Sample records for accountable flexible efficient

  1. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    NASA Astrophysics Data System (ADS)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  2. A Navy Escrow Account: Increasing Financial Flexibility

    DTIC Science & Technology

    2003-06-01

    generate cost savings and the means by which those funds could be recapitalized. The creation of an escrow account coincides with the Navy’s Sea...Navy escrow account , as envisioned, would provide financial managers with the incentive to generate cost savings and the means by which those funds...MONTEREY, CALIFORNIA CONRAD ESSAY A Navy Escrow Account : Increasing Financial Flexibility By: Commander Marcus A. Pritchard

  3. Time‐efficient and flexible design of optimized multishell HARDI diffusion

    PubMed Central

    Tournier, J. Donald; Price, Anthony N.; Cordero‐Grande, Lucilio; Hughes, Emer J.; Malik, Shaihan; Steinweg, Johannes; Bastiani, Matteo; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Andersson, Jesper; Edwards, A. David; Hajnal, Joseph V.

    2017-01-01

    Purpose Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time‐efficient and flexible diffusion acquisition capability with built‐in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. Methods Complete flexibility in the sampling of diffusion space combined with free choice of phase‐encode‐direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split‐diffusion‐gradient preparation, multiband acceleration, and a restart capacity were added. Results The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high‐angular resolution, maximally time‐efficient (20 min) multishell protocol with 300 diffusion‐weighted volumes was acquired in >400 neonates. An optimal design of a high‐resolution (1.2 × 1.2 mm2) two‐shell acquisition with 54 diffusion weighted volumes was obtained using a split‐gradient design. Conclusion The presented framework provides flexibility to generate time‐efficient and motion‐robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub‐optimal choices. Magn Reson Med 79:1276–1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

  4. Inventory information approval system certification and flexible spending account purchases.

    PubMed

    Shuey, Brandon; Williams, La Vonn A

    2010-01-01

    There is no question that 2009 was a year of change within the pharmacy industry. Several new requirements were implemented, including the need for an Inventory Information Approval System for accepting flexible spending or health reimbursement account cords. Some pharmacies relied on the 90% exemption rule, which is discussed within this article, or an alternative method to avoid the expense of a point of sale. However, with flexible spending or health reimbursement account card participation expected to reach 85% in 2010, now bay be the time for compounding pharmacists to weigh the pros and cons of Inventory Information Approval System certification.

  5. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  6. Large-area high-efficiency flexible PHOLED lighting panels

    NASA Astrophysics Data System (ADS)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  7. An examination of flexible spending accounts.

    PubMed

    Cardon, J H; Showalter, M H

    2001-11-01

    This paper develops a framework for analyzing flexible spending account (FSA) participation and usage. We explore patterns of FSA usage using data from a benefits firm for 1996 including an examination of types of FSA expenditures and their timing. We estimate some simple econometric models of the participation decision and also the decision of how much to put into an FSA. Several pieces of evidence suggest that much of an FSA election amount is based on foreknowledge of expenditures. We also find that participants tend to spend their election amount early, thus obtaining an interest-free loan.

  8. Health care spending accounts: a flexible solution for Canadian employers.

    PubMed

    Smithies, R; Steeves, L

    1996-01-01

    Flexible benefits plans have grown more slowly in Canada than in the United States, largely because of certain legal and regulatory considerations. Health care spending accounts (HCSAs) provide a cost-effective way for Canadian employers to address the health care benefit needs of a diverse workforce. A flexible health care spending account is a versatile and cost-effective instrument that can be used by Canadian employers that wish to provide a full range of health care benefits to employees. The health care alternatives available through an HCSA can provide employees with an opportunity to customize and optimize their benefits program. Regulatory requirements that an HCSA must meet in order to qualify for available tax advantages are discussed, as are the range of health care services that may be covered.

  9. The role of employee flexible spending accounts in health care financing.

    PubMed

    Schweitzer, M; Asch, D A

    1996-08-01

    Employee flexible spending accounts for health care represent one component of the current health care financing system that merits serious reform. These accounts create a system of undesirable incentives, force employees and employers to take complicated gambles, reduce tax revenues, and fail to meet their purported policy objectives. This paper describes shortcomings in these accounts from both a theoretical and an empirical perspective. Some proposed alternatives; including medical spending accounts and zero balance accounts, resolve many of these concerns but not all of them.

  10. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    PubMed

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-efficiency robust perovskite solar cells on ultrathin flexible substrates

    PubMed Central

    Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang

    2016-01-01

    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664

  12. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  13. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE PAGES

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...

    2017-07-18

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  14. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    PubMed

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  15. Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures.

    PubMed

    Tavakoli, Mohammad Mahdi; Tsui, Kwong-Hoi; Zhang, Qianpeng; He, Jin; Yao, Yan; Li, Dongdong; Fan, Zhiyong

    2015-10-27

    Flexible thin film solar cells have attracted a great deal of attention as mobile power sources and key components for building-integrated photovoltaics, due to their light weight and flexible features in addition to compatibility with low-cost roll-to-roll fabrication processes. Among many thin film materials, organometallic perovskite materials are emerging as highly promising candidates for high efficiency thin film photovoltaics; however, the performance, scalability, and reliability of the flexible perovskite solar cells still have large room to improve. Herein, we report highly efficient, flexible perovskite solar cells fabricated on ultrathin flexible glasses. In such a device structure, the flexible glass substrate is highly transparent and robust, with low thermal expansion coefficient, and perovskite thin film was deposited with a thermal evaporation method that showed large-scale uniformity. In addition, a nanocone array antireflection film was attached to the front side of the glass substrate in order to improve the optical transmittance and to achieve a water-repelling effect at the same time. It was found that the fabricated solar cells have reasonable bendability, with 96% of the initial value remaining after 200 bending cycles, and the power conversion efficiency was improved from 12.06 to 13.14% by using the antireflection film, which also demonstrated excellent superhydrophobicity.

  16. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    PubMed

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  18. Highly Flexible and Efficient Solar Steam Generation Device.

    PubMed

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Technology support of the handover: promoting observability, flexibility and efficiency.

    PubMed

    Patterson, Emily S

    2012-12-01

    Efforts to standardise data elements and increase the comprehensiveness of information included in patient handovers have produced a growing interest in augmenting the verbal exchange of information with written communications conducted through health information technology (HIT). The aim of this perspective is to offer recommendations to optimise technology support of handovers, based on a review of the relevant scientific literature. Review of the literature on human factors and the study of communication produced three recommendations. The first entails making available "shared knowledge" relevant to the handover and subsequent clinical management with intended and unintended recipients. The second is to create a flexible narrative structure (unstructured text fields) for human-human communications facilitated by technology. The third recommendation is to avoid reliance on real-time data entry during busy periods. Implementing these recommendations is anticipated to increase the observability (the ability to readily determine current status), flexibility, and efficiency of HIT-supported patient handovers. Anticipated benefits of technology-supported handovers include reducing reliance on human memory, increasing the efficiency and structure of the verbal exchange, avoiding readbacks of numeric data, and aiding clinical management following the handover. In cases when verbal handovers are delayed, do not occur, or involve members of the health care team without first-hand access to critical information, making 'common ground' observable for all recipients, creating a flexible narrative structure for communication and avoiding reliance on real-time data entry during the busiest times has implications for HIT design and day to day data entry and management operations. Benefits include increased observability, flexibility, and efficiency of HIT-supported patient handovers.

  20. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    PubMed

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  1. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design.

    PubMed

    Sinko, William; Lindert, Steffen; McCammon, J Andrew

    2013-01-01

    Protein flexibility plays a major role in biomolecular recognition. In many cases, it is not obvious how molecular structure will change upon association with other molecules. In proteins, these changes can be major, with large deviations in overall backbone structure, or they can be more subtle as in a side-chain rotation. Either way the algorithms that predict the favorability of biomolecular association require relatively accurate predictions of the bound structure to give an accurate assessment of the energy involved in association. Here, we review a number of techniques that have been proposed to accommodate receptor flexibility in the simulation of small molecules binding to protein receptors. We investigate modifications to standard rigid receptor docking algorithms and also explore enhanced sampling techniques, and the combination of free energy calculations and enhanced sampling techniques. The understanding and allowance for receptor flexibility are helping to make computer simulations of ligand protein binding more accurate. These developments may help improve the efficiency of drug discovery and development. Efficiency will be essential as we begin to see personalized medicine tailored to individual patients, which means specific drugs are needed for each patient's genetic makeup. © 2012 John Wiley & Sons A/S.

  2. Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules.

    PubMed

    Bu, Tongle; Shi, Shengwei; Li, Jing; Liu, Yifan; Shi, Jielin; Chen, Li; Liu, Xueping; Qiu, Junhao; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi

    2018-05-02

    Organic-inorganic metal halide perovskite solar cells (PSCs) have been emerging as one of the most promising next generation photovoltaic technologies with a breakthrough power conversion efficiency (PCE) over 22%. However, aiming for commercialization, it still encounters challenges for the large-scale module fabrication, especially for flexible devices which have attracted intensive attention recently. Low-temperature processed high-performance electron-transporting layers (ETLs) are still difficult. Herein, we present a facile low-temperature synthesis of crystalline SnO 2 nanocrystals (NCs) as efficient ETLs for flexible PSCs including modules. Through thermal and UV-ozone treatments of the SnO 2 ETLs, the electron transporting resistance of the ETLs and the charge recombination at the interface of ETL/perovskite were decreased. Thus, the hysteresis-free highly efficient rigid and flexible PSCs were obtained with PCEs of 19.20 and 16.47%, respectively. Finally, a 5 × 5 cm 2 flexible PSC module with a PCE of 12.31% (12.22% for forward scan and 12.40% for reverse scan) was fabricated with the optimized perovskite/ETL interface. Thus, employing presynthesized SnO 2 NCs to fabricate ETLs has showed promising for future manufacturing.

  3. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  4. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.

    PubMed

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-07-20

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.

  5. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    PubMed

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  6. All-Solution-Processed Metal-Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency.

    PubMed

    Song, Wei; Fan, Xi; Xu, Bingang; Yan, Feng; Cui, Huiqin; Wei, Qiang; Peng, Ruixiang; Hong, Ling; Huang, Jiaming; Ge, Ziyi

    2018-05-16

    All-solution-processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost-effective fabrication environment for the devices. Herein, an all-solution-processed flexible organic solar cell (OSC) using poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) electrodes is reported. The all-solution-processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal-oxide-free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high-performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high-performance all-solution-processed flexible OSCs, which is important for the development of printing, blading, and roll-to-roll technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Building regulatory and operational flexibility into accountable care organizations and 'shared savings'.

    PubMed

    Lieberman, Steven M; Bertko, John M

    2011-01-01

    The Affordable Care Act created accountable care organizations (ACOs), which will be a new part of Medicare as of January 2012, together with a "shared savings program" that will modify how these organizations will be paid to care for patients. Accountable care organizations have the potential to lower costs, improve the quality of care, facilitate delivery system reform, and promote innovation in health care. The federal government is set to create rules to regulate these organizations and has broad discretion to allow them to pursue a variety of approaches. Drawing on experience from some ACO pilot programs and the Medicare Part D prescription drug coverage program, we argue that regulations governing accountable care organizations should be flexible, encouraging of diversity and innovation and allowing for changes over time based on lessons learned. We recommend using regulations as a general framework, while relying on notices and other guidance below the regulatory level to spell out specific requirements.

  8. Motor Carrier Efficiency Study Phase I

    DOT National Transportation Integrated Search

    2009-02-01

    The Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU, Public Law 109-59), Section 5503, set aside funding to examine the application of wireless technology to improve the safety and efficiency of trucki...

  9. Long-Lived Flexible Displays Employing Efficient and Stable Inverted Organic Light-Emitting Diodes.

    PubMed

    Fukagawa, Hirohiko; Sasaki, Tsubasa; Tsuzuki, Toshimitsu; Nakajima, Yoshiki; Takei, Tatsuya; Motomura, Genichi; Hasegawa, Munehiro; Morii, Katsuyuki; Shimizu, Takahisa

    2018-05-29

    Although organic light-emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long-lived flexible OLED-based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron-injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long-lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Turgidity-dependent petiole flexibility enables efficient water use by a tree subjected to water stress.

    PubMed

    Gonzalez-Rodriguez, David; Cournède, Paul-Henry; de Langre, Emmanuel

    2016-06-07

    Water stress is a major cause of tree mortality. In response to drought, leaves wilt due to an increase in petiole flexibility. We present an analytical model coupling petiole mechanics, thermal balance, and xylem hydraulics to investigate the role of petiole flexibility in protecting a tree from water stress. Our model suggests that turgidity-dependent petiole flexibility can significantly attenuate the minimal xylem pressure and thus reduce the risk of cavitation. Moreover, we show that petiole flexibility increases water use efficiency by trees under water stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Flexible All-Digital Receiver for Bandwidth Efficient Modulations

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee

    2000-01-01

    An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.

  12. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array.

    PubMed

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-21

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012

  13. Efficiency and Effectiveness in Higher Education: Who Is Accountable for What?

    ERIC Educational Resources Information Center

    Kenny, John

    2008-01-01

    There is little doubt that the modern university is far different to that of the early 90s and the work of academics has changed considerably over this time driven by the efficiency and accountability agenda. In taking stock of the changes, it needs to be recognised that often the cry for efficiency and accountability has been used as a mechanism…

  14. Effect of repeated simulated clinical use and sterilization on the cutting efficiency and flexibility of Hyflex CM nickel-titanium rotary files.

    PubMed

    Seago, Scott T; Bergeron, Brian E; Kirkpatrick, Timothy C; Roberts, Mark D; Roberts, Howard W; Himel, Van T; Sabey, Kent A

    2015-05-01

    Recent nickel-titanium manufacturing processes have resulted in an alloy that remains in a twinned martensitic phase at operating temperature. This alloy has been shown to have increased flexibility with added tolerance to cyclic and torsional fatigue. The aim of this study was to assess the effect of repeated simulated clinical use and sterilization on cutting efficiency and flexibility of Hyflex CM rotary files. Cutting efficiency was determined by measuring the load required to maintain a constant feed rate while instrumenting simulated canals. Flexibility was determined by using a 3-point bending test. Files were autoclaved after each use according to the manufacturer's recommendations. Files were tested through 10 simulated clinical uses. For cutting efficiency, mean data were analyzed by using multiple factor analysis of variance and the Dunnett post hoc test (P < .05). For flexibility, mean data were analyzed by using Levene's Test of Equality of Error and a general linear model (P < .05). No statistically significant decrease in cutting efficiency was noted in groups 2, 5, 6, and 7. A statistically significant decrease in cutting efficiency was noted in groups 3, 4, 8, 9, and 10. No statistically significant decrease in flexibility was noted in groups 2, 3, and 7. A statistically significant decrease in flexibility was noted in groups 4, 5, 6, 8, 9, 10, and 11. Repeated simulated clinical use and sterilization showed no effect on cutting efficiency through 1 use and no effect on flexibility through 2 uses. Published by Elsevier Inc.

  15. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides.

    PubMed

    Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A

    2015-10-05

    The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.

  16. Energy-Efficient Routing and Spectrum Assignment Algorithm with Physical-Layer Impairments Constraint in Flexible Optical Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Zhang, Nawa; Ren, Danping; Hu, Jinhua

    2017-12-01

    The recently proposed flexible optical network can provide more efficient accommodation of multiple data rates than the current wavelength-routed optical networks. Meanwhile, the energy efficiency has also been a hot topic because of the serious energy consumption problem. In this paper, the energy efficiency problem of flexible optical networks with physical-layer impairments constraint is studied. We propose a combined impairment-aware and energy-efficient routing and spectrum assignment (RSA) algorithm based on the link availability, in which the impact of power consumption minimization on signal quality is considered. By applying the proposed algorithm, the connection requests are established on a subset of network topology, reducing the number of transitions from sleep to active state. The simulation results demonstrate that our proposed algorithm can improve the energy efficiency and spectrum resources utilization with the acceptable blocking probability and average delay.

  17. Accounting for Intraligand Interactions in Flexible Ligand Docking with a PMF-Based Scoring Function.

    PubMed

    Lizunov, A Y; Gonchar, A L; Zaitseva, N I; Zosimov, V V

    2015-10-26

    We analyzed the frequency with which intraligand contacts occurred in a set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. Our analysis showed that flexible ligands often form intraligand hydrophobic contacts, while intraligand hydrogen bonds are rare. The test set was also thoroughly investigated and classified. We suggest a universal method for enhancement of a scoring function based on a potential of mean force (PMF-based score) by adding a term accounting for intraligand interactions. The method was implemented via in-house developed program, utilizing an Algo_score scoring function [ Ramensky et al. Proteins: Struct., Funct., Genet. 2007 , 69 , 349 - 357 .] based on the Tarasov-Muryshev PMF [ Muryshev et al. J. Comput.-Aided Mol. Des. 2003 , 17 , 597 - 605 .]. The enhancement of the scoring function was shown to significantly improve the docking and scoring quality for flexible ligands in the test set of 1300 protein-ligand complexes [ Plewczynski et al. J. Comput. Chem. 2011 , 32 , 742 - 755 .]. We then investigated the correlation of the docking results with two parameters of intraligand interactions estimation. These parameters are the weight of intraligand interactions and the minimum number of bonds between the ligand atoms required to take their interaction into account.

  18. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility

    PubMed Central

    2014-01-01

    Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so

  19. Efficiency of geometric designs of flexible solar panels: mathematical simulation

    NASA Astrophysics Data System (ADS)

    Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia

    2017-09-01

    The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.

  20. Promoting Accountability and Enhancing Efficiency: Using National Education Accounts to Track Expenditure Flows

    ERIC Educational Resources Information Center

    Chawla, Deepika; Forbes, Phyllis

    2010-01-01

    Increasing accountability and efficiency in the use of public and out-of-pocket financing in education are critical to realizing the maximum impact of the meager allocations to education in most developing countries. While broad estimates and numbers are routinely collected by most national ministries and state departments of education, the lack…

  1. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate.

    PubMed

    Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua

    2014-07-09

    High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.

  2. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates.

    PubMed

    Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong

    2016-02-21

    Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.

  3. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  4. A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes.

    PubMed

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-03-17

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  5. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    PubMed Central

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-01-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742

  6. Efficient Residue to Binary Conversion Based on a Modified Flexible Moduli Set

    NASA Astrophysics Data System (ADS)

    Molahosseini, Amir Sabbagh

    2011-09-01

    The Residue Number System (RNS) is a non-weighted number system which can perform addition (subtraction) and multiplication on residues without carry-propagation; resulting in high-speed hardware implementations of computation systems. The problem of converting residue numbers to equivalent binary weighted form has been attracted a lot of research for many years. Recently, some researchers proposed using flexible moduli sets instead of previous traditional moduli sets to enhance the performance of residue to binary converters. This paper introduces the modified flexible moduli set {22p+k. 22p+1, 2p+1, 2p-1} which is achieved from the flexible set {2p+k, 22p+1, 2p+1, 2p-1} by enhancing modulo 2p+k. Next, new Chinese remainder theorem-1 is used to design simple and efficient residue to binary converter for this modified set with better performance than the converter of the moduli set {2p+k, 22p+1, 2p+1, 2p-1}.

  7. Force-moment line element method for flexible slender bodies in Stokes flow.

    PubMed

    Jiang, H; Yang, B

    2013-09-01

    The hydrodynamics of flexible slender bodies in Stokes flow is studied by taking into account the fluid-structure interaction through both forces and coupled moments. The fluid subjected to line sources of forces and moments is described by using integral equations. Meanwhile, the flexible slender body is modeled using finite beam elements. The two sides are linked through interfacial continuity conditions. Upon discretization, it results in a higher-order line element method for efficient and accurate solution of slender-body hydrodynamics. Four examples are presented to demonstrate the validity and efficiency of the present method: (a) hydrodynamics of a flexible slender rod subjected to a torque at one end, (b) hydrodynamics of a flexible slender rod subjected to a bending moment at one end, (c) hydrodynamics of a flexible slender rod subjected to a cyclic force, and (d) hydrodynamics of a flexible slender rod with a magnetized head within a rotating magnetic field. Examples (a) and (b) may serve as benchmark solutions and examples (c) and (d) show how planar and spiral waves can be excited in a slender body.

  8. A geostatistical approach to estimate mining efficiency indicators with flexible meshes

    NASA Astrophysics Data System (ADS)

    Freixas, Genis; Garriga, David; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2014-05-01

    Geostatistics is a branch of statistics developed originally to predict probability distributions of ore grades for mining operations by considering the attributes of a geological formation at unknown locations as a set of correlated random variables. Mining exploitations typically aim to maintain acceptable mineral laws to produce commercial products based upon demand. In this context, we present a new geostatistical methodology to estimate strategic efficiency maps that incorporate hydraulic test data, the evolution of concentrations with time obtained from chemical analysis (packer tests and production wells) as well as hydraulic head variations. The methodology is applied to a salt basin in South America. The exploitation is based on the extraction of brines through vertical and horizontal wells. Thereafter, brines are precipitated in evaporation ponds to obtain target potassium and magnesium salts of economic interest. Lithium carbonate is obtained as a byproduct of the production of potassium chloride. Aside from providing an assemble of traditional geostatistical methods, the strength of this study falls with the new methodology developed, which focus on finding the best sites to exploit the brines while maintaining efficiency criteria. Thus, some strategic indicator efficiency maps have been developed under the specific criteria imposed by exploitation standards to incorporate new extraction wells in new areas that would allow maintain or improve production. Results show that the uncertainty quantification of the efficiency plays a dominant role and that the use flexible meshes, which properly describe the curvilinear features associated with vertical stratification, provides a more consistent estimation of the geological processes. Moreover, we demonstrate that the vertical correlation structure at the given salt basin is essentially linked to variations in the formation thickness, which calls for flexible meshes and non-stationarity stochastic processes.

  9. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  10. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    PubMed

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.

    PubMed

    Mizutani, Miho Yamada; Itai, Akiko

    2004-09-23

    A method of easily finding ligands, with a variety of core structures, for a given target macromolecule would greatly contribute to the rapid identification of novel lead compounds for drug development. We have developed an efficient method for discovering ligand candidates from a number of flexible compounds included in databases, when the three-dimensional (3D) structure of the drug target is available. The method, named ADAM&EVE, makes use of our automated docking method ADAM, which has already been reported. Like ADAM, ADAM&EVE takes account of the flexibility of each molecule in databases, by exploring the conformational space fully and continuously. Database screening has been made much faster than with ADAM through the tuning of parameters, so that computational screening of several hundred thousand compounds is possible in a practical time. Promising ligand candidates can be selected according to various criteria based on the docking results and characteristics of compounds. Furthermore, we have developed a new tool, EVE-MAKE, for automatically preparing the additional compound data necessary for flexible docking calculation, prior to 3D database screening. Among several successful cases of lead discovery by ADAM&EVE, the finding of novel acetylcholinesterase (AChE) inhibitors is presented here. We performed a virtual screening of about 160 000 commercially available compounds against the X-ray crystallographic structure of AChE. Among 114 compounds that could be purchased and assayed, 35 molecules with various core structures showed inhibitory activities with IC(50) values less than 100 microM. Thirteen compounds had IC(50) values between 0.5 and 10 microM, and almost all their core structures are very different from those of known inhibitors. The results demonstrate the effectiveness and validity of the ADAM&EVE approach and provide a starting point for development of novel drugs to treat Alzheimer's disease.

  12. Recent Trends in Higher Education: Accountability, Efficiency, Technology, and Governance.

    ERIC Educational Resources Information Center

    Lahey, John L.; Griffith, Janice C.

    2002-01-01

    Discusses the impact of trends in higher education regarding increasing demands for accountability, greater financial efficiency, increasing use of technology, and changes in organization and governance. Discusses the implications for law schools. (EV)

  13. SAFE (strategy, assessment, flexibility, and efficiency) for future use? Stages in master planning, programming, and architectural design.

    PubMed

    Westlake, P

    1995-10-01

    Health care facility design must incorporate four key elements: Strategy, Assessment, Flexibility, and Efficiency. These SAFE elements will offer the organization the greatest return on investment, because they encompass both present needs and future demand. They respect the integrated nature of functional operations by clustering them in ways that permit growth or consolidation. In the rapidly changing health care environment, flexibility is fundamental to successful design.

