover and positively with herbaceous cover or bare ground, whereas least chipmunks showed a positive correlation with shrub cover and a negative correlation with herbaceous cover. Spatial predictions from our models provide a landscape-scale metric of above-ground prey density, which will facilitate the development of conservation plans for these taxa and their predators at spatial scales relevant to management. PMID:28520757
Structure-specific magnetic field inhomogeneities and its effect on the correlation time.
Ziener, Christian H; Bauer, Wolfgang R; Melkus, Gerd; Weber, Thomas; Herold, Volker; Jakob, Peter M
2006-12-01
We describe the relationship between the correlation time and microscopic spatial inhomogeneities in the static magnetic field. The theory takes into account diffusion of nuclear spins in the inhomogeneous field created by magnetized objects. A simple general expression for the correlation time is obtained. It is shown that the correlation time is dependent on a characteristic length, the diffusion coefficient of surrounding medium, the permeability of the surface and the volume fraction of the magnetized objects. For specific geometries (spheres and cylinders), exact analytical expressions for the correlation time are given. The theory can be applied to contrast agents (magnetically labeled cells), capillary network, BOLD effect and so forth.
Absolute calibration of a charge-coupled device camera with twin beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.
2014-09-08
We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.
On the effect of velocity gradients on the depth of correlation in μPIV
NASA Astrophysics Data System (ADS)
Mustin, B.; Stoeber, B.
2016-03-01
The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used.
Anti-correlation and subsector structure in financial systems
NASA Astrophysics Data System (ADS)
Jiang, X. F.; Zheng, B.
2012-02-01
With the random matrix theory, we study the spatial structure of the Chinese stock market, the American stock market and global market indices. After taking into account the signs of the components in the eigenvectors of the cross-correlation matrix, we detect the subsector structure of the financial systems. The positive and negative subsectors are anti-correlated with respect to each other in the corresponding eigenmode. The subsector structure is strong in the Chinese stock market, while somewhat weaker in the American stock market and global market indices. Characteristics of the subsector structures in different markets are revealed.
Spatial-Temporal Modeling of Neighborhood Sociodemographic Characteristics and Food Stores
Lamichhane, Archana P.; Warren, Joshua L.; Peterson, Marc; Rummo, Pasquale; Gordon-Larsen, Penny
2015-01-01
The literature on food stores, neighborhood poverty, and race/ethnicity is mixed and lacks methods of accounting for complex spatial and temporal clustering of food resources. We used quarterly data on supermarket and convenience store locations from Nielsen TDLinx (Nielsen Holdings N.V., New York, New York) spanning 7 years (2006–2012) and census tract-based neighborhood sociodemographic data from the American Community Survey (2006–2010) to assess associations between neighborhood sociodemographic characteristics and food store distributions in the Metropolitan Statistical Areas (MSAs) of 4 US cities (Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; and San Francisco, California). We fitted a space-time Poisson regression model that accounted for the complex spatial-temporal correlation structure of store locations by introducing space-time random effects in an intrinsic conditionally autoregressive model within a Bayesian framework. After accounting for census tract–level area, population, their interaction, and spatial and temporal variability, census tract poverty was significantly and positively associated with increasing expected numbers of supermarkets among tracts in all 4 MSAs. A similar positive association was observed for convenience stores in Birmingham, Minneapolis, and San Francisco; in Chicago, a positive association was observed only for predominantly white and predominantly black tracts. Our findings suggest a positive association between greater numbers of food stores and higher neighborhood poverty, with implications for policy approaches related to food store access by neighborhood poverty. PMID:25515169
Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li
2016-02-21
To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.
Goovaerts, Pierre
2006-01-01
Boundary analysis of cancer maps may highlight areas where causative exposures change through geographic space, the presence of local populations with distinct cancer incidences, or the impact of different cancer control methods. Too often, such analysis ignores the spatial pattern of incidence or mortality rates and overlooks the fact that rates computed from sparsely populated geographic entities can be very unreliable. This paper proposes a new methodology that accounts for the uncertainty and spatial correlation of rate data in the detection of significant edges between adjacent entities or polygons. Poisson kriging is first used to estimate the risk value and the associated standard error within each polygon, accounting for the population size and the risk semivariogram computed from raw rates. The boundary statistic is then defined as half the absolute difference between kriged risks. Its reference distribution, under the null hypothesis of no boundary, is derived through the generation of multiple realizations of the spatial distribution of cancer risk values. This paper presents three types of neutral models generated using methods of increasing complexity: the common random shuffle of estimated risk values, a spatial re-ordering of these risks, or p-field simulation that accounts for the population size within each polygon. The approach is illustrated using age-adjusted pancreatic cancer mortality rates for white females in 295 US counties of the Northeast (1970–1994). Simulation studies demonstrate that Poisson kriging yields more accurate estimates of the cancer risk and how its value changes between polygons (i.e. boundary statistic), relatively to the use of raw rates or local empirical Bayes smoother. When used in conjunction with spatial neutral models generated by p-field simulation, the boundary analysis based on Poisson kriging estimates minimizes the proportion of type I errors (i.e. edges wrongly declared significant) while the frequency of these errors is predicted well by the p-value of the statistical test. PMID:19023455
Paciorek, Christopher J; Liu, Yang
2012-05-01
Research in scientific, public health, and policy disciplines relating to the environment increasingly makes use of high-dimensional remote sensing and the output of numerical models in conjunction with traditional observations. Given the public health and resultant public policy implications of the potential health effects of particulate matter (PM*) air pollution, specifically fine PM with an aerodynamic diameter < or = 2.5 pm (PM2.5), there has been substantial recent interest in the use of remote-sensing information, in particular aerosol optical depth (AOD) retrieved from satellites, to help characterize variability in ground-level PM2.5 concentrations in space and time. While the United States and some other developed countries have extensive PM monitoring networks, gaps in data across space and time necessarily occur; the hope is that remote sensing can help fill these gaps. In this report, we are particularly interested in using remote-sensing data to inform estimates of spatial patterns in ambient PM2.5 concentrations at monthly and longer time scales for use in epidemiologic analyses. However, we also analyzed daily data to better disentangle spatial and temporal relationships. For AOD to be helpful, it needs to add information beyond that available from the monitoring network. For analyses of chronic health effects, it needs to add information about the concentrations of long-term average PM2.5; therefore, filling the spatial gaps is key. Much recent evidence has shown that AOD is correlated with PM2.5 in the eastern United States, but the use of AOD in exposure analysis for epidemiologic work has been rare, in part because discrepancies necessarily exist between satellite-retrieved estimates of AOD, which is an atmospheric-column average, and ground-level PM2.5. In this report, we summarize the results of a number of empirical analyses and of the development of statistical models for the use of proxy information, in particular satellite AOD, in predicting PM2.5 concentrations in the eastern United States. We analyzed the spatiotemporal structure of the relationship between PM2.5 and AOD, first using simple correlations both before and after calibration based on meteorology, as well as large-scale spatial and temporal calibration to account for discrepancies between AOD and PM2.5. We then used both raw and calibrated AOD retrievals in statistical models to predict PM2.5 concentrations, accounting for AOD in two ways: primarily as a separate data source contributing a second likelihood to a Bayesian statistical model, as well as a data source on which we could directly regress. Previous consideration of satellite AOD has largely focused on the National Aeronautics and Space Administration (NASA) moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments. One contribution of our work is more extensive consideration of AOD derived from the Geostationary Operational Environmental Satellite East Aerosol/Smoke Product (GOES GASP) AOD and its relationship with PM2.5. In addition to empirically assessing the spatiotemporal relationship between GASP AOD and PM2.5, we considered new statistical techniques to screen anomalous GOES reflectance measurements and account for background surface reflectance. In our statistical work, we developed a new model structure that allowed for more flexible modeling of the proxy discrepancy than previous statistical efforts have had, with a computationally efficient implementation. We also suggested a diagnostic for assessing the scales of the spatial relationship between the proxy and the spatial process of interest (e.g., PM2.5). In brief, we had little success in improving predictions in our eastern-United States domain for use in epidemiologic applications. We found positive correlations of AOD with PM2.5 over time, but less correlation for long-term averages over space, unless we used calibration that adjusted for large-scale discrepancy between AOD and PM2.5 (see sections 3, 4, and 5). Statistical models that combined AOD, PM2.5 observations, and land-use and meteorologic variables were highly predictive of PM2.5 observations held out of the modeling, but AOD added little information beyond that provided by the other sources (see sections 5 and 6). When we used PM2.5 data estimates from the Community Multiscale Air Quality model (CMAQ) as the proxy instead of using AOD, we similarly found little improvement in predicting held-out observations of PM2.5, but when we regressed on CMAQ PM2.5 estimates, the predictions improved moderately in some cases. These results appeared to be caused in part by the fact that large-scale spatial patterns in PM2.5 could be predicted well by smoothing the monitor values, while small-scale spatial patterns in AOD appeared to weakly reflect the variation in PM2.5 inferred from the observations. Using a statistical model that allowed for potential proxy discrepancy at both large and small spatial scales was an important component of our modeling. In particular, when our models did not include a component to account for small-scale discrepancy, predictive performance decreased substantially. Even long-term averages of MISR AOD, considered the best, albeit most sparse, of the AOD products, were only weakly correlated with measured PM2.5 (see section 4). This might have been partly related to the fact that our analysis did not account for spatial variation in the vertical profile of the aerosol. Furthermore, we found evidence that some of the correlation between raw AOD and PM2.5 might have been a function of surface brightness related to land use, rather than having been driven by the detection of aerosol in the AOD retrieval algorithms (see sections 4 and 7). Difficulties in estimating the background surface reflectance in the retrieval algorithms likely explain this finding. With regard to GOES, we found moderate correlations of GASP AOD and PM2.5. The higher correlations of monthly and yearly averages after calibration reflected primarily the improved large-scale correlation, a necessary result of the calibration procedure (see section 3). While the results of this study's GOES reflectance screening and surface reflection correction appeared sensible, correlations of our proposed reflectance-based proxy with PM2.5 were no better than GASP AOD correlations with PM2.5 (see section 7). We had difficulty improving spatial prediction of monthly and yearly average PM2.5 using AOD in the eastern United States, which we attribute to the spatial discrepancy between AOD and measured PM2.5, particularly at smaller scales. This points to the importance of paying attention to the discrepancy structure of proxy information, both from remote-sensing and deterministic models. In particular, important statistical challenges arise in accounting for the discrepancy, given the difficulty in the face of sparse observations of distinguishing the discrepancy from the component of the proxy that is informative about the process of interest. Associations between adverse health outcomes and large-scale variation in PM2.5 (e.g., across regions) may be confounded by unmeasured spatial variation in factors such as diet. Therefore, one important goal was to use AOD to improve predictions of PM2.5 for use in epidemiologic analyses at small-to-moderate spatial scales (within urban areas and within regions). In addition, large-scale PM2.5 variation is well estimated from the monitoring data, at least in the United States. We found little evidence that current AOD products are helpful for improving prediction at small-to-moderate scales in the eastern United States and believe more evidence for the reliability of AOD as a proxy at such scales is needed before making use of AOD for PM2.5 prediction in epidemiologic contexts. While our results relied in part on relatively complicated statistical models, which may be sensitive to modeling assumptions, our exploratory correlation analyses (see sections 3 and 5) and relatively simple regression-style modeling of MISR AOD (see section 4) were consistent with the more complicated modeling results. When assessing the usefulness of AOD in the context of studying chronic health effects, we believe efforts need to focus on disentangling the temporal from the spatial correlations of AOD and PM2.5 and on understanding the spatial scale of correlation and of the discrepancy structure. While our results are discouraging, it is important to note that we attempted to make use of smaller-scale spatial variation in AOD to distinguish spatial variations of relatively small magnitude in long-term concentrations of ambient PM2.5. Our efforts pushed the limits of current technology in a spatial domain with relatively low PM2.5 levels and limited spatial variability. AOD may hold more promise in areas with higher aerosol levels, as the AOD signal would be stronger there relative to the background surface reflectance. Furthermore, for developing countries with high aerosol levels, it is difficult to build statistical models based on PM2.5 measurements and land-use covariates, so AOD may add more incremental information in those contexts. More generally, researchers in remote sensing are involved in ongoing efforts to improve AOD products and develop new approaches to using AOD, such as calibration with model-estimated vertical profiles and the use of speciation information in MISR AOD; these efforts warrant continued investigation of the usefulness of remotely sensed AOD for public health research.
Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura
2018-06-01
According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Owe, M.; Ormsby, J. P.; Chang, A. T. C.; Wang, J. R.; Goward, S. N.; Golus, R. E.
1987-01-01
Spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains are quantified in terms of vegetation and soil wetness. The brightness temperatures (TB) are the daytime observations from April to October for five years (1979 to 1983) obtained by the Nimbus-7 Scanning Multichannel Microwave Radiometer at 6.6 GHz frequency, horizontal polarization. The spatial and temporal variabilities of vegetation are assessed using visible and near-infrared observations by the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR), while an Antecedent Precipitation Index (API) model is used for soil wetness. The API model was able to account for more than 50 percent of the observed variability in TB, although linear correlations between TB and API were generally significant at the 1 percent level. The slope of the linear regression between TB and API is found to correlate linearly with an index for vegetation density derived from AVHRR data.
Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R
2014-04-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.
Large-scale changes in network interactions as a physiological signature of spatial neglect.
Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio
2014-12-01
The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Monostatic lidar in weak-to-strong turbulence
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Phillips, R. L.
2001-07-01
A heuristic scintillation model previously developed for weak-to-strong irradiance fluctuations of a spherical wave is extended in this paper to the case of a monostatic lidar configuration. As in the previous model, we account for the loss of spatial coherence as the optical wave propagates through atmospheric turbulence by eliminating the effects of certain turbulent scale sizes that exist between the scale size of the spatial coherence radius of the beam and that of the scattering disc. These mid-range scale-size effects are eliminated through the formal introduction of spatial scale frequency filters that continually adjust spatial cut-off frequencies as the optical wave propagates. In addition, we also account for correlations that exist in the incident wave to the target and the echo wave from the target arising from double-pass propagation through the same random inhomogeneities of the atmosphere. We separately consider the case of a point target and a diffuse target, concentrating on both the enhanced backscatter effect in the mean irradiance and the increase in scintillation in a monostatic channel. Under weak and strong irradiance fluctuations our asymptotic expressions are in agreement with previously published asymptotic results.
Insaf, Tabassum Z; Talbot, Thomas
2016-07-01
To assess the geographic distribution of Low Birth Weight (LBW) in New York State among singleton births using a spatial regression approach in order to identify priority areas for public health actions. LBW was defined as birth weight less than 2500g. Geocoded data from 562,586 birth certificates in New York State (years 2008-2012) were merged with 2010 census data at the tract level. To provide stable estimates and maintain confidentiality, data were aggregated to yield 1268 areas of analysis. LBW prevalence among singleton births was related with area-level behavioral, socioeconomic and demographic characteristics using a Poisson mixed effects spatial error regression model. Observed low birth weight showed statistically significant auto-correlation in our study area (Moran's I 0.16 p value 0.0005). After over-dispersion correction and accounting for fixed effects for selected social determinants, spatial autocorrelation was fully accounted for (Moran's I-0.007 p value 0.241). The proportion of LBW was higher in areas with larger Hispanic or Black populations and high smoking prevalence. Smoothed maps with predicted prevalence were developed to identify areas at high risk of LBW. Spatial patterns of residual variation were analyzed to identify unique risk factors. Neighborhood racial composition contributes to disparities in LBW prevalence beyond differences in behavioral and socioeconomic factors. Small-area analyses of LBW can identify areas for targeted interventions and display unique local patterns that should be accounted for in prevention strategies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A New Methodology of Spatial Cross-Correlation Analysis
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120
A new methodology of spatial cross-correlation analysis.
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.
Hedman, Leif; Felländer-Tsai, Li
2016-01-01
Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully. PMID:26897701
NASA Astrophysics Data System (ADS)
Donaldson, Lloyd; Vaidya, Alankar
2017-03-01
Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.
Scheperle, Rachel A; Abbas, Paul J
2015-01-01
The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.
Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.
Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin
2016-02-01
Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures.
Spatially explicit models for inference about density in unmarked or partially marked populations
Chandler, Richard B.; Royle, J. Andrew
2013-01-01
Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.
Obesity and fast food in urban markets: a new approach using geo-referenced micro data.
Chen, Susan Elizabeth; Florax, Raymond J; Snyder, Samantha D
2013-07-01
This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast-food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a 'local food environment' for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast-food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast-food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast-food restaurants. Copyright © 2012 John Wiley & Sons, Ltd.
A Spatial Poisson Hurdle Model for Exploring Geographic Variation in Emergency Department Visits
Neelon, Brian; Ghosh, Pulak; Loebs, Patrick F.
2012-01-01
Summary We develop a spatial Poisson hurdle model to explore geographic variation in emergency department (ED) visits while accounting for zero inflation. The model consists of two components: a Bernoulli component that models the probability of any ED use (i.e., at least one ED visit per year), and a truncated Poisson component that models the number of ED visits given use. Together, these components address both the abundance of zeros and the right-skewed nature of the nonzero counts. The model has a hierarchical structure that incorporates patient- and area-level covariates, as well as spatially correlated random effects for each areal unit. Because regions with high rates of ED use are likely to have high expected counts among users, we model the spatial random effects via a bivariate conditionally autoregressive (CAR) prior, which introduces dependence between the components and provides spatial smoothing and sharing of information across neighboring regions. Using a simulation study, we show that modeling the between-component correlation reduces bias in parameter estimates. We adopt a Bayesian estimation approach, and the model can be fit using standard Bayesian software. We apply the model to a study of patient and neighborhood factors influencing emergency department use in Durham County, North Carolina. PMID:23543242
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
"Birds of a Feather" Fail Together: Exploring the Nature of Dependency in SME Defaults.
Calabrese, Raffaella; Andreeva, Galina; Ansell, Jake
2017-08-11
This article studies the effects of incorporating the interdependence among London small business defaults into a risk analysis framework using the data just before the financial crisis. We propose an extension from standard scoring models to take into account the spatial dimensions and the demographic characteristics of small and medium-sized enterprises (SMEs), such as legal form, industry sector, and number of employees. We estimate spatial probit models using different distance matrices based only on the spatial location or on an interaction between spatial locations and demographic characteristics. We find that the interdependence or contagion component defined on spatial and demographic characteristics is significant and that it improves the ability to predict defaults of non-start-ups in London. Furthermore, including contagion effects among SMEs alters the parameter estimates of risk determinants. The approach can be extended to other risk analysis applications where spatial risk may incorporate correlation based on other aspects. © 2017 Society for Risk Analysis.
Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques
2014-11-01
Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.
Spatial grain and the causes of regional diversity gradients in ants.
Kaspari, Michael; Yuan, May; Alonso, Leeanne
2003-03-01
Gradients of species richness (S; the number of species of a given taxon in a given area and time) are ubiquitous. A key goal in ecology is to understand whether and how the many processes that generate these gradients act at different spatial scales. Here we evaluate six hypotheses for diversity gradients with 49 New World ant communities, from tundra to rain forest. We contrast their performance at three spatial grains from S(plot), the average number of ant species nesting in a m2 plot, through Fisher's alpha, an index that treats our 30 1-m2 plots as subsamples of a locality's diversity. At the smallest grain, S(plot), was tightly correlated (r2 = 0.99) with colony abundance in a fashion indistinguishable from the packing of randomly selected individuals into a fixed space. As spatial grain increased, the coaction of two factors linked to high net rates of diversification--warm temperatures and large areas of uniform climate--accounted for 75% of the variation in Fisher's alpha. However, the mechanisms underlying these correlations (i.e., precisely how temperature and area shape the balance of speciation to extinction) remain elusive.
NASA Astrophysics Data System (ADS)
Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi
2017-03-01
Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.
Interannual Variability of OLR as Observed by AIRS and CERES
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.
2012-01-01
This paper compares spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLR(sub CLR) (Clear Sky OLR) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. Both AIRS and CERES show a significant decrease in global mean and tropical mean OLR over this time period. We find excellent agreement of the anomaly time-series of the two OLR data sets in almost every detail, down to 1 deg X 1 deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper also examines the correlations of anomaly time series of AIRS and CERES OLR, on different spatial scales, as well as those of other AIRS derived products, with that of the NOAA Sea Surface Temperature (SST) product averaged over the NOAA Nino-4 spatial region. We refer to these SST anomalies as the El Nino Index. Large spatially coherent positive and negative correlations of OLR anomaly time series with that of the El Nino Index are found in different spatial regions. Anomalies of global mean, and especially tropical mean, OLR are highly positively correlated with the El Nino Index. These correlations explain that the recent global and tropical mean decreases in OLR over the period September 2002 through June 2011, as observed by both AIRS and CERES, are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of global mean, and especially tropical mean, OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions which lie outside the NOAA Nino-4 region, in which anomalies of cloud cover and mid-tropospheric water vapor are both highly negatively correlated with the El Nino Index. Agreement of the AIRS and CERES OLR(sub CLR) anomaly time series is less good, which may be a result of the large sampling differences in the ensemble of cases included in each OLR(sub CLR) data set.
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-01-01
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS. PMID:27420066
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-07-12
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.
NASA Astrophysics Data System (ADS)
Denton, Michael John
The issue of market delineation and power in the wholesale electric energy market is explored using three separate approaches: two of these are analyses of spatial pricing data to explore the functional size of the markets, and the third is a series of experimental tests of the effects of different cost structures and market mechanisms on oligopoly strength in those markets. An equilibrium model of spatial network competition is shown to yield linear relationships between spatial prices. A data set comprising two years of spatial weekly peak and off-peak prices and weather for 6 locations in the Western States Coordinating Council and the Southwest Power Pool is subjected to a pairwise cointegration analysis. The use of dummy variables to account the the flow directions is found to significantly improve model performance. The second analytical technique utilizes the extraction of principal components from a spatial price correlation matrix to identify the extent of natural markets. One year of daily price observations for eleven locations within the WSCC is compiled and eigenvectors are extracted and subjected to oblique rotation, each of which is then interpreted as representing a separate geographic market. The results show that two distinct natural markets, correlated at 84%, account for over 96% of the variation in the spatial prices in the WSSC. Together, the findings support the assertion that the wholesale electricity market in the Western U.S. is large and highly competitive. The experimental analysis utilizes a radial three node network in which suppliers located at the outer nodes sell to buyers located at the central node. The parameterization captures the salient characteristics of the existing bulk power markets, and includes cyclical demand, transmission losses, as well as fixed and avoidable fixed costs for all agents. Treatments varied the number of sellers, the avoidable fixed cost structures, and the trading mechanism. Results indicated that sealed bid markets greatly reduced the ability of sellers to exert market power. Overall the existence of higher avoidable fixed costs tended to ameliorate market power effects.
NASA Astrophysics Data System (ADS)
Ward, John; Kaczan, David
2014-11-01
Water poverty in the Niger River Basin is a function of physical constraints affecting access and supply, and institutional arrangements affecting the ability to utilise the water resource. This distinction reflects the complexity of water poverty and points to the need to look beyond technical and financial means alone to reduce its prevalence and severity. Policy decisions affecting water resources are generally made at a state or national level. Hydrological and socio-economic evaluations at these levels, or at the basin level, cannot be presumed to be concordant with the differentiation of poverty or livelihood vulnerability at more local levels. We focus on three objectives: first, the initial mapping of observed poverty, using two health metrics and a household assets metric; second, the estimation of factors which potentially influence the observed poverty patterns; and third, a consideration of spatial non-stationarity, which identifies spatial correlates of poverty in the places where their effects appear most severe. We quantify the extent to which different levels of analysis influence these results. Comparative analysis of correlates of poverty at basin, national and local levels shows limited congruence. Variation in water quantity, and the presence of irrigation and dams had either limited or no significant correlation with observed variation in poverty measures across levels. Education and access to improved water quality were the only variables consistently significant and spatially stable across the entire basin. At all levels, education is the most consistent non-water correlate of poverty while access to protected water sources is the strongest water related correlate. The analysis indicates that landscape and scale matter for understanding water-poverty linkages and for devising policy concerned with alleviating water poverty. Interactions between environmental, social and institutional factors are complex and consequently a comprehensive understanding of poverty and its causes requires analysis at multiple spatial resolutions.
NASA Technical Reports Server (NTRS)
Strangman, Gary; Culver, Joseph P.; Thompson, John H.; Boas, David A.; Sutton, J. P. (Principal Investigator)
2002-01-01
Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation.
Numerical simulation of backward erosion piping in heterogeneous fields
NASA Astrophysics Data System (ADS)
Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong
2017-04-01
Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.
Cordova-Kreylos, A. L.; Cao, Y.; Green, P.G.; Hwang, H.-M.; Kuivila, K.M.; LaMontagne, M.G.; Van De Werfhorst, L. C.; Holden, P.A.; Scow, K.M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.
Córdova-Kreylos, Ana Lucía; Cao, Yiping; Green, Peter G.; Hwang, Hyun-Min; Kuivila, Kathryn M.; LaMontagne, Michael G.; Van De Werfhorst, Laurie C.; Holden, Patricia A.; Scow, Kate M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. PMID:16672478
NASA Astrophysics Data System (ADS)
Jolivet, R.; Simons, M.
2016-12-01
InSAR time series analysis allows reconstruction of ground deformation with meter-scale spatial resolution and high temporal sampling. For instance, the ESA Sentinel-1 Constellation is capable of providing 6-day temporal sampling, thereby opening a new window on the spatio-temporal behavior of tectonic processes. However, due to computational limitations, most time series methods rely on a pixel-by-pixel approach. This limitation is a concern because (1) accounting for orbital errors requires referencing all interferograms to a common set of pixels before reconstruction of the time series and (2) spatially correlated atmospheric noise due to tropospheric turbulence is ignored. Decomposing interferograms into statistically independent wavelets will mitigate issues of correlated noise, but prior estimation of orbital uncertainties will still be required. Here, we explore a method that considers all pixels simultaneously when solving for the spatio-temporal evolution of interferometric phase Our method is based on a massively parallel implementation of a conjugate direction solver. We consider an interferogram as the sum of the phase difference between 2 SAR acquisitions and the corresponding orbital errors. In addition, we fit the temporal evolution with a physically parameterized function while accounting for spatially correlated noise in the data covariance. We assume noise is isotropic for any given InSAR pair with a covariance described by an exponential function that decays with increasing separation distance between pixels. We regularize our solution in space using a similar exponential function as model covariance. Given the problem size, we avoid matrix multiplications of the full covariances by computing convolutions in the Fourier domain. We first solve the unregularized least squares problem using the LSQR algorithm to approach the final solution, then run our conjugate direction solver to account for data and model covariances. We present synthetic tests showing the efficiency of our method. We then reconstruct a 20-year continuous time series covering Northern Chile. Without input from any additional GNSS data, we recover the secular deformation rate, seasonal oscillations and the deformation fields from the 2005 Mw 7.8 Tarapaca and 2007 Mw 7.7 Tocopilla earthquakes.
Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.
Martínez, C A; Khare, K; Rahman, S; Elzo, M A
2017-10-01
Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Zeng, Cheng; Wang, Shijie; Bai, Xiaoyong; Li, Yangbing; Tian, Yichao; Li, Yue; Wu, Luhua; Luo, Guangjie
2017-07-01
Although some scholars have studied soil erosion in karst landforms, analyses of the spatial and temporal evolution of soil erosion and correlation analyses with spatial elements have been insufficient. The lack of research has led to an inaccurate assessment of environmental effects, especially in the mountainous area of Wuling in China. Soil erosion and rocky desertification in this area influence the survival and sustainability of a population of 0.22 billion people. This paper analyzes the spatiotemporal evolution of soil erosion and explores its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE). Furthermore, this paper analyzes the relationship between soil erosion and major natural elements in southern China. The results are as follows: (1) from 2000 to 2013, the proportion of the area experiencing micro-erosion and mild erosion was at increasing risk in contrast to areas where moderate and high erosion are decreasing. The area changes in this time sequence reflect moderate to high levels of erosion tending to convert into micro-erosion and mild erosion. (2) The soil erosion area on the slope, at 15-35°, accounted for 60.59 % of the total erosion area, and the corresponding soil erosion accounted for 40.44 %. (3) The annual erosion rate in the karst region decreased much faster than in the non-karst region. Soil erosion in all of the rock outcrop areas indicates an improving trend, and dynamic changes in soil erosion significantly differ among the various lithological distribution belts. (4) The soil erosion rate decreased in the rocky desertification regions, to below moderate levels, but increased in the severe rocky desertification areas. The temporal and spatial variations in soil erosion gradually decreased in the study area. Differences in the spatial distribution between lithology and rocky desertification induced extensive soil loss. As rocky desertification became worse, the erosion modulus decreased and the decreasing rate of annual erosion slowed.
Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.
2017-01-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668
The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries
NASA Astrophysics Data System (ADS)
Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.
2017-11-01
In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.
Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan
2018-05-12
We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.
Modes in light wave propagating in semiconductor laser
NASA Technical Reports Server (NTRS)
Manko, Margarita A.
1994-01-01
The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.
Memory effects in active particles with exponentially correlated propulsion
NASA Astrophysics Data System (ADS)
Sandford, Cato; Grosberg, Alexander Y.
2018-01-01
The Ornstein-Uhlenbeck particle (OUP) model imagines a microscopic swimmer propelled by an active force which is correlated with itself on a finite time scale. Here we investigate the influence of external potentials on an ideal suspension of OUPs, in both one and two spatial dimensions, with particular attention paid to the pressure exerted on "confining walls." We employ a mathematical connection between the local density of OUPs and the statistics of their propulsion force to demonstrate the existence of an equation of state in one dimension. In higher dimensions we show that active particles generate a nonconservative force field in the surrounding medium. A simplified far-from-equilibrium model is proposed to account for OUP behavior in the vicinity of potentials. Building on this, we interpret simulations of OUPs in more complicated situations involving asymmetrical and spatially curved potentials, and characterize the resulting inhomogeneous stresses in terms of competing active length scales.
Lithfous, Ségolène; Tromp, Delphine; Dufour, André; Pebayle, Thierry; Goutagny, Romain; Després, Olivier
2015-10-01
The purpose of this study was to investigate the role of theta activity in cognitive mapping, and to determine whether age-associated decreased theta power may account for navigational difficulties in elderly individuals. Cerebral activity was recorded using electroencephalograph in young and older individuals performing a spatial memory task that required the creation of cognitive maps. Power spectra were computed in the frontal and parietal regions and correlated with recognition performance. We found that accuracy of cognitive mapping was positively correlated with left frontal theta activity during encoding in young adults but not in older individuals. Compared with young adults, older participants were impaired in the creation of cognitive maps and showed reduced theta and alpha activity at encoding. These results suggest that encoding processes are impaired in older individual, which may explain age-related cognitive mapping deficits. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.
2015-08-01
Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.
Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei
2015-01-01
Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.
Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei
2015-01-01
Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60 % and 58 % of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45 - 47 % of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75 %. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary. PMID:25928452
Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi
2013-01-01
Background Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time. Methods A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for model fitting and prediction. Results Using a stepwise model selection procedure, several explanatory variables were identified to have significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation) and average temperature during the three months previous to the month of interest. Conclusions When modelling malaria risk in Malawi it is important to account for spatial and temporal heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for, precipitation and temperature in the months prior to the malaria season of interest are found to significantly determine spatial and temporal variations of malaria incidence. Climate information was found to improve the estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is irregular. This highlights the potential value of climate-driven seasonal malaria forecasts. PMID:24228784
Spatial-temporal modeling of neighborhood sociodemographic characteristics and food stores.