  14. Cognitive flexibility predicts early reading skills

    PubMed Central

    Colé, Pascale; Duncan, Lynne G.; Blaye, Agnès

    2014-01-01

    An important aspect of learning to read is efficiency in accessing different kinds of linguistic information (orthographic, phonological, and semantic) about written words. The present study investigates whether, in addition to the integrity of such linguistic skills, early progress in reading may require a degree of cognitive flexibility in order to manage the coordination of this information effectively. Our study will look for evidence of a link between flexibility and both word reading and passage reading comprehension, and examine whether any such link involves domain-general or reading-specific flexibility. As the only previous support for a predictive relationship between flexibility and early reading comes from studies of reading comprehension in the opaque English orthography, another possibility is that this relationship may be largely orthography-dependent, only coming into play when mappings between representations are complex and polyvalent. To investigate these questions, 60 second-graders learning to read the more transparent French orthography were presented with two multiple classification tasks involving reading-specific cognitive flexibility (based on words) and non-specific flexibility (based on pictures). Reading skills were assessed by word reading, pseudo-word decoding, and passage reading comprehension measures. Flexibility was found to contribute significant unique variance to passage reading comprehension even in the less opaque French orthography. More interestingly, the data also show that flexibility is critical in accounting for one of the core components of reading comprehension, namely, the reading of words in isolation. Finally, the results constrain the debate over whether flexibility has to be reading-specific to be critically involved in reading. PMID:24966842

  15. Hydrodynamics of a three-dimensional self-propelled flexible plate

    NASA Astrophysics Data System (ADS)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  16. Grant programs : design features shape flexibility, accountability, and performance information

    DOT National Transportation Integrated Search

    1998-06-01

    Flexible grants--block grants and similar programs that give state or local governments the flexibility to adapt funded activities to fit the state or local context--are an adaptable policy tool and are found in fields from urban transit to community...

  17. Turning Potential Flexibility Into Flexible Performance: Moderating Effect of Self-Efficacy and Use of Flexible Cognition

    PubMed Central

    Liu, Ru-De; Wang, Jia; Star, Jon R.; Zhen, Rui; Jiang, Rong-Huan; Fu, Xin-Chen

    2018-01-01

    This study examined the relationship between two types of mathematical flexibility – potential flexibility, which indicates individuals’ knowledge of multiple strategies and strategy efficiency, and practical flexibility, which refers to individuals’ flexible performances when solving math problems. Both types of flexibility were assessed in the domain of linear equation solving. Furthermore, two types of beliefs – self-efficacy and use of flexible cognition (UFC) – were investigated as potential moderators between potential and practical flexibility. 121 8th grade students from China took part in this study. Results indicate that potential flexibility positively predicted practical flexibility. Additionally, self-efficacy and UFC might moderate the relationship between these two types of flexibility, suggesting that potential flexibility may lead to different degrees of practical flexibility depending on different levels of beliefs. Implications of these findings for research on mathematical flexibility and for educational practice are discussed. PMID:29780344

  18. An efficient and flexible Abel-inversion method for noisy data

    NASA Astrophysics Data System (ADS)

    Antokhin, Igor I.

    2016-12-01

    We propose an efficient and flexible method for solving the Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solving it requires some kind of regularization. Our method is based on solving the equation on a so-called compact set of functions and/or using Tikhonov's regularization. A priori constraints on the unknown function, defining a compact set, are very loose and can be set using simple physical considerations. Tikhonov's regularization in itself does not require any explicit a priori constraints on the unknown function and can be used independently of such constraints or in combination with them. Various target degrees of smoothness of the unknown function may be set, as required by the problem at hand. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact solution, as the errors of input data tend to zero. The method is illustrated on several simulated models with known solutions. An example of astrophysical application of the method is also given.

  19. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers.

    PubMed

    Mali, Sawanta S; Hong, Chang Kook; Inamdar, A I; Im, Hyunsik; Shim, Sang Eun

    2017-03-02

    The development of hybrid organo-lead trihalide perovskite solar cells (PSCs) comprising an electron transporting layer (ETL), a perovskite light absorber and a hole transporting layer (HTL) has received significant attention for their potential in efficient PSCs. However, the preparation of a compact and uniform ETL and the formation of a uniform light absorber layer suffer from a high temperature processing treatment and the formation of unwanted perovskite islands, respectively. A low temperature/room temperature processed ETL is one of the best options for the fabrication of flexible PSCs. In the present work, we report the implementation of a room temperature processed compact TiO 2 ETL and the synthesis of extremely uniform flexible planar PSCs based on methylammonium lead mixed halides MAPb(I 1-x Br x ) 3 (x = 0.1) via RF-magnetron sputtering and a toluene dripping treatment, respectively. The compact TiO 2 ETLs with different thicknesses (30 to 100 nm) were directly deposited on a flexible PET coated ITO substrate by varying the RF-sputtering time and used for the fabrication of flexible PSCs. The photovoltaic properties revealed that flexible PSC performance is strongly dependent on the TiO 2 ETL thickness. The open circuit voltage (V OC ) and fill factor (FF) are directly proportional to the TiO 2 ETL thickness while the 50 nm thick TiO 2 ETL shows the highest current density (J SC ) of 20.77 mA cm -2 . Our controlled results reveal that the room temperature RF-magnetron sputtered 50 nm-thick TiO 2 ETL photoelectrode exhibits a power conversion efficiency (PCE) in excess of 15%. The use of room temperature synthesis of the compact TiO 2 ETL by RF magnetron sputtering results in an enhancement of the device performance for cells prepared on flexible substrates. The champion flexible planar PSC based on this architecture exhibited a promising power conversion efficiency as high as 15.88%, featuring a high FF of 0.69 and V OC of 1.108 V with a negligible

  20. Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data.

    PubMed

    Bao, Yanchun; Vinciotti, Veronica; Wit, Ernst; 't Hoen, Peter A C

    2013-05-30

    ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and between repeated experiments with the same antibody. These differences have a large impact on the quality of ChIP-seq data: a more efficient experiment will necessarily lead to a higher signal to background ratio, and therefore to an apparent larger number of enriched regions, compared to a less efficient experiment. In this paper, we show how IP efficiencies can be explicitly accounted for in the joint statistical modelling of ChIP-seq data. We fit a latent mixture model to eight experiments on two proteins, from two laboratories where different antibodies are used for the two proteins. We use the model parameters to estimate the efficiencies of individual experiments, and find that these are clearly different for the different laboratories, and amongst technical replicates from the same lab. When we account for ChIP efficiency, we find more regions bound in the more efficient experiments than in the less efficient ones, at the same false discovery rate. A priori knowledge of the same number of binding sites across experiments can also be included in the model for a more robust detection of differentially bound regions among two different proteins. We propose a statistical model for the detection of enriched and differentially bound regions from multiple ChIP-seq data sets. The framework that we present accounts explicitly for IP efficiencies in ChIP-seq data, and allows to model jointly, rather than individually, replicates and experiments from different proteins, leading to more robust biological conclusions.

  1. Employee choice of flexible spending account participation and health plan.

    PubMed

    Hamilton, Barton H; Marton, James

    2008-07-01

    Despite the fact that flexible spending accounts (FSAs) are becoming an increasingly popular employer-provided health benefit, there has been very little empirical study of FSA use among employees at the individual level. This study contributes to the literature on FSAs using a unique data set that provides three years of employee-level-matched benefits data. Motivated by the theoretical model of FSA choice presented in Cardon and Showalter (J. Health Econ. 2001; 20(6):935-954), we examine the determinants of FSA participation and contribution levels using cross-sectional and random-effect two-part models. FSA participation and health plan choice are also modeled jointly in each year using conditional logit models. We find that, even after controlling for a number of other demographic characteristics, non-whites are less likely to participate in the FSA program, have lower contributions conditional on participation, and have a lower probability of switching to new lower cost share, higher premium plans when they were introduced. We also find evidence that choosing health plans with more expected out-of-pocket expenses is correlated with participation in the FSA program. Copyright (c) 2007 John Wiley & Sons, Ltd.

  2. Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells

    NASA Astrophysics Data System (ADS)

    Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David

    2018-05-01

    Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.

  3. A nanoporous MXene film enables flexible supercapacitors with high energy storage.

    PubMed

    Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan

    2018-05-14

    MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.

  4. An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture

    NASA Technical Reports Server (NTRS)

    Goodhart, Charles E.; Soriano, Melissa A.; Navarro, Robert; Trinh, Joseph T.; Sigman, Elliott H.

    2013-01-01

    In this innovation, a digital downconverter has been created that produces a large (16 or greater) number of output channels of smaller bandwidths. Additionally, this design has the flexibility to tune each channel independently to anywhere in the input bandwidth to cover a wide range of output bandwidths (from 32 MHz down to 1 kHz). Both the flexibility in channel frequency selection and the more than four orders of magnitude range in output bandwidths (decimation rates from 32 to 640,000) presented significant challenges to be solved. The solution involved breaking the digital downconversion process into a two-stage process. The first stage is a 2 oversampled filter bank that divides the whole input bandwidth as a real input signal into seven overlapping, contiguous channels represented with complex samples. Using the symmetry of the sine and cosine functions in a similar way to that of an FFT (fast Fourier transform), this downconversion is very efficient and gives seven channels fixed in frequency. An arbitrary number of smaller bandwidth channels can be formed from second-stage downconverters placed after the first stage of downconversion. Because of the overlapping of the first stage, there is no gap in coverage of the entire input bandwidth. The input to any of the second-stage downconverting channels has a multiplexer that chooses one of the seven wideband channels from the first stage. These second-stage downconverters take up fewer resources because they operate at lower bandwidths than doing the entire downconversion process from the input bandwidth for each independent channel. These second-stage downconverters are each independent with fine frequency control tuning, providing extreme flexibility in positioning the center frequency of a downconverted channel. Finally, these second-stage downconverters have flexible decimation factors over four orders of magnitude The algorithm was developed to run in an FPGA (field programmable gate array) at input data

  5. High-Performance Flexible Waveguiding Photovoltaics

    PubMed Central

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  6. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun

    2018-03-01

    We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  7. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.

    PubMed

    Ke, Shanming; Chen, Chang; Fu, Nianqing; Zhou, Hua; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2016-10-26

    Sn-doped In 2 O 3 (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (<15 s) up to a high temperature of over 438 °C. When used as a transparent electrode, ITO/mica permits a high-temperature annealing (450 °C) approach to fabricate flexible perovskite solar cells (PSCs) with high efficiency.

  8. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.

    PubMed

    Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin

    2018-05-30

    Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Insurance choice and tax-preferred health savings accounts.

    PubMed

    Cardon, James H; Showalter, Mark H

    2007-03-01

    We develop an infinite horizon utility maximization model of the interaction between insurance choice and tax-preferred health savings accounts. The model can be used to examine a wide range of policy options, including flexible spending accounts, health savings accounts, and health reimbursement accounts. We also develop a 2-period model to simulate various implications of the model. Key results from the simulation analysis include the following: (1) with no adverse selection, use of unrestricted health savings accounts leads to modest welfare gains, after accounting for the tax revenue loss; (2) with adverse selection and an initial pooling equilibrium comprised of "sick" and "healthy" consumers, introducing HSAs can, but does not necessarily, lead to a new pooling equilibrium. The new equilibrium results in a higher coinsurance rate, an increase in expected utility for healthy consumers, and a decrease in expected utility for sick consumers; (3) with adverse selection and a separating equilibrium, both sick and healthy consumers are better off with a health savings account; (4) efficiency gains are possible when insurance contracts are explicitly linked to tax-preferred health savings accounts.

  10. Modified independent modal space control method for active control of flexible systems

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.

  11. Efficiency and flexibility using implicit methods within atmosphere dycores

    NASA Astrophysics Data System (ADS)

    Evans, K. J.; Archibald, R.; Norman, M. R.; Gardner, D. J.; Woodward, C. S.; Worley, P.; Taylor, M.

    2016-12-01

    A suite of explicit and implicit methods are evaluated for a range of configurations of the shallow water dynamical core within the spectral-element Community Atmosphere Model (CAM-SE) to explore their relative computational performance. The configurations are designed to explore the attributes of each method under different but relevant model usage scenarios including varied spectral order within an element, static regional refinement, and scaling to large problem sizes. The limitations and benefits of using explicit versus implicit, with different discretizations and parameters, are discussed in light of trade-offs such as MPI communication, memory, and inherent efficiency bottlenecks. For the regionally refined shallow water configurations, the implicit BDF2 method is about the same efficiency as an explicit Runge-Kutta method, without including a preconditioner. Performance of the implicit methods with the residual function executed on a GPU is also presented; there is speed up for the residual relative to a CPU, but overwhelming transfer costs motivate moving more of the solver to the device. Given the performance behavior of implicit methods within the shallow water dynamical core, the recommendation for future work using implicit solvers is conditional based on scale separation and the stiffness of the problem. The strong growth of linear iterations with increasing resolution or time step size is the main bottleneck to computational efficiency. Within the hydrostatic dynamical core, of CAM-SE, we present results utilizing approximate block factorization preconditioners implemented using the Trilinos library of solvers. They reduce the cost of linear system solves and improve parallel scalability. We provide a summary of the remaining efficiency considerations within the preconditioner and utilization of the GPU, as well as a discussion about the benefits of a time stepping method that provides converged and stable solutions for a much wider range of time

  12. Flexible, reconfigurable, power efficient transmitter and method

    NASA Technical Reports Server (NTRS)

    Bishop, James W. (Inventor); Zaki, Nazrul H. Mohd (Inventor); Newman, David Childress (Inventor); Bundick, Steven N. (Inventor)

    2011-01-01

    A flexible, reconfigurable, power efficient transmitter device and method is provided. In one embodiment, the method includes receiving outbound data and determining a mode of operation. When operating in a first mode the method may include modulation mapping the outbound data according a modulation scheme to provide first modulation mapped digital data, converting the first modulation mapped digital data to an analog signal that comprises an intermediate frequency (IF) analog signal, upconverting the IF analog signal to produce a first modulated radio frequency (RF) signal based on a local oscillator signal, amplifying the first RF modulated signal to produce a first RF output signal, and outputting the first RF output signal via an isolator. In a second mode of operation method may include modulation mapping the outbound data according a modulation scheme to provide second modulation mapped digital data, converting the second modulation mapped digital data to a first digital baseband signal, conditioning the first digital baseband signal to provide a first analog baseband signal, modulating one or more carriers with the first analog baseband signal to produce a second modulated RF signal based on a local oscillator signal, amplifying the second RF modulated signal to produce a second RF output signal, and outputting the second RF output signal via the isolator. The digital baseband signal may comprise an in-phase (I) digital baseband signal and a quadrature (Q) baseband signal.

  13. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening

    PubMed Central

    2011-01-01

    Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible. PMID:21733172

  14. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.

    PubMed

    He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan

    2017-12-06

    Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.

  15. Energy-efficient virtual optical network mapping approaches over converged flexible bandwidth optical networks and data centers.

    PubMed

    Chen, Bowen; Zhao, Yongli; Zhang, Jie

    2015-09-21

    In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.

  16. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability

  17. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    NASA Astrophysics Data System (ADS)

    Hatmoko, Jati Utomo Dwi; Hidayat, Arif; Setiawati, Apsari; Prasetyo, Stefanus Catur Adi

    2018-02-01

    Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG) emissions, to quantify them in terms of carbon dioxide equivalents (CO2e) as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31%) off-site activities and 36.640 tonnes CO2e (51.687%) on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%), and material transportation accounted 24.921 (35.155%). These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  18. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    PubMed

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  19. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    Unger, Ralf; Haupt, Matthias C.; Horst, Peter; Radespiel, Rolf

    2012-01-01

    In this paper, a coupling simulation methodology is applied to investigate the fluid flow around a light and flexible airfoil based on a handfoil of a seagull. A finite element model of the flexible airfoil is fully coupled to the flow solver by using a load and displacement transfer as well as a fluid grid deformation algorithm. The flow field is characterized by a laminar-turbulent transition at a Reynolds number of Re=100 000, which takes place along a laminar separation bubble. An unsteady Reynolds-averaged Navier-Stokes flow solver is used to take this transition process into account by comparison of a critical N-factor with the N-factor computed by the eN-method. Results of computations have shown that the flexibility of the airfoil has a major influence on the thrust efficiency, the mean drag and lift, and the location of laminar-turbulent transition. The thrust efficiency can be considerably improved by increasing the plunging amplitude and by using a time dependent airfoil stiffness, inspired by the muscle contraction of birds.

  20. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  1. Spatial-spectral flexible optical networking: enabling switching solutions for a simplified and efficient SDM network platform

    NASA Astrophysics Data System (ADS)

    Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.

    2013-12-01

    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.

  2. Highly Efficient Computation of the Basal kon using Direct Simulation of Protein-Protein Association with Flexible Molecular Models.

    PubMed

    Saglam, Ali S; Chong, Lillian T

    2016-01-14

    An essential baseline for determining the extent to which electrostatic interactions enhance the kinetics of protein-protein association is the "basal" kon, which is the rate constant for association in the absence of electrostatic interactions. However, since such association events are beyond the milliseconds time scale, it has not been practical to compute the basal kon by directly simulating the association with flexible models. Here, we computed the basal kon for barnase and barstar, two of the most rapidly associating proteins, using highly efficient, flexible molecular simulations. These simulations involved (a) pseudoatomic protein models that reproduce the molecular shapes, electrostatic, and diffusion properties of all-atom models, and (b) application of the weighted ensemble path sampling strategy, which enhanced the efficiency of generating association events by >130-fold. We also examined the extent to which the computed basal kon is affected by inclusion of intermolecular hydrodynamic interactions in the simulations.

  3. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes

    NASA Astrophysics Data System (ADS)

    Wang, Li; Luo, Yu; Feng, Xueming; Pei, Yuechen; Lu, Bingheng; Cheng, Shenggui

    2018-05-01

    In flexible OLEDs (FOLEDs), the traditional ITO anode has disadvantages such as refractive-index mismatches among substrate and other functional layers, leads to light loss of nearly 80%, meanwhile, its brittle nature and lack in raw materials hinder its further applications. We investigated an efficient FOLED using a semi-transparent silver (Ag) anode, whereas the device was built on a nano-corrugated flexible polycarbonate (PC) substrate prepared by thermal nanoimprint lithography. The corrugations were well preserved on each layer of the device, both the micro-cavity effect and surface plasmon polariton (SPP) modes of light loss were effectively suppressed. As a result, the current efficiency of the FOLED using a conformal corrugated Ag anode enhanced by 100% compared with a planar Ag anode device, and enhanced by 13% with conventional ITO device. In addition, owing to the quasi-periodical arrangements of the corrugations, the device achieved broad spectra and Lambertian angular emission. The Ag anode significantly improved the bending properties of the OLED as compared to the conventional ITO device, leading to a longer lifetime in practical use. The proposed manufacturing strategy will be useful for fabricating nano corrugations on plastic substrate of FOLED in a cost-effective and convenient manner.

  4. Distributed flexibility in inertial swimmers

    NASA Astrophysics Data System (ADS)

    Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.

    2017-11-01

    To achieve fast and efficient swimming, the flexibility of the propulsive surfaces is an important feature. To better understand the effects of distributed flexibility (either through inhomogeneous material properties, varying geometry, or both) we consider the coupled solid and fluid mechanics of the problem. Here, we develop a simplified model of a flexible swimmer, using Euler-Bernoulli theory to describe the solid, Theodorsen's theory to describe the fluid, and a Blasius boundary layer to incorporate viscous effects. Our primary aims are to understand how distributed flexibility affects the thrust production and efficiency of a swimmer with imposed motion at its leading edge. In particular, we examine the modal shapes of the swimmer to gain physical insight into the observed trends. Supported under ONR MURI Grant N00014-14-1-0533, Program Manager Robert Brizzolara.

  5. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes

    PubMed Central

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-01-01

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743

  6. Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement

    PubMed Central

    Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung

    2017-01-01

    This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219

  7. Full cost accounting in the analysis of separated waste collection efficiency: A methodological proposal.

    PubMed

    D'Onza, Giuseppe; Greco, Giulio; Allegrini, Marco

    2016-02-01

    Recycling implies additional costs for separated municipal solid waste (MSW) collection. The aim of the present study is to propose and implement a management tool - the full cost accounting (FCA) method - to calculate the full collection costs of different types of waste. Our analysis aims for a better understanding of the difficulties of putting FCA into practice in the MSW sector. We propose a FCA methodology that uses standard cost and actual quantities to calculate the collection costs of separate and undifferentiated waste. Our methodology allows cost efficiency analysis and benchmarking, overcoming problems related to firm-specific accounting choices, earnings management policies and purchase policies. Our methodology allows benchmarking and variance analysis that can be used to identify the causes of off-standards performance and guide managers to deploy resources more efficiently. Our methodology can be implemented by companies lacking a sophisticated management accounting system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. PLATSIM: An efficient linear simulation and analysis package for large-order flexible systems

    NASA Technical Reports Server (NTRS)

    Maghami, Periman; Kenny, Sean P.; Giesy, Daniel P.

    1995-01-01

    PLATSIM is a software package designed to provide efficient time and frequency domain analysis of large-order generic space platforms implemented with any linear time-invariant control system. Time domain analysis provides simulations of the overall spacecraft response levels due to either onboard or external disturbances. The time domain results can then be processed by the jitter analysis module to assess the spacecraft's pointing performance in a computationally efficient manner. The resulting jitter analysis algorithms have produced an increase in speed of several orders of magnitude over the brute force approach of sweeping minima and maxima. Frequency domain analysis produces frequency response functions for uncontrolled and controlled platform configurations. The latter represents an enabling technology for large-order flexible systems. PLATSIM uses a sparse matrix formulation for the spacecraft dynamics model which makes both the time and frequency domain operations quite efficient, particularly when a large number of modes are required to capture the true dynamics of the spacecraft. The package is written in MATLAB script language. A graphical user interface (GUI) is included in the PLATSIM software package. This GUI uses MATLAB's Handle graphics to provide a convenient way for setting simulation and analysis parameters.

  9. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    NASA Astrophysics Data System (ADS)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  10. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.

    PubMed

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-01-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  11. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil

    NASA Astrophysics Data System (ADS)

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M.; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R.; Buecheler, Stephan; Tiwari, Ayodhya N.

    2013-08-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  12. Who uses flexible spending accounts: effects of employee characteristics and employer strategies.

    PubMed

    Feldman, R; Schultz, J

    2001-07-01

    Many large employers offer flexible spending accounts (FSAs) to shelter their employees' out-of-pocket medical expenses from taxes and thereby to encourage the purchase of health insurance policies with higher cost sharing. However, very little empirical research has examined the individual employee's decision to contribute to an FSA. To estimate equations for the probability that single employees with no dependents and employees with family health insurance coverage will contribute to FSAs, and the amounts contributed by those with FSAs. An observational study of randomly-selected employees in 15 Minnesota firms matched with information on the strategies those firms use to promote FSAs. Measures of FSA participation were regressed on expected health care spending, employee socio-demographics, and employer strategies. 779 single employees with no dependents and 679 employees with family coverage. Education beyond high school increases the probability that both types of subjects will contribute to FSAs, with marginal effects ranging from 16 to 48 percent. The FSA contribution rate for families doubles when the family's marginal federal income tax rate increases from 15 to 28 percent. Employer strategies to encourage participation are also effective in promoting FSAs. FSAs are used mainly by high-income and highly-educated workers. We question whether this is an equitable use of the income tax code.

  13. Undercontribution bias in health care spending account decisions.

    PubMed

    Schweitzer, M E; Hershey, J C

    1997-01-01

    Results from this work describe 239 responses to a mailed survey regarding employee benefits decisions at a large eastern university. The primary objective of this work is to test for an undercontribution bias in health care financing decisions. The results establish the existence of an undercontribution bias in both actual employee decisions and hypothetical flexible spending account contribution decisions. We describe this bias within the context of related biases including loss aversion, mental accounting, status quo and omission biases. Surprisingly, we find a significant order effect in this study and posit that preference construction in this context is an active, reference-dependent process. In addition, results from this work demonstrate the endogenous nature of health care flexible spending account expenditures. The results have important implications both for the descriptive framework of and the normative solution to the flexible spending account contribution decision.

  14. Balancing accuracy, efficiency, and flexibility in a radiative transfer parameterization for dynamical models

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Mlawer, E. J.

    2017-12-01

    Radiation is key process in numerical models of the atmosphere. The problem is well-understood and the parameterization of radiation has seen relatively few conceptual advances in the past 15 years. It is nonthelss often the single most expensive component of all physical parameterizations despite being computed less frequently than other terms. This combination of cost and maturity suggests value in a single radiation parameterization that could be shared across models; devoting effort to a single parameterization might allow for fine tuning for efficiency. The challenge lies in the coupling of this parameterization to many disparate representations of clouds and aerosols. This talk will describe RRTMGP, a new radiation parameterization that seeks to balance efficiency and flexibility. This balance is struck by isolating computational tasks in "kernels" that expose as much fine-grained parallelism as possible. These have simple interfaces and are interoperable across programming languages so that they might be repalced by alternative implementations in domain-specific langauges. Coupling to the host model makes use of object-oriented features of Fortran 2003, minimizing branching within the kernels and the amount of data that must be transferred. We will show accuracy and efficiency results for a globally-representative set of atmospheric profiles using a relatively high-resolution spectral discretization.

  15. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics

    PubMed Central

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-01-01

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry. PMID:24603964

  16. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics.

    PubMed

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-03-07

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.

  17. Bio-Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices.

    PubMed

    Lam, Jeun-Yan; Shih, Chien-Chung; Lee, Wen-Ya; Chueh, Chu-Chen; Jang, Guang-Way; Huang, Cheng-Jyun; Tung, Shih-Huang; Chen, Wen-Chang

    2018-05-30

    Exploiting biomass has raised great interest as an alternative to the fossil resources for environmental protection. In this respect, polyethylene furanoate (PEF), one of the bio-based polyesters, thus reveals a great potential to replace the commonly used polyethylene terephthalate (PET) on account of its better mechanical, gas barrier, and thermal properties. Herein, a bio-based, flexible, conductive film is successfully developed by coupling a PEF plastic substrate with silver nanowires (Ag NWs). Besides the appealing advantage of renewable biomass, PEF also exhibits a good transparency around 90% in the visible wavelength range, and its constituent polar furan moiety is revealed to enable an intense interaction with Ag NWs to largely enhance the adhesion of Ag NWs grown above, as exemplified by the superior bending and peeling durability than the currently prevailing PET substrate. Finally, the efficiency of conductive PEF/Ag NWs film in fabricating efficient flexible organic thin-film transistor and organic photovoltaic (OPV) is demonstrated. The OPV device achieves a power conversion efficiency of 6.7%, which is superior to the device based on ITO/PEN device, manifesting the promising merit of the bio-based PEF for flexible electronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Caring for people efficiently.

    PubMed

    Hughes, D

    1993-09-01

    The UK government's plans and objectives for community care in the 1990s are examined. The objective of providing care in the community 'wherever possible' is unlikely to be efficient unless the costs and benefits of providing such care are accounted for. Even if it were efficient to provide more care in the community, the mechanisms aimed at ensuring the transfer of funds have been inadequate in terms of encouraging such an objective. These same principles (i.e. the need to assess costs and benefits) should be applied to the design of individual packages of care in the community, when the costs and benefits of carers' time become more important. Case management offers the opportunity to assess individual circumstances which is necessary for the design of efficient packages of care. However, case management is likely to suffer from the problems of fragmentation which makes organisation of flexible packages of care difficult.

  19. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation.

    PubMed

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J

    2015-12-14

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0-200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400-2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5-17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m(-2). This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies.

  20. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation

    PubMed Central

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K.; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J.

    2015-01-01

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0–200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400–2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5–17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m−2. This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies. PMID:26657535

  1. Behavioral flexibility and problem solving in an invasive bird

    PubMed Central

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984

  2. Behavioral flexibility and problem solving in an invasive bird.

    PubMed

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  3. Spatial operator algebra for flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1993-01-01

    This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.

  4. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  5. A-VCI: A flexible method to efficiently compute vibrational spectra

    NASA Astrophysics Data System (ADS)

    Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2017-06-01

    The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm-1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm-1 is the most accurate computation that exists today on such systems.

  6. A-VCI: A flexible method to efficiently compute vibrational spectra.

    PubMed

    Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2017-06-07

    The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm -1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm -1 is the most accurate computation that exists today on such systems.

  7. syris: a flexible and efficient framework for X-ray imaging experiments simulation.

    PubMed

    Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo

    2017-11-01

    An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.

  8. A Flexible and Efficient Method for Solving Ill-Posed Linear Integral Equations of the First Kind for Noisy Data

    NASA Astrophysics Data System (ADS)

    Antokhin, I. I.

    2017-06-01

    We propose an efficient and flexible method for solving Fredholm and Abel integral equations of the first kind, frequently appearing in astrophysics. These equations present an ill-posed problem. Our method is based on solving them on a so-called compact set of functions and/or using Tikhonov's regularization. Both approaches are non-parametric and do not require any theoretic model, apart from some very loose a priori constraints on the unknown function. The two approaches can be used independently or in a combination. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact one, as the errors of input data tend to zero. Simulated and astrophysical examples are presented.

  9. Energy minimization on manifolds for docking flexible molecules

    PubMed Central

    Mirzaei, Hanieh; Zarbafian, Shahrooz; Villar, Elizabeth; Mottarella, Scott; Beglov, Dmitri; Vajda, Sandor; Paschalidis, Ioannis Ch.; Vakili, Pirooz; Kozakov, Dima

    2015-01-01

    In this paper we extend a recently introduced rigid body minimization algorithm, defined on manifolds, to the problem of minimizing the energy of interacting flexible molecules. The goal is to integrate moving the ligand in six dimensional rotational/translational space with internal rotations around rotatable bonds within the two molecules. We show that adding rotational degrees of freedom to the rigid moves of the ligand results in an overall optimization search space that is a manifold to which our manifold optimization approach can be extended. The effectiveness of the method is shown for three different docking problems of increasing complexity. First we minimize the energy of fragment-size ligands with a single rotatable bond as part of a protein mapping method developed for the identification of binding hot spots. Second, we consider energy minimization for docking a flexible ligand to a rigid protein receptor, an approach frequently used in existing methods. In the third problem we account for flexibility in both the ligand and the receptor. Results show that minimization using the manifold optimization algorithm is substantially more efficient than minimization using a traditional all-atom optimization algorithm while producing solutions of comparable quality. In addition to the specific problems considered, the method is general enough to be used in a large class of applications such as docking multidomain proteins with flexible hinges. The code is available under open source license (at http://cluspro.bu.edu/Code/Code_Rigtree.tar), and with minimal effort can be incorporated into any molecular modeling package. PMID:26478722

  10. Flexible transparent electrode

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  11. 5 CFR 610.404 - Requirement for time-accounting method.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS HOURS OF DUTY Flexible and Compressed Work Schedules § 610.404 Requirement for time-accounting method. An agency that authorizes a flexible work schedule or a compressed work schedule under this...

  12. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei

    2014-06-01

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N^2). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal

  13. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei, E-mail: wei@math.msu.edu

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions,more » while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis

  14. Automated matching software for clinical trials eligibility: measuring efficiency and flexibility.

    PubMed

    Penberthy, Lynne; Brown, Richard; Puma, Federico; Dahman, Bassam

    2010-05-01

    Clinical trials (CT) serve as the media that translates clinical research into standards of care. Low or slow recruitment leads to delays in delivery of new therapies to the public. Determination of eligibility in all patients is one of the most important factors to assure unbiased results from the clinical trials process and represents the first step in addressing the issue of under representation and equal access to clinical trials. This is a pilot project evaluating the efficiency, flexibility, and generalizibility of an automated clinical trials eligibility screening tool across 5 different clinical trials and clinical trial scenarios. There was a substantial total savings during the study period in research staff time spent in evaluating patients for eligibility ranging from 165h to 1329h. There was a marked enhancement in efficiency with the automated system for all but one study in the pilot. The ratio of mean staff time required per eligible patient identified ranged from 0.8 to 19.4 for the manual versus the automated process. The results of this study demonstrate that automation offers an opportunity to reduce the burden of the manual processes required for CT eligibility screening and to assure that all patients have an opportunity to be evaluated for participation in clinical trials as appropriate. The automated process greatly reduces the time spent on eligibility screening compared with the traditional manual process by effectively transferring the load of the eligibility assessment process to the computer. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  16. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  17. Recent progress in flexible OLED displays

    NASA Astrophysics Data System (ADS)

    Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.

    2001-09-01

    Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.

  18. Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling

    NASA Astrophysics Data System (ADS)

    Meldgaard, A.; Nielsen, L.; Iaffaldano, G.

    2017-12-01

    The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local

  19. A flexible, extendable, modular and computationally efficient approach to scattering-integral-based seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.; Lamara, S.

    2016-02-01

    We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be

  20. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.

    PubMed

    Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A

    2018-03-27

    Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic

  1. Flexible and High-Performance All-2D Photodetector for Wearable Devices.

    PubMed

    Yao, Jiandong; Yang, Guowei

    2018-05-01

    Emerging novel applications at the forefront of innovation horizon raise new requirements including good flexibility and unprecedented properties for the photoelectronic industry. On account of diversity in transport and photoelectric properties, 2D layered materials have proven as competent building blocks toward next-generation photodetectors. Herein, an all-2D Bi 2 Te 3 -SnS-Bi 2 Te 3 photodetector is fabricated with pulsed-laser deposition. It is sensitive to broadband wavelength from ultraviolet (370 nm) to near-infrared (808 nm). In addition, it exhibits great durability to bend, with intact photoresponse after 100 bend cycles. Upon 370 nm illumination, it achieves a high responsivity of 115 A W -1 , a large external quantum efficiency of 3.9 × 10 4 %, and a superior detectivity of 4.1 × 10 11 Jones. They are among the best figures-of-merit of state-of-the-art 2D photodetectors. The synergistic effect of SnS's strong light-matter interaction, efficient carrier separation of Bi 2 Te 3 -SnS interface, expedite carrier injection across Bi 2 Te 3 -SnS interface, and excellent carrier collection of Bi 2 Te 3 topological insulator electrodes accounts for the superior photodetection properties. In summary, this work depicts a facile all-in-one fabrication strategy toward a Bi 2 Te 3 -SnS-Bi 2 Te 3 photodetector. More importantly, it reveals a novel all-2D concept for construction of flexible, broadband, and high-performance photoelectronic devices by integrating 2D layered metallic electrodes and 2D layered semiconducting channels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An efficient structural finite element for inextensible flexible risers

    NASA Astrophysics Data System (ADS)

    Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.

    2017-12-01

    A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.

  3. MIMO: an efficient tool for molecular interaction maps overlap

    PubMed Central

    2013-01-01

    Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344

  4. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    PubMed

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  5. Accounting for individual differences in human associative learning

    PubMed Central

    Byrom, Nicola C.

    2013-01-01

    Associative learning has provided fundamental insights to understanding psychopathology. However, psychopathology occurs along a continuum and as such, identification of disruptions in processes of associative learning associated with aspects of psychopathology illustrates a general flexibility in human associative learning. A handful of studies have looked specifically at individual differences in human associative learning, but while much work has concentrated on accounting for flexibility in learning caused by external factors, there has been limited work considering how to model the influence of dispositional factors. This review looks at the range of individual differences in human associative learning that have been explored and the attempts to account for, and model, this flexibility. To fully understand human associative learning, further research needs to attend to the causes of variation in human learning. PMID:24027551

  6. Accounting for individual differences in human associative learning.

    PubMed

    Byrom, Nicola C

    2013-09-04

    Associative learning has provided fundamental insights to understanding psychopathology. However, psychopathology occurs along a continuum and as such, identification of disruptions in processes of associative learning associated with aspects of psychopathology illustrates a general flexibility in human associative learning. A handful of studies have looked specifically at individual differences in human associative learning, but while much work has concentrated on accounting for flexibility in learning caused by external factors, there has been limited work considering how to model the influence of dispositional factors. This review looks at the range of individual differences in human associative learning that have been explored and the attempts to account for, and model, this flexibility. To fully understand human associative learning, further research needs to attend to the causes of variation in human learning.

  7. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  8. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki

    2017-02-01

    We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.

  9. Efficient Computation of Closed-loop Frequency Response for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1997-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, full-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open and closed loop loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, a speed-up of almost two orders of magnitude was observed while accuracy improved by up to 5 decimal places.

  10. Earthquakes, Accounting Theory and the Art of Flexibility

    ERIC Educational Resources Information Center

    Vosslamber, Rob

    2011-01-01

    Tuesday, 22 February was the second day of the University of Canterbury (UC) in Christchurch, New Zealand 2011 academic year and the author was preparing lectures for Accounting Theory (ACCT311) in his sixth-floor office of the Commerce building when a 6.3 magnitude earthquake struck. Although no university buildings collapsed, it soon became…

  11. Exploring the Role of Receptor Flexibility in Structure-Based Drug Discovery

    PubMed Central

    Feixas, Ferran; Lindert, Steffen; Sinko, William; McCammon, J. Andrew

    2015-01-01

    The proper understanding of biomolecular recognition mechanisms that take place in a drug target is of paramount importance to improve the efficiency of drug discovery and development. The intrinsic dynamic character of proteins has a strong influence on biomolecular recognition mechanisms and models such as conformational selection have been widely used to account for this dynamic association process. However, conformational changes occurring in the receptor prior and upon association with other molecules are diverse and not obvious to predict when only a few structures of the receptor are available. In view of the prominent role of protein flexibility in ligand binding and its implications for drug discovery, it is of great interest to identify receptor conformations that play a major role in biomolecular recognition before starting rational drug design efforts. In this review, we discuss a number of recent advances in computer-aided drug discovery techniques that have been proposed to incorporate receptor flexibility into structure-based drug design. The allowance for receptor flexibility provided by computational techniques such as molecular dynamics simulations or enhanced sampling techniques helps to improve the accuracy of methods used to estimate binding affinities and, thus, such methods can contribute to the discovery of novel drug leads. PMID:24332165

  12. North Carolina's Flexible Charter School Law: Is Too Much Flexibility Good for Charter Schools?

    ERIC Educational Resources Information Center

    Brown, Frank

    1999-01-01

    North Carolina charter schools are operated by private, nonprofit corporations with federal, tax-exempt status and multicharter licenses. The application process is easy, the political climate under Governor Jim Hunt is progressive, and public employees are not unionized. On balance, the system seems both flexible and accountable to taxpayers.…

  13. Water accounting implementation: water footprint and water efficiency of the coffee shop in Indonesia

    NASA Astrophysics Data System (ADS)

    Hendratno, S. P.; Agustine, Y.

    2018-01-01

    The purpose of this paper is for understand the water accounting practice in the company, especially beverage industry in Indonesia. The sample in this study is one coffee shop near Jakarta. Case study has been choosen as the method in this study. We collect data with semi-structured interview, observation, and survey about the water efficiency in the coffee shop. The operational officers such as barista, cashier, supervisor, and store manager are the respondents in this study. Operational management already understand about the importance of water efficiency in the coffee shop operation, but it can’t be implemented because their standard operation haven’t use the water efficiency as part of their procedures. The coffee shop’s operational standard in cleaning always takes much time and use so much water. The cleaning itself takes one until two hours each day only for cleaning bar and all operational equipment. This paper is for understand the water efficiency in the coffee shop with the focus is in their water footprint, operational standard that used every day in the coffee shop, and the connection between operational standard and the water efficiency.

  14. Flexible Asymmetric Solid-State Supercapacitors by Highly Efficient 3D Nanostructured α-MnO2 and h-CuS Electrodes.

    PubMed

    Patil, Amar M; Lokhande, Abhishek C; Shinde, Pragati A; Lokhande, Chandrakant D

    2018-05-16

    A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO 2 ) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO 2 /flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO 4 /h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO 4 gel electrolyte. Highly active surface areas of α-MnO 2 (75 m 2 g -1 ) and h-CuS (83 m 2 g -1 ) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g -1 at 5 mV s -1 , energy density of 18.9 Wh kg -1 , and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.

  15. Developmental Constraints on Learning Artificial Grammars with Fixed, Flexible and Free Word Order

    PubMed Central

    Nowak, Iga; Baggio, Giosuè

    2017-01-01

    Human learning, although highly flexible and efficient, is constrained in ways that facilitate or impede the acquisition of certain systems of information. Some such constraints, active during infancy and childhood, have been proposed to account for the apparent ease with which typically developing children acquire language. In a series of experiments, we investigated the role of developmental constraints on learning artificial grammars with a distinction between shorter and relatively frequent words (‘function words,’ F-words) and longer and less frequent words (‘content words,’ C-words). We constructed 4 finite-state grammars, in which the order of F-words, relative to C-words, was either fixed (F-words always occupied the same positions in a string), flexible (every F-word always followed a C-word), or free. We exposed adults (N = 84) and kindergarten children (N = 100) to strings from each of these artificial grammars, and we assessed their ability to recognize strings with the same structure, but a different vocabulary. Adults were better at recognizing strings when regularities were available (i.e., fixed and flexible order grammars), while children were better at recognizing strings from the grammars consistent with the attested distribution of function and content words in natural languages (i.e., flexible and free order grammars). These results provide evidence for a link between developmental constraints on learning and linguistic typology. PMID:29089910

  16. A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.

    PubMed

    Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin

    2014-01-01

    This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.

  17. Making a mixed-model line more efficient and flexible by introducing a bypass line

    NASA Astrophysics Data System (ADS)

    Matsuura, Sho; Matsuura, Haruki; Asada, Akiko

    2017-04-01

    This paper provides a design procedure for the bypass subline in a mixed-model assembly line. The bypass subline is installed to reduce the effect of the large difference in operation times among products assembled together in a mixed-model line. The importance of the bypass subline has been increasing in association with the rising necessity for efficiency and flexibility in modern manufacturing. The main topics of this paper are as follows: 1) the conditions in which the bypass subline effectively functions, and 2) how the load should be distributed between the main line and the bypass subline, depending on production conditions such as degree of difference in operation times among products and the mixing ratio of products. To address these issues, we analyzed the lower and the upper bounds of the line length. Based on the results, a design procedure and a numerical example are demonstrated.

  18. Flexible Blades for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  19. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  20. Reconfiguration parameters for drag of flexible cylindrical elements

    NASA Astrophysics Data System (ADS)

    John, Chapman; Wilson, Bruce; Gulliver, John

    2015-11-01

    This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.

  1. Flexibility in Problem Solving: The Case of Equation Solving

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2008-01-01

    A key learning outcome in problem-solving domains is the development of flexible knowledge, where learners know multiple strategies and adaptively choose efficient strategies. Two interventions hypothesized to improve flexibility in problem solving were experimentally evaluated: prompts to discover multiple strategies and direct instruction on…

  2. [Flexibility competencies: emotional organization management].

    PubMed

    Caballero Muñoz, Domingo; Blanco Prieto, Antonio

    2007-11-01

    The aim of this article is to analyse the transferral of flexibility from contemporary organizations to workers. Through the approach of management by competencies, organizations try to develop in their workers behaviours that are related to efficient job performance. In order to appraise the importance of this approach, we used a critical-rational perspective to discuss the productivity demands that are characteristic of advanced industrial societies. The article shows how the link between workers' flexibility management and their emotional competencies affects their lives, which, like the organizations, should be versatile and adaptable to change.

  3. Automatic Tension Adjuster For Flexible-Shaft Grinder

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1990-01-01

    Flexible shaft of grinding tool automatically maintained in tension by air pressure. Probelike tool bent to reach hard-to-reach areas for grinding and polishing. Unless shaft held in tension, however, it rubs against its sheath, overheating and wearing out quickly. By taking up slack in flexible cable, tension adjuster reduces friction and enables tool to operate more efficiently, in addition to lengthening operating life.

  4. Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells.

    PubMed

    Xu, Zijie; Li, Teng; Zhang, Fayin; Hong, Xiaodan; Xie, Shuyao; Ye, Meidan; Guo, Wenxi; Liu, Xiangyang

    2017-03-17

    The rapid development of modern electronics has given rise to a higher demand for flexible and wearable energy sources. Flexible transparent conducting electrodes (TCEs) are one of the essential components of flexible/wearable thin-film solar cells (SCs). In this regard, we present highly transparent and conducting CuS-nanosheet (NS) networks with an optimized sheet resistance (R s ) as low as 50 Ω sq -1 at 85% transmittance as a counter electrode (CE) for flexible quantum-dot solar cells (QDSCs). The CuS NS network electrode exhibits remarkable mechanical flexibility under bending tests compared to traditional ITO/plastic substrates and sputtered CuS films. Herein, CuS NS networks not only served as conducting films for collecting electrons from the external circuit, but also served as superior catalysts for reducing polysulfide (S 2- /S x 2- ) electrolytes. A power conversion efficiency (PCE) up to 3.25% was achieved for the QDSCs employing CuS NS networks as CEs, which was much higher than those of the devices based on Pt networks and sputtered CuS films. We believe that such CuS network TCEs with high flexibility, transparency, conductivity and catalytic activity could be widely used in making wearable electronic products.

  5. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    PubMed

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  6. Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae

    PubMed Central

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-01-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  7. Methods to Efficiently Achieve High-Quality Teaching of Accounting at the University--A Teaching Innovation Evaluation

    ERIC Educational Resources Information Center

    Hruška, Ing. Zdenek

    2018-01-01

    Teaching of accounting is specific due to its frequently updated content, because Czech legal regulations significantly change annually, either because of the legislative or harmonization modifications, hence there is a need to constantly seek new ways to ensure a good quality of teaching in the efficient education process. The paper is based on…

  8. Flexible funding opportunities for transportation investments

    DOT National Transportation Integrated Search

    1996-01-01

    The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) broke significant ground in giving State and local : decisionmakers greater discretion in the use of Federal transportation dollars. In particular, ISTEAs flexible fund : program...

  9. Intermittent Swimming with a Flexible Propulsor

    NASA Astrophysics Data System (ADS)

    Akoz, Emre; Moored, Keith

    2017-11-01

    Aquatic animals use a variety of swimming gaits to propel themselves efficiently through the oceans. One type of gait known as intermittent or burst-and-coast swimming is used by species such as saithe, cod and trout. Recent studies have shown that this gait can save up to 60% of a swimmer's energy by exploiting an inviscid Garrick mechanism. These detailed studies have examined the effects of an intermittent swimming gait on rigid propulsors, yet the caudal fins of intermittent swimmers are in fact highly flexible propulsors. In this respect, to gain a comprehensive understanding of intermittent swimming, the effect of elasticity on the swimming performance and wake flow of an intermittent swimmer is investigated. To accomplish this a torsional spring structural model is strongly coupled to a fast boundary element method solver that captures the fluid-structure interaction of a two-dimensional self-propelled intermittently pitching hydrofoil. It is shown that flexibility introduces extra vortices to the coasting phase of motion that can either promote or diminish thrust production depending upon the hydrofoil parameters. An optimal intermittent flexible swimmer is shown to increase its efficiency by as much as 28% when compared to an optimal continuous flexible swimmer. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  10. A bio-inspired study on tidal energy extraction with flexible flapping wings.

    PubMed

    Liu, Wendi; Xiao, Qing; Cheng, Fai

    2013-09-01

    Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.

  11. Flexibility evaluation of multiechelon supply chains.

    PubMed

    Almeida, João Flávio de Freitas; Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda

    2018-01-01

    Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.

  12. Mathematical Modeling For Control Of A Flexible Manipulator

    NASA Technical Reports Server (NTRS)

    Hu, Anren

    1996-01-01

    Improved method of mathematical modeling of dynamics of flexible robotic manipulators developed for use in controlling motions of manipulators. Involves accounting for effect, upon modes of vibration of manipulator, of changes in configuration of manipulator and manipulated payload(s). Flexible manipulator has one or more long, slender articulated link(s), like those used in outer space, method also applicable to terrestrial industrial robotic manipulators with relatively short, stiff links, or to such terrestrial machines as construction cranes.

  13. Accountability. State Implementation of Common Core State Standards

    ERIC Educational Resources Information Center

    Anderson, Kimberly; Mira, Mary Elizabeth

    2014-01-01

    All of the 15 states in this study have recently been involved in school accountability system reform. Since 2011, the states have taken advantage of a federal program to give them flexibility around certain accountability requirements of the "No Child Left Behind Act" of 2001 (NCLB), the most recent reauthorization of the Elementary and…

  14. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.

    PubMed

    Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger

    2013-04-22

    For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.

  15. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    PubMed

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  16. An Overview of the Development of Flexible Sensors.

    PubMed

    Han, Su-Ting; Peng, Haiyan; Sun, Qijun; Venkatesh, Shishir; Chung, Kam-Sing; Lau, Siu Chuen; Zhou, Ye; Roy, V A L

    2017-09-01

    Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Algorithms for Efficient Computation of Transfer Functions for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1998-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, still-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open- and closed-loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, the present method was up to two orders of magnitude faster than a traditional method. The present method generally showed good to excellent accuracy throughout the range of test frequencies, while traditional methods gave adequate accuracy for lower frequencies, but generally deteriorated in performance at higher frequencies with worst case errors being many orders of magnitude times the correct values.

  18. Light management in flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan

    2014-10-01

    Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.

  19. Flexible sequential designs for multi-arm clinical trials.

    PubMed

    Magirr, D; Stallard, N; Jaki, T

    2014-08-30

    Adaptive designs that are based on group-sequential approaches have the benefit of being efficient as stopping boundaries can be found that lead to good operating characteristics with test decisions based solely on sufficient statistics. The drawback of these so called 'pre-planned adaptive' designs is that unexpected design changes are not possible without impacting the error rates. 'Flexible adaptive designs' on the other hand can cope with a large number of contingencies at the cost of reduced efficiency. In this work, we focus on two different approaches for multi-arm multi-stage trials, which are based on group-sequential ideas, and discuss how these 'pre-planned adaptive designs' can be modified to allow for flexibility. We then show how the added flexibility can be used for treatment selection and sample size reassessment and evaluate the impact on the error rates in a simulation study. The results show that an impressive overall procedure can be found by combining a well chosen pre-planned design with an application of the conditional error principle to allow flexible treatment selection. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Controlling Flexible Manipulators, an Experimental Investigation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hastings, Gordon Greene

    1986-01-01

    Lightweight, slender manipulators offer faster response and/or greater workspace range for the same size actuators than tradional manipulators. Lightweight construction of manipulator links results in increased structural flexibility. The increase flexibility must be considered in the design of control systems to properly account for the dynamic flexible vibrations and static deflections. Real time control of the flexible manipulator vibrations are experimentally investigated. Models intended for real-time control of distributed parameter system such as flexible manipulators rely on model approximation schemes. An linear model based on the application of Lagrangian dynamics to a rigid body mode and a series of separable flexible modes is examined with respect to model order requirements, and modal candidate selection. Balanced realizations are applied to the linear flexible model to obtain an estimate of appropriate order for a selected model. Describing the flexible deflections as a linear combination of modes results in measurements of beam state, which yield information about several modes. To realize the potential of linear systems theory, knowledge of each state must be available. State estimation is also accomplished by implementation of a Kalman Filter. State feedback control laws are implemented based upon linear quadratic regulator design.