Lamichhane, Archana P; Warren, Joshua L; Peterson, Marc; Rummo, Pasquale; Gordon-Larsen, Penny
2015-01-15
The literature on food stores, neighborhood poverty, and race/ethnicity is mixed and lacks methods of accounting for complex spatial and temporal clustering of food resources. We used quarterly data on supermarket and convenience store locations from Nielsen TDLinx (Nielsen Holdings N.V., New York, New York) spanning 7 years (2006-2012) and census tract-based neighborhood sociodemographic data from the American Community Survey (2006-2010) to assess associations between neighborhood sociodemographic characteristics and food store distributions in the Metropolitan Statistical Areas (MSAs) of 4 US cities (Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; and San Francisco, California). We fitted a space-time Poisson regression model that accounted for the complex spatial-temporal correlation structure of store locations by introducing space-time random effects in an intrinsic conditionally autoregressive model within a Bayesian framework. After accounting for census tract-level area, population, their interaction, and spatial and temporal variability, census tract poverty was significantly and positively associated with increasing expected numbers of supermarkets among tracts in all 4 MSAs. A similar positive association was observed for convenience stores in Birmingham, Minneapolis, and San Francisco; in Chicago, a positive association was observed only for predominantly white and predominantly black tracts. Our findings suggest a positive association between greater numbers of food stores and higher neighborhood poverty, with implications for policy approaches related to food store access by neighborhood poverty. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Scheperle, Rachel A.; Abbas, Paul J.
2014-01-01
Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford-Kowal-Bench Sentence-in-Noise (BKB-SIN) test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. Results All electrophysiological measures were significantly correlated with each other and with speech perception for the mixed-model analysis, which takes into account multiple measures per person (i.e. experimental MAPs). The ECAP measures were the best predictor of speech perception. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech; spectral ACC amplitude was the strongest predictor. Conclusions The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be the most useful for within-subject applications, when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered. PMID:25658746
Star formation in M 33: the radial and local relations with the gas
NASA Astrophysics Data System (ADS)
Verley, S.; Corbelli, E.; Giovanardi, C.; Hunt, L. K.
2010-02-01
Aims: In the Local Group spiral galaxy M 33, we investigate the correlation between the star formation rate (SFR) surface density, Σ_SFR, and the gas density Σ_gas (molecular, atomic, and total). We also explore whether there are other physical quantities, such as the hydrostatic pressure and dust optical depth, which establish a good correlation with Σ_SFR. Methods: We use the Hα, far-ultraviolet (FUV), and bolometric emission maps to infer the SFR locally at different spatial scales, and in radial bins using azimuthally averaged values. Most of the local analysis is done using the highest spatial resolution allowed by gas surveys, 180 pc. The Kennicutt-Schmidt (KS) law, Σ_SFR ∝ Σ_gas^n is analyzed by three statistical methods. Results: At all spatial scales, with Hα emission as a SFR tracer, the KS indices n are always steeper than those derived with the FUV and bolometric emissions. We attribute this to the lack of Hα emission in low luminosity regions where most stars form in small clusters with an incomplete initial mass function at their high mass end. For azimuthally averaged values the depletion timescale for the molecular gas is constant, and the KS index is n_H_2=1.1 ±0.1. Locally, at a spatial resolution of 180 pc, the correlation between Σ_SFR and Σ_gas is generally poor, even though it is tighter with the molecular and total gas than with the atomic gas alone. Considering only positions where the CO J=1-0 line is above the 2-σ detection threshold and taking into account uncertainties in Σ_H_2 and Σ_SFR, we obtain a steeper KS index than obtained with radial averages: n_H_2=2.22 ±0.07 (for FUV and bolometric SFR tracers), flatter than that relative to the total gas (n_Htot=2.59 ±0.05). The gas depletion timescale is therefore larger in regions of lower Σ_SFR. Lower KS indices (n_H_2=1.46 ±0.34 and n_H_2=1.12) are found using different fitting techniques, which do not account for individual position uncertainties. At coarser spatial resolutions these indices get slightly steeper, and the correlation improves. We find an almost linear relation and a better correlation coefficient between the local Σ_SFR and the ISM hydrostatic pressure or the gas volume density. This suggests that the stellar disk, gravitationally dominant with respect to the gaseous disk in M 33, has a non-marginal role in driving the SFR. However, the tight local correlation that exists between the dust optical depth and the SFR sheds light on the alternative hypothesis that the dust column density is a good tracer of the gas that is prone to star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres; Evans, James W.
2016-11-03
We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less
NASA Astrophysics Data System (ADS)
Skøien, J. O.; Gottschalk, L.; Leblois, E.
2009-04-01
Whereas geostatistical and objective methods mostly have been developed for observations with point support or a regular support, e.g. runoff related data can be assumed to have an irregular support in space, and sometimes also a temporal support. The correlations between observations and between observations and the prediction location are found through an integration of a point variogram or point correlation function, a method known as regularisation. Being a relatively simple method for observations with equal and regular support, it can be computationally demanding if the observations have irregular support. With improved speed of computers, solving such integrations has become easier, but there can still be numerical problems that are not easily solved even with high-resolution computations. This can particularly be a problem in hydrological sciences where catchments are overlapping, the correlations are high, and small numerical errors can give ill-posed covariance matrices. The problem increases with increasing number of spatial and/or temporal dimensions. Gottschalk [1993a; 1993b] suggested to replace the integration by a Taylor expansion, hence reducing the computation time considerably, and also expecting less numerical problems with the covariance matrices. In practice, the integrated correlation/semivariance between observations are replaced by correlations/semivariances using the so called Ghosh-distance. Although Gottschalk and collaborators have used the Ghosh-distance also in other papers [Sauquet, et al., 2000a; Sauquet, et al., 2000b], the properties of the simplification have not been examined in detail. Hence, we will here analyse the replacement of the integration by the use of Ghosh-distances, both in sense of the ability to reproduce regularised semivariogram and correlation values, and the influence on the final interpolated maps. Comparisons will be performed both for real observations with a support (hydrological data) and for more hypothetical observations with regular supports where analytical expressions for the regularised semivariances/correlations in some cases can be derived. The results indicate that the simplification is useful for spatial interpolation when the support of the observations has to be taken into account. The difference in semivariogram value or correlation value between the simplified method and the full integration is limited on short distances, increasing for larger distances. However, this is to some degree taken into account while fitting a model for the point process, so that the results after interpolation are less affected by the simplification. The method is of particular use if computation time is of importance, e.g. in the case of real-time mapping procedures. Gottschalk, L. (1993a) Correlation and covariance of runoff, Stochastic Hydrology and Hydraulics, 7, 85-101. Gottschalk, L. (1993b) Interpolation of runoff applying objective methods, Stochastic Hydrology and Hydraulics, 7, 269-281. Sauquet, E., L. Gottschalk, and E. Leblois (2000a) Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme, Hydrological Sciences Journal, 45, 799-815. Sauquet, E., I. Krasovskaia, and E. Leblois (2000b) Mapping mean monthly runoff pattern using EOF analysis, Hydrology and Earth System Sciences, 4, 79-93.
Spatial memory in foraging games.
Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T
2016-03-01
Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of the distant population density on spatial patterns of demographic dynamics
NASA Astrophysics Data System (ADS)
Tamura, Kohei; Masuda, Naoki
2017-08-01
Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km.
Effects of the distant population density on spatial patterns of demographic dynamics.
Tamura, Kohei; Masuda, Naoki
2017-08-01
Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m ) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km.
Effects of the distant population density on spatial patterns of demographic dynamics
2017-01-01
Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km. PMID:28878987
Ball, Stephen J.; Jacoby, Peter; Zubrick, Stephen R.
2013-01-01
Fetal growth is an important risk factor for infant morbidity and mortality. In turn, socioeconomic status is a key predictor of fetal growth; however, other sociodemographic factors and environmental effects may also be important. This study modelled geographic variation in poor fetal growth after accounting for socioeconomic status, with a fixed effect for socioeconomic status and a combination of spatially-correlated and spatially-uncorrelated random effects. The dataset comprised 88,246 liveborn singletons, aggregated within suburbs in Perth, Western Australia. Low socioeconomic status was strongly associated with an increased risk of poor fetal growth. An increase in geographic variation of poor fetal growth from 1999–2001 (interquartile odds ratio among suburbs = 1.20) to 2004–2006 (interquartile odds ratio = 1.40) indicated a widening risk disparity by socioeconomic status. Low levels of residual spatial patterns strengthen the case for targeting policies and practices in areas of low socioeconomic status for improved outcomes. This study indicates an alarming increase in geographic inequalities in poor fetal growth in Perth which warrants further research into the specific aspects of socioeconomic status that act as risk factors. PMID:23799513
Application of Poisson random effect models for highway network screening.
Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer
2014-02-01
In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA
2016-01-01
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245
Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media
NASA Astrophysics Data System (ADS)
Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.
2017-12-01
The transport of fluids in porous media is dominated by flow-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.
Habyarimana, Faustin; Zewotir, Temesgen; Ramroop, Shaun
2018-03-01
The main objective of this study was to assess the risk factors and spatial correlates of domestic violence against women of reproductive age in Rwanda. A structured spatial approach was used to account for the nonlinear nature of some covariates and the spatial variability on domestic violence. The nonlinear effect was modeled through second-order random walk, and the structured spatial effect was modeled through Gaussian Markov Random Fields specified as an intrinsic conditional autoregressive model. The data from the Rwanda Demographic and Health Survey 2014/2015 were used as an application. The findings of this study revealed that the risk factors of domestic violence against women are the wealth quintile of the household, the size of the household, the husband or partner's age, the husband or partner's level of education, ownership of the house, polygamy, the alcohol consumption status of the husband or partner, the woman's perception of wife-beating attitude, and the use of contraceptive methods. The study also highlighted the significant spatial variation of domestic violence against women at district level.
Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics
NASA Astrophysics Data System (ADS)
Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.
Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.
Visual development in primates: Neural mechanisms and critical periods
Kiorpes, Lynne
2015-01-01
Despite many decades of research into the development of visual cortex, it remains unclear what neural processes set limitations on the development of visual function and define its vulnerability to abnormal visual experience. This selected review examines the development of visual function and its neural correlates, and highlights the fact that in most cases receptive field properties of infant neurons are substantially more mature than infant visual function. One exception is temporal resolution, which can be accounted for by resolution of neurons at the level of the LGN. In terms of spatial vision, properties of single neurons alone are not sufficient to account for visual development. Different visual functions develop over different time courses. Their onset may be limited by the existence of neural response properties that support a given perceptual ability, but the subsequent time course of maturation to adult levels remains unexplained. Several examples are offered suggesting that taking account of weak signaling by infant neurons, correlated firing, and pooled responses of populations of neurons brings us closer to an understanding of the relationship between neural and behavioral development. PMID:25649764
Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh
Bi, Qifang; Azman, Andrew S.; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S.; Lessler, Justin
2016-01-01
Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures. PMID:26866926
Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David
2017-03-15
Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka
2011-01-01
Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932
Correlations and Functional Connections in a Population of Grid Cells
Roudi, Yasser
2015-01-01
We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908
NASA Astrophysics Data System (ADS)
Moreau, Paul-Antoine; Mougin-Sisini, Joé; Devaux, Fabrice; Lantz, Eric
2012-07-01
We demonstrate Einstein-Podolsky-Rosen (EPR) entanglement by detecting purely spatial quantum correlations in the near and far fields of spontaneous parametric down-conversion generated in a type-2 beta barium borate crystal. Full-field imaging is performed in the photon-counting regime with an electron-multiplying CCD camera. The data are used without any postselection, and we obtain a violation of Heisenberg inequalities with inferred quantities taking into account all the biphoton pairs in both the near and far fields by integration on the entire two-dimensional transverse planes. This ensures a rigorous demonstration of the EPR paradox in its original position-momentum form.
Factors associated with persons with disability employment in India: a cross-sectional study.
Naraharisetti, Ramya; Castro, Marcia C
2016-10-07
Over twenty million persons with disability in India are increasingly being offered poverty alleviation strategies, including employment programs. This study employs a spatial analytic approach to identify correlates of employment among persons with disability in India, considering sight, speech, hearing, movement, and mental disabilities. Based on 2001 Census data, this study utilizes linear regression and spatial autoregressive models to identify factors associated with the proportion employed among persons with disability at the district level. Models stratified by rural and urban areas were also considered. Spatial autoregressive models revealed that different factors contribute to employment of persons with disability in rural and urban areas. In rural areas, having mental disability decreased the likelihood of employment, while being female and having movement, or sight impairment (compared to other disabilities) increased the likelihood of employment. In urban areas, being female and illiterate decreased the likelihood of employment but having sight, mental and movement impairment (compared to other disabilities) increased the likelihood of employment. Poverty alleviation programs designed for persons with disability in India should account for differences in employment by disability types and should be spatially targeted. Since persons with disability in rural and urban areas have different factors contributing to their employment, it is vital that government and service-planning organizations account for these differences when creating programs aimed at livelihood development.
The Non-Gaussian Nature of Prostate Motion Based on Real-Time Intrafraction Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting; Liu, Tian; Yang, Wells
2013-10-01
Purpose: The objective of this work is to test the validity of the Gaussian approximation for prostate motion through characterization of its spatial distribution. Methods and Materials: Real-time intrafraction prostate motion was observed using Calypso 4-dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were determined using Pearson's correlation of coefficient. Then the spatial distribution of prostate motion was analyzed for individual fraction, individual patient including all fractions, and all patients including allmore » fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis that the displacement is normally distributed. Results: There is high correlation in AP/SI direction (61% of fractions with medium or strong correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely the effect from respiration on an organ confined within the genitourinary diaphragm with the rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian distribution is more common for individual fraction, individual patient including all fractions, and all patients including all fractions. The spatial distribution of prostate motion shows an elongated shape in oblique direction, indicating a higher range of motion in the AP and SI directions. Conclusions: Our results showed that the prostate motion is highly correlated in AP and SI direction, indicating an oblique motion preference. In addition, the spatial distribution of prostate motion is elongated in an oblique direction, indicating that the organ motion dosimetric modeling using Gaussian kernel may need to be modified to account for the particular organ motion character of prostate.« less
The non-Gaussian nature of prostate motion based on real-time intrafraction tracking.
Lin, Yuting; Liu, Tian; Yang, Wells; Yang, Xiaofeng; Khan, Mohammad K
2013-10-01
The objective of this work is to test the validity of the Gaussian approximation for prostate motion through characterization of its spatial distribution. Real-time intrafraction prostate motion was observed using Calypso 4-dimensional (4D) nonradioactive electromagnetic tracking system. We report the results from a total of 1024 fractions from 31 prostate cancer patients. First, the correlation of prostate motion in right/left (RL), anteroposterior (AP), and superoinferior (SI) direction were determined using Pearson's correlation of coefficient. Then the spatial distribution of prostate motion was analyzed for individual fraction, individual patient including all fractions, and all patients including all fractions. The displacement in RL, AP, SI, oblique, or total direction is fitted into a Gaussian distribution, and a Lilliefors test was used to evaluate the validity of the hypothesis that the displacement is normally distributed. There is high correlation in AP/SI direction (61% of fractions with medium or strong correlation). This is consistent with the longitudinal oblique motion of the prostate, and likely the effect from respiration on an organ confined within the genitourinary diaphragm with the rectum sitting posteriorly and bladder sitting superiorly. In all directions, the non-Gaussian distribution is more common for individual fraction, individual patient including all fractions, and all patients including all fractions. The spatial distribution of prostate motion shows an elongated shape in oblique direction, indicating a higher range of motion in the AP and SI directions. Our results showed that the prostate motion is highly correlated in AP and SI direction, indicating an oblique motion preference. In addition, the spatial distribution of prostate motion is elongated in an oblique direction, indicating that the organ motion dosimetric modeling using Gaussian kernel may need to be modified to account for the particular organ motion character of prostate. Copyright © 2013 Elsevier Inc. All rights reserved.
Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations
NASA Astrophysics Data System (ADS)
Zhang, Li; Schwieger, Volker
2016-06-01
The investigations on low-cost single frequency GPS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox LEA-6T GPS receivers combined with Trimble Bullet III GPS antennas containing self-constructed L1-optimized choke rings can already obtain an accuracy in the range of millimeters which meets the requirements of geodetic precise monitoring applications (see [
Yu, Qingzhao; Li, Bin; Scribner, Richard Allen
2009-06-30
Previous studies have suggested a link between alcohol outlets and assaults. In this paper, we explore the effects of alcohol availability on assaults at the census tract level over time. In addition, we use a natural experiment to check whether a sudden loss of alcohol outlets is associated with deeper decreasing in assault violence. Several features of the data raise statistical challenges: (1) the association between covariates (for example, the alcohol outlet density of each census tract) and the assault rates may be complex and therefore cannot be described using a linear model without covariates transformation, (2) the covariates may be highly correlated with each other, (3) there are a number of observations that have missing inputs, and (4) there is spatial association in assault rates at the census tract level. We propose a hierarchical additive model, where the nonlinear correlations and the complex interaction effects are modeled using the multiple additive regression trees and the residual spatial association in the assault rates that cannot be explained in the model are smoothed using a conditional autoregressive (CAR) method. We develop a two-stage algorithm that connects the nonparametric trees with CAR to look for important covariates associated with the assault rates, while taking into account the spatial association of assault rates in adjacent census tracts. The proposed method is applied to the Los Angeles assault data (1990-1999). To assess the efficiency of the method, the results are compared with those obtained from a hierarchical linear model. Copyright (c) 2009 John Wiley & Sons, Ltd.
Analysis of Alaskan burn severity patterns using remotely sensed data
Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.
2007-01-01
Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.
Low spatial frequency characterization of holographic recording materials applied to correlation
NASA Astrophysics Data System (ADS)
Márquez, A.; Neipp, C.; Beléndez, A.; Campos, J.; Pascual, I.; Yzuel, M. J.; Fimia, A.
2003-09-01
Accurate recording of computer-generated holograms (CGH) on a phase material is not a trivial task. The range of available phase materials is large, and their suitability depends on the fabrication technique chosen to produce the hologram. We are particularly interested in low-cost fabrication techniques, easily available for any lab. In this work we present the results obtained with a wide variety of phase holographic recording materials, characterized at low spatial frequencies (leq32 lp mm-1) which is the range associated with the technique we use to produce the CGHs. We have considered bleached emulsion, silver halide sensitized gelatin (SHSG) and dichromated gelatin. Some interesting differences arise between the behaviour of these materials in the usual holographic range (>1000 lp mm-1), and the low-frequency range intended for digital holography. The ultimate goal of this paper is to establish the suitability of different phase materials as the media to generate correlation filters for optical pattern recognition. In all the materials considered, the phase filters generated ensure the discrimination of the target in the recognition process. Taking into account all the experimental results, we can say that SHSG is the best material to generate phase CGHs with low spatial frequencies.
Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying
2016-01-01
Background Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. Methods The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008–2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. Results The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse “V” shape and “V” shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. Conclusion We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across provinces. Future research should explore the risk factors that cause spatial correlated structure or high variation of HFMD incidence which can be explained by temperature. When analyzing association between HFMD incidence and climatic variables, spatial heterogeneity among provinces should be evaluated. Moreover, the extra-Poisson multilevel model was capable of modeling the association between overdispersion of HFMD incidence and climatic variables. PMID:26808311
Liao, Jiaqiang; Yu, Shicheng; Yang, Fang; Yang, Min; Hu, Yuehua; Zhang, Juying
2016-01-01
Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008-2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse "V" shape and "V" shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across provinces. Future research should explore the risk factors that cause spatial correlated structure or high variation of HFMD incidence which can be explained by temperature. When analyzing association between HFMD incidence and climatic variables, spatial heterogeneity among provinces should be evaluated. Moreover, the extra-Poisson multilevel model was capable of modeling the association between overdispersion of HFMD incidence and climatic variables.
Long-Range Repulsion Between Spatially Confined van der Waals Dimers
NASA Astrophysics Data System (ADS)
Sadhukhan, Mainak; Tkatchenko, Alexandre
2017-05-01
It is an undisputed textbook fact that nonretarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here, we demonstrate that the long-range interaction between spatially confined vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality; however, the long-range repulsion is expected to be a general phenomenon for spatially confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.
Dynamic Patterns of Modern Epidemics
NASA Astrophysics Data System (ADS)
Brockmann, Dirk; Hufnagel, Lars; Geisel, Theo
2004-03-01
We investigate the effects of scale-free travelling of humans and their inhomogeneous geographic distribution on the dynamic patterns of spreading epidemics. Our approach combines the susceptible/infected/recovered paradigm for the infection dynamics with superdiffusive dispersion of individuals and their inhomogeneous spatial distribution. We show that scale-free motion of individuals and their variable spatial distribution leads to the absence of wavefronts in dynamic epidemic patterns which are typical for the limiting cases of ordinary diffusion and spatially homogeneous populations. Instead, patterns emerge with isolated hotspots on highly populated areas from which regional epidemic outbursts are triggered. Hotspot sizes are independent of the correlation length in the spatial distribution of individuals and occur on all scales. Our theory predicts that highly populated areas are reached by an epidemic in advance and must receive special attention in control measure strategies. Furthermore, our analysis predicts strong fluctuations in the time course of the total infection which cannot be accounted for by ordinary reaction-diffusion models for epidemics.
Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing
2015-12-01
Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.
Spatial and vertical distribution of bacterial community in the northern South China Sea.
Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao
2015-10-01
Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.
A computational study on outliers in world music.
Panteli, Maria; Benetos, Emmanouil; Dixon, Simon
2017-01-01
The comparative analysis of world music cultures has been the focus of several ethnomusicological studies in the last century. With the advances of Music Information Retrieval and the increased accessibility of sound archives, large-scale analysis of world music with computational tools is today feasible. We investigate music similarity in a corpus of 8200 recordings of folk and traditional music from 137 countries around the world. In particular, we aim to identify music recordings that are most distinct compared to the rest of our corpus. We refer to these recordings as 'outliers'. We use signal processing tools to extract music information from audio recordings, data mining to quantify similarity and detect outliers, and spatial statistics to account for geographical correlation. Our findings suggest that Botswana is the country with the most distinct recordings in the corpus and China is the country with the most distinct recordings when considering spatial correlation. Our analysis includes a comparison of musical attributes and styles that contribute to the 'uniqueness' of the music of each country.
A computational study on outliers in world music
Benetos, Emmanouil; Dixon, Simon
2017-01-01
The comparative analysis of world music cultures has been the focus of several ethnomusicological studies in the last century. With the advances of Music Information Retrieval and the increased accessibility of sound archives, large-scale analysis of world music with computational tools is today feasible. We investigate music similarity in a corpus of 8200 recordings of folk and traditional music from 137 countries around the world. In particular, we aim to identify music recordings that are most distinct compared to the rest of our corpus. We refer to these recordings as ‘outliers’. We use signal processing tools to extract music information from audio recordings, data mining to quantify similarity and detect outliers, and spatial statistics to account for geographical correlation. Our findings suggest that Botswana is the country with the most distinct recordings in the corpus and China is the country with the most distinct recordings when considering spatial correlation. Our analysis includes a comparison of musical attributes and styles that contribute to the ‘uniqueness’ of the music of each country. PMID:29253027
Correlates of fatality risk of vulnerable road users in Delhi.
Goel, Rahul; Jain, Parth; Tiwari, Geetam
2018-02-01
Pedestrians, cyclists, and users of motorised two-wheelers account for more than 85% of all the road fatality victims in Delhi. The three categories are often referred to as vulnerable road users (VRUs). Using Bayesian hierarchical approach with a Poisson-lognormal regression model, we present spatial analysis of road fatalities of VRUs with wards as areal units. The model accounts for spatially uncorrelated as well as correlated error. The explanatory variables include demographic factors, traffic characteristics, as well as built environment features. We found that fatality risk has a negative association with socio-economic status (literacy rate), population density, and number of roundabouts, and has a positive association with percentage of population as workers, number of bus stops, number of flyovers (grade separators), and vehicle kilometers travelled. The negative effect of roundabouts, though statistically insignificant, is in accordance with their speed calming effects for which they have been used to replace signalised junctions in various parts of the world. Fatality risk is 80% higher at the density of 50 persons per hectare (pph) than at overall city-wide density of 250 pph. The presence of a flyover increases the relative risk by 15% compared to no flyover. Future studies should investigate the causal mechanism through which denser neighborhoods become safer. Given the risk posed by flyovers, their use as congestion mitigation measure should be discontinued within urban areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trick, Lana M; Mutreja, Rachna; Hunt, Kelly
2012-02-01
An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.
StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.
Stavrovskaya, Elena D; Niranjan, Tejasvi; Fertig, Elana J; Wheelan, Sarah J; Favorov, Alexander V; Mironov, Andrey A
2017-10-15
Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. favorov@sensi.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.
Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s{sup −1}) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s{sup −1}. Thismore » invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)« less
Duncan, Dustin T; Aldstadt, Jared; Whalen, John; Melly, Steven J; Gortmaker, Steven L
2011-11-01
Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score(®) for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and Fitness Project, an obesity prevention intervention involving children aged 5-11 years and their families participating in YMCA-administered, after-school programs located in four geographically diverse metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective indicators of neighborhood walkability. Walk Scores were also obtained for the participant's residential addresses. Spearman correlations between Walk Scores and the GIS neighborhood walkability indicators were calculated as well as Spearman correlations accounting for spatial autocorrelation. There were many significant moderate correlations between Walk Scores and the GIS neighborhood walkability indicators such as density of retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became stronger with a larger spatial scale, and there were some geographic differences. Walk Score(®) is free and publicly available for public health researchers and practitioners. Results from our study suggest that Walk Score(®) is a valid measure of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As such, our study confirms and extends the generalizability of previous findings demonstrating that Walk Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and at multiple spatial scales.
Does the edge effect impact on the measure of spatial accessibility to healthcare providers?
Gao, Fei; Kihal, Wahida; Le Meur, Nolwenn; Souris, Marc; Deguen, Séverine
2017-12-11
Spatial accessibility indices are increasingly applied when investigating inequalities in health. Although most studies are making mentions of potential errors caused by the edge effect, many acknowledge having neglected to consider this concern by establishing spatial analyses within a finite region, settling for hypothesizing that accessibility to facilities will be under-reported. Our study seeks to assess the effect of edge on the accuracy of defining healthcare provider access by comparing healthcare provider accessibility accounting or not for the edge effect, in a real-world application. This study was carried out in the department of Nord, France. The statistical unit we use is the French census block known as 'IRIS' (Ilot Regroupé pour l'Information Statistique), defined by the National Institute of Statistics and Economic Studies. The geographical accessibility indicator used is the "Index of Spatial Accessibility" (ISA), based on the E2SFCA algorithm. We calculated ISA for the pregnant women population by selecting three types of healthcare providers: general practitioners, gynecologists and midwives. We compared ISA variation when accounting or not edge effect in urban and rural zones. The GIS method was then employed to determine global and local autocorrelation. Lastly, we compared the relationship between socioeconomic distress index and ISA, when accounting or not for the edge effect, to fully evaluate its impact. The results revealed that on average ISA when offer and demand beyond the boundary were included is slightly below ISA when not accounting for the edge effect, and we found that the IRIS value was more likely to deteriorate than improve. Moreover, edge effect impact can vary widely by health provider type. There is greater variability within the rural IRIS group than within the urban IRIS group. We found a positive correlation between socioeconomic distress variables and composite ISA. Spatial analysis results (such as Moran's spatial autocorrelation index and local indicators of spatial autocorrelation) are not really impacted. Our research has revealed minor accessibility variation when edge effect has been considered in a French context. No general statement can be set up because intensity of impact varies according to healthcare provider type, territorial organization and methodology used to measure the accessibility to healthcare. Additional researches are required in order to distinguish what findings are specific to a territory and others common to different countries. It constitute a promising direction to determine more precisely healthcare shortage areas and then to fight against social health inequalities.
Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya
2017-02-01
Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schultheis, Eric; Glasmeier, Amy
2015-09-01
Over the last decade, demand for services from military treatment facilities (MTFs) has frequently exceeded capacity resulting in increased usage of off-base civilian Tricare providers (OCTP). This capacity shortage has been particularly acute for mental health care. At many installations, OCTPs are the main source of mental health care for military personnel and their families. Utilizing data on the location of mental health OCTPs and demographic data, we examine the spatial accessibility of mental health OCTPs around five military installations. Variation exists in the spatial accessibility of mental health OCTPs depending on the geographic context of an installation. There is a mild correlation between the number of mental health OTCPs proximate to a base and the beneficiaries enrolled in an MTF. There is a strong correlation between the size of the general population proximate to an installation and the number of mental health OCTMPs present. Installations located in densely populated areas had high ratios of mental health OCTPs to the MTF beneficiary population but not when the civilian demand on these providers was accounted for. This study's findings open several avenues for future research and policy aimed at increasing the effectiveness of the mental health OCTP network. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Mechanisms for Human Spatial Competence
NASA Astrophysics Data System (ADS)
Gunzelmann, Glenn; Lyon, Don R.
Research spanning decades has generated a long list of phenomena associated with human spatial information processing. Additionally, a number of theories have been proposed about the representation, organization and processing of spatial information by humans. This paper presents a broad account of human spatial competence, integrated with the ACT-R cognitive architecture. Using a cognitive architecture grounds the research in a validated theory of human cognition, enhancing the plausibility of the overall account. This work posits a close link of aspects of spatial information processing to vision and motor planning, and integrates theoretical perspectives that have been proposed over the history of research in this area. In addition, the account is supported by evidence from neuropsychological investigations of human spatial ability. The mechanisms provide a means of accounting for a broad range of phenomena described in the experimental literature.
Theory of the fundamental laser linewidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, P.; Milonni, P.W.; Sundaram, B.
1991-08-01
The theory of the laser linewidth is formulated to account for arbitrarily large output couplings and spatial hole burning. We show explicitly that the linewidth can be interpreted in terms of either spontaneous-emission noise or the amplification of vacuum field modes leaking into the cavity, depending on the ordering of operators in the correlation function determining the laser spectrum. This allows us to derive the Petermann {ital K} factor associated with excess spontaneous-emission noise'' in a physically transparent and mathematically simple way, without the need to introduce adjoint modes of the resonator. It also allows us to straightforwardly include spatial-hole-burningmore » effects, which are found to increase the {ital K} factor and the linewidth in high-gain systems appreciably.« less
Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghim, Young Sung; Oh, Hyun Sun; Kim, Jin Young
Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of 66 ng/m2-day wasmore » about twice as large as the dry deposition flux of 32 ng/m2-day, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.« less
Civil war and the spread of AIDS in Central Africa.
Smallman-Raynor, M. R.; Cliff, A. D.
1991-01-01
Using ordinary least squares regression techniques this paper demonstrates, for the first time, that the classic association of war and disease substantially accounts for the presently observed geographical distribution of reported clinical AIDS cases in Uganda. Both the spread of HIV 1 infection in the 1980s, and the subsequent development of AIDS to its 1990 spatial pattern, are shown to be significantly and positively correlated with ethnic patterns of recruitment into the Ugandan National Liberation Army (UNLA) after the overthrow of Idi Amin some 10 years earlier in 1979. This correlation reflects the estimated mean incubation period of 8-10 years for HIV 1 and underlines the need for cognizance of historical factors which may have influenced current patterns of AIDS seen in Central Africa. The findings may have important implications for AIDS forecasting and control in African countries which have recently experienced war. The results are compared with parallel analyses of other HIV hypotheses advanced to account for the reported geographical distribution of AIDS in Uganda. PMID:1879492
Impact of Uncertainty on the Porous Media Description in the Subsurface Transport Analysis
NASA Astrophysics Data System (ADS)
Darvini, G.; Salandin, P.
2008-12-01
In the modelling of flow and transport phenomena in naturally heterogeneous media, the spatial variability of hydraulic properties, typically the hydraulic conductivity, is generally described by use of a variogram of constant sill and spatial correlation. While some analyses reported in the literature discuss of spatial inhomogeneity related to a trend in the mean hydraulic conductivity, the effect in the flow and transport due to an inexact definition of spatial statistical properties of media as far as we know had never taken into account. The relevance of this topic is manifest, and it is related to the uncertainty in the definition of spatial moments of hydraulic log-conductivity from an (usually) little number of data, as well as to the modelling of flow and transport processes by the Monte Carlo technique, whose numerical fields have poor ergodic properties and are not strictly statistically homogeneous. In this work we investigate the effects related to mean log-conductivity (logK) field behaviours different from the constant one due to different sources of inhomogeneity as: i) a deterministic trend; ii) a deterministic sinusoidal pattern and iii) a random behaviour deriving from the hierarchical sedimentary architecture of porous formations and iv) conditioning procedure on available measurements of the hydraulic conductivity. These mean log-conductivity behaviours are superimposed to a correlated weakly fluctuating logK field. The time evolution of the spatial moments of the plume driven by a statistically inhomogeneous steady state random velocity field is analyzed in a 2-D finite domain by taking into account different sizes of injection area. The problem is approached by both a classical Monte Carlo procedure and SFEM (stochastic finite element method). By the latter the moments are achieved by space-time integration of the velocity field covariance structure derived according to the first- order Taylor series expansion. Two different goals are foreseen: 1) from the results it will be possible to distinguish the contribute in the plume dispersion of the uncertainty in the statistics of the medium hydraulic properties in all the cases considered, and 2) we will try to highlight the loss of performances that seems to affect the first-order approaches in the transport phenomena that take place in hierarchical architecture of porous formations.
Invariant features of spatial inequality in consumption: The case of India
NASA Astrophysics Data System (ADS)
Chatterjee, Arnab; Chakrabarti, Anindya S.; Ghosh, Asim; Chakraborti, Anirban; Nandi, Tushar K.
2016-01-01
We study the distributional features and inequality of consumption expenditure across India, for different states, castes, religion and urban-rural divide. We find that even though the aggregate measures of inequality are fairly diversified across states, the consumption distributions show near identical statistics, once properly normalized. This feature is seen to be robust with respect to variations in sociological and economic factors. We also show that state-wise inequality seems to be positively correlated with growth which is in accord with the traditional idea of Kuznets' curve. We present a brief model to account for the invariance found empirically and show that better but riskier technology draws can create a positive correlation between inequality and growth.
Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki
2017-03-01
In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.
Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan
2016-11-15
Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2 = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System
Fischer, Brian J.; Peña, Jose L.
2016-01-01
Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. SIGNIFICANCE STATEMENT In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. PMID:26888922
Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P
2015-01-01
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands PMID:26709335
Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P
2015-06-01
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands.
Spatial analysis of highway incident durations in the context of Hurricane Sandy.
Xie, Kun; Ozbay, Kaan; Yang, Hong
2015-01-01
The objectives of this study are (1) to develop an incident duration model which can account for the spatial dependence of duration observations, and (2) to investigate the impacts of a hurricane on incident duration. Highway incident data from New York City and its surrounding regions before and after Hurricane Sandy was used for the study. Moran's I statistics confirmed that durations of the neighboring incidents were spatially correlated. Moreover, Lagrange Multiplier tests suggested that the spatial dependence should be captured in a spatial lag specification. A spatial error model, a spatial lag model and a standard model without consideration of spatial effects were developed. The spatial lag model is found to outperform the others by capturing the spatial dependence of incident durations via a spatially lagged dependent variable. It was further used to assess the effects of hurricane-related variables on incident duration. The results show that the incidents during and post the hurricane are expected to have 116.3% and 79.8% longer durations than those that occurred in the regular time. However, no significant increase in incident duration is observed in the evacuation period before Sandy's landfall. Results of temporal stability tests further confirm the existence of the significant changes in incident duration patterns during and post the hurricane. Those findings can provide insights to aid in the development of hurricane evacuation plans and emergency management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Local and non-local deficits in amblyopia: acuity and spatial interactions.
Bonneh, Yoram S; Sagi, Dov; Polat, Uri
2004-12-01
Amblyopic vision is thought to be limited by abnormal long-range spatial interactions, but their exact mode of action and relationship to the main amblyopic deficit in visual acuity is largely unknown. We studied this relationship in a group (N=59) of anisometropic (N=21) and strabismic (or combined, N=38) subjects, using (1) a single and multi-pattern (crowded) computerized static Tumbling-E test with scaled spacing of two pattern widths (TeVA), in addition to an optotype (ETDRS chart) acuity test (VA) and (2) contrast detection of Gabor patches with lateral flankers (lateral masking) along the horizontal and vertical axes as well as in collinear and parallel configurations. By correlating the different measures of visual acuity and contrast suppression, we found that (1) the VA of the strabismic subjects could be decomposed into two uncorrelated components measured in TeVA: acuity for isolated patterns and acuity reduction due to flanking patterns. The latter comprised over 60% of the VA magnitude, on the average and accounted for over 50% of its variance. In contrast, a slight reduction in acuity was found in the anisometropic subjects, and the acuity for a single pattern could account for 70% of the VA variance. (2) The lateral suppression (contrast threshold elevation) in a parallel configuration along the horizontal axis was correlated with the VA (R2=0.7), as well as with the crowding effect (TeVA elevation, R2=0.5) for the strabismic group. Some correlation with the VA was also found for the collinear configuration in the anisometropic group, but less suppression and no correlation were found for all the vertical configurations in all the groups. The results indicate the existence of a specific non-local component of the strabismic deficit, in addition to the local acuity deficit in all amblyopia types. This deficit might reflect long-range lateral inhibition, or alternatively, an inaccurate and scattered top-down attentional selection mechanism.
Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles
NASA Technical Reports Server (NTRS)
Kenny, Jeremy; Giacomoni, Clothilde
2016-01-01
The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.
Duncan, Dustin T.; Aldstadt, Jared; Whalen, John; Melly, Steven J.; Gortmaker, Steven L.
2011-01-01
Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score® for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and Fitness Project, an obesity prevention intervention involving children aged 5–11 years and their families participating in YMCA-administered, after-school programs located in four geographically diverse metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective indicators of neighborhood walkability. Walk Scores were also obtained for the participant’s residential addresses. Spearman correlations between Walk Scores and the GIS neighborhood walkability indicators were calculated as well as Spearman correlations accounting for spatial autocorrelation. There were many significant moderate correlations between Walk Scores and the GIS neighborhood walkability indicators such as density of retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became stronger with a larger spatial scale, and there were some geographic differences. Walk Score® is free and publicly available for public health researchers and practitioners. Results from our study suggest that Walk Score® is a valid measure of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As such, our study confirms and extends the generalizability of previous findings demonstrating that Walk Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and at multiple spatial scales. PMID:22163200
CRISM/HiRISE Correlative Spectroscopy
NASA Astrophysics Data System (ADS)
Seelos, F. P.; Murchie, S. L.; McGovern, A.; Milazzo, M. P.; Herkenhoff, K. E.
2011-12-01
The Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and High Resolution Imaging Science Experiment (HiRISE) are complementary investigations with high spectral resolution and broad wavelength coverage (CRISM ~20 m/pxl; ~400 - 4000 nm, 6.55 nm sampling) and high spatial resolution with broadband color capability (HiRISE ~25 cm/pxl; ~500, 700, 900 nm band centers, ~200-300 nm FWHM). Over the course of the MRO mission it has become apparent that spectral variations in the IR detected by CRISM (~1000 nm - 4000 nm) sometimes correlate spatially with visible and near infrared 3-band color variations observed by HiRISE. We have developed a data processing procedure that establishes a numerical mapping between HiRISE color and CRISM VNIR and IR spectral data and provides a statistical evaluation of the uncertainty in the mapping, with the objective of extrapolating CRISM-inferred mineralogy to the HiRISE spatial scale. The MRO mission profile, spacecraft capabilities, and science planning process emphasize coordinated observations - the simultaneous observation of a common target by multiple instruments. The commonalities of CRISM/HiRISE coordinated observations present a unique opportunity for tandem data analysis. Recent advances in the systematic processing of CRISM hyperspectral targeted observations account for gimbal-induced photometric variations and transform the data to a synthetic nadir acquisition geometry. The CRISM VNIR (~400 nm - 1000 nm) data can then be convolved to the HiRISE Infrared, Red, and Blue/Green (IRB) response functions to generate a compatible CRISM IRB product. Statistical evaluation of the CRISM/HiRISE spatial overlap region establishes a quantitative link between the data sets. IRB spectral similarity mapping for each HiRISE color spatial pixel with respect to the CRISM IRB product allows a given HiRISE pixel to be populated with information derived from the coordinated CRISM observation, including correlative VNIR or IR spectral data, spectral summary parameters, or browse products. To properly characterize the quality and fidelity of the IRB correlation, a series of ancillary information bands that record the numerical behavior of the procedure are also generated. Prototype CRISM/HiRISE correlative data products have been generated for a small number of coordinated observation pairs. The resulting products have the potential to support integrated spectral and morphological mapping at sub-meter spatial scales. Such data products would be invaluable for strategic and tactical science operations on landed missions, and would allow observations from a landed platform to be evaluated in a CRISM-based spectral and mineralogical context.
NASA Technical Reports Server (NTRS)
Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.
2002-01-01
Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology
NASA Astrophysics Data System (ADS)
Terribile, Levi Carina; Diniz-Filho, José Alexandre Felizola
2009-03-01
The metabolic theory of ecology (MTE) has attracted great interest because it proposes an explanation for species diversity gradients based on temperature-metabolism relationships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species from the New World in the context of MTE. We first analysed the association between ln-transformed richness and environmental variables, including the inverse transformation of annual temperature (1/ kT). We used eigenvector-based spatial filtering to remove the residual spatial autocorrelation in the data and geographically weighted regression to account for non-stationarity in data. In a model I regression (OLS), the observed slope between ln-richness and 1/ kT was -0.626 ( r2 = 0.413), but a model II regression generated a much steeper slope (-0.975). When we added additional environmental correlates and the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression coefficient of 1/ kT was -0.676. The GWR detected highly significant non-stationarity, in data, and the median of local slopes of ln-richness against 1/ kT was -0.38. Our results expose several problems regarding the assumptions needed to test MTE: although the slope of OLS fell within that predicted by the theory and the dataset complied with the assumption of temperature-independence of average body size, the fact that coral snakes consist of a restricted taxonomic group and the non-stationarity of slopes across geographical space makes MTE invalid to explain richness in this case. Also, it is clear that other ecological and historical factors are important drivers of species richness patterns and must be taken into account both in theoretical modeling and data analysis.
Joint transform correlators with spatially incoherent illumination
NASA Astrophysics Data System (ADS)
Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.
1997-03-01
Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong
2015-03-01
A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.
Stochastic calculus of protein filament formation under spatial confinement
NASA Astrophysics Data System (ADS)
Michaels, Thomas C. T.; Dear, Alexander J.; Knowles, Tuomas P. J.
2018-05-01
The growth of filamentous aggregates from precursor proteins is a process of central importance to both normal and aberrant biology, for instance as the driver of devastating human disorders such as Alzheimer's and Parkinson's diseases. The conventional theoretical framework for describing this class of phenomena in bulk is based upon the mean-field limit of the law of mass action, which implicitly assumes deterministic dynamics. However, protein filament formation processes under spatial confinement, such as in microdroplets or in the cellular environment, show intrinsic variability due to the molecular noise associated with small-volume effects. To account for this effect, in this paper we introduce a stochastic differential equation approach for investigating protein filament formation processes under spatial confinement. Using this framework, we study the statistical properties of stochastic aggregation curves, as well as the distribution of reaction lag-times. Moreover, we establish the gradual breakdown of the correlation between lag-time and normalized growth rate under spatial confinement. Our results establish the key role of spatial confinement in determining the onset of stochasticity in protein filament formation and offer a formalism for studying protein aggregation kinetics in small volumes in terms of the kinetic parameters describing the aggregation dynamics in bulk.
Emergence of chaos in a spatially confined reactive system
NASA Astrophysics Data System (ADS)
Voorsluijs, Valérie; De Decker, Yannick
2016-11-01
In spatially restricted media, interactions between particles and local fluctuations of density can lead to important deviations of the dynamics from the unconfined, deterministic picture. In this context, we investigated how molecular crowding can affect the emergence of chaos in small reactive systems. We developed to this end an amended version of the Willamowski-Rössler model, where we account for the impenetrability of the reactive species. We analyzed the deterministic kinetics of this model and studied it with spatially-extended stochastic simulations in which the mobility of particles is included explicitly. We show that homogeneous fluctuations can lead to a destruction of chaos through a fluctuation-induced collision between chaotic trajectories and absorbing states. However, an interplay between the size of the system and the mobility of particles can counterbalance this effect so that chaos can indeed be found when particles diffuse slowly. This unexpected effect can be traced back to the emergence of spatial correlations which strongly affect the dynamics. The mobility of particles effectively acts as a new bifurcation parameter, enabling the system to switch from stationary states to absorbing states, oscillations or chaos.
Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.
Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M Altaf; Baldocchi, Dennis; Bonan, Gordon B; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher; Woodward, F Ian; Papale, Dario
2010-08-13
Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.
Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns
NASA Astrophysics Data System (ADS)
Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.
2017-12-01
A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.
Estimating Function Approaches for Spatial Point Processes
NASA Astrophysics Data System (ADS)
Deng, Chong
Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.
Benefit transfer and spatial heterogeneity of preferences for water quality improvements.
Martin-Ortega, J; Brouwer, R; Ojea, E; Berbel, J
2012-09-15
The improvement in the water quality resulting from the implementation of the EU Water Framework Directive is expected to generate substantial non-market benefits. A wide spread estimation of these benefits across Europe will require the application of benefit transfer. We use a spatially explicit valuation design to account for the spatial heterogeneity of preferences to help generate lower transfer errors. A map-based choice experiment is applied in the Guadalquivir River Basin (Spain), accounting simultaneously for the spatial distribution of water quality improvements and beneficiaries. Our results show that accounting for the spatial heterogeneity of preferences generally produces lower transfer errors. Copyright © 2012 Elsevier Ltd. All rights reserved.
A model relating Eulerian spatial and temporal velocity correlations
NASA Astrophysics Data System (ADS)
Cholemari, Murali R.; Arakeri, Jaywant H.
2006-03-01
In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.
Finkbeiner, Matthew; Heathcote, Andrew
2016-04-01
A Simon effect occurs when the irrelevant spatial attributes of a stimulus conflict with choice responses based on non-spatial stimulus attributes. Many theories of the Simon effect assume that activation from task-irrelevant spatial attributes becomes available before the activation from task-relevant attributes. We refer to this as the time-difference account. Other theories follow a magnitude-difference account, assuming activation from relevant and irrelevant attributes becomes available at the same time, but with the activation from irrelevant attributes initially being stronger. To distinguish these two accounts, we incorporated the response-signal procedure into the reach-to-touch paradigm to map out the emergence of the Simon effect. We also used a carefully calibrated neutral condition to reveal differences in the initial onset of the influence of relevant and irrelevant information. Our results establish that irrelevant spatial information becomes available earlier than relevant non-spatial information. This finding is consistent with the time-difference account and inconsistent with the magnitude-difference account. However, we did find a magnitude effect, in the form of reduced interference from irrelevant information, for the second of a sequence of two incongruent trials.
A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing
Tian, Xiaoguang; Yoshida, Masatoshi; Hafed, Ziad M.
2016-01-01
Microsaccades exhibit systematic oscillations in direction after spatial cueing, and these oscillations correlate with facilitatory and inhibitory changes in behavioral performance in the same tasks. However, independent of cueing, facilitatory and inhibitory changes in visual sensitivity also arise pre-microsaccadically. Given such pre-microsaccadic modulation, an imperative question to ask becomes: how much of task performance in spatial cueing may be attributable to these peri-movement changes in visual sensitivity? To investigate this question, we adopted a theoretical approach. We developed a minimalist model in which: (1) microsaccades are repetitively generated using a rise-to-threshold mechanism, and (2) pre-microsaccadic target onset is associated with direction-dependent modulation of visual sensitivity, as found experimentally. We asked whether such a model alone is sufficient to account for performance dynamics in spatial cueing. Our model not only explained fine-scale microsaccade frequency and direction modulations after spatial cueing, but it also generated classic facilitatory (i.e., attentional capture) and inhibitory [i.e., inhibition of return (IOR)] effects of the cue on behavioral performance. According to the model, cues reflexively reset the oculomotor system, which unmasks oscillatory processes underlying microsaccade generation; once these oscillatory processes are unmasked, “attentional capture” and “IOR” become direct outcomes of pre-microsaccadic enhancement or suppression, respectively. Interestingly, our model predicted that facilitatory and inhibitory effects on behavior should appear as a function of target onset relative to microsaccades even without prior cues. We experimentally validated this prediction for both saccadic and manual responses. We also established a potential causal mechanism for the microsaccadic oscillatory processes hypothesized by our model. We used retinal-image stabilization to experimentally control instantaneous foveal motor error during the presentation of peripheral cues, and we found that post-cue microsaccadic oscillations were severely disrupted. This suggests that microsaccades in spatial cueing tasks reflect active oculomotor correction of foveal motor error, rather than presumed oscillatory covert attentional processes. Taken together, our results demonstrate that peri-microsaccadic changes in vision can go a long way in accounting for some classic behavioral phenomena. PMID:27013991
Nonlocal birth-death competitive dynamics with volume exclusion
NASA Astrophysics Data System (ADS)
Khalil, Nagi; López, Cristóbal; Hernández-García, Emilio
2017-06-01
A stochastic birth-death competition model for particles with excluded volume is proposed. The particles move, reproduce, and die on a regular lattice. While the death rate is constant, the birth rate is spatially nonlocal and implements inter-particle competition by a dependence on the number of particles within a finite distance. The finite volume of particles is accounted for by fixing an upper value to the number of particles that can occupy a lattice node, compromising births and movements. We derive closed macroscopic equations for the density of particles and spatial correlation at two adjacent sites. Under different conditions, the description is further reduced to a single equation for the particle density that contains three terms: diffusion, a linear death, and a highly nonlinear and nonlocal birth term. Steady-state homogeneous solutions, their stability which reveals spatial pattern formation, and the dynamics of time-dependent homogeneous solutions are discussed and compared, in the one-dimensional case, with numerical simulations of the particle system.
Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra
2015-01-01
Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150
Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.
2009-01-01
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373
Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M
2009-05-15
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.
Predictive Coding: A Fresh View of Inhibition in the Retina
NASA Astrophysics Data System (ADS)
Srinivasan, M. V.; Laughlin, S. B.; Dubs, A.
1982-11-01
Interneurons exhibiting centre--surround antagonism within their receptive fields are commonly found in peripheral visual pathways. We propose that this organization enables the visual system to encode spatial detail in a manner that minimizes the deleterious effects of intrinsic noise, by exploiting the spatial correlation that exists within natural scenes. The antagonistic surround takes a weighted mean of the signals in neighbouring receptors to generate a statistical prediction of the signal at the centre. The predicted value is subtracted from the actual centre signal, thus minimizing the range of outputs transmitted by the centre. In this way the entire dynamic range of the interneuron can be devoted to encoding a small range of intensities, thus rendering fine detail detectable against intrinsic noise injected at later stages in processing. This predictive encoding scheme also reduces spatial redundancy, thereby enabling the array of interneurons to transmit a larger number of distinguishable images, taking into account the expected structure of the visual world. The profile of the required inhibitory field is derived from statistical estimation theory. This profile depends strongly upon the signal: noise ratio and weakly upon the extent of lateral spatial correlation. The receptive fields that are quantitatively predicted by the theory resemble those of X-type retinal ganglion cells and show that the inhibitory surround should become weaker and more diffuse at low intensities. The latter property is unequivocally demonstrated in the first-order interneurons of the fly's compound eye. The theory is extended to the time domain to account for the phasic responses of fly interneurons. These comparisons suggest that, in the early stages of processing, the visual system is concerned primarily with coding the visual image to protect against subsequent intrinsic noise, rather than with reconstructing the scene or extracting specific features from it. The treatment emphasizes that a neuron's dynamic range should be matched to both its receptive field and the statistical properties of the visual pattern expected within this field. Finally, the analysis is synthetic because it is an extension of the background suppression hypothesis (Barlow & Levick 1976), satisfies the redundancy reduction hypothesis (Barlow 1961 a, b) and is equivalent to deblurring under certain conditions (Ratliff 1965).
Quantifying drivers of wild pig movement across multiple spatial and temporal scales.
Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M
2017-01-01
The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
A multistate dynamic site occupancy model for spatially aggregated sessile communities
Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2017-01-01
Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.
Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System.
Cazettes, Fanny; Fischer, Brian J; Peña, Jose L
2016-02-17
Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. Copyright © 2016 the authors 0270-6474/16/362101-10$15.00/0.
Gaffney, P. M.; Scott, T. M.; Koehn, R. K.; Diehl, W. J.
1990-01-01
Allozyme surveys of marine invertebrates commonly report heterozygote deficiencies, a correlation between multiple locus heterozygosity and size, or both. Hypotheses advanced to account for these phenomena include inbreeding, null alleles, selection, spatial or temporal Wahlund effects, aneuploidy and molecular imprinting. Previous studies have been unable to clearly distinguish among these alternative hypotheses. This report analyzes a large data set (1906 individuals, 15 allozyme loci) from a single field collection of the coot clam Mulinia lateralis and demonstrates (1) significant heterozygote deficiencies at 13 of 15 loci, (2) a correlation between the magnitude of heterozygote deficiency at a locus and the effect of heterozygosity at that locus on shell length, and (3) a distribution of multilocus heterozygosity which deviates from that predicted by observed single-locus heterozygosities. A critical examination of the abovementioned hypotheses as sources of these findings rules out inbreeding, null alleles, aneuploidy, population mixing and imprinting as sole causes. The pooling of larval subpopulations subjected to varying degrees of selection, aneuploidy or imprinting could account for the patterns observed in this study. PMID:2311919
Spatial versus sequential correlations for random access coding
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed
2016-03-01
Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.
NASA Astrophysics Data System (ADS)
Saltos, Andrea
In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.
van Vliet, Simon; Dal Co, Alma; Winkler, Annina R; Spriewald, Stefanie; Stecher, Bärbel; Ackermann, Martin
2018-04-25
Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Peii; Hreha, Kimberly; Kong, Yekyung; Barrett, A. M.
2015-01-01
Objective To examine the impact of spatial neglect on rehabilitation outcome, risk of falls, and discharge disposition in stroke survivors. Design Inception cohort Setting Inpatient rehabilitation facility (IRF) Participants 108 individuals with unilateral brain damage after their first stroke were assessed at the times of IRF admission and discharge. At admission, 74 of them (68.5%) demonstrated symptoms of spatial neglect, as measured with the Kessler Foundation Neglect Assessment Process (KF-NAP™). Interventions Usual and standard IRF care. Main Outcome Measures Functional Independence Measure (FIM™), Conley Scale, number of falls, length of stay (LOS), and discharge disposition. Results The greater severity of spatial neglect (higher KF-NAP scores) at IRF admission, the lower FIM scores at admission as well as at discharge. Higher KF-NAP scores also correlated with greater LOS and slower FIM improvement rate. The presence of spatial neglect (KF-NAP > 0), but not Conley Scale scores, predicted falls such that participants with spatial neglect fell 6.5 times more often than those without symptoms. More severe neglect, by KF-NAP scores at IRF admission, reduced the likelihood of returning home at discharge. A model that took spatial neglect and other demographic, socioeconomic, and clinical factors into account predicted home discharge. Rapid FIM improvement during IRF stay and lower annual income level were significant predictors of home discharge. Conclusions Spatial neglect following a stroke is a prevalent problem, and may negatively affect rehabilitation outcome, risk of falls, and length of hospital stay. PMID:25862254
NASA Astrophysics Data System (ADS)
Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.
2017-12-01
The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.
Integrative Spatial Data Analytics for Public Health Studies of New York State
Chen, Xin; Wang, Fusheng
2016-01-01
Increased accessibility of health data made available by the government provides unique opportunity for spatial analytics with much higher resolution to discover patterns of diseases, and their correlation with spatial impact indicators. This paper demonstrated our vision of integrative spatial analytics for public health by linking the New York Cancer Mapping Dataset with datasets containing potential spatial impact indicators. We performed spatial based discovery of disease patterns and variations across New York State, and identify potential correlations between diseases and demographic, socio-economic and environmental indicators. Our methods were validated by three correlation studies: the correlation between stomach cancer and Asian race, the correlation between breast cancer and high education population, and the correlation between lung cancer and air toxics. Our work will allow public health researchers, government officials or other practitioners to adequately identify, analyze, and monitor health problems at the community or neighborhood level for New York State. PMID:28269834
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits
Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.
2018-01-01
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415
Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J
2016-01-01
The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.
Zhao, Junbo; Wang, Shaobu; Mili, Lamine; ...
2018-01-08
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junbo; Wang, Shaobu; Mili, Lamine
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
NASA Astrophysics Data System (ADS)
Messaoudi, Akila; Laouami, Nasser; Mezouar, Nourredine
2017-07-01
During the May 21, 2003 M w 6.8 Boumerdes earthquake, in the "Cité des 102 Logements" built on a hilltop, in Corso, heavy damages were observed: near the crest, a four-story RC building collapsed while others experienced severe structural damage and far from the crest, slight damage was observed. In the present paper, we perform a 2D slope topography seismic analysis and investigate its effects on the response at the plateau as well as the correlation with the observed damage distribution. A site-specific seismic scenario is used involving seismological, geological, and geotechnical data. 2D finite element numerical seismic study of the idealized Corso site subjected to vertical SV wave propagation is carried out by the universal code FLUSH. The results highlighted the main factors that explain the causes of block collapse, located 8-26 m far from the crest. These are as follows: (i) a significant spatial variation of ground response along the plateau due to the topographic effect, (ii) this spatial variation presents high loss of coherence, (iii) the seismic ground responses (PGA and response spectra) reach their maxima, and (iv) the fundamental frequency of the collapsed blocks coincides with the frequency content of the topographic component. For distances far from the crest where slight damages were observed, the topographic contribution is found negligible. On the basis of these results, it is important to take into account the topographic effect and the induced spatial variability in the seismic design of structures sited near the crest of slope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Chen, Xingyuan; Ye, Ming
Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less
Ruiz-Navarro, Antonio; Barberá, Gonzalo G; Albaladejo, Juan; Querejeta, José I
2016-12-01
We investigated the magnitude and drivers of spatial variability in soil and plant δ 15 N across the landscape in a topographically complex semiarid ecosystem. We hypothesized that large spatial heterogeneity in water availability, soil fertility and vegetation cover would be positively linked to high local-scale variability in δ 15 N. We measured foliar δ 15 N in three dominant plant species representing contrasting plant functional types (tree, shrub, grass) and mycorrhizal association types (ectomycorrhizal or arbuscular mycorrhizal). This allowed us to investigate whether δ 15 N responds to landscape-scale environmental heterogeneity in a consistent way across species. Leaf δ 15 N varied greatly within species across the landscape and was strongly spatially correlated among co-occurring individuals of the three species. Plant δ 15 N correlated tightly with soil δ 15 N and key measures of soil fertility, water availability and vegetation productivity, including soil nitrogen (N), organic carbon (C), plant-available phosphorus (P), water-holding capacity, topographic moisture indices and normalized difference vegetation index. Multiple regression models accounted for 62-83% of within-species variation in δ 15 N across the landscape. The tight spatial coupling and interdependence of the water, N and C cycles in drylands may allow the use of leaf δ 15 N as an integrative measure of variations in moisture availability, biogeochemical activity, soil fertility and vegetation productivity (or 'site quality') across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Gender, g, Gender Identity Concepts, and Self-Constructs as Predictors of the Self-Estimated IQ
Storek, Josephine
2013-01-01
In all 102 participants completed 2 intelligence tests, a self-estimated domain-masculine (DMIQ) intelligence rating (which is a composite of self-rated mathematical–logical and spatial intelligence), a measure of self-esteem, and of self-control. The aim was to confirm and extend previous findings about the role of general intelligence and gender identity in self-assessed intelligence. It aimed to examine further correlates of the Hubris–Humility Effect that shows men believe they are more intelligent than women. The DMIQ scores were correlated significantly with gender, psychometrically assessed IQ, and masculinity but not self-esteem or self-control. Stepwise regressions indicated that gender and gender role were the strongest predictors of DMIQ accounting for a third of the variance. PMID:24303578
Gender, g, gender identity concepts, and self-constructs as predictors of the self-estimated IQ.
Storek, Josephine; Furnham, Adrian
2013-01-01
In all 102 participants completed 2 intelligence tests, a self-estimated domain-masculine (DMIQ) intelligence rating (which is a composite of self-rated mathematical-logical and spatial intelligence), a measure of self-esteem, and of self-control. The aim was to confirm and extend previous findings about the role of general intelligence and gender identity in self-assessed intelligence. It aimed to examine further correlates of the Hubris-Humility Effect that shows men believe they are more intelligent than women. The DMIQ scores were correlated significantly with gender, psychometrically assessed IQ, and masculinity but not self-esteem or self-control. Stepwise regressions indicated that gender and gender role were the strongest predictors of DMIQ accounting for a third of the variance.
Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Ahn, B-K.; Graham, W. R.; Rizzi, S. A.
2004-01-01
As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Spatial correlation of probabilistic earthquake ground motion and loss
Wesson, R.L.; Perkins, D.M.
2001-01-01
Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.
Gryglewski, Gregor; Seiger, René; James, Gregory Miles; Godbersen, Godber Mathis; Komorowski, Arkadiusz; Unterholzner, Jakob; Michenthaler, Paul; Hahn, Andreas; Wadsak, Wolfgang; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert
2018-08-01
The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl- 11 C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level. Copyright © 2018 Elsevier Inc. All rights reserved.
Functional overestimation due to spatial smoothing of fMRI data.
Liu, Peng; Calhoun, Vince; Chen, Zikuan
2017-11-01
Pearson correlation (simply correlation) is a basic technique for neuroimage function analysis. It has been observed that the spatial smoothing may cause functional overestimation, which however remains a lack of complete understanding. Herein, we present a theoretical explanation from the perspective of correlation scale invariance. For a task-evoked spatiotemporal functional dataset, we can extract the functional spatial map by calculating the temporal correlations (tcorr) of voxel timecourses against the task timecourse. From the relationship between image noise level (changed through spatial smoothing) and the tcorr map calculation, we show that the spatial smoothing causes a noise reduction, which in turn smooths the tcorr map and leads to a spatial expansion on neuroactivity blob estimation. Through numerical simulations and subject experiments, we show that the spatial smoothing of fMRI data may overestimate activation spots in the correlation functional map. Our results suggest a small spatial smoothing (with a smoothing kernel with a full width at half maximum (FWHM) of no more than two voxels) on fMRI data processing for correlation-based functional mapping COMPARISON WITH EXISTING METHODS: In extreme noiselessness, the correlation of scale-invariance property defines a meaningless binary tcorr map. In reality, a functional activity blob in a tcorr map is shaped due to the spoilage of image noise on correlative responses. We may reduce data noise level by smoothing processing, which poses a smoothing effect on correlation. This logic allows us to understand the noise dependence and the smoothing effect of correlation-based fMRI data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian
2015-01-01
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation. PMID:26218872
Yu, Guangwei; Tan, Meijuan; Chong, Yunxiao; Long, Xinxian
2015-01-01
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.
Nonparametric Bayesian models for a spatial covariance.