  1. Development of Flexible Multilayer Circuits and Cables

    NASA Technical Reports Server (NTRS)

    Barnes, Kevin N.; Bryant, Robert; Holloway, Nancy; Draughon, Fred

    2005-01-01

    A continuing program addresses the development of flexible multilayer electronic circuits and associated flexible cables. This development is undertaken to help satisfy aerospace-system-engineering requirements for efficient, lightweight electrical and electronic subsystems that can fit within confined spaces, adhere to complexly shaped surfaces, and can be embedded within composite materials. Heretofore, substrate layers for commercial flexible circuitry have been made from sheets of Kapton (or equivalent) polyimide and have been bonded to copper conductors and to other substrate layers by means of adhesives. The substrates for the present developmental flexible circuitry are made from thin films of a polyimide known as LaRC(TM)-SI. This polyimide is thermoplastic and, therefore, offers the potential to eliminate delamination and the need for adhesives. The development work undertaken thus far includes experiments in the use of several techniques of design and fabrication (including computer-aided design and fabrication) of representative flexible circuits. Anticipated future efforts would focus on multilayer bonding, fabrication of prototypes, and overcoming limitations.

  2. Applying new AICPA accounting rules on special reports.

    PubMed

    Reinstein, A; Dery, R J

    1998-04-01

    Two new standards on agreed-upon procedures, issued by the American Institute of Certified Public Accountants, provide healthcare organizations and associated decision makers with new flexibility in acquiring professional accounting services. Effective January 1, 1996, these procedures allow organizations to target the type and volume of services performed by accountants and potentially avoid the time and expense involved in completing a full financial statement audit. As with any other accounting engagement, both the healthcare organization and the accounting firm need to establish what procedures will be conducted, who will be allowed to use the resulting report, and how the procedures will be conducted.

  3. ACFA 2020 - An FP7 project on active control of flexible fuel efficient aircraft configurations

    NASA Astrophysics Data System (ADS)

    Maier, R.

    2013-12-01

    This paper gives an overview about the project ACFA 2020 which is funded by the European Commission within the 7th framework program. The acronym ACFA 2020 stands for Active Control for Flexible Aircraft 2020. The project is dealing with the design of highly fuel efficient aircraft configurations and, in particular, on innovative active control concepts with the goal to reduce loads and structural weight. Major focus lays on blended wing body (BWB) aircraft. Blended wing body type aircraft configurations are seen as the most promising future concept to fulfill the so-called ACARE (Advisory Council for Aeronautics Research in Europe) vision 2020 goals in regards to reduce fuel consumption and external noise. The paper discusses in some detail the overall goals and how they are addressed in the workplan. Furthermore, the major achievements of the project are outlined and a short outlook on the remaining work is given.

  4. The Wholesale Monkey Business. An Accounting Program. Operator's Manual.

    ERIC Educational Resources Information Center

    Thompson, Charles D.

    Designed to combine a family of related jobs in the accounting field into a realistic learning atmosphere, this simulation revolves around a fictitious company that distributes pet supplies. The simulation has been kept flexible and open-ended to allow for its incorporation into any clerical, bookkeeping, or accounting instructional program.…

  5. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    PubMed

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Flexible resources for quantum metrology

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang

    2017-06-01

    Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.

  7. Analysis of data collected from right and left limbs: Accounting for dependence and improving statistical efficiency in musculoskeletal research.

    PubMed

    Stewart, Sarah; Pearson, Janet; Rome, Keith; Dalbeth, Nicola; Vandal, Alain C

    2018-01-01

    Statistical techniques currently used in musculoskeletal research often inefficiently account for paired-limb measurements or the relationship between measurements taken from multiple regions within limbs. This study compared three commonly used analysis methods with a mixed-models approach that appropriately accounted for the association between limbs, regions, and trials and that utilised all information available from repeated trials. Four analysis were applied to an existing data set containing plantar pressure data, which was collected for seven masked regions on right and left feet, over three trials, across three participant groups. Methods 1-3 averaged data over trials and analysed right foot data (Method 1), data from a randomly selected foot (Method 2), and averaged right and left foot data (Method 3). Method 4 used all available data in a mixed-effects regression that accounted for repeated measures taken for each foot, foot region and trial. Confidence interval widths for the mean differences between groups for each foot region were used as a criterion for comparison of statistical efficiency. Mean differences in pressure between groups were similar across methods for each foot region, while the confidence interval widths were consistently smaller for Method 4. Method 4 also revealed significant between-group differences that were not detected by Methods 1-3. A mixed effects linear model approach generates improved efficiency and power by producing more precise estimates compared to alternative approaches that discard information in the process of accounting for paired-limb measurements. This approach is recommended in generating more clinically sound and statistically efficient research outputs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vibration and Control of Flexible Rotor Supported by Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou

    1988-01-01

    Active vibration control of flexible rotors supported by magnetic bearings is discussed. Using a finite-element method for a mathematical model of the flexible rotor, the eigenvalue problem is formulated taking into account the interaction between a mechanical system of the flexible rotor and an electrical system of the magnetic bearings and the controller. However, for the sake of simplicity, gyroscopic effects are disregarded. It is possible to adapt this formulation to a general flexible rotor-magnetic bearing system. Controllability with and without collocation sensors and actuators located at the same distance along the rotor axis is discussed for the higher order flexible modes of the test rig. In conclusion, it is proposed that it is necessary to add new active control loops for the higher flexible modes even in the case of collocation. Then it is possible to stabilize for the case of uncollocation by means of this method.

  9. Shaft flexibility effects on the forced response of a bladed-disk assembly

    NASA Technical Reports Server (NTRS)

    Khader, N.; Loewy, R. G.

    1990-01-01

    A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.

  10. Knowledge of damage identification about tensegrities via flexibility disassembly

    NASA Astrophysics Data System (ADS)

    Jiang, Ge; Feng, Xiaodong; Du, Shigui

    2017-12-01

    Tensegrity structures composing of continuous cables and discrete struts are under tension and compression, respectively. In order to determine the damage extents of tensegrity structures, a new method for tensegrity structural damage identification is presented based on flexibility disassembly. To decompose a tensegrity structural flexibility matrix into the matrix represention of the connectivity between degress-of-freedoms and the diagonal matrix comprising of magnitude informations. Step 1: Calculate perturbation flexibility; Step 2: Compute the flexibility connectivity matrix and perturbation flexibility parameters; Step 3: Calculate the perturbation stiffness parameters. The efficiency of the proposed method is demonstrated by a numeical example comprising of 12 cables and 4 struts with pretensioned. Accurate identification of local damage depends on the availability of good measured data, an accurate and reasonable algorithm.

  11. Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.

    2017-04-01

    Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.

  12. Stability of perovskite solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  13. Flexibility evaluation of multiechelon supply chains

    PubMed Central

    Conceição, Samuel Vieira; Pinto, Luiz Ricardo; de Camargo, Ricardo Saraiva; Júnior, Gilberto de Miranda

    2018-01-01

    Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution. PMID:29584755

  14. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.

    PubMed

    Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen

    2013-06-10

    Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester.

    PubMed

    Jeong, Chang Kyu; Baek, Changyeon; Kingon, Angus I; Park, Kwi-Il; Kim, Seung-Hyun

    2018-05-01

    In the past two decades, mechanical energy harvesting technologies have been developed in various ways to support or power small-scale electronics. Nevertheless, the strategy for enhancing current and charge performance of flexible piezoelectric energy harvesters using a simple and cost-effective process is still a challenging issue. Herein, a 1D-3D (1-3) fully piezoelectric nanocomposite is developed using perovskite BaTiO 3 (BT) nanowire (NW)-employed poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) for a high-performance hybrid nanocomposite generator (hNCG) device. The harvested output of the flexible hNCG reaches up to ≈14 V and ≈4 µA, which is higher than the current levels of even previous piezoceramic film-based flexible energy harvesters. Finite element analysis method simulations study that the outstanding performance of hNCG devices attributes to not only the piezoelectric synergy of well-controlled BT NWs and within P(VDF-TrFE) matrix, but also the effective stress transferability of piezopolymer. As a proof of concept, the flexible hNCG is directly attached to a hand to scavenge energy using a human motion in various biomechanical frequencies for self-powered wearable patch device applications. This research can pave the way for a new approach to high-performance wearable and biocompatible self-sufficient electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. BP-Dock: A Flexible Docking Scheme for Exploring Protein–Ligand Interactions Based on Unbound Structures

    PubMed Central

    Bolia, Ashini; Gerek, Z. Nevin; Ozkan, S. Banu

    2016-01-01

    Molecular docking serves as an important tool in modeling protein–ligand interactions. However, it is still challenging to incorporate overall receptor flexibility, especially backbone flexibility, in docking due to the large conformational space that needs to be sampled. To overcome this problem, we developed a novel flexible docking approach, BP-Dock (Backbone Perturbation-Dock) that can integrate both backbone and side chain conformational changes induced by ligand binding through a multi-scale approach. In the BP-Dock method, we mimic the nature of binding-induced events as a first-order approximation by perturbing the residues along the protein chain with a small Brownian kick one at a time. The response fluctuation profile of the chain upon these perturbations is computed using the perturbation response scanning method. These response fluctuation profiles are then used to generate binding-induced multiple receptor conformations for ensemble docking. To evaluate the performance of BP-Dock, we applied our approach on a large and diverse data set using unbound structures as receptors. We also compared the BP-Dock results with bound and unbound docking, where overall receptor flexibility was not taken into account. Our results highlight the importance of modeling backbone flexibility in docking for recapitulating the experimental binding affinities, especially when an unbound structure is used. With BP-Dock, we can generate a wide range of binding site conformations realized in nature even in the absence of a ligand that can help us to improve the accuracy of unbound docking. We expect that our fast and efficient flexible docking approach may further aid in our understanding of protein–ligand interactions as well as virtual screening of novel targets for rational drug design. PMID:24380381

  17. Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode

    NASA Astrophysics Data System (ADS)

    Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon

    2015-09-01

    Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.

  18. Flexible thermochromic window based on hybridized VO2/graphene.

    PubMed

    Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok

    2013-07-23

    Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.

  19. Empirical study of the dependence of the results of multivariable flexible survival analyses on model selection strategy.

    PubMed

    Binquet, C; Abrahamowicz, M; Mahboubi, A; Jooste, V; Faivre, J; Bonithon-Kopp, C; Quantin, C

    2008-12-30

    Flexible survival models, which avoid assumptions about hazards proportionality (PH) or linearity of continuous covariates effects, bring the issues of model selection to a new level of complexity. Each 'candidate covariate' requires inter-dependent decisions regarding (i) its inclusion in the model, and representation of its effects on the log hazard as (ii) either constant over time or time-dependent (TD) and, for continuous covariates, (iii) either loglinear or non-loglinear (NL). Moreover, 'optimal' decisions for one covariate depend on the decisions regarding others. Thus, some efficient model-building strategy is necessary.We carried out an empirical study of the impact of the model selection strategy on the estimates obtained in flexible multivariable survival analyses of prognostic factors for mortality in 273 gastric cancer patients. We used 10 different strategies to select alternative multivariable parametric as well as spline-based models, allowing flexible modeling of non-parametric (TD and/or NL) effects. We employed 5-fold cross-validation to compare the predictive ability of alternative models.All flexible models indicated significant non-linearity and changes over time in the effect of age at diagnosis. Conventional 'parametric' models suggested the lack of period effect, whereas more flexible strategies indicated a significant NL effect. Cross-validation confirmed that flexible models predicted better mortality. The resulting differences in the 'final model' selected by various strategies had also impact on the risk prediction for individual subjects.Overall, our analyses underline (a) the importance of accounting for significant non-parametric effects of covariates and (b) the need for developing accurate model selection strategies for flexible survival analyses. Copyright 2008 John Wiley & Sons, Ltd.

  20. Factors impeding flexible inpatient unit design.

    PubMed

    Pati, Debajyoti; Evans, Jennie; Harvey, Thomas E; Bazuin, Doug

    2012-01-01

    To identify and examine factors extraneous to the design decision-making process that could impede the optimization of flexibility on inpatient units. A 2006 empirical study to identify domains of design decisions that affect flexibility on inpatient units found some indication in the context of the acuity-adaptable operational model that factors extraneous to the design process could have negatively influenced the successful implementation of the model. This raised questions regarding extraneous factors that might influence the successful optimization of flexibility. An exploratory, qualitative method was adopted to examine the question. Stakeholders from five recently built acute care inpatient units participated in the study, which involved three types of data collection: (1) verbal protocol data from a gaming session; (2) in-depth semi-structured interviews; and (3) shadowing frontline personnel. Data collection was conducted between June 2009 and November 2010. The study revealed at least nine factors extraneous to the design process that have the potential to hinder the optimization of flexibility in four domains: (1) systemic; (2) cultural; (3) human; and (4) financial. Flexibility is critical to hospital operations in the new healthcare climate, where cost reduction constitutes a vital target. From this perspective, flexibility and efficiency strategies can be influenced by (1) return on investment, (2) communication, (3) culture change, and (4) problem definition. Extraneous factors identified in this study could also affect flexibility in other care settings; therefore, these findings may be viewed from the overall context of hospital design.

  1. Disk flexibility effects on the rotordynamics of the SSME high pressure turbopumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1990-01-01

    Rotordynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that it may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbopumps. Finite element analyses were performed for a simplified free-free flexible disk rotor models and the modes and frequencies compared to those of a rigid disk model. Equations were developed to account for disk flexibility in rotordynamical analysis. Simulation studies were conducted to assess the influence of disk flexibility on the HPOTP. Some recommendations are given as to the importance of disk flexibility and for how this project should proceed.

  2. Silvabase: A flexible data file management system

    NASA Technical Reports Server (NTRS)

    Lambing, Steven J.; Reynolds, Sandra J.

    1991-01-01

    The need for a more flexible and efficient data file management system for mission planning in the Mission Operations Laboratory (EO) at MSFC has spawned the development of Silvabase. Silvabase is a new data file structure based on a B+ tree data structure. This data organization allows for efficient forward and backward sequential reads, random searches, and appends to existing data. It also provides random insertions and deletions with reasonable efficiency, utilization of storage space well but not at the expense of speed, and performance of these functions on a large volume of data. Mission planners required that some data be keyed and manipulated in ways not found in a commercial product. Mission planning software is currently being converted to use Silvabase in the Spacelab and Space Station Mission Planning Systems. Silvabase runs on a Digital Equipment Corporation's popular VAX/VMS computers in VAX Fortran. Silvabase has unique features involving time histories and intervals such as in operations research. Because of its flexibility and unique capabilities, Silvabase could be used in almost any government or commercial application that requires efficient reads, searches, and appends in medium to large amounts of almost any kind of data.

  3. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  4. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE PAGES

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...

    2017-10-27

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  5. Functional flexibility in wild bonobo vocal behaviour

    PubMed Central

    Archbold, Jahmaira; Zuberbühler, Klaus

    2015-01-01

    A shared principle in the evolution of language and the development of speech is the emergence of functional flexibility, the capacity of vocal signals to express a range of emotional states independently of context and biological function. Functional flexibility has recently been demonstrated in the vocalisations of pre-linguistic human infants, which has been contrasted to the functionally fixed vocal behaviour of non-human primates. Here, we revisited the presumed chasm in functional flexibility between human and non-human primate vocal behaviour, with a study on our closest living primate relatives, the bonobo (Pan paniscus). We found that wild bonobos use a specific call type (the “peep”) across a range of contexts that cover the full valence range (positive-neutral-negative) in much of their daily activities, including feeding, travel, rest, aggression, alarm, nesting and grooming. Peeps were produced in functionally flexible ways in some contexts, but not others. Crucially, calls did not vary acoustically between neutral and positive contexts, suggesting that recipients take pragmatic information into account to make inferences about call meaning. In comparison, peeps during negative contexts were acoustically distinct. Our data suggest that the capacity for functional flexibility has evolutionary roots that predate the evolution of human speech. We interpret this evidence as an example of an evolutionary early transition away from fixed vocal signalling towards functional flexibility. PMID:26290789

  6. Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells

    DTIC Science & Technology

    2012-08-01

    microid extender followed by a colloidal silica /wetted imperial cloth. The foil was then cut into 1- × 2-cm samples. Then, the substrates were...17. Lei, B.; Liao, J.; Wang, R. J.; Su, C.; Kuang, D. Ordered Crystalline Ti02 Nanotube Arrays on Transparent FTO Glass for Efficient Dye...combined with a transparent , Indium Tin Dioxide coated PET film are attractive candidates for efficient, flexible DSSC’s. Flexible solar cells offer

  7. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk

    PubMed Central

    Danchin, Antoine; Binder, Philippe M.; Noria, Stanislas

    2011-01-01

    The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to ‘tinker’, i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles. PMID:24710302

  8. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk.

    PubMed

    Danchin, Antoine; Binder, Philippe M; Noria, Stanislas

    2011-11-29

    The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to 'tinker', i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles.

  9. Granular materials interacting with thin flexible rods

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  10. Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

    PubMed Central

    2016-01-01

    We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079

  11. Performance analysis of flexible DSSC with binder addition

    NASA Astrophysics Data System (ADS)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  12. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    PubMed

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Granular shear flows of flexible rod-like particles

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Curtis, J.; Wassgren, C.; Ketterhagen, W.; Hancock, B.

    2013-06-01

    Flexible particles are widely encountered in nature, e.g., stalks of plants, fiberglass particles, and ceramic nanofibers. Early studies indicated that the deformability of particles has a significant impact on the properties of granular materials and fiber suspensions. In this study, shear flows of flexible particles are simulated using the Discrete Element Method (DEM) to explore the effect of particle flexibility on the flow behavior and constitutive laws. A flexible particle is formed by connecting a number of constituent spheres in a straight line using elastic bonds. The forces/moments due to the normal, tangential, bending, and torsional deformation of a bond resist the relative movement between two bonded constituent spheres. The bond stiffness determines how difficult it is to make a particle deform, and the bond damping accounts for the energy dissipation in the particle vibration process. The simulation results show that elastically bonded particles have smaller coefficients of restitution compared to rigidly connected particles, due to the fact that kinetic energy is partially converted to potential energy in a contact between flexible particles. The coefficient of restitution decreases as the bond stiffness decreases and the bond damping coefficient increases. As a result, smaller stresses are obtained for granular flows of the flexible particles with smaller bond stiffness and larger bond damping coefficient.

  14. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  15. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  16. Investigation of the torsional stiffness of flexible disc coupling

    NASA Astrophysics Data System (ADS)

    Buryy, A.; Simonovsky, V.; Obolonik, V.

    2017-08-01

    Calculation of flexible coupling torsional stiffness is required when analyzing the torsional vibrations of the reciprocating machinery train. While having the lowest torsional stiffness of all the elements of the train, flexible coupling has a significant influence on the natural frequencies of torsional vibration. However, considering structural complexity of coupling, precise definition of its torsional stiffness is quite a difficult task. The paper presents a method for calculating the torsional stiffness of flexible disc coupling based on the study of its finite element model response under the action of torque. The analysis of the basic parameters that quantitatively and qualitatively affect the coupling torsional stiffness has been also provided. The results of the calculation as well as model adequacy, sufficient for practical application, have been confirmed at the experimental measurement of flexible disc coupling torsional stiffness. The obtained elastic characteristics (dependences of applied torque and torsional stiffness versus twist angle) are nonlinear in the initial stage of loading. This feature should be taken into account when creating reliable mathematical models of torsional vibrations of reciprocating machinery trains containing flexible disc couplings.

  17. Efficient statistical tests to compare Youden index: accounting for contingency correlation.

    PubMed

    Chen, Fangyao; Xue, Yuqiang; Tan, Ming T; Chen, Pingyan

    2015-04-30

    Youden index is widely utilized in studies evaluating accuracy of diagnostic tests and performance of predictive, prognostic, or risk models. However, both one and two independent sample tests on Youden index have been derived ignoring the dependence (association) between sensitivity and specificity, resulting in potentially misleading findings. Besides, paired sample test on Youden index is currently unavailable. This article develops efficient statistical inference procedures for one sample, independent, and paired sample tests on Youden index by accounting for contingency correlation, namely associations between sensitivity and specificity and paired samples typically represented in contingency tables. For one and two independent sample tests, the variances are estimated by Delta method, and the statistical inference is based on the central limit theory, which are then verified by bootstrap estimates. For paired samples test, we show that the estimated covariance of the two sensitivities and specificities can be represented as a function of kappa statistic so the test can be readily carried out. We then show the remarkable accuracy of the estimated variance using a constrained optimization approach. Simulation is performed to evaluate the statistical properties of the derived tests. The proposed approaches yield more stable type I errors at the nominal level and substantially higher power (efficiency) than does the original Youden's approach. Therefore, the simple explicit large sample solution performs very well. Because we can readily implement the asymptotic and exact bootstrap computation with common software like R, the method is broadly applicable to the evaluation of diagnostic tests and model performance. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization.

    PubMed

    Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea

    2017-01-01

    The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.

  19. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization

    PubMed Central

    Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea

    2017-01-01

    The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239

  20. Lightening Soldiers' Loads by Lifting PV Cells onto Flexible Surfaces |

    Science.gov Websites

    efficiency of cells grown on thick-glass substrates. Reese's challenge has been to combine the best of both CdTe solar cells on flexible glass. "When you grow a CdTe cell, you need to grow it for highest glass, which can withstand high temperatures, was promising, this approach had a drawback. Even flexible

  1. Equity and Efficiency of Minnesota Educational Expenditures with a Focus on English Learners, 2003-2011: A Retrospective Look in a Time of Accountability

    ERIC Educational Resources Information Center

    Alexander, Nicola A.; Jang, Sung Tae

    2017-01-01

    Policymakers and practitioners often must balance distributing resources equitably and efficiently while being accountable for high student achievement. This paper focuses on these concepts as they relate to English learners and examines equity and efficiency in Minnesota's educational funding from 2003 through 2011, the years spanning…

  2. Wind-Induced Reconfigurations in Flexible Branched Trees

    NASA Astrophysics Data System (ADS)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  3. The efficiency of life insurance and family Takaful in Malaysia: Relative efficiency using the stochastic cost frontier analysis

    NASA Astrophysics Data System (ADS)

    Baharin, Roziana; Isa, Zaidi

    2013-04-01

    This paper focuses on the Stochastic cost Frontier Analysis (SFA) approach, in an attempt to measure the relationship between efficiency and organizational structure for Takaful and insurance operators in Malaysia's dual financial system. This study applied a flexible cost functional form i.e., Fourier Flexible Functional Form, for a sample consisting of 19 firms, chosen between 2002 and 2010, by employing the Battese and Coelli invariant efficiency model. The findings show that on average, there is a significant difference in cost efficiency between the Takaful industry and the insurance industry. It was found that Takaful has lower cost efficiency than conventional insurance, which shows that the organization form has an influence on efficiency. Overall, it was observed that the level of efficiency scores for both life insurance and family Takaful do not vary across time.

  4. Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting.

    PubMed

    Sahasrabudhe, Atharva; Dixit, Harsha; Majee, Rahul; Bhattacharyya, Sayan

    2018-05-22

    Herein, we present an innovative approach for transforming commonly available cellulose paper into a flexible and catalytic current collector for overall water splitting. A solution processed soak-and-coat method of electroless plating was used to render a piece of paper conducting by conformably depositing metallic nickel nanoparticles, while still retaining the open macroporous framework. Proof-of-concept paper-electrodes are realized by modifying nickel-paper current collector with model electrocatalysts nickel-iron oxyhydroxide and nickel-molybdenum bimetallic alloy through electrodeposition route. The paper-electrodes demonstrate exceptional activities towards oxygen evolution reaction and hydrogen evolution reaction, requiring overpotentials of 240 and 32 mV at 50 and -10 mA cm -2 , respectively, even as they endure extreme mechanical stress. The generality of this approach is demonstrated by fabricating similar electrodes on cotton fabric, which also show high activity. Finally, a two-electrode paper-electrolyzer is constructed which can split water with an efficiency of 98.01%, and exhibits robust stability for more than 200 h.

  5. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels.

    PubMed

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-19

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  6. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  7. Validation Report for the EO-1 Lightweight Flexible Solar Array Experiment

    NASA Technical Reports Server (NTRS)

    Carpenter, Bernie; Lyons, John; Day, John (Technical Monitor)

    2001-01-01

    The controlled deployment of the Lightweight Flexible Solar Array (LFSA) experiment using the shape memory alloy release and deployment system has been demonstrated. Work remains to be done in increasing the efficiency of Copper Indium Diselinide (CIS) terminations to the flexible harness that carries current from the array to the I-V measurement electronics.

  8. SARS: Safeguards Accounting and Reporting Software

    NASA Astrophysics Data System (ADS)

    Mohammedi, B.; Saadi, S.; Ait-Mohamed, S.

    In order to satisfy the requirements of the SSAC (State System for Accounting and Control of nuclear materials), for recording and reporting objectives; this computer program comes to bridge the gape between nuclear facilities operators and national inspection verifying records and delivering reports. The SARS maintains and generates at-facility safeguards accounting records and generates International Atomic Energy Agency (IAEA) safeguards reports based on accounting data input by the user at any nuclear facility. A database structure is built and BORLAND DELPHI programming language has been used. The software is designed to be user-friendly, to make extensive and flexible management of menus and graphs. SARS functions include basic physical inventory tacking, transaction histories and reporting. Access controls are made by different passwords.

  9. Gravure printing of graphene for large-area flexible electronics.

    PubMed

    Secor, Ethan B; Lim, Sooman; Zhang, Heng; Frisbie, C Daniel; Francis, Lorraine F; Hersam, Mark C

    2014-07-09

    Gravure printing of graphene is demonstrated for the rapid production of conductive patterns on flexible substrates. Development of suitable inks and printing parameters enables the fabrication of patterns with a resolution down to 30 μm. A mild annealing step yields conductive lines with high reliability and uniformity, providing an efficient method for the integration of graphene into large-area printed and flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DEM modeling of flexible structures against granular material avalanches

    NASA Astrophysics Data System (ADS)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  11. Performance analysis of flexible DSSC with binder addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less

  12. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-11-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.

  13. Cost Accounting and Accountability: One Approach.

    ERIC Educational Resources Information Center

    Gingold, William

    This paper outlines an approach designed to provide an accurate and efficient cost accounting system for use in schools and other social service organizations. In his discussion, the author presents a detailed step-by-step description of how to establish, plan, and operate the system. The basic element of the system is the Daily Event Record…

  14. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  15. Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Pavlovs, D.; Bobrovs, V.; Parfjonovs, M.; Alsevska, A.; Ivanovs, G.

    2017-10-01

    Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.

  16. An overview of carbon materials for flexible electrochemical capacitors.

    PubMed

    He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing

    2013-10-07

    Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.

  17. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts.

    PubMed

    He, Jie; Liu, Huiling; Xu, Biao; Wang, Xun

    2015-03-01

    Ultrathin tungsten oxide nanobelts are successfully synthesized via a facile solvothermal method. Sub-1 nm thickness and hydrophobic surface property endow the nanobelts with flexibility, viscosity, gelation, and good catalytic performance in oxidative desulfurization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Shaft flexibility effects on aeroelastic stability of a rotating bladed disk

    NASA Technical Reports Server (NTRS)

    Khader, Naim; Loewy, Robert

    1989-01-01

    A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.

  19. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.

  20. The Federal Role in Defining "Adequate Yearly Progress": The Flexibility/Accountability Trade-Off.

    ERIC Educational Resources Information Center

    Goertz, Margaret E.

    Bills passed by the U.S. House of Representatives and the U.S. Senate in spring 2001 to reauthorize the Elementary and Secondary Education Act (ESEA) reinforce and strengthen the education accountability provisions contained in the Improving America's Schools Act (IASA) of 1994. This paper evaluates the accountability provisions in this…

  1. Flexible, polymer gated, AC-driven organic electroluminescence devices

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.

    2017-08-01

    Comparing rigid inorganic layer, polymeric semiconducting gate layer exhibits superior flexibility as well as efficient carrier manipulation in high frequency AC cycles. Mechanism of the carrier manipulation at the gate in forward and reversed bias of AC cycle is studied. The flexible PET-based AC-OEL device with poly[(9,9-bis(3'-((N,N-dimethyl)-Nethylammonium)- propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br) gate shows a stable electroluminescent performance in frequency sweep with a color rendering index (CRI) over 81 at 2800K color temperature.

  2. Electrochemically Synthesis of Nickel Cobalt Sulfide for High‐Performance Flexible Asymmetric Supercapacitors

    PubMed Central

    Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Shen, Zexiang; Huang, Wei

    2017-01-01

    Abstract A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni–Co–S nanosheet array is successfully deposited on graphene foam (Ni–Co–S/GF) by a one‐step electrochemical method. The Ni–Co–S/GF composed of Ni–Co–S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni–Co–S/GF electrodes have high specific capacitance values of 2918 and 2364 F g−1 at current densities of 1 and 20 A g−1, respectively. Using such hierarchical Ni–Co–S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg−1 when the power densities are 825.0 and 16100 W kg−1, respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni–Co–S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices. PMID:29610721

  3. Electrochemically Synthesis of Nickel Cobalt Sulfide for High-Performance Flexible Asymmetric Supercapacitors.

    PubMed

    Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Lai, Linfei; Shen, Zexiang; Huang, Wei

    2018-02-01

    A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni-Co-S nanosheet array is successfully deposited on graphene foam (Ni-Co-S/GF) by a one-step electrochemical method. The Ni-Co-S/GF composed of Ni-Co-S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni-Co-S/GF electrodes have high specific capacitance values of 2918 and 2364 F g -1 at current densities of 1 and 20 A g -1 , respectively. Using such hierarchical Ni-Co-S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg -1 when the power densities are 825.0 and 16100 W kg -1 , respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni-Co-S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices.

  4. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-01-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471

  5. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  6. Labour Markets and Employment Practices in the Age of Flexibility: A Case Study of Silicon Valley.

    ERIC Educational Resources Information Center

    Carnoy, Martin; And Others

    1997-01-01

    Flexible employment has accounted for more than half of Silicon Valley's total employment growth in the past 10 years. Flexible employment has become a permanent strategy that may create insecurity for low-skilled workers; it also leads to a high turnover rate among highly skilled workers. (JOW)

  7. Shift Work and Cognitive Flexibility: Decomposing Task Performance.

    PubMed

    Cheng, Philip; Tallent, Gabriel; Bender, Thomas John; Tran, Kieulinh Michelle; Drake, Christopher L

    2017-04-01

    Deficits in cognitive functioning associated with shift work are particularly relevant to occupational performance; however, few studies have examined how cognitive functioning is associated with specific components of shift work. This observational study examined how circadian phase, nocturnal sleepiness, and daytime insomnia in a sample of shift workers ( N = 30) were associated with cognitive flexibility during the night shift. Cognitive flexibility was measured using a computerized task-switching paradigm, which produces 2 indexes of flexibility: switch cost and set inhibition. Switch cost represents the additional cognitive effort required in switching to a different task and can impact performance when multitasking is involved. Set inhibition is the efficiency in returning to previously completed tasks and represents the degree of cognitive perseveration, which can lead to reduced accuracy. Circadian phase was measured via melatonin assays, nocturnal sleepiness was assessed using the Multiple Sleep Latency Test, and daytime insomnia was assessed using the Insomnia Severity Index. Results indicated that those with an earlier circadian phase, insomnia, and sleepiness exhibited reduced cognitive flexibility; however, specific components of cognitive flexibility were differentially associated with circadian phase, insomnia, and sleepiness. Individuals with an earlier circadian phase (thus more misaligned to the night shift) exhibited larger switch costs, which was also associated with reduced task efficiency. Shift workers with more daytime insomnia demonstrated difficulties with cognitive inhibition, whereas nocturnal sleepiness was associated with difficulties in reactivating previous tasks. Deficits in set inhibition were also related to reduced accuracy and increased perseverative errors. Together, this study indicates that task performance deficits in shift work are complex and are variably impacted by different mechanisms. Future research may examine

  8. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.; Studer, P.

    1988-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  9. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  10. Adult, Flexible Students' Approaches to Studying in Higher Education

    ERIC Educational Resources Information Center

    Ronning, Wenche M.

    2009-01-01

    A Norwegian translation of the Approaches to Studying Inventory (ASI-32) was administered to 1477 adult students attending flexible study programs in higher education in Norway (2004-05). The intention was to investigate their approaches to studying, taking into account their educational backgrounds and their present, challenging study conditions.…

  11. A screen-printed flexible flow sensor

    NASA Astrophysics Data System (ADS)

    Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.

    2017-04-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.

  12. Flexible Bronchoscopy.

    PubMed

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparison of the Nanopulse Lithotripter to the Holmium Laser: Stone Fragmentation Efficiency and Impact on Flexible Ureteroscope Deflection and Flow.

    PubMed

    Kaplan, Adam G; Chen, Tony T; Sankin, Georgy; Yang, Chen; Dale, Joanne A; Simmons, W Neal; Zhong, Pei; Preminger, Glenn M; Lipkin, Michael Eric

    2016-11-01

    The Nanopulse Lithotripter (NPL; Lithotech Medical, Israel) is a novel intracorporeal device that uses a nanosecond duration electrical discharge through a reusable flexible coaxial probe to endoscopically fragment urinary stones. This device was compared with a holmium laser lithotripsy (HoL) with regard to stone fragmentation efficiency (SFE) and its impact on flexible ureteroscope (URS) deflection and flow of irrigation. Using a custom bench model, a 6 mm BegoStone cylindrical phantom (mixture 5:2) was confined under 0.9% saline atop sequential mesh sieves. The SFE of two NPL probe sizes (2.0F, 3.6F) and two HoL fibers (200, 365 μm) was evaluated using concordant settings of 1 J and 5 Hz. URS deflection and irrigation flow with NPL probes in the working channel were tested in five new fourth generation flexible URS and compared with other adjunct endourologic instruments. The 2.0F NPL showed improved SFE compared with the 200 μm laser (86 mg/min vs 52 mg/min, p = 0.014) as did the 3.6F NPL vs the 365 μm laser (173 mg/min vs 80 mg/min, p = 0.05). The NPL created more 1 to 2 mm fragments; the laser created more dust. URS deflection reduced by 3.75° with the 2.0 NPL probe. URS irrigation flow reduced from 36.5 to 6.3 mL/min with the 2.0F NPL probe. NPL shows improved SFE compared with HoL. Flow with the 2.0F probe is akin to a stone basket. NPL offers an effective alternative to HoL.

  14. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    PubMed

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  15. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  16. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.

    PubMed

    Fu, Yongping; Cai, Xin; Wu, Hongwei; Lv, Zhibin; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2012-11-08

    A novel type of flexible fiber/wearable supercapacitor that is composed of two fiber electrodes - a helical spacer wire and an electrolyte - is demonstrated. In the carbon-based fiber supercapacitor (FSC), which has high capacitance performance, commercial pen ink is directly utilized as the electrochemical material. FSCs have potential benefits in the pursuit of low-cost, large-scale, and efficient flexible/wearable energy storage systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 1

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1989-01-01

    Control/Structures Integration program software needs, computer aided control engineering for flexible spacecraft, computer aided design, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software for flexible structures and robots are among the topics discussed.

  18. Association Between Flexible Duty Hour Policies and General Surgery Resident Examination Performance: A Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) Trial Analysis.

    PubMed

    Blay, Eddie; Hewitt, D Brock; Chung, Jeanette W; Biester, Thomas; Fiore, James F; Dahlke, Allison R; Quinn, Christopher M; Lewis, Frank R; Bilimoria, Karl Y

    2017-02-01

    Concerns persist about the effect of current duty hour reforms on resident educational outcomes. We investigated whether a flexible, less-restrictive duty hour policy (Flexible Policy) was associated with differential general surgery examination performance compared with current ACGME duty hour policy (Standard Policy). We obtained examination scores on the American Board of Surgery In-Training Examination, Qualifying Examination (written boards), and Certifying Examination (oral boards) for residents in 117 general surgery residency programs that participated in the Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) Trial. Using bivariate analyses and regression models, we compared resident examination performance across study arms (Flexible Policy vs Standard Policy) for 2015 and 2016, and 1 year of the Qualifying Examination and Certifying Examination. Adjusted analyses accounted for program-level factors, including the stratification variable for randomization. In 2016, FIRST trial participants were 4,363 general surgery residents. Mean American Board of Surgery In-Training Examination scores for residents were not significantly different between study groups (Flexible Policy vs Standard Policy) overall (Flexible Policy: mean [SD] 502.6 [100.9] vs Standard Policy: 502.7 [98.6]; p = 0.98) or for any individual postgraduate year level. There was no difference in pass rates between study arms for either the Qualifying Examination (Flexible Policy: 90.4% vs Standard Policy: 90.5%; p = 0.99) or Certifying Examination (Flexible Policy: 86.3% vs Standard Policy: 88.6%; p = 0.24). Results from adjusted analyses were consistent with these findings. Flexible, less-restrictive duty hour policies were not associated with differences in general surgery resident performance on examinations during the FIRST Trial. However, more years under flexible duty hour policies might be needed to observe an effect. Copyright © 2016 American College of Surgeons

  19. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-01-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920

  20. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2014-06-24

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.

  1. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    PubMed

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  2. Superwettability-Induced Confined Reaction toward High-Performance Flexible Electrodes.

    PubMed

    Xiong, Weiwei; Liu, Hongliang; Zhou, Yahong; Ding, Yi; Zhang, Xiqi; Jiang, Lei

    2016-05-18

    To find a general strategy to realize confinement of the conductive layer for high-performance flexible electrodes, with improved interfacial adhesion and high conductivity, is of important scientific significance. In this work, superwettability-induced confined reaction is used to fabricate high-performance flexible Ag/polymer electrodes, showing significantly improved silver conversion efficiency and interfacial adhesion. The as-prepared flexible electrodes by superhydrophilic polymeric surface under oil are highly conductive with an order of magnitude higher than the Ag/polymer electrodes obtained from original polymeric surface. The high conductivity achieved via superhydrophilic confinement is ascribed to the fact that the superhydrophilic polymeric surface can enhance the reaction rate of silver deposition and reduce the size of silver nanoparticles to achieve the densest packing. This new approach will provide a simple method to fabricate flexible and highly conductive Ag/polymer electrodes with excellent adhesion between the conductive layer and the substrate, and can be extended to other metal/polymeric electrodes or alloy/polymeric electrodes.

  3. Measures of Potential Flexibility and Practical Flexibility in Equation Solving.

    PubMed

    Xu, Le; Liu, Ru-De; Star, Jon R; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance-has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed.

  4. Measures of Potential Flexibility and Practical Flexibility in Equation Solving

    PubMed Central

    Xu, Le; Liu, Ru-De; Star, Jon R.; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance—has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed. PMID:28848481

  5. Successful strategies for improving operating room efficiency at academic institutions.

    PubMed

    Overdyk, F J; Harvey, S C; Fishman, R L; Shippey, F

    1998-04-01

    In this prospective study, we evaluated the etiology of operating room (OR) delays in an academic institution, examined the impact of multidisciplinary strategies to improve OR efficiency, and established OR timing benchmarks for use in future OR efficiency studies. OR times and delay etiologies were collected for 94 cases during the initial phase of the study. Timing data and delay etiologies were analyzed, and 2 wk of multidisciplinary OR efficiency awareness education was conducted for the nursing, surgical, and anesthesia staff. After the education period, timing data were collected from 1787 cases, and monthly reports listing individual case delays and timing data were sent to the Chiefs of Service. For the first case of the day, patient in room, anesthesia ready, surgical preparation start, and procedure start time were significantly earlier (P < 0.01) in the posteducation period compared with the preeducation period, and the procedure start time for the first case of the day occurred, on average, 22 min earlier than all other procedures. For all cases combined, turnover time decreased, on average, by 16 min. Unavailability of surgeons, anesthesiologists, and residents decreased significantly (P < 0.05) as causes of OR delays. Anesthesia induction times were consistently longer for the vascular and cardiothoracic services, whereas surgical preparation time was increased for the neurosurgical and orthopedic services (P < 0.05). Identification of the etiology of OR inefficiency, combined with multidisciplinary awareness training and personal accountability, can improve OR efficiency. The time savings realized are probably most cost-effective when combined with more flexible OR staffing and improved OR scheduling. We achieved significant improvements in operating room efficiency by analyzing operating room data on causes of delays, devising strategies for minimizing the most common delays, and subsequently measuring delay data. Personal accountability

  6. Redesigning School Accountability and Support: Progress in Pioneering States

    ERIC Educational Resources Information Center

    Cook-Harvey, Channa M.; Stosich, Elizabeth Leisy

    2016-01-01

    How might policymakers and educators utilize the work already being done as states redesign their accountability systems? The 2015 reauthorization of the Elementary and Secondary Education Act (ESEA), brought much needed attention to the performance of traditionally underserved subgroups of students. Supported by greater flexibility under ESEA…

  7. Towards automated visual flexible endoscope navigation.

    PubMed

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  8. Control of nonlinear flexible space structures

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun

    With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of

  9. Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan

    2014-07-01

    We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.

  10. Flexible high-speed CODEC

    NASA Technical Reports Server (NTRS)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-01-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  11. Flexible composite radiation detector

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; Bennett, Bryan L [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Wrobleski, Debra A [Los Alamos, NM; Orler, Edward B [Los Alamos, NM

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  12. Flexible Applications of the Coping Cat Program for Anxious Youth1

    PubMed Central

    Beidas, Rinad S.; Benjamin, Courtney L.; Puleo, Connor M.; Edmunds, Julie M.; Kendall, Philip C.

    2010-01-01

    The current article offers suggestions for ways to adapt empirically supported treatments (ESTs). A specific manualized EST (Coping Cat; Kendall & Hedtke, 2006a) is used to illustrate the concept of “flexibility within fidelity” (Kendall & Beidas, 2007; Kendall, Gosch, Furr, & Sood, 2008). Flexibility within fidelity stresses the importance of using ESTs while considering and taking into account individual client presentations. In this discussion, recommendations are offered for the use of the Coping Cat with younger youth, adolescents, and youth with secondary comorbidities (i.e., social skills deficits, inattentive symptoms, and depressive symptoms). PMID:20936081

  13. Accountability, efficiency, and the "bottom line" in non-profit organizations.

    PubMed

    Cutt, J

    1982-01-01

    Financial reporting by non-profit organizations deals only with accountability for propriety and regularity, and ignores output measurement. The development of output measures of a physical or index nature offers a means of relating dollar costs to output in the form of cost-efficiency or cost-effectiveness measures, but does not provide any measure of the absolute value or worthwhileness of such programs. This fundamental absolute value question should be asked of all non-profit programs and documented to the greatest possible extent in budgetary submissions, and subsequent control and audit. In public sector non-profit programs, the posing of this question requires information on consumer demand other than in aggregative and imprecise form through the political process, and much improved information on the cost side. Eliciting demand information is feasible in the case of public programs with separable benefits by the use of a variety of pricing techniques, direct or imputed, whether or not the service in question is ultimately financed on a user-pay basis. The problem of eliciting demand is more difficult in the case of public goods, but improved demand information can be obtained, ideally by an approach such as the use of a Clarke tax. The argument can be extended to encompass questions of income distribution, stabilization, regulation and tax policy. Recent developments in program evaluation in the federal government are important, but remain deficient in failing to address the question of absolute value.

  14. Flexibility of centromere and kinetochore structures

    PubMed Central

    Burrack, Laura S.; Berman, Judith

    2012-01-01

    Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility manifests in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for studying them. PMID:22445183

  15. A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems

    NASA Technical Reports Server (NTRS)

    Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter

    1989-01-01

    An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.

  16. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.

    2015-04-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.

  17. The Impact of Accounting Methods on Cost Reduction Rates in Defense Aerospace Weapons System Programs

    DTIC Science & Technology

    1988-12-01

    and adhered to in U.S. industry, allow some flexibility in accounting. Under GAAP , accounting areas such as depreciation , inventory, investment tax... depreciation , inventory and investment tax credit) in predicting cost reduction rates are studied. Of the three accounting variables, only inventory...RATES .. ................. ........... 5 1. Depreciation ........ ............... 6 2. Capitalizing or Expensing of Costs . . .. 6 3. Material Costs

  18. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  19. DEM Modeling of a Flexible Barrier Impacted by a Dry Granular Flow

    NASA Astrophysics Data System (ADS)

    Albaba, Adel; Lambert, Stéphane; Kneib, François; Chareyre, Bruno; Nicot, François

    2017-11-01

    Flexible barriers are widely used as protection structures against natural hazards in mountainous regions, in particular for containing granular materials such as debris flows, snow avalanches and rock slides. This article presents a discrete element method-based model developed in the aim of investigating the response of flexible barriers in such contexts. It allows for accounting for the peculiar mechanical and geometrical characteristics of both the granular flow and the barrier in a same framework, and with limited assumptions. The model, developed with YADE software, is described in detail, as well as its calibration. In particular, cables are modeled as continuous bodies. Besides, it naturally considers the sliding of rings along supporting cables. The model is then applied for a generic flexible barrier to demonstrate its capacities in accounting for the behavior of different components. A detailed analysis of the forces in the different components showed that energy dissipators (ED) had limited influence on total force applied to the barrier and retaining capacity, but greatly influenced the load transmission within the barrier and the force in anchors. A sensitivity analysis showed that the barrier's response significantly changes according to the choice of ED activation force and incoming flow conditions.

  20. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers.

    PubMed

    Guo, Kunping; Si, Changfeng; Han, Ceng; Pan, Saihu; Chen, Guo; Zheng, Yanqiong; Zhu, Wenqing; Zhang, Jianhua; Sun, Chang; Wei, Bin

    2017-10-05

    Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS 2 ) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS 2 -based IOLEDs can significantly improve electron-injecting capacity. For the MoS 2 -based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m -2 , which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS 2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS 2 nanopillar arrays by thermal evaporation. Notably, MoS 2 -based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A -1 with the luminance increasing from 100 to 5000 cd m -2 . In addition, we observed that the initial brightness of 500 cd m -2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

  1. Development of Low Density, Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  2. Do Flexible Goal Adjustment and Acceptance Help Preserve Quality of Life in Patients with Multiple Sclerosis?

    PubMed

    Van Damme, Stefaan; De Waegeneer, Annelies; Debruyne, Jan

    2016-06-01

    Goal regulation strategies such as flexible goal adjustment and acceptance are believed to be protective factors in persons with chronic illness, but research on their relative contributions to quality of life in multiple sclerosis (MS) is lacking. We aimed to test the idea that acceptance and flexible goal adjustment (in contrast to tenacious goal pursuit) may help preserve the quality of life in persons with MS. A sample of 117 patients with MS was recruited. They completed questionnaires measuring quality of life (physical functioning, psychological distress), acceptance, flexible goal adjustment, and tenacious goal pursuit. Acceptance significantly accounted for variance in all three indexes of quality of life, beyond the effects of demographic and illness characteristics. The role of goal regulation style was less clear. Flexible goal adjustment significantly accounted for psychological well-being only. Surprisingly, tenacious goal pursuit predicted better psychological functioning and less psychological distress. No support was found for the hypothesis that acceptance and flexible goal adjustment would moderate the relation between illness severity and quality of life. The findings suggest the potential importance of acceptance in understanding MS patients' quality of life, although its hypothesized protective function could not be confirmed. Further conceptual work on acceptance and goal regulation style is needed, as well as prospective work investigating their causal status.

  3. Photo-z-SQL: Integrated, flexible photometric redshift computation in a database

    NASA Astrophysics Data System (ADS)

    Beck, R.; Dobos, L.; Budavári, T.; Szalay, A. S.; Csabai, I.

    2017-04-01

    We present a flexible template-based photometric redshift estimation framework, implemented in C#, that can be seamlessly integrated into a SQL database (or DB) server and executed on-demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and utilizes the computational capabilities of DB hardware. The code is able to perform both maximum likelihood and Bayesian estimation, and can handle inputs of variable photometric filter sets and corresponding broad-band magnitudes. It is possible to take into account the full covariance matrix between filters, and filter zero points can be empirically calibrated using measurements with given redshifts. The list of spectral templates and the prior can be specified flexibly, and the expensive synthetic magnitude computations are done via lazy evaluation, coupled with a caching of results. Parallel execution is fully supported. For large upcoming photometric surveys such as the LSST, the ability to perform in-place photo-z calculation would be a significant advantage. Also, the efficient handling of variable filter sets is a necessity for heterogeneous databases, for example the Hubble Source Catalog, and for cross-match services such as SkyQuery. We illustrate the performance of our code on two reference photo-z estimation testing datasets, and provide an analysis of execution time and scalability with respect to different configurations. The code is available for download at https://github.com/beckrob/Photo-z-SQL.

  4. Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding.

    PubMed

    Lu, Jun-Bo; Ma, Xue-Lu; Wang, Jia-Qi; Liu, Jin-Cheng; Xiao, Hai; Li, Jun

    2018-05-10

    Model systems of the FeMo cofactor of nitrogenase have been explored extensively in catalysis to gain insights into their ability for nitrogen fixation that is of vital importance to the human society. Here we investigate the trigonal pyramidal borane-ligand Fe complex by first-principles calculations, and find that the variation of oxidation state of Fe along the reaction path correlates with that of the reverse-dative Fe → B bonding. The redox-flexibility of the reverse-dative Fe → B bonding helps to provide an electron reservoir that buffers and stabilizes the evolution of Fe oxidation state, which is essential for forming the key intermediates of N 2 activation. Our work provides insights for understanding and optimizing homogeneous and surface single-atom catalysts with reverse-dative donating ligands for efficient dinitrogen fixation. The extension of this kind of molecular catalytic active center to heterogeneous catalysts with surface single-clusters is also discussed.