Reich, Brian J; Fuentes, Montserrat
2012-01-01
A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
NASA Astrophysics Data System (ADS)
Göl, Ceyhun; Bulut, Sinan; Bolat, Ferhat
2017-10-01
The purpose of this research is to compare the spatial variability of soil organic carbon (SOC) in four adjacent land uses including the cultivated area, the grassland area, the plantation area and the natural forest area in the semi - arid region of Black Sea backward region of Turkey. Some of the soil properties, including total nitrogen, SOC, soil organic matter, and bulk density were measured on a grid with a 50 m sampling distance on the top soil (0-15 cm depth). Accordingly, a total of 120 samples were taken from the four adjacent land uses. Data was analyzed using geostatistical methods. The methods used were: Block kriging (BK), co - kriging (CK) with organic matter, total nitrogen and bulk density as auxiliary variables and inverse distance weighting (IDW) methods with the power of 1, 2 and 4. The methods were compared using a performance criteria that included root mean square error (RMSE), mean absolute error (MAE) and the coefficient of correlation (r). The one - way ANOVA test showed that differences between the natural (0.6653 ± 0.2901) - plantation forest (0.7109 ± 0.2729) areas and the grassland (1.3964 ± 0.6828) - cultivated areas (1.5851 ± 0.5541) were statistically significant at 0.05 level (F = 28.462). The best model for describing spatially variation of SOC was CK with the lowest error criteria (RMSE = 0.3342, MAE = 0.2292) and the highest coefficient of correlation (r = 0.84). The spatial structure of SOC could be well described by the spherical model. The nugget effect indicated that SOC was moderately dependent on the study area. The error distributions of the model showed that the improved model was unbiased in predicting the spatial distribution of SOC. This study's results revealed that an explanatory variable linked SOC increased success of spatial interpolation methods. In subsequent studies, this case should be taken into account for reaching more accurate outputs.
Baleen whales and their prey in a coastal environment
Piatt, John F.; Methven, David A.; Burger, Alan E.; McLagan, Ruth L.; Mercer, Vicki; Creelman, Elizabeth
1989-01-01
Patterns of abundance of humpback (Megaptera novaeangliae), fin (Balaenoptera physalus), and minke (Balaenoptera acutorostrata) whales are described in relation to the abundance of their primary prey, capelin (Mallotus villosus), during 1982–1985 at Witless Bay, Newfoundland. The abundance ratio of the three whale species was 10:1:3.5, respectively. Abundance of all whale species was strongly correlated with abundance of capelin through each season and between years. Capelin abundance accounted for 63% of the variation in whale numbers in 1983 and 1984, while environmental parameters (e.g., water temperatures) accounted for little variance. The amount of capelin consumed by whales was small (< 2%) compared with the amount available. All three species overlapped temporally at Witless Bay, but spatial overlap was reduced as fins occurred primarily offshore, minkes primarily inshore, and humpbacks in bay habitats of intermediate depth.
Estimated Accuracy of Three Common Trajectory Statistical Methods
NASA Technical Reports Server (NTRS)
Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.
2011-01-01
Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h and 0.5 0.95 for the decay time of 12 h. The best results of source reconstruction can be expected for the trace substances with a decay time on the order of several days. Although the methods considered in this paper do not guarantee high accuracy they are computationally simple and fast. Using the TSMs in optimum conditions and taking into account the range of uncertainties, one can obtain a first hint on potential source areas.
Grundel, R.; Pavlovic, N.B.
2007-01-01
Determination of which aspects of habitat quality and habitat spatial arrangement best account for variation in a species’ distribution can guide management for organisms such as the Karner blue butterfly (Lycaeides melissa samuelis), a federally endangered subspecies inhabiting savannas of Midwest and Eastern United States. We examined the extent to which three sets of predictors, (1) larval host plant (Lupinus perennis, wild lupine) availability, (2) characteristics of the matrix surrounding host plant patches, and (3) factors affecting a patch’s thermal environment, accounted for variation in lupine patch use by Karner blues at Indiana Dunes National Lakeshore, Indiana and Fort McCoy, Wisconsin, USA. Each predictor set accounted for 7–13% of variation in patch occupancy by Karner blues at both sites and in larval feeding activity among patches at Indiana Dunes. Patch area, an indicator of host plant availability, was an exception, accounting for 30% of variation in patch occupancy at Indiana Dunes. Spatially structured patterns of patch use across the landscape accounted for 9–16% of variation in patch use and explained more variation in larval feeding activity than did spatial autocorrelation between neighboring patches. Because of this broader spatial trend across sites, a given management action may be more effective in promoting patch use in some portions of the landscape than in others. Spatial trend, resource availability, matrix quality, and microclimate, in general, accounted for similar amounts of variation in patch use and each should be incorporated into habitat management planning for the Karner blue butterfly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olea, Ricardo A., E-mail: olea@usgs.gov; Cook, Troy A.; Coleman, James L.
2010-12-15
The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of themore » main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.« less
Tactile spatial resolution in blind braille readers.
Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A
2000-06-27
To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.
Etiological Distinction of Working Memory Components in Relation to Mathematics
Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.
2014-01-01
Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699
Young, Laura K; Love, Gordon D; Smithson, Hannah E
2013-09-20
Advances in ophthalmic instrumentation have allowed high order aberrations to be measured in vivo. These measurements describe the distortions to a plane wavefront entering the eye, but not the effect they have on visual performance. One metric for predicting visual performance from a wavefront measurement uses the visual Strehl ratio, calculated in the optical transfer function (OTF) domain (VSOTF) (Thibos et al., 2004). We considered how well such a metric captures empirical measurements of the effects of defocus, coma and secondary astigmatism on letter identification and on reading. We show that predictions using the visual Strehl ratio can be significantly improved by weighting the OTF by the spatial frequency band that mediates letter identification and further improved by considering the orientation of phase and contrast changes imposed by the aberration. We additionally showed that these altered metrics compare well to a cross-correlation-based metric. We suggest a version of the visual Strehl ratio, VScombined, that incorporates primarily those phase disruptions and contrast changes that have been shown independently to affect object recognition processes. This metric compared well to VSOTF for letter identification and was the best predictor of reading performance, having a higher correlation with the data than either the VSOTF or cross-correlation-based metric. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Toward a visuospatial developmental account of sequence-space synesthesia
Price, Mark C.; Pearson, David G.
2013-01-01
Sequence-space synesthetes experience some sequences (e.g., numbers, calendar units) as arranged in spatial forms, i.e., spatial patterns in their mind's eye or even outside their body. Various explanations have been offered for this phenomenon. Here we argue that these spatial forms are continuous with varieties of non-synesthetic visuospatial imagery and share their central characteristics. This includes their dynamic and elaborative nature, their involuntary feel, and consistency over time. Drawing from literatures on mental imagery and working memory, we suggest how the initial acquisition and subsequent elaboration of spatial forms could be accounted for in terms of the known developmental trajectory of visuospatial representations. This extends from the formation of image-based representations of verbal material in childhood to the later maturation of dynamic control of imagery. Individual differences in the development of visuospatial style also account for variation in the character of spatial forms, e.g., in terms of distinctions such as visual versus spatial imagery, or ego-centric versus object-based transformations. PMID:24187538
On the use of variable coherence in inverse scattering problems
NASA Astrophysics Data System (ADS)
Baleine, Erwan
Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.
Xu, Guorui; Zhang, Shuang; Zhang, Yuxin; Ma, Keming
2018-08-15
Elevational richness patterns and underlying environmental correlates have contributed greatly to a range of general theories of biodiversity. However, the mechanisms underlying elevational abundance and biomass patterns across several trophic levels in belowground food webs remain largely unknown. In this study, we aimed to disentangle the relationships between the elevational patterns of different trophic levels of litter invertebrates and their underlying environmental correlates for two contrasting ecosystems separated by the treeline. We sampled 119 plots from 1020 to 1770 asl in forest and 21 plots from 1790 to 2280 asl in meadow on Dongling Mountain, northwest of Beijing, China. Four functional guilds were divided based on feeding regime: omnivores, herbivores, predators, and detritivores. We used eigenvector-based spatial filters to account for spatial autocorrelation and multi-model selection to determine the best environmental correlates for the community attributes of the different feeding guilds. The results showed that the richness, abundance and biomass of omnivores declined with increasing elevation in the meadow, whereas there was a hump-shaped richness pattern for detritivores. The richness and abundance of different feeding guilds were positively correlated in the forest, while not in the meadow. In the forest, the variances of richness in omnivores, predators, and detritivores were mostly correlated with litter thickness, with omnivores being best explained by mean annual temperature in the meadow. In conclusion, hump-shaped elevational richness, abundance and biomass patterns driven by the forest gradient below the treeline existed in all feeding guilds of litter invertebrates. Climate replaced productivity as the primary factor that drove the richness patterns of omnivores above the treeline, whereas heterogeneity replaced climate for herbivores. Our results highlight that the correlated elevational richness, abundance, and biomass patterns of feeding guilds are ecosystem-dependent and that the underlying environmental correlates shifted at the treeline for most feeding guilds. Copyright © 2018 Elsevier B.V. All rights reserved.
Logical recoding of S-R rules can reverse the effects of spatial S-R correspondence.
Wühr, Peter; Biebl, Rupert
2009-02-01
Two experiments investigated competing explanations for the reversal of spatial stimulus-response (S-R) correspondence effects (i.e., Simon effects) with an incompatible S-R mapping on the relevant, nonspatial dimension. Competing explanations were based on generalized S-R rules (logical-recoding account) or referred to display-control arrangement correspondence or to S-S congruity. In Experiment 1, compatible responses to finger-name stimuli presented at left/right locations produced normal Simon effects, whereas incompatible responses to finger-name stimuli produced an inverted Simon effect. This finding supports the logical-recoding account. In Experiment 2, spatial S-R correspondence and color S-R correspondence were varied independently, and main effects of these variables were observed. The lack of an interaction between these variables, however, disconfirms a prediction of the display-control arrangement correspondence account. Together, the results provide converging evidence for the logical-recoding account. This account claims that participants derive generalized response selection rules (e.g., the identity or reversal rule) from specific S-R rules and inadvertently apply the generalized rules to the irrelevant (spatial) S-R dimension when selecting their response.
van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W
2010-01-22
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Predictions of avian Plasmodium expansion under climate change.
Loiseau, Claire; Harrigan, Ryan J; Bichet, Coraline; Julliard, Romain; Garnier, Stéphane; Lendvai, Adám Z; Chastel, Olivier; Sorci, Gabriele
2013-01-01
Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites.
Hyperspectral optical imaging of two different species of lepidoptera
2011-01-01
In this article, we report a hyperspectral optical imaging application for measurement of the reflectance spectra of photonic structures that produce structural colors with high spatial resolution. The measurement of the spectral reflectance function is exemplified in the butterfly wings of two different species of Lepidoptera: the blue iridescence reflected by the nymphalid Morpho didius and the green iridescence of the papilionid Papilio palinurus. Color coordinates from reflectance spectra were calculated taking into account human spectral sensitivity. For each butterfly wing, the observed color is described by a characteristic color map in the chromaticity diagram and spreads over a limited volume in the color space. The results suggest that variability in the reflectance spectra is correlated with different random arrangements in the spatial distribution of the scales that cover the wing membranes. Hyperspectral optical imaging opens new ways for the non-invasive study and classification of different forms of irregularity in structural colors. PMID:21711872
Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.
Lawson, A B; Carroll, R; Faes, C; Kirby, R S; Aregay, M; Watjou, K
2017-12-01
It is often the case that researchers wish to simultaneously explore the behavior of and estimate overall risk for multiple, related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatio-temporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socio-economic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results which are focused on four model variants suggest that all models possess the ability to recover simulation ground truth and display improved model fit over two baseline Knorr-Held spatio-temporal interaction model variants in a real data application.
Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin
2015-01-01
Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696
NASA Astrophysics Data System (ADS)
Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia
2017-04-01
The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.
Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou
2008-09-01
During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Cao, Minghua
2017-02-01
The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.
NASA Astrophysics Data System (ADS)
Capitán, José A.; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
Capitán, José A; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
Cowan, Cameron S; Sabharwal, Jasdeep; Wu, Samuel M
2016-09-01
Reverse correlation methods such as spike-triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space-time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space-time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Fitousi, Daniel
2016-11-01
Classic theories of attention assume that the processing of a target's featural dimension (e.g., color) is contingent on the processing of its spatial location. The present study challenges this maxim. Three experiments evaluated the dimensional independence of spatial location and color using a combined Simon (Simon & Rudell Journal of Applied Psychology: 51, 300-304, 1967) and Garner (Garner, 1974) design. The results showed that when the stimulus's spatial location was rendered more discriminable than its color (Experiment 1 and 2), both Simon and Garner effects were obtained, and location interfered with color judgments to a larger extent than color intruded on location. However, when baseline discriminabilities of location and color were matched (Experiment 3), no Garner interference was obtained from location to color, yet Simon effects still emerged, proving resilient to manipulations of discriminability. Further correlational and distributional analyses showed that Garner and Simon effects have dissociable effects. A triple-route model is proposed to account for the results, according to which irrelevant location can influence performance via two independent location routes/codes.
Hu, B.X.; He, C.
2008-01-01
An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.
The cluster-cluster correlation function. [of galaxies
NASA Technical Reports Server (NTRS)
Postman, M.; Geller, M. J.; Huchra, J. P.
1986-01-01
The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.
Lu, D; Jiao, S; Tiezzi, F; Knauer, M; Huang, Y; Gray, K A; Maltecca, C
2017-08-01
Utilization of feed in livestock species consists of a wide range of biological processes, and therefore, its efficiency can be expressed in various ways, including direct measurement, such as daily feed intake, as well as indicator measures, such as feeding behavior. Measuring feed efficiency is important to the swine industry, and its accuracy can be enhanced by using automated feeding systems, which record feed intake and associated feeding behavior of individual animals. Each automated feeder space is often shared among several pigs and therefore raises concerns about social interactions among pen mates with regard to feeding behavior. The study herein used a data set of 14,901 Duroc boars with individual records on feed intake, feeding behavior, and other off-test traits. These traits were modeled with and without the random spatial effect of Pen_Room, a concatenation of room and pen, or random social interaction among pen mates. The nonheritable spatial effect of common Pen-Room was observed for traits directly measuring feed intake and accounted for up to 13% of the total phenotypic variance in the average daily feeding rate. The social interaction effect explained larger proportions of phenotypic variation in all the traits studied, with the highest being 59% for ADFI in the group of feeding behaviors, 73% for residual feed intake (RFI; RFI4 and RFI6) in the feed efficiency traits, and 69% for intramuscular fat percentage in the off-test traits. After accounting for the social interaction effect, residual BW gain and RFI and BW gain (RIG) were found to have the heritability of 0.38 and 0.18, respectively, and had strong genetic correlations with growth and off-test traits. Feeding behavior traits were found to be moderately heritable, ranging from 0.14 (ADFI) to 0.52 (average daily occupation time), and some of them were strongly correlated with feed efficiency measures; for example, there was a genetic correlation of 0.88 between ADFI and RFI6. Our work suggested that accounting for the social common pen effect was important for estimating genetic parameters of traits recorded by the automated feeding system. Residual BW gain and RIG appeared to be two robust measures of feed efficiency. Feeding behavior measures are worth further investigation as indicators of feed efficiency.
Ezenwa, V.O.; Milheim, L.E.; Coffey, M.F.; Godsey, M.S.; King, R.J.; Guptill, S.C.
2007-01-01
Identifying links between environmental variables and infectious disease risk is essential to understanding how human-induced environmental changes will effect the dynamics of human and wildlife diseases. Although land cover change has often been tied to spatial variation in disease occurrence, the underlying factors driving the correlations are often unknown, limiting the applicability of these results for disease prevention and control. In this study, we described associations between land cover composition and West Nile virus (WNV) infection prevalence, and investigated three potential processes accounting for observed patterns: (1) variation in vector density; (2) variation in amplification host abundance; and (3) variation in host community composition. Interestingly, we found that WNV infection rates among Culex mosquitoes declined with increasing wetland cover, but wetland area was not significantly associated with either vector density or amplification host abundance. By contrast, wetland area was strongly correlated with host community composition, and model comparisons suggested that this factor accounted, at least partially, for the observed effect of wetland area on WNV infection risk. Our results suggest that preserving large wetland areas, and by extension, intact wetland bird communities, may represent a valuable ecosystem-based approach for controlling WNV outbreaks. ?? Mary Ann Liebert, Inc.
Rudolph, Abby E.; Gaines, Tommi L.; Lozada, Remedios; Vera, Alicia; Brouwer, Kimberly C.
2015-01-01
Respondent-driven sampling’s (RDS) widespread use and reliance on untested assumptions suggests a need for new exploratory/diagnostic tests. We assessed geographic recruitment bias and outcome-correlated recruitment among 1048 RDS-recruited people who inject drugs (Tijuana, Mexico). Surveys gathered demographics, drug/sex behaviors, activity locations, and recruiter-recruit pairs. Simulations assessed geographic and network clustering of active syphilis (RPR titers≥1:8). Gender-specific predicted probabilities were estimated using logistic regression with GEE and robust standard errors. Active syphilis prevalence was 7% (crude: men=5.7% and women=16.6%; RDS-adjusted: men=6.7% and women=7.6%). Syphilis clustered in the Zona Norte, a neighborhood known for drug and sex markets. Network simulations revealed geographic recruitment bias and non-random recruitment by syphilis status. Gender-specific prevalence estimates accounting for clustering were highest among those living/working/injecting/buying drugs in the Zona Norte and directly/indirectly connected to syphilis cases (men:15.9%, women:25.6%) and lowest among those with neither exposure (men:3.0%, women:6.1%). Future RDS analyses should assess/account for network and spatial dependencies. PMID:24969586
Rudolph, Abby E; Gaines, Tommi L; Lozada, Remedios; Vera, Alicia; Brouwer, Kimberly C
2014-12-01
Respondent-driven sampling's (RDS) widespread use and reliance on untested assumptions suggests a need for new exploratory/diagnostic tests. We assessed geographic recruitment bias and outcome-correlated recruitment among 1,048 RDS-recruited people who inject drugs (Tijuana, Mexico). Surveys gathered demographics, drug/sex behaviors, activity locations, and recruiter-recruit pairs. Simulations assessed geographic and network clustering of active syphilis (RPR titers ≥1:8). Gender-specific predicted probabilities were estimated using logistic regression with GEE and robust standard errors. Active syphilis prevalence was 7 % (crude: men = 5.7 % and women = 16.6 %; RDS-adjusted: men = 6.7 % and women = 7.6 %). Syphilis clustered in the Zona Norte, a neighborhood known for drug and sex markets. Network simulations revealed geographic recruitment bias and non-random recruitment by syphilis status. Gender-specific prevalence estimates accounting for clustering were highest among those living/working/injecting/buying drugs in the Zona Norte and directly/indirectly connected to syphilis cases (men: 15.9 %, women: 25.6 %) and lowest among those with neither exposure (men: 3.0 %, women: 6.1 %). Future RDS analyses should assess/account for network and spatial dependencies.
Is the Aquarius sea surface salinity variability representative?
NASA Astrophysics Data System (ADS)
Carton, J.; Grodsky, S.
2016-12-01
The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.
Herschel-ATLAS/GAMA: SDSS cross-correlation induced by weak lensing
NASA Astrophysics Data System (ADS)
González-Nuevo, J.; Lapi, A.; Negrello, M.; Danese, L.; De Zotti, G.; Amber, S.; Baes, M.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; Bussmann, R. S.; Cai, Z.-Y.; Cooray, A.; Driver, S. P.; Dunne, L.; Dye, S.; Eales, S.; Ibar, E.; Ivison, R.; Liske, J.; Loveday, J.; Maddox, S.; Michałowski, M. J.; Robotham, A. S. G.; Scott, D.; Smith, M. W. L.; Valiante, E.; Xia, J.-Q.
2014-08-01
We report a highly significant (>10σ) spatial correlation between galaxies with S350 μm ≥ 30 mJy detected in the equatorial fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) with estimated redshifts ≳ 1.5, and Sloan Digital Sky Survey (SDSS) or Galaxy And Mass Assembly (GAMA) galaxies at 0.2 ≤ z ≤ 0.6. The significance of the cross-correlation is much higher than those reported so far for samples with non-overlapping redshift distributions selected in other wavebands. Extensive, realistic simulations of clustered sub-mm galaxies amplified by foreground structures confirm that the cross-correlation can be explained by weak gravitational lensing (μ < 2). The simulations also show that the measured amplitude and range of angular scales of the signal are larger than can be accounted for by galaxy-galaxy weak lensing. However, for scales ≲ 2 arcmin, the signal can be reproduced if SDSS/GAMA galaxies act as signposts of galaxy groups/clusters with halo masses in the range 1013.2-1014.5 M⊙. The signal detected on larger scales appears to reflect the clustering of such haloes.
Alpine radar conversion for LAWR
NASA Astrophysics Data System (ADS)
Savina, M.; Burlando, P.
2012-04-01
The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this class of radars, because it accounts for the large variability of hydrometeors reflectivity and vertical hydrometeors positioning (echo-top), which is strongly influenced by the high location of the radar. The ARCOM procedure is in addition embedded in a multistep quality control framework, which also includes the calibration on raingauge observations, and can be summarized as follow: 1) correction of both LAWR and raingauge observations for known errors (e.g. magnetron decay and heated-related water loss) 2) evaluation of the local Pearson's correlation coefficient (PCC) as estimator of the linear correlation between raingauge and LAWR observations (logarithmic receiver); 3) computation of the local ACF in the form of the local linear regression coefficient between raingauge and LAWR observations; 4) calibration of the ARCOM, i.e. definition of the parametrization able to reproduce the spatial variability of ACF as function of the local sP, being the PCCs used as weight in the calibration procedure. The resulting calibrated ARCOM finally allows, in any ungauged mountain spot, to convert LAWR observations into precipitation rate. The temporal and the spatial transferability of the ARCOM are evaluated via split-sample and a take-one-out cross validation. The results revealed good spatial transferability and a seasonal bias within 7%, thus opening new opportunities for local range distributed measurements of precipitation in mountain regions.
DNA viewed as an out-of-equilibrium structure
NASA Astrophysics Data System (ADS)
Provata, A.; Nicolis, C.; Nicolis, G.
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
DNA viewed as an out-of-equilibrium structure.
Provata, A; Nicolis, C; Nicolis, G
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
Qing, Feng Ting; Peng, Yu
2016-05-01
Based on the remote sensing data in 1997, 2001, 2005, 2009 and 2013, this article classified the landscape types of Shunyi, and the ecological risk index was built based on landscape disturbance index and landscape fragility. The spatial auto-correlation and geostatistical analysis by GS + and ArcGIS was used to study temporal and spatial changes of ecological risk. The results showed that eco-risk degree in the study region had positive spatial correlation which decreased with the increasing grain size. Within a certain grain range (<12 km), the spatial auto-correlation had an obvious dependence on scale. The random variation of spatial heterogeneity was less than spatial auto-correlation variation from 1997 to 2013, which meant the auto-correlation had a dominant role in spatial heterogeneity. The ecological risk of Shunyi was mainly at moderate level during the study period. The area of the district with higher and lower ecological risk increased, while that of mode-rate ecological risk decreased. The area with low ecological risk was mainly located in the airport region and forest of southeast Shunyi, while that with high ecological risk was mainly concentrated in the water landscape, such as the banks of Chaobai River.
Smooth individual level covariates adjustment in disease mapping.
Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise
2018-05-01
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bray, Signe
2017-05-01
Healthy brain development involves changes in brain structure and function that are believed to support cognitive maturation. However, understanding how structural changes such as grey matter thinning relate to functional changes is challenging. To gain insight into structure-function relationships in development, the present study took a data driven approach to define age-related patterns of variation in gray matter volume (GMV), cerebral blood flow (CBF) and blood-oxygen level dependent (BOLD) signal variation (fractional amplitude of low-frequency fluctuations; fALFF) in 59 healthy children aged 7-18 years, and examined relationships between modalities. Principal components analysis (PCA) was applied to each modality in parallel, and participant scores for the top components were assessed for age associations. We found that decompositions of CBF, GMV and fALFF all included components for which scores were significantly associated with age. The dominant patterns in GMV and CBF showed significant (GMV) or trend level (CBF) associations with age and a strong spatial overlap, driven by increased signal intensity in default mode network (DMN) regions. GMV, CBF and fALFF additionally showed components accounting for 3-5% of variability with significant age associations. However, these patterns were relatively spatially independent, with small-to-moderate overlap between modalities. Independence of age effects was further demonstrated by correlating individual subject maps between modalities: CBF was significantly less correlated with GMV and fALFF in older children relative to younger. These spatially independent effects of age suggest that the parallel decline observed in global GMV and CBF may not reflect spatially synchronized processes. Hum Brain Mapp 38:2398-2407, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Using temporal detrending to observe the spatial correlation of traffic.
Ermagun, Alireza; Chatterjee, Snigdhansu; Levinson, David
2017-01-01
This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis-St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.
Using temporal detrending to observe the spatial correlation of traffic
2017-01-01
This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis—St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models. PMID:28472093
Sealy-Jefferson, Shawnita; Messer, Lynne; Slaughter-Acey, Jaime; Misra, Dawn P.
2016-01-01
Background The inter-relationships between objective (census-based) and subjective (resident reported) measures of the residential environment is understudied in African American (AA) populations. Methods Using data from the Life Influences on Fetal Environments Study (2009–2011) (n=1,387) of AA women, we quantified the area-level variation in subjective reports of residential healthy food availability, walkability, safety and disorder that can be accounted for with an objective neighborhood disadvantage index (NDI). Two-level generalized linear models estimated associations between objective and subjective measures of the residential environment, accounting for individual-level covariates. Results In unconditional models, intraclass correlation coefficients for block-group variance in subjective reports ranged from 11% (healthy food availability) to 30% (safety). Models accounting for the NDI (versus both NDI and individual level covariates) accounted for more variance in healthy food availability (23% versus 8%) and social disorder (40% versus 38%). The NDI and individual level variables accounted for 39% and 51% of the area-level variation in walkability and safety. Associations between subjective and objective measures of the residential environment were significant and in the expected direction. Conclusions Future studies on neighborhood effects on health, especially among AAs, should include a wide range of residential environment measures, including subjective, objective and spatial contextual variables. PMID:28160971
Sealy-Jefferson, Shawnita; Messer, Lynne; Slaughter-Acey, Jaime; Misra, Dawn P
2017-03-01
The inter-relationships between objective (census based) and subjective (resident reported) measures of the residential environment is understudied in African American (AA) populations. Using data from the Life Influences on Fetal Environments Study (2009-2011; n = 1387) of AA women, we quantified the area-level variation in subjective reports of residential healthy food availability, walkability, safety, and disorder that can be accounted for with an objective neighborhood disadvantage index (NDI). Two-level generalized linear models estimated associations between objective and subjective measures of the residential environment, accounting for individual-level covariates. In unconditional models, intraclass correlation coefficients for block-group variance in subjective reports ranged from 11% (healthy food availability) to 30% (safety). Models accounting for the NDI (vs. both NDI and individual-level covariates) accounted for more variance in healthy food availability (23% vs. 8%) and social disorder (40% vs. 38%). The NDI and individual-level variables accounted for 39% and 51% of the area-level variation in walkability and safety, respectively. Associations between subjective and objective measures of the residential environment were significant and in the expected direction. Future studies on neighborhood effects on health, especially among AAs, should include a wide range of residential environment measures, including subjective, objective, and spatial contextual variables. Copyright © 2016 Elsevier Inc. All rights reserved.
Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.
Gao, W; Wu, X
2017-11-01
It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Groundwater similarity across a watershed derived from time-warped and flow-corrected time series
NASA Astrophysics Data System (ADS)
Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.
2017-05-01
Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.
NASA Astrophysics Data System (ADS)
Benyon, Richard G.; Lane, Patrick N. J.; Jaskierniak, Dominik; Kuczera, George; Haydon, Shane R.
2015-07-01
Mean sapwood thickness, measured in fifteen 73 year old Eucalyptus regnans and E. delegatensis stands, correlated strongly with forest overstorey stocking density (R2 0.72). This curvilinear relationship was used with routine forest stocking density and basal area measurements to estimate sapwood area of the forest overstorey at various times in 15 research catchments in undisturbed and disturbed forests located in the Great Dividing Range, Victoria, Australia. Up to 45 years of annual precipitation and streamflow data available from the 15 catchments were used to examine relationships between mean annual loss (evapotranspiration estimated as mean annual precipitation minus mean annual streamflow), and sapwood area. Catchment mean sapwood area correlated strongly (R2 0.88) with catchment mean annual loss. Variation in sapwood area accounted for 68% more variation in mean annual streamflow than precipitation alone (R2 0.90 compared with R2 0.22). Changes in sapwood area accounted for 96% of the changes in mean annual loss observed after forest thinning or clear-cutting and regeneration. We conclude that forest inventory data can be used reliably to predict spatial and temporal variation in catchment annual losses and streamflow in response to natural and imposed disturbances in even-aged forests. Consequently, recent advances in mapping of sapwood area using airborne light detection and ranging will enable high resolution spatial and temporal mapping of mean annual loss and mean annual streamflow over large areas of forested catchment. This will be particularly beneficial in management of water resources from forested catchments subject to disturbance but lacking reliable long-term (years to decades) streamflow records.
Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui
2018-01-01
Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.
Probabilistic framework for assessing the ice sheet contribution to sea level change.
Little, Christopher M; Urban, Nathan M; Oppenheimer, Michael
2013-02-26
Previous sea level rise (SLR) assessments have excluded the potential for dynamic ice loss over much of Greenland and Antarctica, and recently proposed "upper bounds" on Antarctica's 21st-century SLR contribution are derived principally from regions where present-day mass loss is concentrated (basin 15, or B15, drained largely by Pine Island, Thwaites, and Smith glaciers). Here, we present a probabilistic framework for assessing the ice sheet contribution to sea level change that explicitly accounts for mass balance uncertainty over an entire ice sheet. Applying this framework to Antarctica, we find that ongoing mass imbalances in non-B15 basins give an SLR contribution by 2100 that: (i) is comparable to projected changes in B15 discharge and Antarctica's surface mass balance, and (ii) varies widely depending on the subset of basins and observational dataset used in projections. Increases in discharge uncertainty, or decreases in the exceedance probability used to define an upper bound, increase the fractional contribution of non-B15 basins; even weak spatial correlations in future discharge growth rates markedly enhance this sensitivity. Although these projections rely on poorly constrained statistical parameters, they may be updated with observations and/or models at many spatial scales, facilitating a more comprehensive account of uncertainty that, if implemented, will improve future assessments.
High-resolution pattern of mangrove species distribution is controlled by surface elevation
NASA Astrophysics Data System (ADS)
Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.
2018-03-01
Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.
Spatial correlation in precipitation trends in the Brazilian Amazon
NASA Astrophysics Data System (ADS)
Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes
2010-06-01
A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.
Park, Gewnhi; Moon, Eunok; Kim, Do-Won; Lee, Seung-Hwan
2012-12-01
A previous study has shown that greater cardiac vagal tone, reflecting effective self-regulatory capacity, was correlated with superior visual discrimination of fearful faces at high spatial frequency Park et al. (Biological Psychology 90:171-178, 2012b). The present study investigated whether individual differences in cardiac vagal tone (indexed by heart rate variability) were associated with different event-related brain potentials (ERPs) in response to fearful and neutral faces. Thirty-six healthy participants discriminated the emotion of fearful and neutral faces at broad, high, and low spatial frequencies, while ERPs were recorded. Participants with low resting heart rate variability-characterized by poor functioning of regulatory systems-exhibited significantly greater N200 activity in response to fearful faces at low spatial frequency and greater LPP responses to neutral faces at high spatial frequency. Source analyses-estimated by standardized low-resolution brain electromagnetic tomography (sLORETA)-tended to show that participants with low resting heart rate variability exhibited increased source activity in visual areas, such as the cuneus and the middle occipital gyrus, as compared with participants with high resting heart rate variability. The hyperactive neural activity associated with low cardiac vagal tone may account for hypervigilant response patterns and emotional dysregulation, which heightens the risk of developing physical and emotional problems.