  5. Intelligent Control of Flexible-Joint Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Gallegos, G.

    1997-01-01

    This paper considers the trajectory tracking problem for uncertain rigid-link. flexible.joint manipulators, and presents a new intelligent controller as a solution to this problem. The proposed control strategy is simple and computationally efficient, requires little information concerning either the manipulator or actuator/transmission models and ensures uniform boundedness of all signals and arbitrarily accurate task-space trajectory tracking.

  6. Outcomes from Flexible Learning Options for Disenfranchised Youth: What Counts?

    ERIC Educational Resources Information Center

    te Riele, Kitty; Wilson, Kimberley; Wallace, Valda; McGinty, Sue; Lewthwaite, Brian

    2017-01-01

    Flexible Learning Options (FLOs) are common across many countries to enable secondary school completion by young people for whom mainstream schooling has not worked well. Access to high-quality education through FLOs is a social justice issue. In the context of an inclination among governments for accountability and evidence-based policy, as well…

  7. Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.

    PubMed

    Choi, Seungyeop; Kwon, Seonil; Kim, Hyuncheol; Kim, Woohyun; Kwon, Jung Hyun; Lim, Myung Sub; Lee, Ho Seung; Choi, Kyung Cheol

    2017-07-25

    Recently, the role of clothing has evolved from merely body protection, maintaining the body temperature, and fashion, to advanced functions such as various types of information delivery, communication, and even augmented reality. With a wireless internet connection, the integration of circuits and sensors, and a portable power supply, clothes become a novel electronic device. Currently, the information display is the most intuitive interface using visualized communication methods and the simultaneous concurrent processing of inputs and outputs between a wearer and functional clothes. The important aspect in this case is to maintain the characteristic softness of the fabrics even when electronic devices are added to the flexible clothes. Silicone-based light-emitting diode (LED) jackets, shirts, and stage costumes have started to appear, but the intrinsic stiffness of inorganic semiconductors causes wearers to feel discomfort; thus, it is difficult to use such devices for everyday purposes. To address this problem, a method of fabricating a thin and flexible emitting fabric utilizing organic light-emitting diodes (OLEDs) was developed in this work. Its flexibility was evaluated, and an analysis of its mechanical bending characteristics and tests of its long-term reliability were carried out.

  8. Implementation of input command shaping to reduce vibration in flexible space structures

    NASA Technical Reports Server (NTRS)

    Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney

    1992-01-01

    Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.

  9. Balance and flexibility.

    PubMed

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  10. Numerical study on the power extraction performance of a flapping foil with a flexible tail

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B.

    2015-01-01

    The numerical study on the power extraction performance of a flapping foil with a flexible tail is performed in this work. A NACA0015 airfoil is arranged in a two-dimensional laminar flow and imposed with a synchronous harmonic plunge and pitch rotary motion. A flat plate that is attached to the trailing edge of the foil is utilized to model a tail, and so they are viewed as a whole for the purpose of power extraction. In addition, the tail either is rigid or can deform due to the exerted hydrodynamic forces. To implement numerical simulations, an immersed boundary-lattice Boltzmann method is employed. At a Reynolds number of 1100 and the position of the pitching axis at third chord, the influences of the mass and flexibility of the tail as well as the frequency of motion on the power extraction are systematically examined. It is found that compared to the foil with a rigid tail, the efficiency of power extraction for the foil with a deformable tail can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging component of the power extraction, which is caused by the increased lift force, directly contributes to the efficiency improvement. Since a flexible tail with medium and high masses is not beneficial to the efficiency improvement, a flexible tail with low mass together with high flexibility is recommended in the flapping foil based power extraction system.

  11. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth

    DTIC Science & Technology

    2012-05-01

    fastener will transfer within a given fastener pattern. iv iv However, current methods do not account for the change in flexibility at a fastener...affects the growth of the crack. Thus, as the effect of the crack starts to impact the load transfer of the joint there is a need to account for...not account for spectrum loading but typically were cycled from 1g to limit or maximum flight load and then correlated to measured usage using

  12. Recent Progress on Flexible and Wearable Supercapacitors.

    PubMed

    Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi

    2017-12-01

    Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optical fiber cabling technologies for flexible access network

    NASA Astrophysics Data System (ADS)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  14. Polymer-metal hybrid transparent electrodes for flexible electronics

    NASA Astrophysics Data System (ADS)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  15. Polymer-metal hybrid transparent electrodes for flexible electronics

    PubMed Central

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-01-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133

  16. Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics.

    PubMed

    DeCaro, Marci S

    2016-10-01

    An important goal in mathematics is to flexibly use and apply multiple, efficient procedures to solve problems and to understand why these procedures work. One factor that may limit individuals' ability to notice and flexibly apply strategies is the mental set induced by the problem context. Undergraduate (N = 41, Experiment 1) and fifth- and sixth-grade students (N = 87, Experiment 2) solved mathematical equivalence problems in one of two set-inducing conditions. Participants in the complex-first condition solved problems without a repeated addend on both sides of the equal sign (e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies. Then these students solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be readily used (i.e., adding 5 + 9). Participants in the shortcut-first condition solved the same problem set but began with the shortcut problems. Consistent with laboratory studies of mental set, participants in the complex-first condition were less likely to use the more efficient shortcut strategy when possible. In addition, these participants were less likely to demonstrate procedural flexibility and conceptual understanding on a subsequent assessment of mathematical equivalence knowledge. These findings suggest that certain problem-solving contexts can help or hinder both flexibility in strategy use and deeper conceptual thinking about the problems.

  17. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    PubMed

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  18. Centralized Accounting and Electronic Filing Provides Efficient Receivables Collection.

    ERIC Educational Resources Information Center

    School Business Affairs, 1983

    1983-01-01

    An electronic filing system makes financial control manageable at Bowling Green State University, Ohio. The system enables quick access to computer-stored consolidated account data and microfilm images of charges, statements, and other billing documents. (MLF)

  19. Development and investigation of flexible polymer neural probe for chronic neural recording

    NASA Astrophysics Data System (ADS)

    Smith, Courtney; Song, Kyo D.; Yoon, Hargsoon; Kim, Woong-Ki; Zeng, Tao; Sanford, Larry D.

    2012-04-01

    Neural recording through microelectrodes requires biocompatibility and long term chronic usage. With a potential for various applications and effort to improve the performance of neural recording probes, consideration is taken to the tissue and cellular effects in these device designs. The degeneration of neurons due to brain tissue motion is an issue along with brain tissue inflammation in the insertion of the probes. To account for motion and irritation the material structure of the probes must be improved upon. This research presents the fabrication of neural probes on the microscale utilizing flexible polymers. Polyimide neural probes have been considered possibly to reduce degradation in their variability caused by brain motion. The microfabrication of the polyimide neural probe has an increased flexibility while accounting for biocompatibility and the needs for chronic use. Through microfabrication processes a needle probe is produced and tested for neural recording.

  20. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    PubMed

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The role of the hippocampus in flexible cognition and social behavior

    PubMed Central

    Rubin, Rachael D.; Watson, Patrick D.; Duff, Melissa C.; Cohen, Neal J.

    2014-01-01

    Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world. PMID:25324753

  2. The role of the hippocampus in flexible cognition and social behavior.

    PubMed

    Rubin, Rachael D; Watson, Patrick D; Duff, Melissa C; Cohen, Neal J

    2014-01-01

    Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world.

  3. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  4. A simple and efficient shear-flexible plate bending element

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz A.

    1987-01-01

    A shear-flexible triangular element formulation, which utilizes an assumed quadratic displacement potential energy approach and is numerically integrated using Gauss quadrature, is presented. The Reissner/Mindlin hypothesis of constant cross-sectional warping is directly applied to the three-dimensional elasticity theory to obtain a moderately thick-plate theory or constant shear-angle theory (CST), wherein the middle surface is no longer considered to be the reference surface and the two rotations are replaced by the two in-plane displacements as nodal variables. The resulting finite-element possesses 18 degrees of freedom (DOF). Numerical results are obtained for two different numerical integration schemes and a wide range of meshes and span-to-thickness ratios. These, when compared with available exact, series or finite-element solutions, demonstrate accuracy and rapid convergence characteristics of the present element. This is especially true in the case of thin to very thin plates, when the present element, used in conjunction with the reduced integration scheme, outperforms its counterpart, based on discrete Kirchhoff constraint theory (DKT).

  5. Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie

    2015-12-01

    Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.

  6. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  7. The role of material flexibility on the drying transition of water between hydrophobic objects: A thermodynamic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altabet, Y. Elia; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu

    2014-11-14

    Liquid water confined between hydrophobic objects of sufficient size becomes metastable with respect to its vapor at separations smaller than a critical drying distance. Macroscopic thermodynamic arguments predicting this distance have been restricted to the limit of perfectly rigid confining materials. However, no material is perfectly rigid and it is of interest to account for this fact in the thermodynamic analysis. We present a theory that combines the current macroscopic theory with the thermodynamics of elasticity to derive an expression for the critical drying distance for liquids confined between flexible materials. The resulting expression is the sum of the well-knownmore » drying distance for perfectly rigid confining materials and a new term that accounts for flexibility. Thermodynamic arguments show that this new term is necessarily positive, meaning that flexibility increases the critical drying distance. To study the expected magnitude and scaling behavior of the flexible term, we consider the specific case of water and present an example of drying between thin square elastic plates that are simply supported along two opposite edges and free at the remaining two. We find that the flexible term can be the same order of magnitude or greater than the rigid solution for materials of biological interest at ambient conditions. In addition, we find that when the rigid solution scales with the characteristic size of the immersed objects, the flexible term is independent of size and vice versa. Thus, the scaling behavior of the overall drying distance will depend on the relative weights of the rigid and flexible contributions.« less

  8. The "Body Mass Index" of Flexible Ureteroscopes.

    PubMed

    Proietti, Silvia; Somani, Bhaskar; Sofer, Mario; Pietropaolo, Amelia; Rosso, Marco; Saitta, Giuseppe; Gaboardi, Franco; Traxer, Olivier; Giusti, Guido

    2017-10-01

    To assess the "body mass index" (BMI) (weight and length) of 12 flexible ureteroscopes (digital and fiber optic) along with the light cables and camera heads, to make the best use of our instruments. Twelve different brand-new flexible ureteroscopes from four different manufacturers, along with eight camera heads and three light cables were evaluated. Each ureteroscope, camera head, and light cable was weighted; the total length of each ureteroscope, shaft, handle, flexible end-tip, and cable were all measured. According to our measurements (in grams [g]), the lightest ureteroscope was the LithoVue (277.5 g), while the heaviest was the URF-V2 (942.5 g). The lightest fiber optic endoscope was the Viper (309 g), while the heaviest was the Cobra (351.5 g). Taking into account the entirety of the endoscopes, the lightest ureteroscope was the Lithovue and the heaviest was the Wolf Cobra with the Wolf camera "3 CHIP HD KAMERA KOPF ENDOCAM LOGIC HD" (1474 g). The longest ureteroscope was the URF-P6 (101.6 cm) and the shortest was the LithoVue (95.5 cm); whereas the Viper and Cobra had the longest shaft (69 cm) and URF-V had the shortest shaft (67.2 cm). The URF-V2 had the longest flexible end-tip (7.6 cm), while the LithoVue had the shortest end-tip (5.7 cm) in both directions (up/down), while the URF-V had the shortest upward deflection (3.7 cm). Newer more versatile digital endoscopes were lighter than their traditional fiber optic counterparts in their entirety, with disposable endoscope having a clear advantage over other reusable ureteroscopes. Knowing the "BMI" of our flexible ureteroscopes is an important information that every endourologist should always take into consideration.

  9. Integration of Fixed and Flexible Route Public Transportation Systems, Phase I

    DOT National Transportation Integrated Search

    2012-01-01

    To provide efficient public transportation services in areas with high demand variability over time, it may be desirable : to switch vehicles between conventional services (with fixed routes and schedules) during peak periods and flexible : route ser...

  10. Desktop system for accounting, audit, and research in A&E.

    PubMed Central

    Taylor, C J; Brain, S G; Bull, F; Crosby, A C; Ferguson, D G

    1997-01-01

    The development of a database for audit, research, and accounting in accident and emergency (A&E) is described. The system uses a desktop computer, an optical scanner, sophisticated optical mark reader software, and workload management data. The system is highly flexible, easy to use, and at a cost of around 16,000 pounds affordable for larger departments wishing to move towards accounting. For smaller departments, it may be an alternative to full computerisation. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 PMID:9132200

  11. Common Accounting System for Monitoring the ATLAS Distributed Computing Resources

    NASA Astrophysics Data System (ADS)

    Karavakis, E.; Andreeva, J.; Campana, S.; Gayazov, S.; Jezequel, S.; Saiz, P.; Sargsyan, L.; Schovancova, J.; Ueda, I.; Atlas Collaboration

    2014-06-01

    This paper covers in detail a variety of accounting tools used to monitor the utilisation of the available computational and storage resources within the ATLAS Distributed Computing during the first three years of Large Hadron Collider data taking. The Experiment Dashboard provides a set of common accounting tools that combine monitoring information originating from many different information sources; either generic or ATLAS specific. This set of tools provides quality and scalable solutions that are flexible enough to support the constantly evolving requirements of the ATLAS user community.

  12. Inverter circuits on freestanding flexible substrate using ZnO nanoparticles for cost-efficient electronics

    NASA Astrophysics Data System (ADS)

    Vidor, Fábio F.; Meyers, Thorsten; Müller, Kathrin; Wirth, Gilson I.; Hilleringmann, Ulrich

    2017-11-01

    Driven by the Internet of Things (IoT), flexible and transparent smart systems have been intensively researched by the scientific community and by several companies. This technology is already available for consumers in a wide range of innovative products, e.g., flexible displays, radio-frequency identification tags and wearable electronic skins which, for instance, collect and analyze data for medical applications. For these systems, thin-film transistors (TFTs) are the key elements responsible for the driving currents. Solution-based materials such as nanoparticle dispersions avail the fabrication on large-area substrates with high throughput processes. In this study, we discuss the integration of ZnO nanoparticle thin-film transistors and inverter circuits on freestanding polymeric substrates enclosing the main issues concerning the transfer of the integration process from a rigid substrate to a flexible one. The TFTs depict VON between -0.2 and 1 V, ION/IOFF > 104 and field-effect mobility >0.5 cm2 V-1 s-1. Additionally, in order to enhance the transistors and inverters performance, an adaptation on the device configuration, from an inverted coplanar to an inverted staggered setup, was conducted and analyzed. By employing the inverted staggered setup a considerable increase in the contact quality between the semiconductor and the drain and source electrodes was observed. As the integrated devices depict electrical characteristics which enable the fabrication of electronic circuits for the low-cost sector, inverters were fabricated and characterized, evaluating the circuit's gain as function of the applied supply voltage and circuit's geometric ratio.

  13. Flexible Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)

    2017-01-01

    A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.

  14. Evaluation of "No Child Left Behind" Flexibility Provisions: Volume IV--The Local Flex Demonstration Program in Seattle Public Schools

    ERIC Educational Resources Information Center

    Christensen, Gayle S.; Feehan, Kathleen; Loss, Daniel

    2007-01-01

    Perhaps the most ambitious example of the way in which flexibility and accountability have been brought together can be found in the State Flex and Local Flex demonstration programs. Although no additional resources are provided to participating states and districts, the enhanced flexibility granted under State Flex and Local Flex allows…

  15. Office flexible cystoscopy.

    PubMed

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  16. EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics

    NASA Astrophysics Data System (ADS)

    Subramanian, Vivek; Lee, Takhee

    2012-08-01

    Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit

  17. Highly Flexible Self-Powered Organolead Trihalide Perovskite Photodetectors with Gold Nanowire Networks as Transparent Electrodes.

    PubMed

    Bao, Chunxiong; Zhu, Weidong; Yang, Jie; Li, Faming; Gu, Shuai; Wang, Yangrunqian; Yu, Tao; Zhu, Jia; Zhou, Yong; Zou, Zhigang

    2016-09-14

    Organolead trihalide perovskites (OTPs) such as CH3NH3PbI3 (MAPbI3) have attracted much attention as the absorbing layer in solar cells and photodetectors (PDs). Flexible OTP devices have also been developed. Transparent electrodes (TEs) with higher conductivity, stability, and flexibility are necessary to improve the performance and flexibility of flexible OTP devices. In this work, patterned Au nanowire (AuNW) networks with high conductivity and stability are prepared and used as TEs in self-powered flexible MAPbI3 PDs. These flexible PDs show peak external quantum efficiency and responsivity of 60% and 321 mA/W, which are comparable to those of MAPbI3 PDs based on ITO TEs. The linear dynamic range and response time of the AuNW-based flexible PDs reach ∼84 dB and ∼4 μs, respectively. Moreover, they show higher flexibility than ITO-based devices, around 90%, and 60% of the initial photocurrent can be retained for the AuNW-based flexible PDs when bent to radii of 2.5 and 1.5 mm. This work suggests a high-performance, highly flexible, and stable TE for OTP flexible devices.

  18. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries.

    PubMed

    Ma, Lianbo; Zhang, Wenjun; Wang, Lei; Hu, Yi; Zhu, Guoyin; Wang, Yanrong; Chen, Renpeng; Chen, Tao; Tie, Zuoxiu; Liu, Jie; Jin, Zhong

    2018-05-22

    The development of flexible lithium-sulfur (Li-S) batteries with high energy density and long cycling life are very appealing for the emerging flexible, portable, and wearable electronics. However, the progress on flexible Li-S batteries was limited by the poor flexibility and serious performance decay of existing sulfur composite cathodes. Herein, we report a freestanding and highly flexible sulfur host that can simultaneously meet the flexibility, stability, and capacity requirements of flexible Li-S batteries. The host consists of a crisscrossed network of carbon nanotubes reinforced CoS nanostraws (CNTs/CoS-NSs). The CNTs/CoS-NSs with large inner space and high conductivity enable high loading and efficient utilization of sulfur. The strong capillarity effect and chemisorption of CNTs/CoS-NSs to sulfur species were verified, which can efficiently suppress the shuttle effect and promote the redox kinetics of polysulfides. The sulfur-encapsulated CNTs/CoS-NSs (S@CNTs/CoS-NSs) cathode in Li-S batteries exhibits superior performance, including high discharge capacity, rate capability (1045 mAh g -1 at 0.5 C and 573 mAh g -1 at 5.0 C), and cycling stability. Intriguingly, the soft-packed Li-S batteries based on S@CNTs/CoS-NSs cathode show good flexibility and stability upon bending.

  19. Two essays on efficiency in the electric power industry: Measurement of technical and allocative efficiency

    NASA Astrophysics Data System (ADS)

    Gardiner, John Corby

    The electric power industry market structure has changed over the last twenty years since the passage of the Public Utility Regulatory Policies Act (PURPA). These changes include the entry by unregulated generator plants and, more recently, the deregulation of entry and price in the retail generation market. Such changes have introduced and expanded competitive forces on the incumbent electric power plants. Proponents of this deregulation argued that the enhanced competition would lead to a more efficient allocation of resources. Previous studies of power plant technical and allocative efficiency have failed to measure technical and allocative efficiency at the plant level. In contrast, this study uses panel data on 35 power plants over 59 years to estimate technical and allocative efficiency of each plant. By using a flexible functional form, which is not constrained by the assumption that regulation is constant over the 59 years sampled, the estimation procedure accounts for changes in both state and national regulatory/energy policies that may have occurred over the sample period. The empirical evidence presented shows that most of the power plants examined have operated more efficiently since the passage of PURPA and the resultant increase of competitive forces. Chapter 2 extends the model used in Chapter 1 and clarifies some issues in the efficiency literature by addressing the case where homogeneity does not hold. A more general model is developed for estimating both input and output inefficiency simultaneously. This approach reveals more information about firm inefficiency than the single estimation approach that has previously been used in the literature. Using the more general model, estimates are provided on the type of inefficiency that occurs as well as the cost of inefficiency by type of inefficiency. In previous studies, the ranking of firms by inefficiency has been difficult because of the cardinal and ordinal differences between different types of

  20. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  1. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  2. Patient accounting: vital for financial survival.

    PubMed

    Puhala, J M; Barrett, M J

    1987-09-01

    The implementation of the prospective payment system has affected the financial stability of hospitals. It has forced them to take a closer look at their patient accounting function as it affects cash flow and patient service revenue. This article addresses several new issues relating to patient accounts processing that have created a need for more emphasis on the patient accounting function. Efficient operations and effective accounts receivable management may be the difference between the success or failure of a hospital in today's competitive environment.

  3. Decomposing Cost Efficiency in Regional Long-term Care Provision in Japan.

    PubMed

    Yamauchi, Yasuhiro

    2015-07-12

    Many developed countries face a growing need for long-term care provision because of population ageing. Japan is one such example, given its population's longevity and low birth rate. In this study, we examine the efficiency of Japan's regional long-term care system in FY2010 by performing a data envelopment analysis, a non-parametric frontier approach, on prefectural data and separating cost efficiency into technical, allocative, and price efficiencies under different average unit costs across regions. In doing so, we elucidate the structure of cost inefficiency by incorporating a method for restricting weight flexibility to avoid unrealistic concerns arising from zero optimal weight. The results indicate that technical inefficiency accounts for the highest share of losses, followed by price inefficiency and allocation inefficiency. Moreover, the majority of technical inefficiency losses stem from labor costs, particularly those for professional caregivers providing institutional services. We show that the largest share of allocative inefficiency losses can also be traced to labor costs for professional caregivers providing institutional services, while the labor provision of in-home care services shows an efficiency gain. However, although none of the prefectures gains efficiency by increasing the number of professional caregivers for institutional services, quite a few prefectures would gain allocative efficiency by increasing capital inputs for institutional services. These results indicate that preferred policies for promoting efficiency might vary from region to region, and thus, policy implications should be drawn with care.

  4. Decomposing Cost Efficiency in Regional Long-term Care Provision in Japan

    PubMed Central

    Yamauchi, Yasuhiro

    2016-01-01

    Many developed countries face a growing need for long-term care provision because of population ageing. Japan is one such example, given its population's longevity and low birth rate. In this study, we examine the efficiency of Japan's regional long-term care system in FY2010 by performing a data envelopment analysis, a non-parametric frontier approach, on prefectural data and separating cost efficiency into technical, allocative, and price efficiencies under different average unit costs across regions. In doing so, we elucidate the structure of cost inefficiency by incorporating a method for restricting weight flexibility to avoid unrealistic concerns arising from zero optimal weight. The results indicate that technical inefficiency accounts for the highest share of losses, followed by price inefficiency and allocation inefficiency. Moreover, the majority of technical inefficiency losses stem from labor costs, particularly those for professional caregivers providing institutional services. We show that the largest share of allocative inefficiency losses can also be traced to labor costs for professional caregivers providing institutional services, while the labor provision of in-home care services shows an efficiency gain. However, although none of the prefectures gains efficiency by increasing the number of professional caregivers for institutional services, quite a few prefectures would gain allocative efficiency by increasing capital inputs for institutional services. These results indicate that preferred policies for promoting efficiency might vary from region to region, and thus, policy implications should be drawn with care. PMID:26493427

  5. Driving Green: Toward the Prediction and Influence of Efficient Driving Behavior

    NASA Astrophysics Data System (ADS)

    Newsome, William D.

    Sub-optimal efficiency in activities involving the consumption of fossil fuels, such as driving, contribute to a miscellany of negative environmental, political, economic and social externalities. Demonstrations of the effectiveness of feedback interventions can be found in countless organizational settings, as can demonstrations of individual differences in sensitivity to feedback interventions. Mechanisms providing feedback to drivers about fuel economy are becoming standard equipment in most new vehicles, but vary considerably in their constitution. A keystone of Radical Behaviorism is the acknowledgement that verbal behavior appears to play a role in mediating apparent susceptibility to influence by contingencies of varying delay. In the current study, samples of verbal behavior (rules) were collected in the context of a feedback intervention to improve driving efficiency. In an analysis of differences in individual responsiveness to the feedback intervention, the rate of novel rules per week generated by drivers is revealed to account for a substantial proportion of the variability in relative efficiency gains across participants. The predictive utility of conceptual tools, such as the basic distinction among contingency-shaped and rule governed behavior, the elaboration of direct-acting and indirect-acting contingencies, and the psychological flexibility model, is bolstered by these findings.

  6. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells

    DOE PAGES

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; ...

    2017-11-10

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less

  7. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less

  8. Communication satellites to enter a new age of flexibility

    NASA Astrophysics Data System (ADS)

    Balty, Cédric; Gayrard, Jean-Didier; Agnieray, Patrick

    2009-07-01

    To cope with the economical and technical evolutions of the communication market and to better compete with or complement terrestrial networks, satellite operators are requiring more flexible satellites. It allows a better fleet planning potential and back-up policy, a more standardized and efficient procurement process, mission adaptation to market evolution and the possibility of early entry in new markets. New technologies that are developed either for terrestrial networks or for space defense applications would become soon available to satellite and equipment manufacturers. A skilful mix of these new technologies with the older and more mature ones should boost satellite performances and bring flexibility to the new generation of communication satellites. This paper reviews the economical and technical environment of the space communication business for the next decade. It identifies the needs and levels of flexibility that are required by the market but also allowed by technologies, in both a top-down and bottom-up approach.