Training improves reading speed in peripheral vision: is it due to attention?
Lee, Hye-Won; Kwon, Miyoung; Legge, Gordon E; Gefroh, Joshua J
2010-06-01
Previous research has shown that perceptual training in peripheral vision, using a letter-recognition task, increases reading speed and letter recognition (S. T. L. Chung, G. E. Legge, & S. H. Cheung, 2004). We tested the hypothesis that enhanced deployment of spatial attention to peripheral vision explains this training effect. Subjects were pre- and post-tested with 3 tasks at 10° above and below fixation-RSVP reading speed, trigram letter recognition (used to construct visual-span profiles), and deployment of spatial attention (measured as the benefit of a pre-cue for target position in a lexical-decision task). Groups of five normally sighted young adults received 4 days of trigram letter-recognition training in upper or lower visual fields, or central vision. A control group received no training. Our measure of deployment of spatial attention revealed visual-field anisotropies; better deployment of attention in the lower field than the upper, and in the lower-right quadrant compared with the other three quadrants. All subject groups exhibited slight improvement in deployment of spatial attention to peripheral vision in the post-test, but this improvement was not correlated with training-related increases in reading speed and the size of visual-span profiles. Our results indicate that improved deployment of spatial attention to peripheral vision does not account for improved reading speed and letter recognition in peripheral vision.
Spatial correlation analysis of urban traffic state under a perspective of community detection
NASA Astrophysics Data System (ADS)
Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan
2018-05-01
Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.
Variability of the raindrop size distribution at small spatial scales
NASA Astrophysics Data System (ADS)
Berne, A.; Jaffrain, J.
2010-12-01
Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
NASA Astrophysics Data System (ADS)
Rodrigo Panosso, Alan; Milori, Débora M. B. P.; Marques Júnior, José; Martin-Neto, Ladislau; La Scala, Newton, Jr.
2010-05-01
Soil management causes changes in soil physical, chemical, and biological properties that consequently affect its CO2 emission. In this work we studied soil respiration (FCO2) in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB), in which the residues are burned before manual harvest, leaving no residues on the soil surface. The study was conducted after the harvest period in two side-by-side grids installed in adjacent areas, having 20 measurement points each. The objective of this work was to determinate whether soil physical and chemical properties within each plot were useful in order to explain the spatial variability of FCO2, supposedly influence by each management system. Most of the soil physical properties studied showed no significant differences between management systems, but on the other hand most of the chemical properties differed significantly when SB and G areas were compared. Total FCO2 was 31% higher in the SB plot (729 g CO2 m-2) when compared to the G plot (557 g CO2 m-2) throughout the 70-day period after harvest studied. This seems to be related to the sensitivity of FCO2 to precipitation events, as respiration in this plot increased significantly with increases in soil moisture. Despite temporal variability showed to be positively related to soil moisture, inside each management system there was a negative correlation (p<0.01) between the spatial changes of FCO2 and soil moisture (MS), R= -0.56 and -0.59 for G and SB respectively. There was no spatial correlation between FCO2 and soil organic matter in each management system, however, the humification index (Hum) of organic matter was negatively linear correlated with FCO2 in SB (R= -0.53, p<0.05) while positively linear correlated in G area (R=0.42, p<0.10). The multiple regression model analysis applied in each management system indicates that 63% of the FCO2 spatial variability in G managed could be explained by the model: FCO2(G)= 4.11978 -0.07672MS + 0.0045Hum +1.5352K -0.04474FWP, where K and FWP are potassium content and free water porosity in G area, respectively. On the other hand, 75% of FCO2 spatial variability in SB managed plot was accounted by the model: FCO2(SB) = 10.66774 -0.08624MS -0.02904Hum -2.42548K. Therefore, soil moisture, humification index of organic matter and potassium level were the main properties able to explain the spatial variability of FCO2 in both sugarcane management systems. This result indicates that changes in sugarcane management systems could result in changes on the soil chemical properties, mostly, especially humification index of organic matter. It seems that in conversion from slash-and-burn to green harvest system, free water porosity turns to be an important aspect in order to explain part of FCO2 spatial variability in green managed system.
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Kolata, Stefan; Light, Kenneth; Matzel, Louis D.
2008-01-01
It has been established that both domain-specific (e.g. spatial) as well as domain-general (general intelligence) factors influence human cognition. However, the separation of these processes has rarely been attempted in studies using laboratory animals. Previously, we have found that the performances of outbred mice across a wide range of learning tasks correlate in such a way that a single factor can explain 30– 44% of the variance between animals. This general learning factor is in some ways qualitatively and quantitatively analogous to general intelligence in humans. The complete structure of cognition in mice, however, has not been explored due to the limited sample sizes of our previous analyses. Here we report a combined analysis from 241 CD-1 mice tested in five primary learning tasks, and a subset of mice tested in two additional learning tasks. At least two (possibly three) of the seven learning tasks placed explicit demands on spatial and/or hippocampus-dependent processing abilities. Consistent with previous findings, we report a robust general factor influencing learning in mice that accounted for 38% of the variance across tasks. In addition, a domain-specific factor was found to account for performance on that subset of tasks that shared a dependence on hippocampal and/or spatial processing. These results provide further evidence for a general learning/cognitive factor in genetically heterogeneous mice. Furthermore (and similar to human cognitive performance), these results suggest a hierarchical structure to cognitive processes in this genetically heterogeneous species. PMID:19129932
Teacher spatial skills are linked to differences in geometry instruction.
Otumfuor, Beryl Ann; Carr, Martha
2017-12-01
Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.
[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping
2016-12-01
As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.
Failure criterion for materials with spatially correlated mechanical properties
NASA Astrophysics Data System (ADS)
Faillettaz, J.; Or, D.
2015-03-01
The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.
Liao, Jinbao; Ying, Zhixia; Woolnough, Daelyn A; Miller, Adam D; Li, Zhenqing; Nijs, Ivan
2016-05-11
Disturbance is key to maintaining species diversity in plant communities. Although the effects of disturbance frequency and extent on species diversity have been studied, we do not yet have a mechanistic understanding of how these aspects of disturbance interact with spatial structure of disturbance to influence species diversity. Here we derive a novel pair approximation model to explore competitive outcomes in a two-species system subject to spatially correlated disturbance. Generally, spatial correlation in disturbance favoured long-range dispersers, while distance-limited dispersers were greatly suppressed. Interestingly, high levels of spatial aggregation of disturbance promoted long-term species coexistence that is not possible in the absence of disturbance, but only when the local disperser was intrinsically competitively superior. However, spatial correlation in disturbance led to different competitive outcomes, depending on the disturbed area. Concerning ecological conservation and management, we theoretically demonstrate that introducing a spatially correlated disturbance to the system or altering an existing disturbance regime can be a useful strategy either to control species invasion or to promote species coexistence. Disturbance pattern analysis may therefore provide new insights into biodiversity conservation. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Pair correlation functions for identifying spatial correlation in discrete domains
NASA Astrophysics Data System (ADS)
Gavagnin, Enrico; Owen, Jennifer P.; Yates, Christian A.
2018-06-01
Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
Space-resolved measurements of neutrons and ions emitted by a plasma focus
NASA Astrophysics Data System (ADS)
Jaeger, U.
1980-05-01
Space-resolved measurements of neutrons and of accelerated charged particles emitted by a plasma focus device are presented. The neutron source was measured with one and two dimensional paraffin collimators. The spatial resolution is 5 mn along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron scattering, absorption, and nuclear reactions were taken into account. Part of the neutron measurement was carried out together with time and space resolved measurements of the electron density to study possible correlations between n sub e and y sub n.
Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L
2014-03-01
Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.
NASA Astrophysics Data System (ADS)
Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.
2017-12-01
Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration
Constraints of philanthropy on determining the distribution of biodiversity conservation funding.
Larson, Eric R; Howell, Stephen; Kareiva, Peter; Armsworth, Paul R
2016-02-01
Caught between ongoing habitat destruction and funding shortfalls, conservation organizations are using systematic planning approaches to identify places that offer the highest biodiversity return per dollar invested. However, available tools do not account for the landscape of funding for conservation or quantify the constraints this landscape imposes on conservation outcomes. Using state-level data on philanthropic giving to and investments in land conservation by a large nonprofit organization, we applied linear regression to evaluate whether the spatial distribution of conservation philanthropy better explained expenditures on conservation than maps of biodiversity priorities, which were derived from a planning process internal to the organization and return on investment (ROI) analyses based on data on species richness, land costs, and existing protected areas. Philanthropic fund raising accounted for considerably more spatial variation in conservation spending (r(2) = 0.64) than either of the 2 systematic conservation planning approaches (r(2) = 0.08-0.21). We used results of one of the ROI analyses to evaluate whether increases in flexibility to reallocate funding across space provides conservation gains. Small but plausible "tax" increments of 1-10% on states redistributed to the optimal funding allocation from the ROI analysis could result in gains in endemic species protected of 8.5-80.2%. When such increases in spatial flexibility are not possible, conservation organizations should seek to cultivate increased support for conservation in priority locations. We used lagged correlations of giving to and spending by the organization to evaluate whether investments in habitat protection stimulate future giving to conservation. The most common outcome at the state level was that conservation spending quarters correlated significantly and positively with lagged fund raising quarters. In effect, periods of high fund raising for biodiversity followed (rather than preceded) periods of high expenditure on land conservation projects, identifying one mechanism conservation organizations could explore to seed greater activity in priority locations. Our results demonstrate how limitations on the ability of conservation organizations to reallocate their funding across space can impede organizational effectiveness and elucidate ways conservation planning tools could be more useful if they quantified and incorporated these constraints. © 2015 Society for Conservation Biology.
Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.
Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M
2016-11-01
Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Species extinction thresholds in the face of spatially correlated periodic disturbance.
Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan
2015-10-20
The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.
Miller, Hilary E; Simmering, Vanessa R
2018-08-01
Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.
A new theoretical approach to analyze complex processes in cytoskeleton proteins.
Li, Xin; Kolomeisky, Anatoly B
2014-03-20
Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in nonequilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative under biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins under all conditions.
Estimating life expectancies for US small areas: a regression framework
NASA Astrophysics Data System (ADS)
Congdon, Peter
2014-01-01
Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.
NASA Astrophysics Data System (ADS)
Chen, Feng; Yuan, Yujiang; Fan, Zexin; Yu, Shulong
2018-01-01
We established a tree-ring width series from one Yunnan Douglas fir (Pseudotsuga forrestii) stand near the Mingyong glacier terminus of Meili Snow Mountain, southeastern Tibetan Plateau. Correlation analyses indicated that radial growth of Yunnan Douglas firs is largely controlled by variations in winter (November-March) precipitation. The precipitation reconstruction model accounts for 37% of the actual precipitation variance during the common period 1954-2012. Spatial correlations with the gridded precipitation data reveal that the winter precipitation reconstruction represents regional precipitation changes over the southeastern Tibetan Plateau. By comparing our results with other regional tree-ring records, a distinctive amount of common dry and humid periods were found. Our winter precipitation reconstruction shows profound similarities with Salween river streamflow signals as well as regional glacial activity. Cross-wavelet analysis reveals solar and ENSO influences on precipitation and streamflow variations in the southeastern Tibetan Plateau.
Large scale anomalies in the microwave background: causation and correlation.
Aslanyan, Grigor; Easther, Richard
2013-12-27
Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.
NASA Astrophysics Data System (ADS)
Schultz, R.; Atkinson, G. M.; Eaton, D. W. S.; Gu, Y. J.; Kao, H.
2017-12-01
A sharp increase in the frequency of earthquakes near Fox Creek, Alberta began in December 2013 as a result of hydraulic fracturing completions in the Duvernay Formation. Using a newly compiled hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We find that induced earthquakes are associated with pad completions that used larger injection volumes (104-5 m3) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have limited or insignificant correlation with the seismic response. Further findings suggest that geological susceptibilities play a prominent role in seismic productivity, as evidenced by spatial correlations in the seismicity patterns. Together, volume and geological susceptibilities account for 96% of the variability in the induced earthquake rate near Fox Creek. We suggest this result is fit by a modified Gutenberg-Richter earthquake frequency-magnitude distribution which provides a conceptual framework with which to forecast induced seismicity hazard.
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
Uttal, David; Franconeri, Steven
2016-01-01
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects—the shift account of relation processing—which states that relations such as ‘above’ or ‘below’ are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants’ voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations. PMID:27695104
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
Yuan, Lei; Uttal, David; Franconeri, Steven
2016-01-01
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects-the shift account of relation processing-which states that relations such as 'above' or 'below' are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants' voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations.
NASA Astrophysics Data System (ADS)
Omonijo, Akinyemi Gabriel; Matzarakis, Andreas; Oguntoke, Olusegun; Adeofun, Clement Olabinjo
2012-09-01
We investigated the temporal and spatial dynamics, as well as the seasonal occurrence of measles in Ondo state, Nigeria, to better understand the role of the thermal environment in the occurrence of the childhood killer disease measles, which ranks among the top ten leading causes of child deaths worldwide. The linkages between measles and atmospheric environmental factors were examined by correlating human-biometeorological parameters in the study area with reported clinical cases of measles for the period 1998-2008. We also applied stepwise regression analysis in order to determine the human-biometeorological parameters that lead to statistical changes in reported clinical cases of measles. We found that high reported cases of measles are associated with the least populated areas, where rearing and cohabitation of livestock/domestic animals within human communities are common. There was a significant correlation ( P < 0.01) between monthly cases of measles and human-biometeorological parameters except wind speed and vapour pressure. High transmission of measles occurred in the months of January to May during the dry season when human thermal comfort indices are very high. This highlights the importance of the thermal environment in disease demographics since it accounted for more than 40% variation in measles transmission within the study period.
Sampling alien species inside and outside protected areas: Does it matter?
NASA Astrophysics Data System (ADS)
Moustakas, Aristides; Voutsela, Anneta; Katsanevakis, Stelios
2018-06-01
Data of alien species presences are generally more readily available in protected than non-protected areas due to higher sampling efforts inside protected areas. Are the results and conclusions based on analyses of data collected in protected areas representative of wider non-protected regions? We address this question by analysing some recently published data of alien plants in Greece. Mixed effects models were used with alien species presences in 8.25 x 8.25 km cells as dependent variable and the percentage of protected area, as well as the agricultural and artificial land cover types richness (as indicators of human presence) as independent variables. In addition, the spatial cross-correlation between the percentage of protected area and alien species richness was examined across scales. Results indicated that the percentage of protected area per cell is a poor predictor of alien species richness. Spatial analysis indicated that cells with higher percentage of protected areas have slightly less alien species than cells with lower percentage of protected areas. This result is likely to be driven by the overall negative correlation between habitat protection and anthropogenic activities. Thus, the conclusions deduced by data deriving from protected areas are likely to hold true for patterns of alien species in non-protected areas when the human pressures are accounted for.
The Premotor theory of attention: time to move on?
Smith, Daniel T; Schenk, Thomas
2012-05-01
Spatial attention and eye-movements are tightly coupled, but the precise nature of this coupling is controversial. The influential but controversial Premotor theory of attention makes four specific predictions about the relationship between motor preparation and spatial attention. Firstly, spatial attention and motor preparation use the same neural substrates. Secondly, spatial attention is functionally equivalent to planning goal directed actions such as eye-movements (i.e. planning an action is both necessary and sufficient for a shift of spatial attention). Thirdly, planning a goal directed action with any effector system is sufficient to trigger a shift of spatial attention. Fourthly, the eye-movement system has a privileged role in orienting visual spatial attention. This article reviews empirical studies that have tested these predictions. Contrary to predictions one and two there is evidence of anatomical and functional dissociations between endogenous spatial attention and motor preparation. However, there is compelling evidence that exogenous attention is reliant on activation of the oculomotor system. With respect to the third prediction, there is correlational evidence that spatial attention is directed to the endpoint of goal-directed actions but no direct evidence that this attention shift is dependent on motor preparation. The few studies to have directly tested the fourth prediction have produced conflicting results, so the extent to which the oculomotor system has a privileged role in spatial attention remains unclear. Overall, the evidence is not consistent with the view that spatial attention is functionally equivalent to motor preparation so the Premotor theory should be rejected, although a limited version of the Premotor theory in which only exogenous attention is dependent on motor preparation may still be tenable. A plausible alternative account is that activity in the motor system contributes to biased competition between different sensory representations with the winner of the competition becoming the attended item. Copyright © 2012 Elsevier Ltd. All rights reserved.
Analyses and assessments of span wise gust gradient data from NASA B-57B aircraft
NASA Technical Reports Server (NTRS)
Frost, Walter; Chang, Ho-Pen; Ringnes, Erik A.
1987-01-01
Analysis of turbulence measured across the airfoil of a Cambera B-57 aircraft is reported. The aircraft is instrumented with probes for measuring wind at both wing tips and at the nose. Statistical properties of the turbulence are reported. These consist of the standard deviations of turbulence measured by each individual probe, standard deviations and probability distribution of differences in turbulence measured between probes and auto- and two-point spatial correlations and spectra. Procedures associated with calculations of two-point spatial correlations and spectra utilizing data were addressed. Methods and correction procedures for assuring the accuracy of aircraft measured winds are also described. Results are found, in general, to agree with correlations existing in the literature. The velocity spatial differences fit a Gaussian/Bessel type probability distribution. The turbulence agrees with the von Karman turbulence correlation and with two-point spatial correlations developed from the von Karman correlation.
Spatial and Temporal Uncertainty of Crop Yield Aggregations
NASA Technical Reports Server (NTRS)
Porwollik, Vera; Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Iizumi, Toshichika; Ray, Deepak K.; Ruane, Alex C.; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe;
2016-01-01
The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Inter-comparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty. The quantity and spatial patterns of harvested areas differ for individual crops among the four datasets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics. Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).For the majority of countries, mean relative differences of nationally aggregated yields account for10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia).Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05*Corresponding (wheat, Russia), r = 0.13 (rice, Vietnam), and r = -0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with large harvested areas per crop type. We conclude that the aggregation uncertainty can be substantial for crop productivity and production estimations in the context of food security, impact assessment, and model evaluation exercises.
Modeling space-time correlations of velocity fluctuations in wind farms
NASA Astrophysics Data System (ADS)
Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael
2018-07-01
An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.
Accounting for substitution and spatial heterogeneity in a labelled choice experiment.
Lizin, S; Brouwer, R; Liekens, I; Broeckx, S
2016-10-01
Many environmental valuation studies using stated preferences techniques are single-site studies that ignore essential spatial aspects, including possible substitution effects. In this paper substitution effects are captured explicitly in the design of a labelled choice experiment and the inclusion of different distance variables in the choice model specification. We test the effect of spatial heterogeneity on welfare estimates and transfer errors for minor and major river restoration works, and the transferability of river specific utility functions, accounting for key variables such as site visitation, spatial clustering and income. River specific utility functions appear to be transferable, resulting in low transfer errors. However, ignoring spatial heterogeneity increases transfer errors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.
Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao
2016-02-01
Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.
Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E
2017-01-01
Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.
Four-Photon Imaging with Thermal Light
NASA Astrophysics Data System (ADS)
Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng
2014-10-01
In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.
Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects
ERIC Educational Resources Information Center
Qian, Minghui; Hu, Ridong; Chen, Jianwei
2016-01-01
Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…
Spatial complementarity of forests and farms: accounting for ecosystem services
Subhrendu K. Pattanayak; David T. Butry
2006-01-01
Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...
Effects of lorazepam on visual perceptual abilities.
Pompéia, S; Pradella-Hallinan, M; Manzano, G M; Bueno, O F A
2008-04-01
To evaluate the effects of an acute dose of the benzodiazepine (BZ) lorazepam in young healthy volunteers on five distinguishable visual perception abilities determined by previous factor-analytic studies. This was a double-blind, cross-over design study of acute oral doses of lorazepam (2 mg) and placebo in young healthy volunteers. We focused on a set of paper-and-pencil tests of visual perceptual abilities that load on five correlated but distinguishable factors (Spatial Visualization, Spatial Relations, Perceptual Speed, Closure Speed, and Closure Flexibility). Some other tests (DSST, immediate and delayed recall of prose; measures of subjective mood alterations) were used to control for the classic BZ-induced effects. Lorazepam impaired performance in the DSST and delayed recall of prose, increased subjective sedation and impaired tasks of all abilities except Spatial Visualization and Closure Speed. Only impairment in Perceptual Speed (Identical Pictures task) and delayed recall of prose were not explained by sedation. Acute administration of lorazepam, in a dose that impaired episodic memory, selectively affected different visual perceptual abilities before and after controlling for sedation. Central executive demands and sedation did not account for results, so impairment in the Identical Pictures task may be attributed to lorazepam's visual processing alterations. 2008 John Wiley & Sons, Ltd.
The Role of Semantic Clustering in Optimal Memory Foraging.
Montez, Priscilla; Thompson, Graham; Kello, Christopher T
2015-11-01
Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in semantic memory may play a role in evidence for both theories. Labeled magnets and a whiteboard were used to elicit spatial representations of semantic knowledge about animals. Category recall sequences from a separate experiment were used to trace search paths over the spatial representations of animal knowledge. Results showed that spatial distances between animal names arranged on the whiteboard were correlated with inter-response intervals (IRIs) during category recall, and distributions of both dependent measures approximated inverse power laws associated with Lévy flights. In addition, IRIs were relatively shorter when paths first entered animal clusters, and longer when they exited clusters, which is consistent with marginal value theorem. In conclusion, area-restricted searches over clustered semantic spaces may account for two different patterns of results interpreted as supporting two different theories of optimal memory foraging. Copyright © 2015 Cognitive Science Society, Inc.
Metallic-thin-film instability with spatially correlated thermal noise.
Diez, Javier A; González, Alejandro G; Fernández, Roberto
2016-01-01
We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓ_{c}, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β∼ℓ_{c}^{-1}). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓ_{c} larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓ_{c} this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓ_{c}, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β. For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations).
Metallic-thin-film instability with spatially correlated thermal noise
NASA Astrophysics Data System (ADS)
Diez, Javier A.; González, Alejandro G.; Fernández, Roberto
2016-01-01
We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓc, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β ˜ℓc-1 ). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓc larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓc this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓc, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β . For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations).
Systematic Variations of Macrospicule Properties Observed by SDO/AIA over Half a Decade
NASA Astrophysics Data System (ADS)
Kiss, T. S.; Gyenge, N.; Erdélyi, R.
2017-01-01
Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.
Predicting the Overall Spatial Quality of Automotive Audio Systems
NASA Astrophysics Data System (ADS)
Koya, Daisuke
The spatial quality of automotive audio systems is often compromised due to their unideal listening environments. Automotive audio systems need to be developed quickly due to industry demands. A suitable perceptual model could evaluate the spatial quality of automotive audio systems with similar reliability to formal listening tests but take less time. Such a model is developed in this research project by adapting an existing model of spatial quality for automotive audio use. The requirements for the adaptation were investigated in a literature review. A perceptual model called QESTRAL was reviewed, which predicts the overall spatial quality of domestic multichannel audio systems. It was determined that automotive audio systems are likely to be impaired in terms of the spatial attributes that were not considered in developing the QESTRAL model, but metrics are available that might predict these attributes. To establish whether the QESTRAL model in its current form can accurately predict the overall spatial quality of automotive audio systems, MUSHRA listening tests using headphone auralisation with head tracking were conducted to collect results to be compared against predictions by the model. Based on guideline criteria, the model in its current form could not accurately predict the overall spatial quality of automotive audio systems. To improve prediction performance, the QESTRAL model was recalibrated and modified using existing metrics of the model, those that were proposed from the literature review, and newly developed metrics. The most important metrics for predicting the overall spatial quality of automotive audio systems included those that were interaural cross-correlation (IACC) based, relate to localisation of the frontal audio scene, and account for the perceived scene width in front of the listener. Modifying the model for automotive audio systems did not invalidate its use for domestic audio systems. The resulting model predicts the overall spatial quality of 2- and 5-channel automotive audio systems with a cross-validation performance of R. 2 = 0.85 and root-mean-squareerror (RMSE) = 11.03%.
Impact of traffic congestion on road accidents: a spatial analysis of the M25 motorway in England.
Wang, Chao; Quddus, Mohammed A; Ison, Stephen G
2009-07-01
Traffic congestion and road accidents are two external costs of transport and the reduction of their impacts is often one of the primary objectives for transport policy makers. The relationship between traffic congestion and road accidents however is not apparent and less studied. It is speculated that there may be an inverse relationship between traffic congestion and road accidents, and as such this poses a potential dilemma for transport policy makers. This study aims to explore the impact of traffic congestion on the frequency of road accidents using a spatial analysis approach, while controlling for other relevant factors that may affect road accidents. The M25 London orbital motorway, divided into 70 segments, was chosen to conduct this study and relevant data on road accidents, traffic and road characteristics were collected. A robust technique has been developed to map M25 accidents onto its segments. Since existing studies have often used a proxy to measure the level of congestion, this study has employed a precise congestion measurement. A series of Poisson based non-spatial (such as Poisson-lognormal and Poisson-gamma) and spatial (Poisson-lognormal with conditional autoregressive priors) models have been used to account for the effects of both heterogeneity and spatial correlation. The results suggest that traffic congestion has little or no impact on the frequency of road accidents on the M25 motorway. All other relevant factors have provided results consistent with existing studies.
Congdon, Peter
2010-01-01
Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity.
Congdon, Peter
2010-01-01
Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity. PMID:20195439
Li, Kevin; Vandermeer, John H; Perfecto, Ivette
2016-05-01
Spatial patterns in ecology can be described as reflective of environmental heterogeneity (exogenous), or emergent from dynamic relationships between interacting species (endogenous), but few empirical studies focus on the combination. The spatial distribution of the nests of Azteca sericeasur, a keystone tropical arboreal ant, is thought to form endogenous spatial patterns among the shade trees of a coffee plantation through self-regulating interactions with controlling agents (i.e. natural enemies). Using inhomogeneous point process models, we found evidence for both types of processes in the spatial distribution of A. sericeasur. Each year's nest distribution was determined mainly by a density-dependent relationship with the previous year's lagged nest density; but using a novel application of a Thomas cluster process to account for the effects of nest clustering, we found that nest distribution also correlated significantly with tree density in the later years of the study. This coincided with the initiation of agricultural intensification and tree felling on the coffee farm. The emergence of this significant exogenous effect, along with the changing character of the density-dependent effect of lagged nest density, provides clues to the mechanism behind a unique phenomenon observed in the plot, that of an increase in nest population despite resource limitation in nest sites. Our results have implications in coffee agroecological management, as this system provides important biocontrol ecosystem services. Further research is needed, however, to understand the effective scales at which these relationships occur.
Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I
NASA Astrophysics Data System (ADS)
Lee, Sang-Il
This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.
Is the Voter Model a Model for Voters?
NASA Astrophysics Data System (ADS)
Fernández-Gracia, Juan; Suchecki, Krzysztof; Ramasco, José J.; San Miguel, Maxi; Eguíluz, Víctor M.
2014-04-01
The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anisotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the geographical space is coarse grained at different scales—from the county level through congressional districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making, which are consistent with the empirical observations.
On spatial attention and its field size on the repulsion effect
Cutrone, Elizabeth K.; Heeger, David J.; Carrasco, Marisa
2018-01-01
We investigated the attentional repulsion effect—stimuli appear displaced further away from attended locations—in three experiments: one with exogenous (involuntary) attention, and two with endogenous (voluntary) attention with different attention-field sizes. It has been proposed that differences in attention-field size can account for qualitative differences in neural responses elicited by attended stimuli. We used psychophysical comparative judgments and manipulated either exogenous attention via peripheral cues or endogenous attention via central cues and a demanding rapid serial visual presentation task. We manipulated the attention field size of endogenous attention by presenting streams of letters at two specific locations or at two of many possible locations during each block. We found a robust attentional repulsion effect in all three experiments: with endogenous and exogenous attention and with both attention-field sizes. These findings advance our understanding of the influence of spatial attention on the perception of visual space and help relate this repulsion effect to possible neurophysiological correlates.
Equivalent ZF precoding scheme for downlink indoor MU-MIMO VLC systems
NASA Astrophysics Data System (ADS)
Fan, YangYu; Zhao, Qiong; Kang, BoChao; Deng, LiJun
2018-01-01
In indoor visible light communication (VLC) systems, the channels of photo detectors (PDs) at one user are highly correlated, which determines the choice of spatial diversity model for individual users. In a spatial diversity model, the signals received by PDs belonging to one user carry the same information, and can be combined directly. Based on the above, we propose an equivalent zero-forcing (ZF) precoding scheme for multiple-user multiple-input single-output (MU-MIMO) VLC systems by transforming an indoor MU-MIMO VLC system into an indoor multiple-user multiple-input single-output (MU-MISO) VLC system through simply processing. The power constraints of light emitting diodes (LEDs) are also taken into account. Comprehensive computer simulations in three scenarios indicate that our scheme can not only reduce the computational complexity, but also guarantee the system performance. Furthermore, the proposed scheme does not require noise information in the calculating of the precoding weights, and has no restrictions on the numbers of APs and PDs.
van den Berg, Ronald; Roerdink, Jos B. T. M.; Cornelissen, Frans W.
2010-01-01
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality. PMID:20098499
Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.
Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan
2012-12-01
Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.; ...
2018-01-01
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
NASA Astrophysics Data System (ADS)
Emary, Clive; Lambert, Neill; Nori, Franco
2014-01-01
In contrast to the spatial Bell's inequalities which probe entanglement between spatially separated systems, the Leggett-Garg inequalities test the correlations of a single system measured at different times. Violation of a genuine Leggett-Garg test implies either the absence of a realistic description of the system or the impossibility of measuring the system without disturbing it. Quantum mechanics violates the inequalities on both accounts and the original motivation for these inequalities was as a test for quantum coherence in macroscopic systems. The last few years has seen a number of experimental tests and violations of these inequalities in a variety of microscopic systems such as superconducting qubits, nuclear spins, and photons. In this article, we provide an introduction to the Leggett-Garg inequalities and review these latest experimental developments. We discuss important topics such as the significance of the non-invasive measurability assumption, the clumsiness loophole, and the role of weak measurements. Also covered are some recent theoretical proposals for the application of Leggett-Garg inequalities in quantum transport, quantum biology and nano-mechanical systems.
Jurisdictional spillover effects of sprawl on injuries and fatalities.
Mohamed, Rayman; Vom Hofe, Rainer; Mazumder, Sangida
2014-11-01
There is a considerable literature on the relationship between sprawl and accidents. However, these studies do not account for the spatially correlated effects of sprawl on accidents. In our analysis of 122 jurisdictions in Southeast Michigan, we use a Bayesian spatial autoregressive model to estimate how injuries and fatalities in one jurisdiction are associated with sprawl in that jurisdiction and sprawl in neighboring jurisdictions; we also correct for heteroskedasticity in the data. Using principal component analysis, we create a sprawl index from five underlying land use characteristics. Our results show that the number of injuries and fatalities in a jurisdiction increases with the magnitude of sprawl in neighboring jurisdictions. We believe that this is because more drivers per capita in sprawled jurisdictions traverse similarly sprawled neighboring jurisdictions for daily activities. Furthermore, driving habits attuned to less defensive driving in sprawled jurisdiction are transferred to similarly designed neighboring jurisdictions, contributing to accidents in the latter. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
Attentional bias for food cues in binge eating disorder.