  9. A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes.

    PubMed

    Lee, Jinhwan; An, Kunsik; Won, Phillip; Ka, Yoonseok; Hwang, Hyejin; Moon, Hyunjin; Kwon, Yongwon; Hong, Sukjoon; Kim, Changsoon; Lee, Changhee; Ko, Seung Hwan

    2017-02-02

    Although solution processed metal nanowire (NW) percolation networks are a strong candidate to replace commercial indium tin oxide, their performance is limited in thin film device applications due to reduced effective electrical areas arising from the dimple structure and percolative voids that single size metal NW percolation networks inevitably possess. Here, we present a transparent electrode based on a dual-scale silver nanowire (AgNW) percolation network embedded in a flexible substrate to demonstrate a significant enhancement in the effective electrical area by filling the large percolative voids present in a long/thick AgNW network with short/thin AgNWs. As a proof of concept, the performance enhancement of a flexible phosphorescent OLED is demonstrated with the dual-scale AgNW percolation network compared to the previous mono-scale AgNWs. Moreover, we report that mechanical and oxidative robustness, which are critical for flexible OLEDs, are greatly increased by embedding the dual-scale AgNW network in a resin layer.

  10. A method for assessing work productivity and flexibility in livestock farms.

    PubMed

    Hostiou, N; Dedieu, B

    2012-05-01

    Changes affecting livestock farming systems have made farm work a central concern for both the sector and for farmers themselves. Increased pressure on farms to be competitive and productive together with farmers' demand for greater autonomy, holidays or time to spend on private activities and the family converge to underline the two key dimensions of work - productivity and flexibility - required for the assessment of work organization. This paper proposes a method called the QuaeWork (QUAlification and Evaluation of Work in livestock farms) to assess work productivity and flexibility on a farm, and its use to identify how livestock management can contribute to work organization on dairy farms. The QuaeWork method was set up through an iterative process combining surveys conducted with farmers in two regions of France, discussions with different experts and literature review. The QuaeWork was applied on a sample of seven dairy farms in the southern Massif Central in France to identify patterns of how livestock management contributes to work organization. The QuaeWork was used to analyse work organization over the year through a systemic approach to the farm, integrating interactions between herd and land management, workforce composition, equipment facilities and combinations of activities through a characterization of 'who does what, when and for how long'. The criteria for assessing work productivity were work duration (routine work, seasonal work) and work efficiency (per livestock unit or hectare of utilized agricultural area). The criteria for assessing work flexibility were room for manoeuvre and adjustments to internal and external events. The three main patterns of livestock management practices to work organization were identified. In pattern-1, farmers used indoor stable feeding practices with delegated work, with moderate room for manoeuvre and efficiency. In pattern-3, farmers used simplified milking, reproduction and breeding practices to seasonalize

  11. Economic accounting of water: The Botswana experience

    NASA Astrophysics Data System (ADS)

    Setlhogile, T.; Arntzen, J.; Pule, O. B.

    2017-08-01

    Water accounts aim to capture the value of water resources and their use within the economy. The accounts complement the National Accounts as the latter's main indicator (GDP) does not reflect changes in natural capital. Botswana developed water accounts for the period 2010/11-2014/15 using the UN's standard System of Environmental Economic Accounting for water (SEEA-water). The article focuses both on the construction of physical flow accounts as well as on the policy implications for development planning and water resource management through the use of policy indicators. It also shows long-term trends in water abstraction and water use efficiency linking the SEEA water accounts with results of earlier (non-SEEA) water accounting projects in Botswana. The water accounts results show that water abstraction and consumption have been largely stable since 2010/11 despite population (1.9% p.a.) and economic growth (around 5% p.a.) likely due to a combination of water sector reforms and drought conditions in south eastern Botswana; the latter led to the drying up of several dams and the imposition of severe water restrictions. While public attention focuses mostly on water service providers, self-providers (mines and the agricultural sector) account for more than 50% of total water abstracted from the environment of water, demonstrating the need to pay more attention to self-providers in IWRM implementation. Water consumption is highest for the agricultural sector (70.2 Mm3) followed by households and mines at 41.2 and 39 Mm3 respectively in 2014/15. In terms of water use efficiency, value added per m3 has increased in time, showing (some) decoupling of water consumption and economic growth. This positive trend needs to be enhanced in the pursuit of economic diversification, which should focus on growth of water-efficient economic sectors. Finally, per capita water consumption has decreased over time; while this may indicate that people conserve water, it may also point

  12. Accounting for small scale heterogeneity in ecohydrologic watershed models

    NASA Astrophysics Data System (ADS)

    Bhaskar, A.; Fleming, B.; Hogan, D. M.

    2016-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach

  13. Accounting for small scale heterogeneity in ecohydrologic watershed models

    NASA Astrophysics Data System (ADS)

    Burke, W.; Tague, C.

    2017-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach

  14. Flexible copper-indium-diselenide films and devices for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1991-01-01

    With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.

  15. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.

    PubMed

    Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H

    2018-04-24

    The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.

  16. Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.

    PubMed

    You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary

    2011-02-01

    The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure

  17. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    NASA Astrophysics Data System (ADS)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  18. Mechanically flexible organic electroluminescent device with directional light emission

    DOEpatents

    Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc

    2005-05-10

    A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.

  19. Path connectivity based spectral defragmentation in flexible bandwidth networks.

    PubMed

    Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi

    2013-01-28

    Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

  20. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.

  1. Evaluation of Flexibility Under "No Child Left Behind": Volume I--Executive Summary of Transferability, REAP Flex, and Local-Flex Evaluations

    ERIC Educational Resources Information Center

    Christensen, Gayle S.

    2007-01-01

    The reauthorization of the "Elementary and Secondary Education Act" ("ESEA") as amended by the "No Child Left Behind Act of 2001" ("NCLB") relied on two notable policy instruments to improve education: accountability and flexibility. "NCLB" complements accountability with several new flexibility…

  2. Flexible Fringe Benefit Plans Save You Money and Keep Employees Happy.

    ERIC Educational Resources Information Center

    Johnson, Rob

    1987-01-01

    This fringe benefit plan saves money for both employers and employees, provides a better fit for employees' actual benefit needs, and allows employees to choose options from a menu of benefits. One option is a flexible spending plan. Employees place a portion of their before-tax income into a special account from which allowable expenses are paid…

  3. A Secure and Efficient Scalable Secret Image Sharing Scheme with Flexible Shadow Sizes

    PubMed Central

    Xie, Dong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    In a general (k, n) scalable secret image sharing (SSIS) scheme, the secret image is shared by n participants and any k or more than k participants have the ability to reconstruct it. The scalability means that the amount of information in the reconstructed image scales in proportion to the number of the participants. In most existing SSIS schemes, the size of each image shadow is relatively large and the dealer does not has a flexible control strategy to adjust it to meet the demand of differen applications. Besides, almost all existing SSIS schemes are not applicable under noise circumstances. To address these deficiencies, in this paper we present a novel SSIS scheme based on a brand-new technique, called compressed sensing, which has been widely used in many fields such as image processing, wireless communication and medical imaging. Our scheme has the property of flexibility, which means that the dealer can achieve a compromise between the size of each shadow and the quality of the reconstructed image. In addition, our scheme has many other advantages, including smooth scalability, noise-resilient capability, and high security. The experimental results and the comparison with similar works demonstrate the feasibility and superiority of our scheme. PMID:28072851

  4. A Secure and Efficient Scalable Secret Image Sharing Scheme with Flexible Shadow Sizes.

    PubMed

    Xie, Dong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    In a general (k, n) scalable secret image sharing (SSIS) scheme, the secret image is shared by n participants and any k or more than k participants have the ability to reconstruct it. The scalability means that the amount of information in the reconstructed image scales in proportion to the number of the participants. In most existing SSIS schemes, the size of each image shadow is relatively large and the dealer does not has a flexible control strategy to adjust it to meet the demand of differen applications. Besides, almost all existing SSIS schemes are not applicable under noise circumstances. To address these deficiencies, in this paper we present a novel SSIS scheme based on a brand-new technique, called compressed sensing, which has been widely used in many fields such as image processing, wireless communication and medical imaging. Our scheme has the property of flexibility, which means that the dealer can achieve a compromise between the size of each shadow and the quality of the reconstructed image. In addition, our scheme has many other advantages, including smooth scalability, noise-resilient capability, and high security. The experimental results and the comparison with similar works demonstrate the feasibility and superiority of our scheme.

  5. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  6. A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene

    PubMed Central

    Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi; Tian, He; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    A flexible sound source is essential in a whole flexible system. It’s hard to integrate a conventional sound source based on a piezoelectric part into a whole flexible system. Moreover, the sound pressure from the back side of a sound source is usually weaker than that from the front side. With the help of direct laser writing (DLW) technology, the fabrication of a flexible 360-degree thermal sound source becomes possible. A 650-nm low-power laser was used to reduce the graphene oxide (GO). The stripped laser induced graphene thermal sound source was then attached to the surface of a cylindrical bottle so that it could emit sound in a 360-degree direction. The sound pressure level and directivity of the sound source were tested, and the results were in good agreement with the theoretical results. Because of its 360-degree sound field, high flexibility, high efficiency, low cost, and good reliability, the 360-degree thermal acoustic sound source will be widely applied in consumer electronics, multi-media systems, and ultrasonic detection and imaging. PMID:28335239

  7. Invertible flexible matrices

    NASA Astrophysics Data System (ADS)

    Justino, Júlia

    2017-06-01

    Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.

  8. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We

  9. On the Flexibility of Basic Risk Attitudes in Monkeys.

    PubMed

    Farashahi, Shiva; Azab, Habiba; Hayden, Benjamin; Soltani, Alireza

    2018-05-02

    Monkeys and other animals appear to share with humans two risk attitudes predicted by prospect theory: an inverse-S-shaped probability-weighting (PW) function and a steeper utility curve for losses than for gains. These findings suggest that such preferences are stable traits with common neural substrates. We hypothesized instead that animals tailor their preferences to subtle changes in task contexts, making risk attitudes flexible. Previous studies used a limited number of outcomes, trial types, and contexts. To gain a broader perspective, we examined two large datasets of male macaques' risky choices: one from a task with real (juice) gains and another from a token task with gains and losses. In contrast to previous findings, monkeys were risk seeking for both gains and losses (i.e., lacked a reflection effect) and showed steeper gain than loss curves (loss seeking). Utility curves for gains were substantially different in the two tasks. Monkeys showed nearly linear PWs in one task and S-shaped ones in the other; neither task produced a consistent inverse-S-shaped curve. To account for these observations, we developed and tested various computational models of the processes involved in the construction of reward value. We found that adaptive differential weighting of prospective gamble outcomes could partially account for the observed differences in the utility functions across the two experiments and thus provide a plausible mechanism underlying flexible risk attitudes. Together, our results support the idea that risky choices are constructed flexibly at the time of elicitation and place important constraints on neural models of economic choice. SIGNIFICANCE STATEMENT We respond in reliable ways to risk, but are our risk preferences stable traits or ephemeral states? Using various computational models, we examined two large datasets of macaque risky choices in two different tasks. We observed several deviations from "classic" risk preferences seen in humans and

  10. The advantage of flexible neuronal tunings in neural network models for motor learning

    PubMed Central

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  11. Protein flexibility in the light of structural alphabets

    PubMed Central

    Craveur, Pierrick; Joseph, Agnel P.; Esque, Jeremy; Narwani, Tarun J.; Noël, Floriane; Shinada, Nicolas; Goguet, Matthieu; Leonard, Sylvain; Poulain, Pierre; Bertrand, Olivier; Faure, Guilhem; Rebehmed, Joseph; Ghozlane, Amine; Swapna, Lakshmipuram S.; Bhaskara, Ramachandra M.; Barnoud, Jonathan; Téletchéa, Stéphane; Jallu, Vincent; Cerny, Jiri; Schneider, Bohdan; Etchebest, Catherine; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G.

    2015-01-01

    Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases. PMID:26075209

  12. Implementing a trustworthy cost-accounting model.

    PubMed

    Spence, Jay; Seargeant, Dan

    2015-03-01

    Hospitals and health systems can develop an effective cost-accounting model and maximize the effectiveness of their cost-accounting teams by focusing on six key areas: Implementing an enhanced data model. Reconciling data efficiently. Accommodating multiple cost-modeling techniques. Improving transparency of cost allocations. Securing department manager participation. Providing essential education and training to staff members and stakeholders.

  13. Six principles to enhance health workforce flexibility.

    PubMed

    Nancarrow, Susan A

    2015-04-07

    This paper proposes approaches to break down the boundaries that reduce the ability of the health workforce to respond to population needs, or workforce flexibility. Accessible health services require sufficient numbers and types of skilled workers to meet population needs. However, there are several reasons that the health workforce cannot or does not meet population needs. These primarily stem from workforce shortages. However, the health workforce can also be prevented from responding appropriately and efficiently because of restrictions imposed by professional boundaries, funding models or therapeutic partitions. These boundaries limit the ability of practitioners to effectively diagnose and treat patients by restricting access to specific skills, technologies and services. In some cases, these boundaries not only reduce workforce flexibility, but they introduce inefficiencies in the form of additional clinical transactions and costs, further detracting from workforce responsiveness. Several new models of care are being developed to enhance workforce flexibility by enabling existing staff to work to their full scope of practice, extend their roles or by introducing new workers. Expanding on these concepts, this theoretical paper proposes six principles that have the potential to enhance health workforce flexibility, specifically: 1. Measure health system performance from the perspective of the patient. 2. Minimise training times. 3. Regulate tasks (competencies), not professions. 4. Match rewards and indemnity to the levels of skill and risk required to perform a particular task, not professional title. 5. Ensure that practitioners have all the skills they need to perform the tasks required to work in the environment in which they work 6. Enable practitioners to work to their full scope of practice delegate tasks where required These proposed principles will challenge some of the existing social norms around health-care delivery; however, many of these

  14. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  15. Sensibility study in a flexible job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo

    2013-10-01

    This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.

  16. Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch.

    PubMed

    Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-09-01

    Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The role of proline substitutions within flexible regions on thermostability of luciferase.

    PubMed

    Yu, Haoran; Zhao, Yang; Guo, Chao; Gan, Yiru; Huang, He

    2015-01-01

    Improving the stability of firefly luciferase has been a critical issue for its wider industrial applications. Studies about hyperthermophile proteins show that flexibility could be an effective indicator to find out weak spots to engineering thermostability of proteins. However, the relationship among flexibility, activity and stability in most of proteins is unclear. Proline is the most rigid residue and can be introduced to rigidify flexible regions to enhance thermostability of proteins. We firstly apply three different methods, molecular dynamics (MD) simulation, B-FITTER and framework rigidity optimized dynamics algorithm (FRODA) to determine the flexible regions of Photinus pyralis luciferase: Fragment 197-207; Fragment 471-481 and Fragment 487-495. Then, introduction of proline is used to rigidify these flexible regions. Two mutants D476P and H489P within most flexible regions are finally designed. In the results, H489P mutant shows improved thermostability while maintaining its catalytic efficiency compared to that of wild type luciferase. Flexibility analysis confirms that the overall rigidity and local rigidity of H489P mutant are greatly strengthened. D476P mutant shows decreased thermosatbility and the reason for this is elucidated at the molecular level. S307P mutation is randomly chosen outside the flexible regions as a control. Thermostability analysis shows that S307P mutation has decreased kinetic stability and enhanced thermodynamic stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  19. Expected Utility Distributions for Flexible, Contingent Execution

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Washington, Richard

    2000-01-01

    This paper presents a method for using expected utility distributions in the execution of flexible, contingent plans. A utility distribution maps the possible start times of an action to the expected utility of the plan suffix starting with that action. The contingent plan encodes a tree of possible courses of action and includes flexible temporal constraints and resource constraints. When execution reaches a branch point, the eligible option with the highest expected utility at that point in time is selected. The utility distributions make this selection sensitive to the runtime context, yet still efficient. Our approach uses predictions of action duration uncertainty as well as expectations of resource usage and availability to determine when an action can execute and with what probability. Execution windows and probabilities inevitably change as execution proceeds, but such changes do not invalidate the cached utility distributions, thus, dynamic updating of utility information is minimized.

  20. Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics.

    PubMed

    Wu, Shuwen; Li, Jinhui; Zhang, Guoping; Yao, Yimin; Li, Gang; Sun, Rong; Wong, Chingping

    2017-01-25

    The continuous evolution toward flexible electronics with mechanical robust property and restoring structure simultaneously places high demand on a set of polymeric material substrate. Herein, we describe a composite material composed of a polyurethane based on Diels-Alder chemistry (PU-DA) covalently linked with functionalized graphene nanosheets (FGNS), which shows mechanical robust and infrared (IR) laser self-healing properties at ambient conditions and is therefore suitable for flexible substrate applications. The mechanical strength can be tuned by varying the amount of FGNS and breaking strength can reach as high as 36 MPa with only 0.5 wt % FGNS loading. On rupture, the initial mechanical properties are restored with more than 96% healing efficiency after 1 min irradiation time by 980 nm IR laser. Especially, this is the highest value of healing efficiency reported in the self-healable materials based on DA chemistry systems until now, and the composite exhibits a high volume resistivity up to 5.6 × 10 11 Ω·cm even the loading of FGNS increased to 1.0 wt %. Moreover, the conductivity of the broken electric circuit which was fabricated by silver paste drop-cast on the healable composite substrate was completely recovered via IR laser irradiating bottom substrate mimicking human skin. These results demonstrate that the FGNS-PU-DA nanocomposite can be used as self-healing flexible substrate for the next generation of intelligent flexible electronics.

  1. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Xie, Xueyao; Song, Lixin; Zhai, Jifeng; Du, Pingfan; Xiong, Jie

    2018-05-01

    Highly flexible ZrO2/C nanofibers (NFs) coated with Ag nanoparticles (NPs) have been fabricated by a combination of electrospinning, carbonization and hydrothermal treatment. The obtained Ag@ZrO2/C NFs serve as low-cost counter electrodes (CEs) for flexible dye-sensitized solar cells (FDSSCs). A considerable power conversion efficiency of 4.77% is achieved, which is 27.9% higher than the η of ZrO2/C NFs CEs (3.73%) and reaches about 90% of that of Pt CE (5.26%). It can be ascribed to the fact that the introduction of Ag NPs provides a large number of accessible reaction sites for electrolyte ions to rapidly participate in the I3-/I- reaction. Moreover, the Ag NPs can produce synergistic effect with ZrO2/C NFs to further enhance transport capacity and electro-catalytic activity of the Ag@ZrO2/C film. Therefore, the considerable performance together with characteristics of simple preparation, low cost and flexibility suggests the Ag@ZrO2/C film can be promising candidate for the future generation of FDSSC.

  2. Thinking about Flexibility

    ERIC Educational Resources Information Center

    Villa, Mario Diaz

    2009-01-01

    This article emphasizes the complexity of the term flexibility and discusses its meanings and political dimensions, along with its expressions or realizations within the field of higher education. It proposes a new principle of flexibility that overcomes an understanding of flexibility within higher education as the mere ability or versatility to…

  3. Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor.

    PubMed

    Wei, Zhiqiang; Zhou, Zhang-Kai; Li, Qiuyu; Xue, Jiancai; Di Falco, Andrea; Yang, Zhongjian; Zhou, Jianhua; Wang, Xuehua

    2017-07-01

    Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advances in all-sputtered CdTe solar cells on flexible substrates

    NASA Astrophysics Data System (ADS)

    Wieland, Kristopher; Mahabaduge, Hasitha; Vasko, Anthony; Compaan, Alvin

    2010-03-01

    The University of Toledo II-VI semiconductor group has developed magnetron sputtering (MS) for the deposition of thin films of CdS, CdTe, and related materials for photovoltaic applications. On glass superstrates, we have reached air mass 1.5 efficiencies of 14%.[1] Recently we have studied the use of MS for the fabrication of thin-film CdS/CdTe cells on flexible polyimide superstrates. This takes advantage of the high film quality that can be achieved at substrate temperatures below 300 C when RF MS is used. Our recent CdS/CdTe solar cells have reached 10.5% on flexible polyimide substrates. [2] This all-sputtered cell (except for back contact) has a structure of polyimide/ZnO:Al/ZnO/CdS/CdTe/Cu/Au. The physics of this device will be discussed through the use of spectral quantum efficiency and current-voltage measurements as a function of CdTe layer thickness. Pathways toward further increases in device efficiencies will also be discussed. [1] Appl. Phys. Lett. 85, 684 (2004) [2] Phys. Stat. Sol. (B) 241, No. 3, 779--782 (2004)

  5. Direct writing of half-meter long CNT based fiber for flexible electronics.

    PubMed

    Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui

    2015-03-11

    Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.

  6. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  7. Flexible statistical modelling detects clinical functional magnetic resonance imaging activation in partially compliant subjects.

    PubMed

    Waites, Anthony B; Mannfolk, Peter; Shaw, Marnie E; Olsrud, Johan; Jackson, Graeme D

    2007-02-01

    Clinical functional magnetic resonance imaging (fMRI) occasionally fails to detect significant activation, often due to variability in task performance. The present study seeks to test whether a more flexible statistical analysis can better detect activation, by accounting for variance associated with variable compliance to the task over time. Experimental results and simulated data both confirm that even at 80% compliance to the task, such a flexible model outperforms standard statistical analysis when assessed using the extent of activation (experimental data), goodness of fit (experimental data), and area under the operator characteristic curve (simulated data). Furthermore, retrospective examination of 14 clinical fMRI examinations reveals that in patients where the standard statistical approach yields activation, there is a measurable gain in model performance in adopting the flexible statistical model, with little or no penalty in lost sensitivity. This indicates that a flexible model should be considered, particularly for clinical patients who may have difficulty complying fully with the study task.

  8. Control of large flexible systems via eigenvalue relocation

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Jeon, G. J.

    1985-01-01

    For the vibration control of large flexible systems, a control scheme by which the eigenvalues of the closed-loop systems are assigned to predetermined locations within the feasible region through velocity-only feedback is presented. Owing to the properties of second-order lambda-matrices and an efficient model decoupling technique, the control scheme makes it possible that selected modes are damped with the rest of the modes unchanged.

  9. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology

    PubMed Central

    Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk

    2015-01-01

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466

  10. Approximate minimum-time trajectories for 2-link flexible manipulators

    NASA Technical Reports Server (NTRS)

    Eisler, G. R.; Segalman, D. J.; Robinett, R. D.

    1989-01-01

    Powell's nonlinear programming code, VF02AD, was used to generate approximate minimum-time tip trajectories for 2-link semi-rigid and flexible manipulator movements in the horizontal plane. The manipulator is modeled with an efficient finite-element scheme for an n-link, m-joint system with horizontal-plane bending only. Constraints on the trajectory include boundary conditions on position and energy for a rest-to-rest maneuver, straight-line tracking between boundary positions, and motor torque limits. Trajectory comparisons utilize a change in the link stiffness, EI, to transition from the semi-rigid to flexible case. Results show the level of compliance necessary to excite significant modal behavior. Quiescence of the final configuration is examined with the finite-element model.

  11. A computationally efficient ductile damage model accounting for nucleation and micro-inertia at high triaxialities

    DOE PAGES

    Versino, Daniele; Bronkhorst, Curt Allan

    2018-01-31

    The computational formulation of a micro-mechanical material model for the dynamic failure of ductile metals is presented in this paper. The statistical nature of porosity initiation is accounted for by introducing an arbitrary probability density function which describes the pores nucleation pressures. Each micropore within the representative volume element is modeled as a thick spherical shell made of plastically incompressible material. The treatment of porosity by a distribution of thick-walled spheres also allows for the inclusion of micro-inertia effects under conditions of shock and dynamic loading. The second order ordinary differential equation governing the microscopic porosity evolution is solved withmore » a robust implicit procedure. A new Chebyshev collocation method is employed to approximate the porosity distribution and remapping is used to optimize memory usage. The adaptive approximation of the porosity distribution leads to a reduction of computational time and memory usage of up to two orders of magnitude. Moreover, the proposed model affords consistent performance: changing the nucleation pressure probability density function and/or the applied strain rate does not reduce accuracy or computational efficiency of the material model. The numerical performance of the model and algorithms presented is tested against three problems for high density tantalum: single void, one-dimensional uniaxial strain, and two-dimensional plate impact. Here, the results using the integration and algorithmic advances suggest a significant improvement in computational efficiency and accuracy over previous treatments for dynamic loading conditions.« less

  12. Patient accounting systems: needs and capabilities.

    PubMed

    Kennedy, O G; Collignon, S

    1987-09-01

    In the first article of this series, it was stated that most finance executives are not very satisfied with the performance of their current patient accounting systems. What steps can a patient accounting system planner take to help ensure the system selected will garner high ratings from managers and users? Two primarily steps need to be taken. First, the planner needs to perform a thorough evaluation of both near- and long-term patient accounting requirements. He should determine which features and functions are most critical and ensure they are incorporated as selection criteria. The planner should also incorporate institutional planning into that process, such as planned expansion of facilities or services, to ensure that the system selected has the growth potential, interfacing capabilities, and flexibility to respond to the changing environment. Then, once system needs are fully charted, the planner should educate himself about the range of patient accounting system solutions available. The data show that most financial managers lack knowledge about most of the major patient accounting system vendors in the marketplace. Once vendors that offer systems that seemingly could meet needs are identified, the wise system planner will also want to obtain information from users about those vendors, to determine whether the systems perform as described and whether the vendor has been responsive to the needs of its customers. This step is a particularly important part of the planning process, because the data also show that users of some systems are significantly more satisfied than users of other patient accounting systems.