Schmitz, Florian; Naumann, Eva; Trentowska, Monika; Svaldi, Jennifer
2014-09-01
The aim of the present study was to investigate an attentional bias toward food stimuli in binge eating disorder (BED). To this end, a BED and a weight-matched control group (CG) completed a clarification task and a spatial cueing paradigm. The clarification task revealed that food stimuli were faster detected than neutral stimuli, and that this difference was more pronounced in BED than in the CG. The spatial cueing paradigm indicated a stimulus engagement effect in the BED group but not in the CG, suggesting that an early locus in stimulus processing contributes to differences between BED patients and obese controls. Both groups experienced difficulty disengaging attention from food stimuli, and this effect was only descriptively larger in the BED group. The effects obtained in both paradigms were found to be correlated with reported severity of BED symptoms. Of note, this relationship was partially mediated by the arousal associated with food stimuli relative to neutral stimuli, as predicted by an account on incentive sensitization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Guowen; Lee, Duncan; Scott, E Marian
2018-03-30
The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Can spatial statistical river temperature models be transferred between catchments?
NASA Astrophysics Data System (ADS)
Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.
2017-09-01
There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales.
Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer
2018-01-01
Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527
Sartorius, Benn K D; Sartorius, Kurt
2014-11-01
The need for a multidimensional measure of population health that accounts for its distribution remains a central problem to guide the allocation of limited resources. Absolute proxy measures, like the infant mortality rate (IMR), are limited because they ignore inequality and spatial clustering. We propose a novel, three-part, multidimensional mortality indicator that can be used as the first step to differentiate interventions in a region or country. The three-part indicator (MortalityABC index) combines absolute mortality rate, the Theil Index to calculate mortality inequality and the Getis-Ord G statistic to determine the degree of spatial clustering. The analysis utilises global sub-national IMR data to empirically illustrate the proposed indicator. The three-part indicator is mapped globally to display regional/country variation and further highlight its potential application. Developing countries (e.g. in sub-Saharan Africa) display high levels of absolute mortality as well as variable mortality inequality with evidence of spatial clustering within certain sub-national units ("hotspots"). Although greater inequality is observed outside developed regions, high mortality inequality and spatial clustering are common in both developed and developing countries. Significant positive correlation was observed between the degree of spatial clustering and absolute mortality. The proposed multidimensional indicator should prove useful for spatial allocation of healthcare resources within a country, because it can prompt a wide range of policy options and prioritise high-risk areas. The new indicator demonstrates the inadequacy of IMR as a single measure of population health, and it can also be adapted to lower administrative levels within a country and other population health measures.
Sueker, J.K.; Clow, D.W.; Ryan, J.N.; Jarrett, R.D.
2001-01-01
Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes (??? 30??), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year -1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris-probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley and Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sueker, Julie K.; Clow, David W.; Ryan, Joseph N.; Jarrett, Robert D.
2001-10-01
Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes ( 30°), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year-1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris - probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
An, Chan-Ho; Yang, Janghoon; Jang, Seunghun; Kim, Dong Ku
In this letter, a pre-processed lattice reduction (PLR) scheme is developed for the lattice reduction aided (LRA) detection of multiple input multiple-output (MIMO) systems in spatially correlated channel. The PLR computes the LLL-reduced matrix of the equivalent matrix, which is the product of the present channel matrix and unimodular transformation matrix for LR of spatial correlation matrix, rather than the present channel matrix itself. In conjunction with PLR followed by recursive lattice reduction (RLR) scheme [7], pre-processed RLR (PRLR) is shown to efficiently carry out the LR of the channel matrix, especially for the burst packet message in spatially and temporally correlated channel while matching the performance of conventional LRA detection.
Hemispheric connectivity and the visual-spatial divergent-thinking component of creativity.
Moore, Dana W; Bhadelia, Rafeeque A; Billings, Rebecca L; Fulwiler, Carl; Heilman, Kenneth M; Rood, Kenneth M J; Gansler, David A
2009-08-01
Divergent thinking is an important measurable component of creativity. This study tested the postulate that divergent thinking depends on large distributed inter- and intra-hemispheric networks. Although preliminary evidence supports increased brain connectivity during divergent thinking, the neural correlates of this characteristic have not been entirely specified. It was predicted that visuospatial divergent thinking would correlate with right hemisphere white matter volume (WMV) and with the size of the corpus callosum (CC). Volumetric magnetic resonance imaging (MRI) analyses and the Torrance Tests of Creative Thinking (TTCT) were completed among 21 normal right-handed adult males. TTCT scores correlated negatively with the size of the CC and were not correlated with right or, incidentally, left WMV. Although these results were not predicted, perhaps, as suggested by Bogen and Bogen (1988), decreased callosal connectivity enhances hemispheric specialization, which benefits the incubation of ideas that are critical for the divergent-thinking component of creativity, and it is the momentary inhibition of this hemispheric independence that accounts for the illumination that is part of the innovative stage of creativity. Alternatively, decreased CC size may reflect more selective developmental pruning, thereby facilitating efficient functional connectivity.
Tensegrity and motor-driven effective interactions in a model cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Wolynes, Peter G.
2012-04-01
Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.
Removing the Impact of Correlated PSF Uncertainties in Weak Lensing
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-05-01
Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
NASA Astrophysics Data System (ADS)
Xu, Feng; Davis, Anthony B.; Diner, David J.
2016-11-01
A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a→∞. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a<∞, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds.
Sun, Ran-Hao; Chen, Li-Ding; Wang, Wei; Wang, Zhao-Ming
2012-06-01
Understanding the effect of land cover pattern on nutrient losses is of great importance in management of water resources. The extensive application of mechanism models is limited in large-scale watersheds owing to the intensive data and calibration requirements. On the other hand, the traditional landscape indexes only take the areas and types of land cover into account, considering less about their topographic features and spatial patterns. We constructed a location-weighted landscape index (LWLI) based on the Lorenz curve, which plots the cumulative proportion of areas for sink and source landscapes respectively against cumulative proportion of their relative location to the outlet in a watershed, including relative elevation, distance and slope. We assessed the effect of land cover pattern on total nitrogen losses in the Haihe River. Firstly, 26 watersheds were derived from 1: 250 000 digital elevation model (DEM), and their "source" and "sink" landscape types were identified from Landsat TM images in 2007. The source" landscapes referred to the paddy land, dry land and residential area, correspondingly the "sink" landscapes referred to the forest and grassland. Secondly, LWLI was calculated according to the landscape types and spatial patterns for each watershed. Thirdly, we accessed the effect of land cover pattern on total nitrogen (TN) flux according to the value of LWLI, comparing with the area proportion of sink-source landscapes. The correlation coefficients were different in three parts of Haihe River, i. e., 0.86, 0.67 and 0.65 in the Yanshan Mts, Taihang Mts and lower Haihe River. The results showed strong correlations between TN and LWLI in contrast to the weak correlations between TN and area proportion of sink and source landscape types. This study indicates the spatial pattern of land cover is essential for accessing the nutrient losses, and the location-weighted landscape pattern analysis may be an alternate to existing water quality models, especially in large watershed scales. The sink-source index is sufficiently simple that it can be compared across watersheds and be easily interpreted, and potentially be used in landscape pattern optimal designing and planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Aileen, E-mail: Yang@uu.nl; Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht; Hoek, Gerard
Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial variation of personal OP. We collected 96-hour personal, home outdoor and indoor PM{sub 2.5} samples from 15 volunteers living either at traffic, urban or regional background locations in Utrecht, the Netherlands. OP was also measured at one central reference site to account for temporal variations. OP was assessed using electron spin resonance (OP{sup ESR})more » and dithiothreitol (OP{sup DTT}). Spatial variation of average OP at the home address was modeled using land use regression (LUR) models. For both OP{sup ESR} and OP{sup DTT}, temporal correlations of central site measurements with home outdoor measurements were high (R>0.75), and moderate to high (R=0.49–0.70) with personal measurements. The LUR model predictions for OP correlated significantly with the home outdoor concentrations for OP{sup DTT} and OP{sup ESR} (R=0.65 and 0.62, respectively). LUR model predictions were moderately correlated with personal OP{sup DTT} measurements (R=0.50). Adjustment for indoor sources, such as vacuum cleaning and absence of fume-hood, improved the temporal and spatial agreement with measured personal exposure for OP{sup ESR}. OP{sup DTT} was not associated with any indoor sources. Our study results support the use of central site OP for exposure assessment of epidemiological studies focusing on short-term health effects. - Highlights: • Oxidative potential (OP) of PM was proposed as a health-relevant exposure metric. • We evaluated the relationship between measured and modeled outdoor and personal OP. • Temporal correlations of central site with personal OP are moderate to high. • Adjusting for indoor sources improved the agreement with personal OP. • Our results support the use of central site OP for short-term health effect studies.« less
Fang, Fengman; Wang, Haidong; Lin, Yuesheng
2011-08-01
Total mercury (Hg(T)) and bioavailability Hg (Hg(HCl)) concentrations in soil were determined in five districts in Wuhu urban area. Spatial pattern of soil Hg concentration was generated through kriging technology. Results showed that Hg concentration in soil ranged from 0.024 to 2.844 mg kg( -1) with an average of 0.207 mg kg( -1). Hg concentration in soil appeared to have a block distribution and decreased from downtown to surrounding district. And Hg concentrations appeared to have a medium scale spatial auto correlation, strongly affected by human activity. The maximal Hg average concentration (0.332 mg kg( -1)) in soil appeared in Jinghu district, where the high intensity of human activities is. Second highest Hg average concentration (0.263 mg kg( -1)) in soil appeared in development district, where the intensive industrial activities are. Bioavailability Hg concentration in soil ranged from 2.6 to 4.9 μg kg( -1) with an average of 3.8 μg kg( -1), which had a ratio of 0.28~6.44% to total Hg. The ratios of bioavailability Hg to total Hg in vegetable soil were bigger than those of park soil. Correlation analysis showed that total Hg, organic matter, total phosphorus, and bioavailability Hg concentrations in soil were significantly positively correlated. Hg concentration in vegetable ranged from 2.7 to 15.2 μg kg( -1) with an average of 6.5 μg kg( -1). Hg concentration in vegetable was positively correlated with Hg(HCl) concentration in soil. According to the calculation on hazard quotient (HQ) for children, inhalation of Hg vapor from soil is the main exposure pathway, in which HQ is 2.517 × 10( -2), accounting for 80.3% of the four exposure pathways. Hazard index (HI) of the four exposure pathways is lower than the "safe" level of HI = 1; therefore, exposure of soil Hg exhibited little potential health risk to children in Wuhu urban area.
Essays on pricing electricity and electricity derivatives in deregulated markets
NASA Astrophysics Data System (ADS)
Popova, Julia
2008-10-01
This dissertation is composed of four essays on the behavior of wholesale electricity prices and their derivatives. The first essay provides an empirical model that takes into account the spatial features of a transmission network on the electricity market. The spatial structure of the transmission grid plays a key role in determining electricity prices, but it has not been incorporated into previous empirical models. The econometric model in this essay incorporates a simple representation of the transmission system into a spatial panel data model of electricity prices, and also accounts for the effect of dynamic transmission system constraints on electricity market integration. Empirical results using PJM data confirm the existence of spatial patterns in electricity prices and show that spatial correlation diminishes as transmission lines become more congested. The second essay develops and empirically tests a model of the influence of natural gas storage inventories on the electricity forward premium. I link a model of the effect of gas storage constraints on the higher moments of the distribution of electricity prices to a model of the effect of those moments on the forward premium. Empirical results using PJM data support the model's predictions that gas storage inventories sharply reduce the electricity forward premium when demand for electricity is high and space-heating demand for gas is low. The third essay examines the efficiency of PJM electricity markets. A market is efficient if prices reflect all relevant information, so that prices follow a random walk. The hypothesis of random walk is examined using empirical tests, including the Portmanteau, Augmented Dickey-Fuller, KPSS, and multiple variance ratio tests. The results are mixed though evidence of some level of market efficiency is found. The last essay investigates the possibility that previous researchers have drawn spurious conclusions based on classical unit root tests incorrectly applied to wholesale electricity prices. It is well known that electricity prices exhibit both cyclicity and high volatility which varies through time. Results indicate that heterogeneity in unconditional variance---which is not detected by classical unit root tests---may contribute to the appearance of non-stationarity.
Antunes, José Leopoldo Ferreira; Waldman, Eliseu Alves
2002-01-01
OBJECTIVE: To describe trends in the mortality of children aged 12-60 months and to perform spatial data analysis of its distribution at the inner city district level in São Paulo from 1980 to 1998. METHODS: Official mortality data were analysed in relation to the underlying causes of death. The population of children aged 12-60 months, disaggregated by sex and age, was estimated for each year. Educational levels, income, employment status, and other socioeconomic indices were also assessed. Statistical Package for Social Sciences software was used for the statistical processing of time series. The Cochrane-Orcutt procedure of generalized least squares regression analysis was used to estimate the regression parameters with control of first-order autocorrelation. Spatial data analysis employed the discrimination of death rates and socioeconomic indices at the inner city district level. For classifying area-level death rates the method of K-means cluster analysis was used. Spatial correlation between variables was analysed by the simultaneous autoregressive regression method. FINDINGS: There was a steady decline in death rates during the 1980s at an average rate of 3.08% per year, followed by a levelling off. Infectious diseases remained the major cause of mortality, accounting for 43.1% of deaths during the last three years of the study. Injuries accounted for 16.5% of deaths. Mortality rates at the area level clearly demonstrated inequity in the city's health profile: there was an increasing difference between the rich and the underprivileged social strata in this respect. CONCLUSION: The overall mortality rate among children aged 12-60 months dropped by almost 30% during the study period. Most of the decline happened during the 1980s. Many people still live in a state of deprivation in underserved areas. Time-series and spatial data analysis provided indications of potential value in the planning of social policies promoting well-being, through the identification of factors affecting child survival and the regions with the worst health profiles, to which programmes and resources should be preferentially directed. PMID:12077615
Temporal and spatial correlation patterns of air pollutants in Chinese cities
Dai, Yue-Hua
2017-01-01
As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O3 is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM10 and O3, the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues. PMID:28832599
Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui
2015-01-01
PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi’an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO2, and NO2, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors’ variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas. PMID:26426030
Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui
2015-09-29
PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi'an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO₂, and NO₂, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors' variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.
Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J
2010-05-01
Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.
NASA Astrophysics Data System (ADS)
Chu, C. S.; Nykyri, K.; Dimmock, A. P.
2017-12-01
In this paper we test a hypothesis that magnetotail reconnection in the thin current sheet could be initiated by external fluctuations. Kelvin-Helmholtz instability (KHI) has been observed during southward IMF and it can produce, cold, dense plasma transport and compressional fluctuations that can move further into the magnetosphere. The properties of the KHI depend on the magnetosheath seed fluctuation spectrum (Nykyri et al., JGR, 2017). In this paper we present a statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet fluctuation properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet fluctuation properties (dn, dV and dB) and their dependence on IMF orientation and fluctuation properties and resulting magnetosheath state. These statistical maps are compared with spatial distribution of magnetotail Bursty Bulk Flows to study possible correlations with magnetotail reconnection and these fluctuations.
Active dynamics of colloidal particles in time-varying laser speckle patterns
Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto
2016-01-01
Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540
Correlation effects during liquid infiltration into hydrophobic nanoporous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A.
To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement ofmore » filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.« less
Revealing Spatial Variation and Correlation of Urban Travels from Big Trajectory Data
NASA Astrophysics Data System (ADS)
Li, X.; Tu, W.; Shen, S.; Yue, Y.; Luo, N.; Li, Q.
2017-09-01
With the development of information and communication technology, spatial-temporal data that contain rich human mobility information are growing rapidly. However, the consistency of multi-mode human travel behind multi-source spatial-temporal data is not clear. To this aim, we utilized a week of taxies' and buses' GPS trajectory data and smart card data in Shenzhen, China to extract city-wide travel information of taxi, bus and metro and tested the correlation of multi-mode travel characteristics. Both the global correlation and local correlation of typical travel indicator were examined. The results show that: (1) Significant differences exist in of urban multi-mode travels. The correlation between bus travels and taxi travels, metro travel and taxi travels are globally low but locally high. (2) There are spatial differences of the correlation relationship between bus, metro and taxi travel. These findings help us understanding urban travels deeply therefore facilitate both the transport policy making and human-space interaction research.
Estimates of reservoir methane emissions based on a spatially ...
Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence
Smith, Brian J; Zhang, Lixun; Field, R William
2007-11-10
This paper presents a Bayesian model that allows for the joint prediction of county-average radon levels and estimation of the associated leukaemia risk. The methods are motivated by radon data from an epidemiologic study of residential radon in Iowa that include 2726 outdoor and indoor measurements. Prediction of county-average radon is based on a geostatistical model for the radon data which assumes an underlying continuous spatial process. In the radon model, we account for uncertainties due to incomplete spatial coverage, spatial variability, characteristic differences between homes, and detector measurement error. The predicted radon averages are, in turn, included as a covariate in Poisson models for incident cases of acute lymphocytic (ALL), acute myelogenous (AML), chronic lymphocytic (CLL), and chronic myelogenous (CML) leukaemias reported to the Iowa cancer registry from 1973 to 2002. Since radon and leukaemia risk are modelled simultaneously in our approach, the resulting risk estimates accurately reflect uncertainties in the predicted radon exposure covariate. Posterior mean (95 per cent Bayesian credible interval) estimates of the relative risk associated with a 1 pCi/L increase in radon for ALL, AML, CLL, and CML are 0.91 (0.78-1.03), 1.01 (0.92-1.12), 1.06 (0.96-1.16), and 1.12 (0.98-1.27), respectively. Copyright 2007 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel
2011-01-01
Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.
Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics
NASA Astrophysics Data System (ADS)
Xu, Y.; Wang, L.
2017-12-01
Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine
2015-04-01
Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.
NASA Astrophysics Data System (ADS)
Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.
2014-10-01
The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271
Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.
2008-04-15
In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less
Housing price prediction: parametric versus semi-parametric spatial hedonic models
NASA Astrophysics Data System (ADS)
Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema
2018-01-01
House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.
NASA Astrophysics Data System (ADS)
Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.
2017-06-01
Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.
Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H
2016-01-01
Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Stress state reassessment of Romanian offshore structures taking into account corrosion influence
NASA Astrophysics Data System (ADS)
Joavină, R.; Zăgan, S.; Zăgan, R.; Popa, M.
2017-08-01
Progressive degradation analysis for extraction or exploration offshore structure, with appraisal of failure potential and the causes that can be correlated with the service age, depends on the various sources of uncertainty that require particular attention in design, construction and exploitation phases. Romanian self erecting platforms are spatial lattice structures consist of tubular steel joints, forming a continuous system with an infinite number of dynamic degrees of freedom. Reassessment of a structure at fixed intervals of time, recorrelation of initial design elements with the actual situation encountered in location and with structural behaviour represents a major asset in lowering vulnerabilities of offshore structure. This paper proposes a comparative reassessment of the stress state for an offshore structure Gloria type, when leaving the shipyard and at the end of that interval corresponding to capital revision, taking into account sectional changes due to marine environment corrosion. The calculation was done using Newmark integration method on a 3D model, asses of the dynamic loads was made through probabilistic spectral method.
Color constancy in natural scenes explained by global image statistics
Foster, David H.; Amano, Kinjiro; Nascimento, Sérgio M. C.
2007-01-01
To what extent do observers' judgments of surface color with natural scenes depend on global image statistics? To address this question, a psychophysical experiment was performed in which images of natural scenes under two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings. Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97 over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from 4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance. PMID:16961965
Color constancy in natural scenes explained by global image statistics.
Foster, David H; Amano, Kinjiro; Nascimento, Sérgio M C
2006-01-01
To what extent do observers' judgments of surface color with natural scenes depend on global image statistics? To address this question, a psychophysical experiment was performed in which images of natural scenes under two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings. Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97 over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from 4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance.
Assessing the role of spatial correlations during collective cell spreading
Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.
2014-01-01
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987
Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex
Rikhye, Rajeev V.
2015-01-01
Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broadband spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes. SIGNIFICANCE STATEMENT The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations, which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate information processing in V1. PMID:26511254
NASA Astrophysics Data System (ADS)
Li, Nana; Xie, Guohui
2018-06-01
Abstract—Global renewable energy have maintained a steady growth in recent years under the support of national policies and energy demand. Resource distribution, land supply, economy, voltage class and other relevant conditions affect the renewable energy distribution and development mode. Therefore, is necessary to analyze the spatial-temporal distribution and development modes for renewable energy, so as to provide reference and guidance for the renewable energy development around world. Firstly, the definitions and influence factors the renewable energy development mode are compared and summarized. Secondly, the renewable energy spatial-temporal distribution in Germany and Denmark are provided. Wind and solar power installations account for the largest proportion of all renewable energy in Germany and Denmark. Finally, renewable energy development modes are studied. The distributed photovoltaic generation accounts for more than 95%, and distributed wind power generation installations account for over 85% in Germany. Solar and wind resources are developed with distributed development mode, in which distributed wind power installation accounts for over 75%.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Entekhabi, D.; Bras, R. L.
2007-12-01
Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.
Estimating safety effects of pavement management factors utilizing Bayesian random effect models.
Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong
2013-01-01
Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic-related crashes. Hence, maintaining a low level of pavement roughness is strongly suggested. In addition, the results suggested that the temporal correlation among observations was significant and that the ORENB model outperformed all other models.
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.
Liu, Chaoren; Beratan, David N; Zhang, Peng
2016-04-21
System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (
NASA Astrophysics Data System (ADS)
Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos
2014-05-01
One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a spherical variogram over conterminous land of Spain, and converted on a regular 10 km2 grid (resolution similar to the mean distance between stations) to map the results. In the conterminous land of Spain the distance at which couples of stations have a common variance in temperature (both maximum Tmax, and minimum Tmin) above the selected threshold (50%, r Pearson ~0.70) on average does not exceed 400 km, with relevant spatial and temporal differences. The spatial distribution of the CDD shows a clear coastland-to-inland gradient at annual, seasonal and monthly scale, with highest spatial variability along the coastland areas and lower variability inland. The highest spatial variability coincide particularly with coastland areas surrounded by mountain chains and suggests that the orography is one of the most driving factor causing higher interstation variability. Moreover, there are some differences between the behaviour of Tmax and Tmin, being Tmin spatially more homogeneous than Tmax, but its lower CDD values indicate that night-time temperature is more variable than diurnal one. The results suggest that in general local factors affects the spatial variability of monthly Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for Tmin respect to Tmax. The results suggest that in general local factors affects the spatial variability of Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for minimum temperature respect to maximum temperature. A conservative distance for reference series could be evaluated in 200 km, that we propose for continental land of Spain and use in the development of MOTEDAS.
Exploring the relation between spatial configuration of buildings and remotely sensed temperatures
NASA Astrophysics Data System (ADS)
Myint, S. W.; Zheng, B.; Kaplan, S.; Huang, H.
2013-12-01
While the relationship between fractional cover of buildings and the UHI has been well studied, relationships of how spatial arrangements (e.g., clustered, dispersed) of buildings influence urban warming are not well understood. Since a diversity of spatial patterns can be observed under the same percentage of buildings cover, it is of great interest and importance to investigate the amount of variation in certain urban thermal feature such as surface temperature that is accounted for by the inclusion of spatial arrangement component. The various spatial arrangements of buildings cover can give rise to different urban thermal behaviors that may not be uncovered with the information of buildings fraction only, but can be captured to some extent using spatial analysis. The goal of this study is to examine how spatial arrangements of buildings influence and shape surface temperature in different urban settings. The study area selected is the Las-Vegas metropolitan area in Nevada, located in the Mojave Desert. An object-oriented approach was used to identify buildings using a Geoeye-1 image acquired on October 12, 2011. A spatial autocorrelation technique (i.e., Moran's I) that can measure spatial pattern (clustered, dispersed) was used to determine spatial configuration of buildings. A daytime temperature layer in degree Celsius, generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, was integrated with Moran's I values of building cover and building fractions to achieve the goals set in the study. To avoid uncertainty and properly evaluate if spatial pattern of buildings has an impact on urban warming, the relation between Moran's I values and surface temperatures was observed at different levels according to their fractions (e.g., 0-0.1, 0.5-0.6, 0.9-1). There is a negative correlation exists between spatial pattern of buildings and surface temperatures implying that dispersed building arrangements elevate surface temperatures more severely than clustered buildings. This suggests that more clustered buildings have less impact on the urban heat island (UHI) effect. We conclude that having buildings as clustered as possible can be expected to protect the settlements from increased heat island effects, reduce pollution, and preserve the hydrological systems.
Spatial correlation of the dynamic propensity of a glass-forming liquid
NASA Astrophysics Data System (ADS)
Razul, M. Shajahan G.; Matharoo, Gurpreet S.; Poole, Peter H.
2011-06-01
We present computer simulation results on the dynamic propensity (as defined by Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob-Andersen binary Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation function for the dynamic propensity as a function of both the reduced temperature T, and the time scale on which the particle displacements are measured. For T <= 0.6, we find that non-zero correlations occur at the largest length scale accessible in our system. We also show that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well as 3D visualizations, reveal spatially correlated regions that approach the size of our system as T decreases, consistently with the behavior of the spatial correlation function. Next, we define and examine the 'coordination propensity', the isoconfigurational average of the coordination number of the minority B particles around the majority A particles. We show that a significant correlation exists between the spatial fluctuations of the dynamic and coordination propensities. In addition, we find non-zero correlations of the coordination propensity occurring at the largest length scale accessible in our system for all T in the range 0.466 < T < 1.0. We discuss the implications of these results for understanding the length scales of dynamical heterogeneity in glass-forming liquids.
Spatial cluster detection for repeatedly measured outcomes while accounting for residential history.
Cook, Andrea J; Gold, Diane R; Li, Yi
2009-10-01
Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information on study participants relocation, which most cluster detection statistics cannot. Application of these methods will be illustrated by the Home Allergens and Asthma prospective cohort study analyzing the relationship between environmental exposures and repeated measured outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.
Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia
Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold
1994-01-01
In this study a cross-correlation statistic is used to analyse the spatial relationship among stand characteristics of natural, undisturbed shortleaf pine stands sampled during 1961-72 and 1972-82 in northern Georgia. Stand characteristics included stand age, site index, tree density, hardwood competition, and mortality. In each time period, the spatial cross-...
Duan, L L; Szczesniak, R D; Wang, X
2017-11-01
Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization.
Correlation of gravestone decay and air quality 1960-2010
NASA Astrophysics Data System (ADS)
Mooers, H. D.; Carlson, M. J.; Harrison, R. M.; Inkpen, R. J.; Loeffler, S.
2017-03-01
Evaluation of spatial and temporal variability in surface recession of lead-lettered Carrara marble gravestones provides a quantitative measure of acid flux to the stone surfaces and is closely related to local land use and air quality. Correlation of stone decay, land use, and air quality for the period after 1960 when reliable estimates of atmospheric pollution are available is evaluated. Gravestone decay and SO2 measurements are interpolated spatially using deterministic and geostatistical techniques. A general lack of spatial correlation was identified and therefore a land-use-based technique for correlation of stone decay and air quality is employed. Decadally averaged stone decay is highly correlated with land use averaged spatially over an optimum radius of ≈7 km even though air quality, determined by records from the UK monitoring network, is not highly correlated with gravestone decay. The relationships among stone decay, air-quality, and land use is complicated by the relatively low spatial density of both gravestone decay and air quality data and the fact that air quality data is available only as annual averages and therefore seasonal dependence cannot be evaluated. However, acid deposition calculated from gravestone decay suggests that the deposition efficiency of SO2 has increased appreciably since 1980 indicating an increase in the SO2 oxidation process possibly related to reactions with ammonia.
NASA Astrophysics Data System (ADS)
Li, Y.; McDougall, T. J.
2016-02-01
Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.
Duan, L. L.; Szczesniak, R. D.; Wang, X.
2018-01-01
Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization. PMID:29576735
Accounting for and predicting the influence of spatial autocorrelation in water quality modeling
NASA Astrophysics Data System (ADS)
Miralha, L.; Kim, D.
2017-12-01
Although many studies have attempted to investigate the spatial trends of water quality, more attention is yet to be paid to the consequences of considering and ignoring the spatial autocorrelation (SAC) that exists in water quality parameters. Several studies have mentioned the importance of accounting for SAC in water quality modeling, as well as the differences in outcomes between models that account for and ignore SAC. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC inherently possessed by a response variable (i.e., water quality parameter) influences the outcomes of spatial modeling. We evaluated whether the level of inherent SAC is associated with changes in R-Squared, Akaike Information Criterion (AIC), and residual SAC (rSAC), after accounting for SAC during modeling procedure. The main objective was to analyze if water quality parameters with higher Moran's I values (inherent SAC measure) undergo a greater increase in R² and a greater reduction in both AIC and rSAC. We compared a non-spatial model (OLS) to two spatial regression approaches (spatial lag and error models). Predictor variables were the principal components of topographic (elevation and slope), land cover, and hydrological soil group variables. We acquired these data from federal online sources (e.g. USGS). Ten watersheds were selected, each in a different state of the USA. Results revealed that water quality parameters with higher inherent SAC showed substantial increase in R² and decrease in rSAC after performing spatial regressions. However, AIC values did not show significant changes. Overall, the higher the level of inherent SAC in water quality variables, the greater improvement of model performance. This indicates a linear and direct relationship between the spatial model outcomes (R² and rSAC) and the degree of SAC in each water quality variable. Therefore, our study suggests that the inherent level of SAC in response variables can predict improvements in models even before performing spatial regression approaches. We also recognize the constraints of this research and suggest that further studies focus on better ways of defining spatial neighborhoods, considering the differences among stations set in tributaries near to each other and in upstream areas.
Evaluating ecosystem-based management options: Effects of trawling in Torres Strait, Australia
NASA Astrophysics Data System (ADS)
Ellis, Nick; Pantus, Francis; Welna, Andrzej; Butler, Alan
2008-09-01
A suite of management options for a prawn trawl fishery in Torres Strait, Australia was assessed for impacts on the benthic fauna using a dynamic management strategy evaluation approach. The specification of the management options was gained through consultation with stakeholders. Data for the model was drawn from several sources: the fleet data from fishery logbooks and satellite vessel monitoring systems, benthic depletion rates from trawl-down experiments, benthic recovery rates from post-experiment recovery monitoring studies, and benthic distribution from large-scale benthic surveys. Although there were large uncertainties in the resulting indicators, robust measures relevant to management were obtained by taking ratios relative to the status quo. The management control with the biggest effect was total effort; reducing trawl effort always led to increases in benthic faunal density of up to 10%. Spatial closures had a smaller benefit of up to 2%. The effect of closing a set of buffer zones around reefs to trawling was indistinguishable from the status quo option. Closing a larger area, however, was largely beneficial especially for sea cucumbers. When the spatial distributions of fauna prior to fishing were accounted for, fauna with distributions positively correlated with effort improved relative to those negatively correlated. The reduction in prawn catch under effort reduction scenarios could be ameliorated by introducing temporal closures over the full-moon period.
Particle-based simulations of self-motile suspensions
NASA Astrophysics Data System (ADS)
Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot
2015-11-01
A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Moriyasu, Fuminori
2002-05-01
To realize a quantitative diagnosis of liver cirrhosis, we have been analyzing the characteristics of echo amplitude in B-mode images. Realizing the distinction between liver diseases such as liver cirrhosis and chronic hepatitis is required in the field of medical ultrasonics. In this study, we examine the spatial correlation, with the coefficient of correlation between the frames and the amplitude characteristics of each frame, using the volumetric data of RF echo signals from normal and diseased liver. It is found that there is a relationship between the tissue structure of liver and the spatial correlation of echo information.
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
Collocation mismatch uncertainties in satellite aerosol retrieval validation
NASA Astrophysics Data System (ADS)
Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit
2018-02-01
Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the retrieval errors to the total uncertainty estimates including the CMU in the validation. We find that accounting for CMU increases the fraction of consistent observations.
How does spatial variability of climate affect catchment streamflow predictions?
Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...
Fourth-Order Spatial Correlation of Thermal Light
NASA Astrophysics Data System (ADS)
Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng
2014-11-01
We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2016-04-01
Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Delsol, Robin; Loreau, Michel; Haegeman, Bart
2018-01-01
Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225
Paiva, Rodrigo José Oliveira; Brites, Ricardo Seixas; Machado, Ricardo Bomfim
2015-01-01
Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit. PMID:26222140
Towards a global harmonized permafrost soil organic carbon stock estimates.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Mishra, U.; Yang, Y.
2017-12-01
Permafrost affected soils store disproportionately large amount of organic carbon stocks due to multiple cryopedogenic processes. Previous permafrost soil organic carbon (SOC) stock estimates used a variety of approaches and reported substantial uncertainty in SOC stocks of permafrost soils. Here, we used spatially referenced data of soil-forming factors (topographic attributes, land cover types, climate, and bedrock geology) and SOC pedon description data (n = 2552) in a regression kriging approach to predict the spatial and vertical heterogeneity of SOC stocks across the Northern Circumpolar and Tibetan permafrost regions. Our approach allowed us to take into account both environmental correlation and spatial autocorrelation to separately estimate SOC stocks and their spatial uncertainties (95% CI) for three depth intervals at 250 m spatial resolution. In Northern Circumpolar region, our results show 1278.1 (1009.33 - 1550.45) Pg C in 0-3 m depth interval, with 542.09 (451.83 - 610.15), 422.46 (306.48 - 550.82), and 313.55 (251.02 - 389.48) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. In Tibetan region, our results show 26.68 (9.82 - 79.92) Pg C in 0 - 3 m depth interval, with 13.98 (6.2 - 32.96), 6.49 (1.73 - 25.86), and 6.21 (1.889 - 20.90) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. Our estimates show large spatial variability (50 - 100% coefficient of variation, depending upon the study region and depth interval) and higher uncertainty range in comparison to existing estimates. We will present the observed controls of different environmental factors on SOC at the AGU meeting.
Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua)
NASA Astrophysics Data System (ADS)
Langangen, Øystein; Stige, Leif C.; Yaragina, Natalia A.; Ottersen, Geir; Vikebø, Frode B.; Stenseth, Nils Chr.
2014-09-01
Mortality of pelagic eggs and larvae of marine fish is often assumed to be constant both in space and time due to lacking information. This may, however, be a gross oversimplification, as early life stages are likely to experience large variations in mortality both in time and space. In this paper we develop a method for estimating the spatial variability in mortality of eggs and larvae. The method relies on survey data and physical-biological particle-drift models to predict the drift of ichthyoplankton. Furthermore, the method was used to estimate the spatially resolved mortality field in the egg and larval stages of Barents Sea cod (Gadus morhua). We analyzed data from the Barents Sea for the period between 1959 and 1993 when there are two surveys available: a spring and a summer survey. An individual-based physical-biological particle-drift model, tailored to the egg and larval stages of Barents Sea cod, was used to predict the drift trajectories from the observed stage-specific distributions in spring to the time of observation in the summer, a drift time of approximately 45 days. We interpreted the spatial patterns in the differences between the predicted and observed abundance distributions in summer as reflecting the spatial patterns in mortality over the drift period. Using the estimated mortality fields, we show that the spatial variations in mortality might have a significant impact on survival to later life stages and we suggest that there may be trade-offs between increased early survival in off shore regions and reduced probability of ending up in the favorable nursing grounds in the Barents Sea. In addition, we show that accounting for the estimated mortality field, improves the correlation between a simulated recruitment index and observation-based indices of juvenile abundance.
Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals
NASA Technical Reports Server (NTRS)
Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel
2014-01-01
To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.
Quaglietta, Lorenzo; Martins, Bruno Herlander; de Jongh, Addy; Mira, António; Boitani, Luigi
2012-01-01
Background Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals. PMID:22242163
Quaglietta, Lorenzo; Martins, Bruno Herlander; de Jongh, Addy; Mira, António; Boitani, Luigi
2012-01-01
Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals.
NASA Astrophysics Data System (ADS)
Tanner, S. E.; Vasconcelos, R. P.; Reis-Santos, P.; Cabral, H. N.; Thorrold, S. R.
2011-01-01
A description of variations in the chemical composition of fish otoliths at different spatial scales and life history stages is a prerequisite for their use as natural tags in fish population connectivity and migration studies. Otolith geochemistry of juvenile common sole ( Solea solea), a marine migrant species collected in six Portuguese estuaries was examined. Elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca, Pb:Ca) were analysed in two zones of the right otolith (corresponding to late larval and juvenile stages) using laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Stable carbon and oxygen isotopes (δ 13C and δ 18O) were determined in left otoliths using isotopic ratio monitoring mass spectrometry (irm-MS). Significant differences in otolith geochemical signatures were found among estuaries, among sites within estuaries and between otolith zones. Several elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca and Sr:Ca) showed consistent patterns between otolith zones and were likely influenced by environmental factors and ontogenetic effects associated with physiological changes during metamorphosis. Assignment of individuals to their collection estuary based on the otolith geochemical signatures was more accurate at the site level (81%) than among estuaries (69%). Site temperature was not correlated with any of the elemental or isotope ratios, but salinity was significantly correlated with Ba:Ca, δ 13C and δ 18O. Observed spatial variations among estuaries and sites within estuaries indicate that geochemical signatures in otoliths are accurate natural tags of estuarine habitat in common sole. Nevertheless, the significant variations observed between otolith zones should be taken into account in the design of population connectivity studies.
Wang, Ya; Zhao, Zheng; Mu, Zhi-jian; Wang, Dlng-yong; Yu, Ya-wei
2015-01-01
To understand the mercury (Hg) pollution level and the corresponding ecological risk in agricultural watershed of the Three Gorges Reservoir region, a typical watershed, Wangjiagou, located in Fuling, where is in interior zones of the Three Gorges Reservoir region, was selected as the study object. Meanwhile, ArcGIS geo-statistics module was conducted for investigation of the Hg contents and distribution characteristics in soils of different land use types including dry land, farmland, woodland and settlements. Also the corresponding Hg pollution level and ecological risk were assessed. The results suggested that soil Hg contents in this watershed ranged from 9.47 to 94.57 microg x kg(-1), and the mean value was (34.23 +/- 16.23) microg x kg(-1). Higher Hg contents in surfaces of soils were observed in woodland, followed by farmland and settlement. The lowest was found in dry land. Surfaces of soils significantly showed Hg accumulation, and an obvious inverse correlation between soil Hg contents and soil depths was also observed in this study. Additionally, geo-statistics analysis showed a weak spatial correlation of soil Hg contents in this watershed, indicating the spatial distribution of soil Hg in this watershed was mainly influenced by several natural factors such as atmospheric wet-dry deposit, vegetation coverage and topography, instead of anthropogenic interference. Overall confirmative soil Hg pollution was not found in this watershed, which showed a very low pollution index (-0.08), but a moderate potential ecological risk still existed (the ecological risk index was 57), of which woodland had the highest potential risk. The total capacity of Hg in this watershed was 25.39 kg, among which dry land accounted for 69%.
ERIC Educational Resources Information Center
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valerie
2009-01-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and…
Diller, Gerhard-Paul; Kempny, Aleksander; Piorkowski, Adam; Grübler, Martin; Swan, Lorna; Baumgartner, Helmut; Dimopoulos, Konstantinos; Gatzoulis, Michael A
2014-03-01
Although concentrating adult congenital heart disease services at high-volume centers has been widely advocated, the potential beneficial effects of competition and patient choice have received relatively little attention. We aimed to assess the degree of patient choice and competition between adult congenital heart disease units and to investigate whether competition indices correlate with clinical quality or research output. Competition between the 10 major adult congenital heart disease units in England was evaluated based on the Herfindahl-Hirschman Index, representing the sum of squared market shares of individual units. In addition, to account for geography and feasible access, we calculated spatial indices of competition based on travel time by road. These indices were correlated with 30-day mortality postpulmonary valve replacement in adult patients (as obtained from the National Central Cardiac Audit Database) and the aggregate research impact factors of individual centers. On a national level, a high level of competition without obvious dominant players was found (Herfindahl-Hirschman Index between 0.107 and 0.013). When accounting for geography, however, important disparities in patient choice and competition faced by individual centers emerged. The degree of local competition was correlated significantly with clinical outcomes and research output. In contrast, no association between center volume and outcome could be established. Beyond the usual focus on concentrating services at high-volume centers, the potentially beneficial effects of competition should not be ignored. Therefore, policymakers should consider fostering a competitive environment for adult congenital heart disease centers or at least avoiding creating government-granted monopolies in the field.
Missonnier, Hélène; Jacques, Alban; Bang, JiSu; Daydé, Jean; Mirleau-Thebaud, Virginie
2017-01-01
In breeding for disease resistance, the magnitude of the genetic response is difficult to appreciate because of environmental stresses that interact with the plant genotype. We discuss herein the fundamental problems in breeding for disease resistance with the aim being to better understand the interactions between plant, pathogen, and spatial patterns. The goal of this study is to fine tune breeding decisions by incorporating spatial patterns of such biotic factors into the definition of disease-occurrence probability. We use a preexisting statistics method based on geostatistics for a descriptive analysis of biotic factors for trial quality control. The plant-population structure used for spatial-pattern analysis consists of two F1-hybrid cultivars, defined as symptomatic and asymptomatic controls with respect to the studied pathogen. The controls are inserted at specific locations to establish a grid arrangement over the field that include the F1-hybrid cultivars under evaluation. We characterize the spatial structure of the pathogen population and of the general plant environment—with undetermined but present abiotic constraints—not by using direct notation such as flower time or rainfall but by using plant behavior (i.e., leaf symptom severity, indirect notation). The analysis indicates areas with higher or lower risk of disease and reveals a correlation between the symptomatic control and the effective level of disease for sunflowers. This result suggests that the pathogen and/or abiotic components are major factors in determining the probability that a plant develops the disease, which could lead to a misinterpretation of plant resistance. PMID:28817567
Missonnier, Hélène; Jacques, Alban; Bang, JiSu; Daydé, Jean; Mirleau-Thebaud, Virginie
2017-01-01
In breeding for disease resistance, the magnitude of the genetic response is difficult to appreciate because of environmental stresses that interact with the plant genotype. We discuss herein the fundamental problems in breeding for disease resistance with the aim being to better understand the interactions between plant, pathogen, and spatial patterns. The goal of this study is to fine tune breeding decisions by incorporating spatial patterns of such biotic factors into the definition of disease-occurrence probability. We use a preexisting statistics method based on geostatistics for a descriptive analysis of biotic factors for trial quality control. The plant-population structure used for spatial-pattern analysis consists of two F1-hybrid cultivars, defined as symptomatic and asymptomatic controls with respect to the studied pathogen. The controls are inserted at specific locations to establish a grid arrangement over the field that include the F1-hybrid cultivars under evaluation. We characterize the spatial structure of the pathogen population and of the general plant environment-with undetermined but present abiotic constraints-not by using direct notation such as flower time or rainfall but by using plant behavior (i.e., leaf symptom severity, indirect notation). The analysis indicates areas with higher or lower risk of disease and reveals a correlation between the symptomatic control and the effective level of disease for sunflowers. This result suggests that the pathogen and/or abiotic components are major factors in determining the probability that a plant develops the disease, which could lead to a misinterpretation of plant resistance.
Contingent attentional capture or delayed allocation of attention?
NASA Technical Reports Server (NTRS)
Remington, R. W.; Folk, C. L.; McLean, J. P.
2001-01-01
Under certain circumstances, external stimuli will elicit an involuntary shift of spatial attention, referred to as attentional capture. According to the contingent involuntary orienting account (Folk, Remington, & Johnston, 1992), capture is conditioned by top-down factors that set attention to respond involuntarily to stimulus properties relevant to one's behavioral goals. Evidence for this comes from spatial cuing studies showing that a spatial cuing effect is observed only when cues have goal-relevant properties. Here, we examine alternative, decision-level explanations of the spatial cuing effect that attribute evidence of capture to postpresentation delays in the voluntary allocation of attention, rather than to on-line involuntary shifts in direct response to the cue. In three spatial cuing experiments, delayed-allocation accounts were tested by examining whether items at the cued location were preferentially processed. The experiments provide evidence that costs and benefits in spatial cuing experiments do reflect the on-line capture of attention. The implications of these results for models of attentional control are discussed.
Creativity and technical innovation: spatial ability's unique role.
Kell, Harrison J; Lubinski, David; Benbow, Camilla P; Steiger, James H
2013-09-01
In the late 1970s, 563 intellectually talented 13-year-olds (identified by the SAT as in the top 0.5% of ability) were assessed on spatial ability. More than 30 years later, the present study evaluated whether spatial ability provided incremental validity (beyond the SAT's mathematical and verbal reasoning subtests) for differentially predicting which of these individuals had patents and three classes of refereed publications. A two-step discriminant-function analysis revealed that the SAT subtests jointly accounted for 10.8% of the variance among these outcomes (p < .01); when spatial ability was added, an additional 7.6% was accounted for--a statistically significant increase (p < .01). The findings indicate that spatial ability has a unique role in the development of creativity, beyond the roles played by the abilities traditionally measured in educational selection, counseling, and industrial-organizational psychology. Spatial ability plays a key and unique role in structuring many important psychological phenomena and should be examined more broadly across the applied and basic psychological sciences.
Albouy, Geneviève; Fogel, Stuart; Pottiez, Hugo; Nguyen, Vo An; Ray, Laura; Lungu, Ovidiu; Carrier, Julie; Robertson, Edwin; Doyon, Julien
2013-01-01
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates. PMID:23300993
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise
Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis
2014-01-01
A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428
Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data
NASA Astrophysics Data System (ADS)
Sampson, Paul D.; Szpiro, Adam A.; Sheppard, Lianne; Lindström, Johan; Kaufman, Joel D.
2011-11-01
Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM 2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.
Spatial patterns of fasting and fed antropyloric pressure waves in humans.
Sun, W M; Hebbard, G S; Malbert, C H; Jones, K L; Doran, S; Horowitz, M; Dent, J
1997-01-01
1. Gastric mechanics were investigated by categorizing the temporal and spatial patterning of pressure waves associated with individual gastric contractions. 2. In twelve healthy volunteers, intraluminal pressures were monitored from nine side hole recording points spaced at 1.5 cm intervals along the antrum, pylorus and duodenum. 3. Pressure wave sequences that occurred during phase II fasting contractions (n = 221) and after food (n = 778) were evaluated. 4. The most common pattern of pressure wave onset along the antrum was a variable combination of antegrade, synchronous and retrograde propagation between side hole pairs. This variable pattern accounted for 42% of sequences after food, and 34% during fasting (P < 0.05). Other common pressure wave sequence patterns were: purely antegrade-29% after food and 42% during fasting (P < 0.05); purely synchronous-23% fed and 17% fasting; and purely retrograde-6% fed and 8% fasting. The length of sequences was shorter after food (P < 0.05). Some sequences 'skipped' individual recording points. 5. The spatial patterning of gastric pressure wave sequences is diverse, and may explain the differing mechanical outcomes among individual gastric contractions. 6. Better understanding of gastric mechanics may be gained from temporally precise correlations of luminal flows and pressures and gastric wall motion during individual gastric contraction sequences. PMID:9306286
Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda
2011-01-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
NASA Astrophysics Data System (ADS)
McElvain, Jon; Campbell, Scott P.; Miller, Jonathan; Jin, Elaine W.
2010-01-01
The dead leaves model was recently introduced as a method for measuring the spatial frequency response (SFR) of camera systems. The target consists of a series of overlapping opaque circles with a uniform gray level distribution and radii distributed as r-3. Unlike the traditional knife-edge target, the SFR derived from the dead leaves target will be penalized for systems that employ aggressive noise reduction. Initial studies have shown that the dead leaves SFR correlates well with sharpness/texture blur preference, and thus the target can potentially be used as a surrogate for more expensive subjective image quality evaluations. In this paper, the dead leaves target is analyzed for measurement of camera system spatial frequency response. It was determined that the power spectral density (PSD) of the ideal dead leaves target does not exhibit simple power law dependence, and scale invariance is only loosely obeyed. An extension to the ideal dead leaves PSD model is proposed, including a correction term to account for system noise. With this extended model, the SFR of several camera systems with a variety of formats was measured, ranging from 3 to 10 megapixels; the effects of handshake motion blur are also analyzed via the dead leaves target.
Spatial Correlation Of Streamflows: An Analytical Approach
NASA Astrophysics Data System (ADS)
Betterle, A.; Schirmer, M.; Botter, G.
2016-12-01
The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the absence of discharge measurements.
Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume
NASA Astrophysics Data System (ADS)
Mackay, Tom G.
2004-08-01
The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.
Continuous Fluorescence Microphotolysis and Correlation Spectroscopy Using 4Pi Microscopy
Arkhipov, Anton; Hüve, Jana; Kahms, Martin; Peters, Reiner; Schulten, Klaus
2007-01-01
Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved. PMID:17704168
Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations
NASA Technical Reports Server (NTRS)
Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.
2013-01-01
In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.
Collective behavior in the spatial spreading of obesity
Gallos, Lazaros K.; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernán A.
2012-01-01
Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing the effect of collective and global factors acting above individual choices. We find a regularity in the spatial fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying population distribution indicating the presence of collective behavior, i.e., individual habits may have negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free correlations in economic activities associated with food production. These results motivate future interventions to investigate the causality of this relation providing guidance for the implementation of preventive health policies. PMID:22822425
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-01-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Quantitative analysis of spatial variability of geotechnical parameters
NASA Astrophysics Data System (ADS)
Fang, Xing
2018-04-01
Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.
Collective behavior in the spatial spreading of obesity
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernán A.
2012-06-01
Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing the effect of collective and global factors acting above individual choices. We find a regularity in the spatial fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying population distribution indicating the presence of collective behavior, i.e., individual habits may have negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free correlations in economic activities associated with food production. These results motivate future interventions to investigate the causality of this relation providing guidance for the implementation of preventive health policies.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-06-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Bhaskar, A.; Fleming, B.; Hogan, D. M.
2016-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Burke, W.; Tague, C.
2017-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Spatial correlations and exact solution of the problem of the boson peak profile in amorphous media
NASA Astrophysics Data System (ADS)
Kirillov, Sviatoslav A.; A. Voyiatzis, George; Kolomiyets, Tatiana M.; H. Anastasiadis, Spiros
1999-11-01
Based on a model correlation function which covers spatial correlations from Gaussian to exponential, we have arrived at an exact analytic solution of the problem of the Boson peak profile in amorphous media. Probe fits made for polyisoprene and triacetin prove the working ability of the formulae obtained.
Liu, Qi; Liu, Shiliang; Zhao, Haidi; Deng, Li; Wang, Cong; Zhao, Qinghe; Dong, Shikui
2015-02-01
We detected the longitudinal variability of phosphorus speciations and its relation to metals and grain size distribution of sediments in three cascade canyon reservoirs (Xiaowan, Manwan and Dachaoshan) along Lancang River, China. Five phosphorus speciations including loosely bound P (ex-P), reductant soluble P (BD-P), metal oxide-bound P (NaOH-P) calcium-bound P (HCl-P) and residual-P were extracted and quantified. Results showed that in Manwan Reservoir HCl-P accounted for the largest part of total phosphorus (TP) (49.69%), while in Xiaowan and Dachaoshan reservoirs, NaOH-P was the most abundant speciation which accounted for 57.21% and 55.19% of total phosphorus respectively. Higher contents of bio-available phosphorus in Xiaowan and Dachaoshan reservoirs suggested a high rate of P releasing from sediments. Results also showed ex-P and HCl-P had positive correlation with Ca. Total phosphorus was positively correlated with Fe. The silt/clay contents of the sediments had close relationship with ex-P (r=0.413, p<0.05), NaOH-P (r=0.428, p<0.05) and BAP (r=0.458, p<0.05). The concentration of Ca, Mn and silt/clay speciation in the sediments explained 40%, 10% and 4% of the spatial variation of phosphorus speciations, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
A regression-kriging model for estimation of rainfall in the Laohahe basin
NASA Astrophysics Data System (ADS)
Wang, Hong; Ren, Li L.; Liu, Gao H.
2009-10-01
This paper presents a multivariate geostatistical algorithm called regression-kriging (RK) for predicting the spatial distribution of rainfall by incorporating five topographic/geographic factors of latitude, longitude, altitude, slope and aspect. The technique is illustrated using rainfall data collected at 52 rain gauges from the Laohahe basis in northeast China during 1986-2005 . Rainfall data from 44 stations were selected for modeling and the remaining 8 stations were used for model validation. To eliminate multicollinearity, the five explanatory factors were first transformed using factor analysis with three Principal Components (PCs) extracted. The rainfall data were then fitted using step-wise regression and residuals interpolated using SK. The regression coefficients were estimated by generalized least squares (GLS), which takes the spatial heteroskedasticity between rainfall and PCs into account. Finally, the rainfall prediction based on RK was compared with that predicted from ordinary kriging (OK) and ordinary least squares (OLS) multiple regression (MR). For correlated topographic factors are taken into account, RK improves the efficiency of predictions. RK achieved a lower relative root mean square error (RMSE) (44.67%) than MR (49.23%) and OK (73.60%) and a lower bias than MR and OK (23.82 versus 30.89 and 32.15 mm) for annual rainfall. It is much more effective for the wet season than for the dry season. RK is suitable for estimation of rainfall in areas where there are no stations nearby and where topography has a major influence on rainfall.
Exploring the importance of within-canopy spatial temperature variation on transpiration predictions
Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.
2009-01-01
Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047
ERIC Educational Resources Information Center
Kaufman, Scott Barry
2007-01-01
Sex differences in spatial ability are well documented, but poorly understood. In order to see whether working memory is an important factor in these differences, 50 males and 50 females performed tests of three-dimensional mental rotation and spatial visualization, along with tests of spatial and verbal working memory. Substantial differences…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Joshua D.; Hartse, Hans
Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less
Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita
2011-07-15
The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged. Copyright © 2011 Elsevier Inc. All rights reserved.
Why does selective attention to parts fail in face processing?
Richler, Jennifer J; Tanaka, James W; Brown, Danielle D; Gauthier, Isabel
2008-11-01
One hallmark of holistic face processing is an inability to selectively attend to 1 face part while ignoring information in another part. In 3 sequential matching experiments, the authors tested perceptual and decisional accounts of holistic processing by measuring congruency effects between cued and uncued composite face halves shown in spatially aligned or disjointed configurations. The authors found congruency effects when the top and bottom halves of the study face were spatially aligned, misaligned (Experiment 1), or adjacent to one another (Experiment 2). However, at test, congruency effects were reduced by misalignment and abolished for adjacent configurations. This suggests that manipulations at test are more influential than manipulations at study, consistent with a decisional account of holistic processing. When encoding demands for study and test faces were equated (Experiment 3), the authors observed effects of study configuration suggesting that, consistent with a perceptual explanation, encoding does influence the magnitude of holistic processing. Together, these results cannot be accounted for by current perceptual or decisional accounts of holistic processing and suggest the existence of an attention-dependent mechanism that can integrate spatially separated face parts.
NASA Astrophysics Data System (ADS)
Marrocco, Michele
2007-11-01
Fluorescence correlation spectroscopy is fundamental in many physical, chemical and biological studies of molecular diffusion. However, the concept of fluorescence correlation is founded on the assumption that the analytical description of the correlation decay of diffusion can be achieved if the spatial profile of the detected volume obeys a three-dimensional Gaussian distribution. In the present Letter, the analytical result is instead proven for the fundamental Gaussian-Lorentzian profile.
Taillade, Mathieu; Sauzéon, Hélène; Dejos, Marie; Pala, Prashant Arvind; Larrue, Florian; Wallet, Grégory; Gross, Christian; N'Kaoua, Bernard
2013-01-01
The aim of this study was to evaluate in large-scale spaces wayfinding and spatial learning difficulties for older adults in relation to the executive and memory decline associated with aging. We compared virtual reality (VR)-based wayfinding and spatial memory performances between young and older adults. Wayfinding and spatial memory performances were correlated with classical measures of executive and visuo-spatial memory functions, but also with self-reported estimates of wayfinding difficulties. We obtained a significant effect of age on wayfinding performances but not on spatial memory performances. The overall correlations showed significant correlations between the wayfinding performances and the classical measures of both executive and visuo-spatial memory, but only when the age factor was not partialled out. Also, older adults underestimated their wayfinding difficulties. A significant relationship between the wayfinding performances and self-reported wayfinding difficulty estimates is found, but only when the age effect was partialled out. These results show that, even when older adults have an equivalent spatial knowledge to young adults, they had greater difficulties with the wayfinding task, supporting an executive decline view in age-related wayfinding difficulties. However, the correlation results are in favor of both the memory and executive decline views as mediators of age-related differences in wayfinding performances. This is discussed in terms of the relationships between memory and executive functioning in wayfinding task orchestration. Our results also favor the use of objective assessments of everyday navigation difficulties in virtual applications, instead of self-reported questionnaires, since older adults showed difficulties in estimating their everyday wayfinding problems.
Entanglement entropy and the Fermi surface.
Swingle, Brian
2010-07-30
Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S∼L(d-1)logL, a result that should be contrasted with the usual boundary law S∼L(d-1). This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.
Characterizing Non-Uniformity of Performance of Thin-Film Solar Cells
NASA Technical Reports Server (NTRS)
Clark, Eric B. (Technical Monitor); Lush, Gregory B.
2003-01-01
Thin-film Solar Cells are being actively studied for terrestrial and space applications because of their potential to provide low-cost, lightweight, and flexible electric power system. Currently, thin-film solar cell performance is limited partially by the nonuniformity of performance that they typically exhibit. This nonuniformity of performance necessitates more detailed characterization techniques than the well-known macroscopic measurements such as current-voltage and efficiency. This project seeks to explore methods of characterization that take into account the spatial nonuniformity of thin-film solar cells. In this presentation we show results of electroluminescence images, short-circuit maps, and Kelvin Probe maps. All these mapping characterization and analysis tools show that the non-uniformities can correlated with device performance and efficiency.
Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator
NASA Astrophysics Data System (ADS)
Martin, K.; Esguerra, J.; Dodson, C.; Razani, A.
2015-12-01
In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing. In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations.
Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal.
Serrier-Garcia, L; Cuevas, J C; Cren, T; Brun, C; Cherkez, V; Debontridder, F; Fokin, D; Bergeret, F S; Roditchev, D
2013-04-12
The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental data.
Regional variation in diets of breeding Red-shouldered hawks
Strobel, Bradley N.; Boal, Clint W.
2010-01-01
We collected data on breeding season diet composition of Red-shouldered Hawks (Buteo lineatus) in south Texas and compared these data, and those reported from studies elsewhere to examine large scale spatial variation in prey use in eastern North America. Red-shouldered Hawk diets aligned into two significantly different groups, which appear to correlate with latitude. The diets of Red-shouldered Hawks in group 1, which are of more northern latitudes, had significantly more mammalian prey and significantly less amphibian prey than those in group 2, which are at more southerly latitudes. Our meta-analysis demonstrated the dietary flexibility of Red-shouldered Hawks, which likely accounts for their broad distribution by exploiting regional variations in taxon-specific prey availability.
Threshold magnitudes for a multichannel correlation detector in background seismicity
Carmichael, Joshua D.; Hartse, Hans
2016-04-01
Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less
This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2018-01-01
In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.
Valla, Jeffrey; Ceci, Stephen J
2011-03-01
Brain organization theory posits a cascade of physiological and behavioral changes initiated and shaped by prenatal hormones. Recently, this theory has been associated with outcomes including gendered toy preference, 2D/4D digit ratio, personality characteristics, sexual orientation, and cognitive profile (spatial, verbal, and mathematical abilities). We examine the evidence for this claim, focusing on 2D/4D and its putative role as a biomarker for organizational features that influence cognitive abilities/interests predisposing males toward mathematically and spatially intensive careers. Although massive support exists for early brain organization theory overall, there are myriad inconsistencies, alternative explanations, and outright contradictions that must be addressed while still taking the entire theory into account. Like a fractal within the larger theory, the 2D/4D hypothesis mirrors this overall support on a smaller scale while likewise suffering from inconsistencies (positive, negative, and sex-dependent correlations), alternative explanations (2D/4D related to spatial preferences rather than abilities per se), and contradictions (feminine 2D/4D in men associated with higher spatial ability). Using the debate over brain organization theory as the theoretical stage, we focus on 2D/4D evidence as an increasingly important player on this stage, a demonstrative case in point of the evidential complexities of the broader debate, and an increasingly important topic in its own right.
2014-01-01
Background This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. PMID:24571639
Distributed multi-criteria model evaluation and spatial association analysis
NASA Astrophysics Data System (ADS)
Scherer, Laura; Pfister, Stephan
2015-04-01
Model performance, if evaluated, is often communicated by a single indicator and at an aggregated level; however, it does not embrace the trade-offs between different indicators and the inherent spatial heterogeneity of model efficiency. In this study, we simulated the water balance of the Mississippi watershed using the Soil and Water Assessment Tool (SWAT). The model was calibrated against monthly river discharge at 131 measurement stations. Its time series were bisected to allow for subsequent validation at the same gauges. Furthermore, the model was validated against evapotranspiration which was available as a continuous raster based on remote sensing. The model performance was evaluated for each of the 451 sub-watersheds using four different criteria: 1) Nash-Sutcliffe efficiency (NSE), 2) percent bias (PBIAS), 3) root mean square error (RMSE) normalized to standard deviation (RSR), as well as 4) a combined indicator of the squared correlation coefficient and the linear regression slope (bR2). Conditions that might lead to a poor model performance include aridity, a very flat and steep relief, snowfall and dams, as indicated by previous research. In an attempt to explain spatial differences in model efficiency, the goodness of the model was spatially compared to these four phenomena by means of a bivariate spatial association measure which combines Pearson's correlation coefficient and Moran's index for spatial autocorrelation. In order to assess the model performance of the Mississippi watershed as a whole, three different averages of the sub-watershed results were computed by 1) applying equal weights, 2) weighting by the mean observed river discharge, 3) weighting by the upstream catchment area and the square root of the time series length. Ratings of model performance differed significantly in space and according to efficiency criterion. The model performed much better in the humid Eastern region than in the arid Western region which was confirmed by the high spatial association with the aridity index (ratio of mean annual precipitation to mean annual potential evapotranspiration). This association was still significant when controlling for slopes which manifested the second highest spatial association. In line with these findings, overall model efficiency of the entire Mississippi watershed appeared better when weighted with mean observed river discharge. Furthermore, the model received the highest rating with regards to PBIAS and was judged worst when considering NSE as the most comprehensive indicator. No universal performance indicator exists that considers all aspects of a hydrograph. Therefore, sound model evaluation must take into account multiple criteria. Since model efficiency varies in space which is masked by aggregated ratings spatially explicit model goodness should be communicated as standard praxis - at least as a measure of spatial variability of indicators. Furthermore, transparent documentation of the evaluation procedure also with regards to weighting of aggregated model performance is crucial but often lacking in published research. Finally, the high spatial association between model performance and aridity highlights the need to improve modelling schemes for arid conditions as priority over other aspects that might weaken model goodness.
On Spatially Explicit Models of Epidemic and Endemic Cholera: The Haiti and Lake Kivu Case Studies.
NASA Astrophysics Data System (ADS)
Rinaldo, A.; Bertuzzo, E.; Mari, L.; Finger, F.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.
2014-12-01
The first part of the Lecture deals with the predictive ability of mechanistic models for the Haitian cholera epidemic. Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. A formal model comparison framework provides a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels. Intensive computations and objective model comparisons show that parsimonious spatially explicit models accounting for spatial connections have superior explanatory power than spatially disconnected ones for short-to intermediate calibration windows. In general, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. The second part deals with approaches suitable to describe patterns of endemic cholera. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of lake Kivu. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multi-year dataset of reported cholera cases. Fourteen models, accounting for different environmental drivers, are selected in calibration. Among these, the one accounting for seasonality, El Nino Southern Oscillation, precipitation and human mobility outperforms the others in cross-validation.
Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
a Data Field Method for Urban Remotely Sensed Imagery Classification Considering Spatial Correlation
NASA Astrophysics Data System (ADS)
Zhang, Y.; Qin, K.; Zeng, C.; Zhang, E. B.; Yue, M. X.; Tong, X.
2016-06-01
Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary's C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM) for the classification of multi-features (e.g. the spectral feature and spatial correlation feature). In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.
Ecosystem accounts define explicit and spatial trade-offs for managing natural resources.
Keith, Heather; Vardon, Michael; Stein, John A; Stein, Janet L; Lindenmayer, David
2017-11-01
Decisions about natural resource management are frequently complex and vexed, often leading to public policy compromises. Discord between environmental and economic metrics creates problems in assessing trade-offs between different current or potential resource uses. Ecosystem accounts, which quantify ecosystems and their benefits for human well-being consistent with national economic accounts, provide exciting opportunities to contribute significantly to the policy process. We advanced the application of ecosystem accounts in a regional case study by explicitly and spatially linking impacts of human and natural activities on ecosystem assets and services to their associated industries. This demonstrated contributions of ecosystems beyond the traditional national accounts. Our results revealed that native forests would provide greater benefits from their ecosystem services of carbon sequestration, water yield, habitat provisioning and recreational amenity if harvesting for timber production ceased, thus allowing forests to continue growing to older ages.
Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex
Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel
2015-01-01
The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262
A method to estimate spatiotemporal air quality in an urban traffic corridor.
Singh, Nongthombam Premananda; Gokhale, Sharad
2015-12-15
Air quality exposure assessment using personal exposure sampling or direct measurement of spatiotemporal air pollutant concentrations has difficulty and limitations. Most statistical methods used for estimating spatiotemporal air quality do not account for the source characteristics (e.g. emissions). In this study, a prediction method, based on the lognormal probability distribution of hourly-average-spatial concentrations of carbon monoxide (CO) obtained by a CALINE4 model, has been developed and validated in an urban traffic corridor. The data on CO concentrations were collected at three locations and traffic and meteorology within the urban traffic corridor.(1) The method has been developed with the data of one location and validated at other two locations. The method estimated the CO concentrations reasonably well (correlation coefficient, r≥0.96). Later, the method has been applied to estimate the probability of occurrence [P(C≥Cstd] of the spatial CO concentrations in the corridor. The results have been promising and, therefore, may be useful to quantifying spatiotemporal air quality within an urban area. Copyright © 2015 Elsevier B.V. All rights reserved.
Precision bounds for gradient magnetometry with atomic ensembles
NASA Astrophysics Data System (ADS)
Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza
2018-05-01
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
Distance and environmental difference in alpine plant communities
Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.
2017-01-01
Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.
Vecherin, Sergey N; Ostashev, Vladimir E; Ziemann, A; Wilson, D Keith; Arnold, K; Barth, M
2007-09-01
Acoustic travel-time tomography allows one to reconstruct temperature and wind velocity fields in the atmosphere. In a recently published paper [S. Vecherin et al., J. Acoust. Soc. Am. 119, 2579 (2006)], a time-dependent stochastic inversion (TDSI) was developed for the reconstruction of these fields from travel times of sound propagation between sources and receivers in a tomography array. TDSI accounts for the correlation of temperature and wind velocity fluctuations both in space and time and therefore yields more accurate reconstruction of these fields in comparison with algebraic techniques and regular stochastic inversion. To use TDSI, one needs to estimate spatial-temporal covariance functions of temperature and wind velocity fluctuations. In this paper, these spatial-temporal covariance functions are derived for locally frozen turbulence which is a more general concept than a widely used hypothesis of frozen turbulence. The developed theory is applied to reconstruction of temperature and wind velocity fields in the acoustic tomography experiment carried out by University of Leipzig, Germany. The reconstructed temperature and velocity fields are presented and errors in reconstruction of these fields are studied.
A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset
Donald, Margaret R.; Mengersen, Kerrie L.; Young, Rick R.
2015-01-01
While a variety of statistical models now exist for the spatio-temporal analysis of two-dimensional (surface) data collected over time, there are few published examples of analogous models for the spatial analysis of data taken over four dimensions: latitude, longitude, height or depth, and time. When taking account of the autocorrelation of data within and between dimensions, the notion of closeness often differs for each of the dimensions. Here, we consider a number of approaches to the analysis of such a dataset, which arises from an agricultural experiment exploring the impact of different cropping systems on soil moisture. The proposed models vary in their representation of the spatial correlation in the data, the assumed temporal pattern and choice of conditional autoregressive (CAR) and other priors. In terms of the substantive question, we find that response cropping is generally more effective than long fallow cropping in reducing soil moisture at the depths considered (100 cm to 220 cm). Thus, if we wish to reduce the possibility of deep drainage and increased groundwater salinity, the recommended cropping system is response cropping. PMID:26513746
Nijhof, Carl O P; Huijbregts, Mark A J; Golsteijn, Laura; van Zelm, Rosalie
2016-04-01
We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Professional mathematicians differ from controls in their spatial-numerical associations.
Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward
2016-07-01
While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.
Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.
Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi
2017-05-28
In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.
Co-variability of smoke and fire in the Amazon basin
NASA Astrophysics Data System (ADS)
Mishra, Amit Kumar; Lehahn, Yoav; Rudich, Yinon; Koren, Ilan
2015-05-01
The Amazon basin is a hot spot of anthropogenically-driven biomass burning, accounting for approximately 15% of total global fire emissions. It is essential to accurately measure these fires for robust regional and global modeling of key environmental processes. Here we have explored the link between spatio-temporal variability patterns in the Amazon basin's fires and the resulting smoke loading using 11 years (2002-2012) of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations. Focusing on the peak burning season (July-October), our analysis shows strong inter-annual correlation between aerosol optical depth (AOD) and two MODIS fire products: fire radiative power (FRP) and fire pixel counts (FC). Among these two fire products, the FC better indicates the amount of smoke in the basin, as represented in remotely sensed AOD data. This fire product is significantly correlated both with regional AOD retrievals from MODIS and with point AOD measurements from the AERONET stations, pointing to spatial homogenization of the smoke over the basin on a seasonal time scale. However, MODIS AODs are found better than AERONET AODs observation for linking between smoke and fire. Furthermore, MODIS AOD measurements are strongly correlated with number of fires ∼10-20 to the east, most likely due to westward advection of smoke by the wind. These results can be rationalized by the regional topography and the wind regimes. Our analysis can improve data assimilation of satellite and ground-based observations into regional and global model studies, thus improving the assessment of the environmental and climatic impacts of frequency and distribution variability of the Amazon basin's fires. We also provide the optimal spatial and temporal scales for ground-based observations, which could be used for such applications.
NASA Astrophysics Data System (ADS)
Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.
2018-05-01
The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.
Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Bonito, Victor E.; Hickey, T. Donald; Wright, C. Wayne
2007-01-01
The realization that coral reef ecosystem management must occur across multiple spatial scales and habitat types has led scientists and resource managers to seek variables that are easily measured over large areas and correlate well with reef resources. Here we investigate the utility of new technology in airborne laser surveying (NASA Experimental Advanced Airborne Research Lidar (EAARL)) in assessing topographical complexity (rugosity) to predict reef fish community structure on shallow (n = 10–13 per reef). Rugosity at each station was assessed in situ by divers using the traditional chain-transect method (10-m scale), and remotely using the EAARL submarine topography data at multiple spatial scales (2, 5, and 10 m). The rugosity and biological datasets were analyzed together to elucidate the predictive power of EAARL rugosity in describing the variance in reef fish community variables and to assess the correlation between chain-transect and EAARL rugosity. EAARL rugosity was not well correlated with chain-transect rugosity, or with species richness of fishes (although statistically significant, the amount of variance explained by the model was very low). Variance in reef fish community attributes was better explained in reef-by-reef variability than by physical variables. However, once the reef-by-reef variability was taken into account in a two-way analysis of variance, the importance of rugosity could be seen on individual reefs. Fish species richness and abundance were statistically higher at high rugosity stations compared to medium and low rugosity stations, as predicted by prior ecological research. The EAARL shows promise as an important mapping tool for reef resource managers as they strive to inventory and protect coral reef resources.
NASA Astrophysics Data System (ADS)
Majka, M.; Góra, P. F.
2016-10-01
While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.
NASA Astrophysics Data System (ADS)
Tyu, N. S.; Ekhilevsky, S. G.
1992-07-01
For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.
Seasonality and Dynamic Spatial Contagion of Air Pollution in 42 Chinese Cities
He, Zhanqiong; Sriboonchita, Songsak; He, Min
2013-01-01
To monitor and improve the urban air quality, the Chinese government has begun to make many efforts, and the interregional cooperation to cut and improve air quality has been required. In this paper, we focus on the seasonality of the first and second moments of the daily air pollution indexes (APIs) of 42 Chinese sample cities over 10 years, from June 5, 2000 to March 4, 2010, and investigate the dynamic correlation of air pollution indexes (APIs) between 42 Chinese cities and their corresponding regional and national levels; comparison with the model without seasonal consideration is made. By adopting a DCC-GARCH model that accounts for the seasonality, we found that (i) the transformed DCC-GARCH model including seasonality dummies improves the estimation result in this study; (ii) the seasonality feature of the second moment follows that of the first moment, with the condition mean and variance of the second and autumn significantly lower than spring, whereas that of winter is higher than spring; (iii) the correlation between local APIs and their corresponding regional and national levels is dynamic; (iv) comparing with the DCC-GARCH model estimation, the transformed model does not change the feature of the dynamic correlations very much. PMID:23533348
Links between teleconnection patterns and mean temperature in Spain
NASA Astrophysics Data System (ADS)
Ríos-Cornejo, David; Penas, Ángel; Álvarez-Esteban, Ramón; del Río, Sara
2015-10-01
This work describes the relationships between Spanish temperature and four teleconnection patterns with influence on the Iberian Peninsula on monthly, seasonal and annual time scales, using data from 144 meteorological stations. Partial correlation analyses were carried out using Spearman test, and spatial distribution maps of the correlation coefficients were produced with geostatistical interpolation techniques. We regionalize the study area based on homogeneous areas containing weather stations with a similar response of temperatures to the same patterns. The links between the temperature and the patterns are mainly positive; only the correlations with Western Mediterranean Oscillation (WeMO) in the north and west are negative, indicating that WeMO plays an opposed role in temperature behaviour in Spain. In general terms, the four modes exert considerable influence on temperature in February, May and September. The East Atlantic (EA) is the pattern with the strongest influence on temperature in Spain—mainly in the north—except in June. Generally, on the seasonal and annual scales, large significant areas were only observed for the EA. EA and WeMO best account for the mean temperature on the Mediterranean fringe and in northern Spain, while EA and North Atlantic Oscillation largely explain the temperature in the rest of Spain.
Ice Nucleating Particles around the world - a global review
NASA Astrophysics Data System (ADS)
Kanji, Zamin A.; Atkinson, James; Sierau, Berko; Lohmann, Ulrike
2017-04-01
In the atmosphere the formation of new ice particles at temperatures above -36 °C is due to a subset of aerosol called Ice Nucleating Particles (INP). However, the spatial and temporal evolution of such particles is poorly understood. Current modelling of INP is attempting to estimate the sources and transport of INP, but is hampered by the availability and convenience of INP observations. As part of the EU FP7 project impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding (BACCHUS), historical and contemporary observations of INP have been collated into a database (http://www.bacchus-env.eu/in/) and are reviewed here. Outside of Europe and North America the coverage of measurements is sparse, especially for modern day climate - in many areas the only measurements available are from the mid-20th century. As well as an overview of all the data in the database, correlations with several accompanying variables are presented. For example, immersion freezing INP seem to be negatively correlated with altitude, whereas CFDC based condensation freezing INP show no height correlation. An initial global parameterisation of INP concentrations taking into account freezing temperature and relative humidity for use in modelling is provided.
Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng
2018-04-24
Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Caycedo-Soler, Felipe; De Mendoza, Adriana; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil F.
Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membrane's antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction.
No evidence for dust B -mode decorrelation in Planck data
Sheehy, Christopher; Slosar, Anze
2018-02-20
Constraints on inflationary B modes using cosmic microwave background polarization data commonly rely on either template cleaning or cross-spectra between maps at different frequencies to disentangle Galactic foregrounds from the cosmological signal. Assumptions about how the foregrounds scale with frequency are therefore crucial to interpreting the data. Recent results from the Planck satellite collaboration claim significant evidence for a decorrelation in the polarization signal of the spatial pattern of Galactic dust between 217 and 353 GHz. Such a decorrelation would suppress power in the cross-spectrum between high-frequency maps, where the dust is strong, and lower-frequency maps, where the sensitivity tomore » cosmological B modes is strongest. Alternatively, it would leave residuals in lower-frequency maps cleaned with a template derived from the higher-frequency maps. If not accounted for, both situations would result in an underestimate of the dust contribution and thus an upward bias on measurements of the tensor-to-scalar ratio, r. In this paper, we revisit this measurement and find that the no-decorrelation hypothesis cannot be excluded with the Planck data. There are three main reasons for this: (i) There is significant noise bias in cross-spectra between Planck data splits that needs to be accounted for. (ii) There is strong evidence for unknown instrumental systematics, the amplitude of which we estimate using alternative Planck data splits. (iii) There are significant correlations between measurements in different sky patches that need to be taken into account when assessing the statistical significance. Finally, between ℓ = 55-90 and over 72% of the sky, the dust BB correlation between 217 and 353 GHz is 1.001 +.004/.021 -.004/.000 (68% stat/syst.) and shows no significant trend with the sky fraction.« less
No evidence for dust B -mode decorrelation in Planck data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehy, Christopher; Slosar, Anze
Constraints on inflationary B modes using cosmic microwave background polarization data commonly rely on either template cleaning or cross-spectra between maps at different frequencies to disentangle Galactic foregrounds from the cosmological signal. Assumptions about how the foregrounds scale with frequency are therefore crucial to interpreting the data. Recent results from the Planck satellite collaboration claim significant evidence for a decorrelation in the polarization signal of the spatial pattern of Galactic dust between 217 and 353 GHz. Such a decorrelation would suppress power in the cross-spectrum between high-frequency maps, where the dust is strong, and lower-frequency maps, where the sensitivity tomore » cosmological B modes is strongest. Alternatively, it would leave residuals in lower-frequency maps cleaned with a template derived from the higher-frequency maps. If not accounted for, both situations would result in an underestimate of the dust contribution and thus an upward bias on measurements of the tensor-to-scalar ratio, r. In this paper, we revisit this measurement and find that the no-decorrelation hypothesis cannot be excluded with the Planck data. There are three main reasons for this: (i) There is significant noise bias in cross-spectra between Planck data splits that needs to be accounted for. (ii) There is strong evidence for unknown instrumental systematics, the amplitude of which we estimate using alternative Planck data splits. (iii) There are significant correlations between measurements in different sky patches that need to be taken into account when assessing the statistical significance. Finally, between ℓ = 55-90 and over 72% of the sky, the dust BB correlation between 217 and 353 GHz is 1.001 +.004/.021 -.004/.000 (68% stat/syst.) and shows no significant trend with the sky fraction.« less
No evidence for dust B -mode decorrelation in Planck data
NASA Astrophysics Data System (ADS)
Sheehy, Christopher; Slosar, Anže
2018-02-01
Constraints on inflationary B modes using cosmic microwave background polarization data commonly rely on either template cleaning or cross-spectra between maps at different frequencies to disentangle Galactic foregrounds from the cosmological signal. Assumptions about how the foregrounds scale with frequency are therefore crucial to interpreting the data. Recent results from the Planck satellite collaboration claim significant evidence for a decorrelation in the polarization signal of the spatial pattern of Galactic dust between 217 and 353 GHz. Such a decorrelation would suppress power in the cross-spectrum between high-frequency maps, where the dust is strong, and lower-frequency maps, where the sensitivity to cosmological B modes is strongest. Alternatively, it would leave residuals in lower-frequency maps cleaned with a template derived from the higher-frequency maps. If not accounted for, both situations would result in an underestimate of the dust contribution and thus an upward bias on measurements of the tensor-to-scalar ratio, r . In this paper, we revisit this measurement and find that the no-decorrelation hypothesis cannot be excluded with the Planck data. There are three main reasons for this: (i) There is significant noise bias in cross-spectra between Planck data splits that needs to be accounted for. (ii) There is strong evidence for unknown instrumental systematics, the amplitude of which we estimate using alternative Planck data splits. (iii) There are significant correlations between measurements in different sky patches that need to be taken into account when assessing the statistical significance. Between ℓ=55 - 90 and over 72% of the sky, the dust B B correlation between 217 and 353 GHz is 1.001-.004/.000 +.004 /.021 (68 % stat /syst .) and shows no significant trend with the sky fraction.
Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride
NASA Technical Reports Server (NTRS)
Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.
1989-01-01
Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.
Managing the spatial properties and photon correlations in squeezed non-classical twisted light
NASA Astrophysics Data System (ADS)
Zakharov, R. V.; Tikhonova, O. V.
2018-05-01
Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.
Prolonged disengagement from distractors near the hands
Vatterott, Daniel B.; Vecera, Shaun P.
2013-01-01
Because items near our hands are often more important than items far from our hands, the brain processes visual items near our hands differently than items far from our hands. Multiple experiments have attributed this processing difference to spatial attention, but the exact mechanism behind how spatial attention near our hands changes is still under investigation. The current experiments sought to differentiate between two of the proposed mechanisms: a prioritization of the space near the hands and a prolonged disengagement of spatial attention near the hands. To differentiate between these two accounts, we used the additional singleton paradigm in which observers searched for a shape singleton among homogenously shaped distractors. On half the trials, one of the distractors was a different color. Both the prioritization and disengagement accounts predict differently colored distractors near the hands will slow target responses more than differently colored distractors far from the hands, but the prioritization account also predicts faster responses to targets near the hands than far from the hands. The disengagement account does not make this prediction, because attention does not need to be disengaged when the target appears near the hand. We found support for the disengagement account: Salient distractors near the hands slowed responses more than those far from the hands, yet observers did not respond faster to targets near the hands. PMID:23966971
Kolmogorov-Smirnov test for spatially correlated data
Olea, R.A.; Pawlowsky-Glahn, V.
2009-01-01
The Kolmogorov-Smirnov test is a convenient method for investigating whether two underlying univariate probability distributions can be regarded as undistinguishable from each other or whether an underlying probability distribution differs from a hypothesized distribution. Application of the test requires that the sample be unbiased and the outcomes be independent and identically distributed, conditions that are violated in several degrees by spatially continuous attributes, such as topographical elevation. A generalized form of the bootstrap method is used here for the purpose of modeling the distribution of the statistic D of the Kolmogorov-Smirnov test. The innovation is in the resampling, which in the traditional formulation of bootstrap is done by drawing from the empirical sample with replacement presuming independence. The generalization consists of preparing resamplings with the same spatial correlation as the empirical sample. This is accomplished by reading the value of unconditional stochastic realizations at the sampling locations, realizations that are generated by simulated annealing. The new approach was tested by two empirical samples taken from an exhaustive sample closely following a lognormal distribution. One sample was a regular, unbiased sample while the other one was a clustered, preferential sample that had to be preprocessed. Our results show that the p-value for the spatially correlated case is always larger that the p-value of the statistic in the absence of spatial correlation, which is in agreement with the fact that the information content of an uncorrelated sample is larger than the one for a spatially correlated sample of the same size. ?? Springer-Verlag 2008.
NASA Astrophysics Data System (ADS)
Betterle, A.; Schirmer, M.; Botter, G.
2017-12-01
Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.
Fast depth decision for HEVC inter prediction based on spatial and temporal correlation
NASA Astrophysics Data System (ADS)
Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi
2016-07-01
High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.
Spatio-temporal correlations in the Manna model in one, three and five dimensions
NASA Astrophysics Data System (ADS)
Willis, Gary; Pruessner, Gunnar
2018-02-01
Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.
Kalkhan, M.A.; Stohlgren, T.J.
2000-01-01
Land managers need better techniques to assess exoticplant invasions. We used the cross-correlationstatistic, IYZ, to test for the presence ofspatial cross-correlation between pair-wisecombinations of soil characteristics, topographicvariables, plant species richness, and cover ofvascular plants in a 754 ha study site in RockyMountain National Park, Colorado, U.S.A. Using 25 largeplots (1000 m2) in five vegetation types, 8 of 12variables showed significant spatial cross-correlationwith at least one other variable, while 6 of 12variables showed significant spatial auto-correlation. Elevation and slope showed significant spatialcross-correlation with all variables except percentcover of native and exotic species. Percent cover ofnative species had significant spatialcross-correlations with soil variables, but not withexotic species. This was probably because of thepatchy distributions of vegetation types in the studyarea. At a finer resolution, using data from ten1 m2 subplots within each of the 1000 m2 plots, allvariables showed significant spatial auto- andcross-correlation. Large-plot sampling was moreaffected by topographic factors than speciesdistribution patterns, while with finer resolutionsampling, the opposite was true. However, thestatistically and biologically significant spatialcorrelation of native and exotic species could only bedetected with finer resolution sampling. We foundexotic plant species invading areas with high nativeplant richness and cover, and in fertile soils high innitrogen, silt, and clay. Spatial auto- andcross-correlation statistics, along with theintegration of remotely sensed data and geographicinformation systems, are powerful new tools forevaluating the patterns and distribution of native andexotic plant species in relation to landscape structure.
Hierarchical clustering using correlation metric and spatial continuity constraint
Stork, Christopher L.; Brewer, Luke N.
2012-10-02
Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.
Urman, Robert; Gauderman, James; Fruin, Scott; Lurmann, Fred; Liu, Feifei; Hosseini, Reza; Franklin, Meredith; Avol, Edward; Penfold, Bryan; Gilliland, Frank; Brunekreef, Bert; McConnell, Rob
2014-01-01
Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health effects. However, specific components of the NRP mixture responsible for these effects have not been established. A major limitation for health studies is the lack of exposure models that estimate NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of meters. In this study, exposure models were developed for fine-scale variation in biologically relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 μm in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 μm were made at up to 29 locations in each of eight Southern California Children's Health Study communities. Regression-based prediction models were developed using a guided forward selection process to identify traffic variables and other pollutant sources, community physical characteristics and land use as predictors of PM and EC variation in each community. A combined eight-community model including only CALINE4 near-roadway dispersion-estimated vehicular emissions accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the EC0.2 variability. Community-specific models identified additional predictors in some communities; however, in most communities the correlation between predicted concentrations from the eight-community model and observed concentrations stratified by community were similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2. EC2.5 estimated from CALINE4 and population density explained 53% of the within-community variation. Exposure prediction was further improved after accounting for between-community heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to 61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale appropriate for health studies of NRP in selected Southern California communities. PMID:25313293
Tromson, Clara; Bulle, Cécile; Deschênes, Louise
2017-03-01
In life cycle assessment (LCA), the potential terrestrial ecotoxicity effect of metals, calculated as the effect factor (EF), is usually extrapolated from aquatic ecotoxicological data using the equilibrium partitioning method (EqP) as it is more readily available than terrestrial data. However, when following the AMI recommendations (i.e. with at least enough species that represents three different phyla), there are not enough terrestrial data for which soil properties or metal speciation during ecotoxicological testing are specified to account for the influence of soil property variations on metal speciation when using this approach. Alternatively, the TBLM (Terrestrial Biotic Ligand Model) has been used to determine an EF that accounts for speciation, but is not available for metals; hence it cannot be consistently applied to metals in an LCA context. This paper proposes an approach to include metal speciation by regionalizing the EqP method for Cu, Ni and Zn with a geochemical speciation model (the Windermere Humic Aqueous Model 7.0), for 5213 soils selected from the Harmonized World Soil Database. Results obtained by this approach (EF EqP regionalized ) are compared to the EFs calculated with the conventional EqP method, to the EFs based on available terrestrial data and to the EFs calculated with the TBLM (EF TBLM regionalized ) when available. The spatial variability contribution of the EF to the overall spatial variability of the characterization factor (CF) has been analyzed. It was found that the EFs EqP regionalized show a significant spatial variability. The EFs calculated with the two non-regionalized methods (EqP and terrestrial data) fall within the range of the EFs EqP regionalized . The EFs TBLM regionalized cover a larger range of values than the EFs EqP regionalized but the two methods are not correlated. This paper highlights the importance of including speciation into the terrestrial EF and shows that using the regionalized EqP approach is not an acceptable proxy for terrestrial ecotoxicological data even if it can be applied to all metals. Copyright © 2016. Published by Elsevier B.V.
Gueguen, Marc; Vuillerme, Nicolas; Isableu, Brice
2012-01-01
Background The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect. Methodology/Principal Findings Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the visual dependent subject. Conclusions: Taken together, these findings emphasize the importance of identifying individual spatial FOR preferences to assess the efficiency of our interaction with the environment whilst performing spatial tasks. PMID:22509295
Young, Laura K; Smithson, Hannah E
2014-01-01
There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.
Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto
2017-07-15
Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T 1 -weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and women. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-01-01
From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-02-01
From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.
Plasticity of human spatial cognition: spatial language and cognition covary across cultures.
Haun, Daniel B M; Rapold, Christian J; Janzen, Gabriele; Levinson, Stephen C
2011-04-01
The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of task-complexity and instruction. Data show a correlation between dominant linguistic spatial frames of reference and performance patterns in non-linguistic spatial memory tasks. This correlation is shown to be stable across an increase of complexity in the spatial array. When instructed to use their respective non-habitual cognitive strategy, participants were not easily able to switch between strategies and their attempts to do so impaired their performance. These results indicate a difference not only in preference but also in competence and suggest that spatial language and non-linguistic preferences and competences in spatial cognition are systematically aligned across human populations. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
ERIC Educational Resources Information Center
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
A Spatial Model of the Mere Exposure Effect.
ERIC Educational Resources Information Center
Fink, Edward L.; And Others
1989-01-01
Uses a spatial model to examine the relationship between stimulus exposure, cognition, and affect. Notes that this model accounts for cognitive changes that a stimulus may acquire as a result of exposure. Concludes that the spatial model is useful for evaluating the mere exposure effect and that affective change does not require cognitive change.…
Spatial abilities and technical skills performance in health care: a systematic review.
Langlois, Jean; Bellemare, Christian; Toulouse, Josée; Wells, George A
2015-11-01
The aim of this study was to conduct a systematic review and meta-analysis of the relationship between spatial abilities and technical skills performance in health care in beginners and to compare this relationship with those in intermediate and autonomous learners. Search criteria included 'spatial abilities' and 'technical skills'. Keywords related to these criteria were defined. A literature search was conducted to 20 December, 2013 in Scopus (including MEDLINE) and in several databases on EBSCOhost platforms (CINAHL Plus with Full Text, ERIC, Education Source and PsycINFO). Citations were obtained and reviewed by two independent reviewers. Articles related to retained citations were reviewed and a final list of eligible articles was determined. Articles were assessed for quality using the Scottish Intercollegiate Guidelines Network-50 assessment instrument. Data were extracted from articles in a systematic way. Correlations between spatial abilities test scores and technical skills performance were identified. A series of 8289 citations was obtained. Eighty articles were retained and fully reviewed, yielding 36 eligible articles. The systematic review found a tendency for spatial abilities to be negatively correlated with the duration of technical skills and positively correlated with the quality of technical skills performance in beginners and intermediate learners. Pooled correlations of studies were -0.46 (p = 0.03) and -0.38 (95% confidence interval [CI] -0.53 to -0.21) for duration and 0.33 (95% CI 0.20-0.44) and 0.41 (95% CI 0.26-0.54) for quality of technical skills performance in beginners and intermediate learners, respectively. However, correlations between spatial abilities test scores and technical skills performance were not statistically significant in autonomous learners. Spatial abilities are an important factor to consider in selecting and training individuals in technical skills in health care. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Ray, Terrill W.; Anderson, Don L.
1994-01-01
There is increasing use of statistical correlations between geophysical fields and between geochemical and geophysical fields in attempts to understand how the Earth works. Typically, such correlations have been based on spherical harmonic expansions. The expression of functions on the sphere as spherical harmonic series has many pitfalls, especially if the data are nonuniformly and/or sparsely sampled. Many of the difficulties involved in the use of spherical harmonic expansion techniques can be avoided through the use of spatial domain correlations, but this introduces other complications, such as the choice of a sampling lattice. Additionally, many geophysical and geochemical fields fail to satisfy the assumptions of standard statistical significance tests. This is especially problematic when the data values to be correlated with a geophysical field were collected at sample locations which themselves correlate with that field. This paper examines many correlations which have been claimed in the past between geochemistry and mantle tomography and between hotspot, ridge, and slab locations and tomography using both spherical harmonic coefficient correlations and spatial domain correlations. No conclusively significant correlations are found between isotopic geochemistry and mantle tomography. The Crough and Jurdy (short) hotspot location list shows statistically significant correlation with lowermost mantle tomography for degree 2 of the spherical harmonic expansion, but there are no statistically significant correlations in the spatial case. The Vogt (long) hotspot location list does not correlate with tomography anywhere in the mantle using either technique. Both hotspot lists show a strong correlation between hotspot locations and geoid highs when spatially correlated, but no correlations are revealed by spherical harmonic techniques. Ridge locations do not show any statistically significant correlations with tomography, slab locations, or the geoid; the strongest correlation is with lowermost mantle tomography, which is probably spurious. The most striking correlations are between mantle tomography and post-Pangean subducted slabs. The integrated locations of slabs correlate strongly with fast areas near the transition zone and the core-mantle boundary and with slow regions from 1022-1248 km depth. This seems to be consistent with the 'avalanching' downwellings which have been indicated by models of the mantle which include an endothermic phase transition at the 670-km discontinuity, although this is not a unique interpretation. Taken as a whole, these results suggest that slabs and associated cold downwellings are the dominant feature of mantle convection. Hotspot locations are no better correlated with lower mantle tomography than are ridge locations.
Thermal modifications of charmonia and bottomonia from spatial correlation functions
NASA Astrophysics Data System (ADS)
Ding, Heng-Tong; Kaczmarek, Olaf; Kruse, Anna-lena; Mukherjee, Swagato; Ohno, Hiroshi; Sandmeyer, Hauke; Shu, Hai-Tao
2018-03-01
We present our study on the thermal modifications of charmonia and bottomonia from spatial correlation functions at zero and nonzero momenta in quenched QCD. To accommodate the heavy quarks on the lattice we performed simulations on very fine lattices at a fixed beta value corresponding to a lattice spacing a-1 = 22:8 GeV on 1923×32, 1923 × 48, 1923 × 56, 1923 × 64 and 1923 × 96 lattices using clover-improved Wilson fermions. These lattices correspond to temperatures of 2.25Tc, 1.50Tc, 1.25Tc, 1.10Tc and 0.75Tc. To increase the signal to noise ratio in the axial-vector and scalar channels we used multi-sources for the measurement of spatial correlation functions. By investigating on the differences between spatial and temporal correlators as well as the temperature dependence of screening masses we will discuss the thermal effects in different channels of quarkonium states. Besides this the dispersion relation of the screening mass at different momenta is also discussed.
Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P
2016-03-01
We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.