  13. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  14. Persistency and flexibility of complex brain networks underlie dual-task interference.

    PubMed

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley

  15. Recursive dynamics for flexible multibody systems using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1990-01-01

    Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described

  16. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells.

    PubMed

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; Huang, Jing-Shun; Sfeir, Matthew Y; Reed, Mark A; Jung, Yeonwoong; Taylor, André D

    2017-12-01

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p-n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Flexible power and bandwidth allocation in mobile satellites

    NASA Astrophysics Data System (ADS)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  18. A Petri net synthesis theory for modeling flexible manufacturing systems.

    PubMed

    Jeng, M D

    1997-01-01

    A theory that synthesizes Petri nets for modeling flexible manufacturing systems is presented. The theory adopts a bottom-up or modular-composition approach to construct net models. Each module is modeled as a resource control net (RCN), which represents a subsystem that controls a resource type in a flexible manufacturing system. Interactions among the modules are described as the common transition and transition subnets. The net obtained by merging the modules with two minimal restrictions is shown to be conservative and thus bounded. An algorithm is developed to detect two sufficient conditions for structural liveness of the net. The algorithm examines only the net's structure and the initial marking, and appears to be more efficient than state enumeration techniques such as the reachability tree method. In this paper, the sufficient conditions for liveness are shown to be related to some structural objects called siphons. To demonstrate the applicability of the theory, a flexible manufacturing system of a moderate size is modeled and analyzed using the proposed theory.

  19. Propulsive performance of pitching foils with variable chordwise flexibility

    NASA Astrophysics Data System (ADS)

    Zeyghami, Samane; Moored, Keith; Lehigh University Team

    2017-11-01

    Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.

  20. Accounting for care: exploring tensions and contradictions.

    PubMed

    Choiniere, Jacqueline A

    2011-01-01

    Within the context of neoliberal restructuring, accountability is primarily linked to efficiency, determined through standardized, numerically based technologies and focused on lengths of stay, utilization indicators, and the like. Disappearing from view in this approach is what is actually happening at the point of care for registered nurses. Grounded in semistructured interviews, this article casts a critical light on the tensions and contradictions experienced by nurses, arguing that instead of a more accountable, effective, or efficient system, this path is jeopardizing nurses' ability to provide needed care within healthy, supportive work environments, setting into motion a fundamental transformation of nursing practice.

  1. Sampling over Nonuniform Distributions: A Neural Efficiency Account of the Primacy Effect in Statistical Learning.

    PubMed

    Karuza, Elisabeth A; Li, Ping; Weiss, Daniel J; Bulgarelli, Federica; Zinszer, Benjamin D; Aslin, Richard N

    2016-10-01

    Successful knowledge acquisition requires a cognitive system that is both sensitive to statistical information and able to distinguish among multiple structures (i.e., to detect pattern shifts and form distinct representations). Extensive behavioral evidence has highlighted the importance of cues to structural change, demonstrating how, without them, learners fail to detect pattern shifts and are biased in favor of early experience. Here, we seek a neural account of the mechanism underpinning this primacy effect in learning. During fMRI scanning, adult participants were presented with two artificial languages: a familiar language (L1) on which they had been pretrained followed by a novel language (L2). The languages were composed of the same syllable inventory organized according to unique statistical structures. In the absence of cues to the transition between languages, posttest familiarity judgments revealed that learners on average more accurately segmented words from the familiar language compared with the novel one. Univariate activation and functional connectivity analyses showed that participants with the strongest learning of L1 had decreased recruitment of fronto-subcortical and posterior parietal regions, in addition to a dissociation between downstream regions and early auditory cortex. Participants with a strong new language learning capacity (i.e., higher L2 scores) showed the opposite trend. Thus, we suggest that a bias toward neural efficiency, particularly as manifested by decreased sampling from the environment, accounts for the primacy effect in learning. Potential implications of this hypothesis are discussed, including the possibility that "inefficient" learning systems may be more sensitive to structural changes in a dynamic environment.

  2. Management accounting for advanced technological environments.

    PubMed

    Kaplan, R S

    1989-08-25

    Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments.

  3. The Effect of Positive Mood on Flexible Processing of Affective Information.

    PubMed

    Grol, Maud; De Raedt, Rudi

    2017-07-17

    Recent efforts have been made to understand the cognitive mechanisms underlying psychological resilience. Cognitive flexibility in the context of affective information has been related to individual differences in resilience. However, it is unclear whether flexible affective processing is sensitive to mood fluctuations. Furthermore, it remains to be investigated how effects on flexible affective processing interact with the affective valence of information that is presented. To fill this gap, we tested the effects of positive mood and individual differences in self-reported resilience on affective flexibility, using a task switching paradigm (N = 80). The main findings showed that positive mood was related to lower task switching costs, reflecting increased flexibility, in line with previous findings. In line with this effect of positive mood, we showed that greater resilience levels, specifically levels of acceptance of self and life, also facilitated task set switching in the context of affective information. However, the effects of resilience on affective flexibility seem more complex. Resilience tended to relate to more efficient task switching when negative information was preceded by positive information, possibly because the presentation of positive information, as well as positive mood, can facilitate task set switching. Positive mood also influenced costs associated with switching affective valence of the presented information. This latter effect was indicative of a reduced impact of no longer relevant negative information and more impact of no longer relevant positive information. Future research should confirm these effects of individual differences in resilience on affective flexibility, considering the affective valence of the presented information. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. The Limits of Accountability.

    ERIC Educational Resources Information Center

    Bailey, Stephen K.

    This discussion, presented at the Regent's Trustees' Conference, February 1973, reviews the limits of accountability in higher education. Managerial efficiency is suggested to assist in eliminating educational and financial waste. This, however, is the secondary concept emphasized. The primary emphasis indicates the legitimacy of the claims that a…

  5. Lumped mass formulations for modeling flexible body systems

    NASA Technical Reports Server (NTRS)

    Rampalli, Rajiv

    1989-01-01

    The efforts of Mechanical Dynamics, Inc. in obtaining a general formulation for flexible bodies in a multibody setting are discussed. The efforts being supported by MDI, both in house and externally are summarized. The feasibility of using lumped mass approaches to modeling flexibility in a multibody dynamics context is examined. The kinematics and kinetics for a simple system consisting of two rigid bodies connected together by an elastic beam are developed in detail. Accuracy, efficiency and ease of use using this approach are some of the issues that are then looked at. The formulation is then generalized to a superelement containing several nodes and connecting several bodies. Superelement kinematics and kinetics equations are developed. The feasibility and effectiveness of the method is illustrated by the use of some examples illustrating phenomena common in the context of spacecraft motions.

  6. Inter-Vertebral Flexibility of the Ostrich Neck: Implications for Estimating Sauropod Neck Flexibility

    PubMed Central

    Cobley, Matthew J.; Rayfield, Emily J.; Barrett, Paul M.

    2013-01-01

    The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus). The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50). This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data. PMID:23967284

  7. An analytical model with flexible accuracy for deep submicron DCVSL cells

    NASA Astrophysics Data System (ADS)

    Valiollahi, Sepideh; Ardeshir, Gholamreza

    2018-07-01

    Differential cascoded voltage switch logic (DCVSL) cells are among the best candidates of circuit designers for a wide range of applications due to advantages such as low input capacitance, high switching speed, small area and noise-immunity; nevertheless, a proper model has not yet been developed to analyse them. This paper analyses deep submicron DCVSL cells based on a flexible accuracy-simplicity trade-off including the following key features: (1) the model is capable of producing closed-form expressions with an acceptable accuracy; (2) model equations can be solved numerically to offer higher accuracy; (3) the short-circuit currents occurring in high-low/low-high transitions are accounted in analysis and (4) the changes in the operating modes of transistors during transitions together with an efficient submicron I-V model, which incorporates the most important non-ideal short-channel effects, are considered. The accuracy of the proposed model is validated in IBM 0.13 µm CMOS technology through comparisons with the accurate physically based BSIM3 model. The maximum error caused by analytical solutions is below 10%, while this amount is below 7% for numerical solutions.

  8. A flexible benefits tax credit for health insurance and more.

    PubMed

    Etheredge, Lynn

    2001-01-01

    This essay outlines a concept for a "flexible benefits" tax credit for expanding health insurance coverage and other purposes such as retirement savings plans (with potential withdrawals for higher education, first-home ownership, and catastrophic medical expenses). Two examples are presented. The advantages of a flexible benefits tax credit are considered in terms of efficient use of the budget surplus to help meet the varied (and changing) needs of American families, to eliminate major national gaps in health insurance and pension coverage, and to advance other objectives. If the budget surplus is used wisely, political decisionmakers could achieve health insurance coverage for most uninsured workers and children and assure a future with real economic security for American families.

  9. Dynamics and Control of Flexible Space Vehicles

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1970-01-01

    The purpose of this report is twofold: (1) to survey the established analytic procedures for the simulation of controlled flexible space vehicles, and (2) to develop in detail methods that employ a combination of discrete and distributed ("modal") coordinates, i.e., the hybrid-coordinate methods. Analytic procedures are described in three categories: (1) discrete-coordinate methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate methods. Each of these approaches is described and analyzed for its advantages and disadvantages, and each is found to have an area of applicability. The hybrid-coordinate method combines the efficiency of the vehicle normal-coordinate method with the versatility of the discrete-coordinate method, and appears to have the widest range of practical application. The results in this report have practical utility in two areas: (1) complex digital computer simulation of flexible space vehicles of arbitrary configuration subject to realistic control laws, and (2) preliminary control system design based on transfer functions for linearized models of dynamics and control laws.

  10. Flexible energy harvesting from hard piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2016-11-01

    This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.

  11. Reduced Flexibility Associated with Metabolic Syndrome in Community-Dwelling Elders

    PubMed Central

    Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng

    2015-01-01

    Background The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. Methods A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Results Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25–2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95–0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Conclusion Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength

  12. Reduced flexibility associated with metabolic syndrome in community-dwelling elders.

    PubMed

    Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng

    2015-01-01

    The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25-2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95-0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly

  13. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    PubMed

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  14. iPad integration in plastic surgical training: optimizing clinical efficiency, education, and compliance with the health insurance portability and accountability act.

    PubMed

    Gerstle, Theodore; Hassanein, Aladdin H; Eriksson, Elof

    2015-01-01

    The authors share their experience with the issuance of iPads to all residents, faculty, and physician extenders in their plastic surgical division. They found that these devices (1) optimized compliance with the Health Insurance Portability and Accountability Act by eliminating the use of paper service lists; (2) improved clinical efficiency; and (3) promoted resident education. They believe the use of these devices in residency is cost-effective when considering mitigating patient privacy risk and enriching educational value.

  15. Simulation of the real efficiencies of high-efficiency silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachenko, A. V., E-mail: sach@isp.kiev.ua; Skrebtii, A. I.; Korkishko, R. M.

    The temperature dependences of the efficiency η of high-efficiency solar cells based on silicon are calculated. It is shown that the temperature coefficient of decreasing η with increasing temperature decreases as the surface recombination rate decreases. The photoconversion efficiency of high-efficiency silicon-based solar cells operating under natural (field) conditions is simulated. Their operating temperature is determined self-consistently by simultaneously solving the photocurrent, photovoltage, and energy-balance equations. Radiative and convective cooling mechanisms are taken into account. It is shown that the operating temperature of solar cells is higher than the ambient temperature even at very high convection coefficients (~300 W/m{sup 2}more » K). Accordingly, the photoconversion efficiency in this case is lower than when the temperature of the solar cells is equal to the ambient temperature. The calculated dependences for the open-circuit voltage and the photoconversion efficiency of high-quality silicon solar cells under concentrated illumination are discussed taking into account the actual temperature of the solar cells.« less

  16. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 1: Analysis methods

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. S.

    1985-01-01

    As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.

  17. Seeking Defense Efficiency

    DTIC Science & Technology

    2001-01-01

    improving defense management requires decentralizing the pursuit of efficiency on a framework of strategic planning, cost accounting , and performance...Office (GAO) report (1999) questions whether assumed sav- ings figures may be overly optimistic in not sufficiently accounting for the costs of...inputs�.� money and personnel spaces from opera- tions and maintenance (O&M) budget lines? Without better systems to account for costs and to measure

  18. Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM

    PubMed Central

    Gagnon, Jessica K.; Law, Sean M.; Brooks, Charles L.

    2016-01-01

    Protein-ligand docking is a commonly used method for lead identification and refinement. While traditional structure-based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an inter-converting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well-appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid-based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced-fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re-docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs. PMID:26691274

  19. Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM.

    PubMed

    Gagnon, Jessica K; Law, Sean M; Brooks, Charles L

    2016-03-30

    Protein-ligand docking is a commonly used method for lead identification and refinement. While traditional structure-based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an interconverting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well-appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid-based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced-fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re-docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs. © 2015 Wiley Periodicals, Inc.

  20. Flexible Response: Executive Federalism and the No Child Left Behind Act of 2001

    ERIC Educational Resources Information Center

    Shelly, Bryan

    2012-01-01

    The federal government promised that it would limit waiver grants to states for the No Child Left Behind Act of 2001 (NCLB). It largely kept that promise, but states did gain significant flexibility through amendments to accountability plans. OLS model estimates showed that larger, more affluent, and more Republican states submitted more amendment…

  1. Effect of foam age on toxicity of pyrolysis gases from polyurethane flexible foams

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Murphy, R. M.

    1978-01-01

    The toxicity of the pyrolysis gases from some samples of polyurethane flexible foams appears to have decreased with age, while other samples seem to exhibit no significant change with age in this respect. The changes observed were greater than could be accounted for by variations in the material, or test variations or artifacts.

  2. Fast Transformation of Temporal Plans for Efficient Execution

    NASA Technical Reports Server (NTRS)

    Tsamardinos, Ioannis; Muscettola, Nicola; Morris, Paul

    1998-01-01

    Temporal plans permit significant flexibility in specifying the occurrence time of events. Plan execution can make good use of that flexibility. However, the advantage of execution flexibility is counterbalanced by the cost during execution of propagating the time of occurrence of events throughout the flexible plan. To minimize execution latency, this propagation needs to be very efficient. Previous work showed that every temporal plan can be reformulated as a dispatchable plan, i.e., one for which propagation to immediate neighbors is sufficient. A simple algorithm was given that finds a dispatchable plan with a minimum number of edges in cubic time and quadratic space. In this paper, we focus on the efficiency of the reformulation process, and improve on that result. A new algorithm is presented that uses linear space and has time complexity equivalent to Johnson s algorithm for all-pairs shortest-path problems. Experimental evidence confirms the practical effectiveness of the new algorithm. For example, on a large commercial application, the performance is improved by at least two orders of magnitude. We further show that the dispatchable plan, already minimal in the total number of edges, can also be made minimal in the maximum number of edges incoming or outgoing at any node.

  3. Accountability Policies at Schools: A Study of Path Analysis

    ERIC Educational Resources Information Center

    Erdag, Coskun

    2017-01-01

    Turkey is now on its way to reforming compulsory education and having a more effective and efficient education system by creating more accountable schools. This research has been designed in a causative pattern to discover the effects of external academic performance pressures on school accountability policies and school accountability responses…

  4. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    PubMed Central

    Nakata, Toshiyuki; Liu, Hao

    2012-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  5. Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.

    PubMed

    Armbruster-Genç, Diana J N; Ueltzhöffer, Kai; Fiebach, Christian J

    2016-04-06

    Recent research yielded the intriguing conclusion that, in healthy adults, higher levels of variability in neuronal processes are beneficial for cognitive functioning. Beneficial effects of variability in neuronal processing can also be inferred from neurocomputational theories of working memory, albeit this holds only for tasks requiring cognitive flexibility. However, cognitive stability, i.e., the ability to maintain a task goal in the face of irrelevant distractors, should suffer under high levels of brain signal variability. To directly test this prediction, we studied both behavioral and brain signal variability during cognitive flexibility (i.e., task switching) and cognitive stability (i.e., distractor inhibition) in a sample of healthy human subjects and developed an efficient and easy-to-implement analysis approach to assess BOLD-signal variability in event-related fMRI task paradigms. Results show a general positive effect of neural variability on task performance as assessed by accuracy measures. However, higher levels of BOLD-signal variability in the left inferior frontal junction area result in reduced error rate costs during task switching and thus facilitate cognitive flexibility. In contrast, variability in the same area has a detrimental effect on cognitive stability, as shown in a negative effect of variability on response time costs during distractor inhibition. This pattern was mirrored at the behavioral level, with higher behavioral variability predicting better task switching but worse distractor inhibition performance. Our data extend previous results on brain signal variability by showing a differential effect of brain signal variability that depends on task context, in line with predictions from computational theories. Recent neuroscientific research showed that the human brain signal is intrinsically variable and suggested that this variability improves performance. Computational models of prefrontal neural networks predict differential

  6. Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Guruswamy, Guru P.

    1995-01-01

    New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is based on a combination of the lower-upper factored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme. A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.

  7. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  8. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  9. A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-01-01

    A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.

  10. Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch

    NASA Astrophysics Data System (ADS)

    Vila, Paloma; Baeza, Luis; Martínez-Casas, José; Carballeira, Javier

    2014-05-01

    In this work, a simulation tool is developed to analyse the growth of rail corrugation consisting of several models connected in a feedback loop in order to account for both the short-term dynamic vehicle-track interaction and the long-term damage. The time-domain vehicle-track interaction model comprises a flexible rotating wheel set model, a cyclic track model based on a substructuring technique and a non-Hertzian and non-steady-state three-dimensional wheel-rail contact model, based on the variational theory by Kalker. Wear calculation is performed with Archard's wear model by using the contact parameters obtained with the non-Hertzian and non-steady-state three-dimensional contact model. The aim of this paper is to analyse the influence of the excitation of two coinciding resonances of the flexible rotating wheel set on the rail corrugation growth in the frequency range from 20 to 1500 Hz, when contact conditions similar to those that can arise while a wheel set is negotiating a gentle curve are simulated. Numerical results show that rail corrugation grows only on the low rail for two cases in which two different modes of the rotating wheel set coincide in frequency. In the first case, identified by using the Campbell diagram, the excitation of both the backward wheel mode and the forward third bending mode of the wheel set model (B-F modes) promotes the growth of rail corrugation with a wavelength of 110 mm for a vehicle velocity of 142 km/h. In the second case, the excitation of both the backward wheel mode and the backward third bending mode (B-B modes) gives rise to rail corrugation growth at a wavelength of 156 mm when the vehicle velocity is 198 km/h.

  11. Structure-Based Druggability Assessment of the Mammalian Structural Proteome with Inclusion of Light Protein Flexibility

    PubMed Central

    Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.

    2014-01-01

    Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060

  12. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.

    PubMed

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-02-02

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10 3  V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

  13. Robust on-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  14. Heat exchanger efficiently operable alternatively as evaporator or condenser

    DOEpatents

    Ecker, Amir L.

    1981-01-01

    A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

  15. Application of HIPAA group market portability rules to health flexible spending arrangements--HCFA. Clarification of regulations.

    PubMed

    1997-12-29

    This document clarifies that it is appropriate to treat benefits under certain health flexible spending arrangements as excepted benefits for purposes of the group market portability provisions added by the Health Insurance Portability and Accountability Act of 1996 (HIPAA).

  16. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.

    PubMed

    Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei

    2013-11-07

    Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.

  17. A combinatorial approach to protein docking with flexible side chains.

    PubMed

    Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter

    2002-01-01

    Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.

  18. [Complication related factors and efficacy with flexible endoscopy of 101 esophageal foreign bodies].

    PubMed

    Yan, Xiu-e; Zhou, Li-ya; Lin, San-ren; Wang, Ye; Cheng, Zhi-rong

    2013-08-27

    To analyze the related factors of complications and treatment efficacy with flexible endoscopy for esophageal foreign body (FB). In a retrospective study with consecutive data, 101 adults including 52 males and 49 females with esophageal FB impaction between January 2005 and December 2012 admitted into Department of Gastroenterology's Endoscopic Unit at Peking University Third Hospital were included, aged (49 ± 21) years. (1) FB impaction in upper and middle esophagus accounted for 87.1% (n = 88) of all esophageal FBs. No significant difference existed in interval time from impaction to removal of FB impacted between upper, middle and lower esophagus (P > 0.05) . (2) Patients with esophageal FB seeking hospital treatment accounted for 82.2% (n = 83) within 24 h and 99.0% (n = 100) within 48 h. Food lump, fish bone, chicken bone and fruit seeds accounted for 76.2% (n = 77). (3) Positive rates were 91.3% (21/23) and 24.1% (7/29) with upper gastrointestinal barium contrast and chest or abdominal plain film. The success rate was 94.1% (n = 95) with flexible endoscopy for removal of FB. (4) Denture was the most difficult FB for removal. Four patients in all 11 patients with denture impacted were not removed successfully with flexible endoscopy. (5) The complication (except for mild scratch) rate was 48.5% (n = 49) and the perforation rate 3.0% (n = 3) . Whether complications took place or not was independent of age, location of impaction, time from impaction to removal and size of FB (all P > 0.05) , but dependent on piercing into esophageal wall, concomitant with esophageal stricture and types of FB (all P < 0.01) . Whether perforation or not was independent of any above factor. Esophageal FB should be removed as soon as possible within 24 h especially for those with sharp edges and piercing into esophageal wall.

  19. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    PubMed

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  20. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  1. Development of a set of equations for incorporating disk flexibility effects in rotordynamical analyses

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Ryan, Stephen G.

    1991-01-01

    Rotordynamical equations that account for disk flexibility are developed. These equations employ free-free rotor modes to model the rotor system. Only transverse vibrations of the disks are considered, with the shaft/disk system considered to be torsionally rigid. Second order elastic foreshortening effects that couple with the rotor speed to produce first order terms in the equations of motion are included. The approach developed in this study is readily adaptable for usage in many of the codes that are current used in rotordynamical simulations. The equations are similar to those used in standard rigid disk analyses but with additional terms that include the effects of disk flexibility. An example case is presented to demonstrate the use of the equations and to show the influence of disk flexibility on the rotordynamical behavior of a sample system.

  2. Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer.

    PubMed

    Lee, Hyungjin; Lee, Donghwa; Ahn, Yumi; Lee, Eun-Woo; Park, Lee Soon; Lee, Youngu

    2014-08-07

    Highly flexible and efficient silver nanowire-based organic light-emitting diodes (OLEDs) have been successfully fabricated by employing a n-type hole injection layer (HIL). The silver nanowire-based OLEDs without light outcoupling structures exhibited excellent device characteristics such as extremely low turn-on voltage (3.6 V) and high current and power efficiencies (44.5 cd A(-1) and 35.8 lm W(-1)). In addition, flexible OLEDs with the silver nanowire transparent conducting electrode (TCE) and n-type HIL fabricated on plastic substrates showed remarkable mechanical flexibility as well as device performance.

  3. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  4. Accounting for geophysical information in geostatistical characterization of unexploded ordnance (UXO) sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Hirotaka; Goovaerts, Pierre; McKenna, Sean Andrew

    2003-06-01

    Efficient and reliable unexploded ordnance (UXO) site characterization is needed for decisions regarding future land use. There are several types of data available at UXO sites and geophysical signal maps are one of the most valuable sources of information. Incorporation of such information into site characterization requires a flexible and reliable methodology. Geostatistics allows one to account for exhaustive secondary information (i.e.,, known at every location within the field) in many different ways. Kriging and logistic regression were combined to map the probability of occurrence of at least one geophysical anomaly of interest, such as UXO, from a limited numbermore » of indicator data. Logistic regression is used to derive the trend from a geophysical signal map, and kriged residuals are added to the trend to estimate the probabilities of the presence of UXO at unsampled locations (simple kriging with varying local means or SKlm). Each location is identified for further remedial action if the estimated probability is greater than a given threshold. The technique is illustrated using a hypothetical UXO site generated by a UXO simulator, and a corresponding geophysical signal map. Indicator data are collected along two transects located within the site. Classification performances are then assessed by computing proportions of correct classification, false positive, false negative, and Kappa statistics. Two common approaches, one of which does not take any secondary information into account (ordinary indicator kriging) and a variant of common cokriging (collocated cokriging), were used for comparison purposes. Results indicate that accounting for exhaustive secondary information improves the overall characterization of UXO sites if an appropriate methodology, SKlm in this case, is used.« less

  5. Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.

    PubMed

    Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia

    2016-03-08

    A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.

  6. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  7. Flexible wearable sensor nodes with solar energy harvesting.

    PubMed

    Taiyang Wu; Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2017-07-01

    Wearable sensor nodes have gained a lot of attention during the past few years as they can monitor and record people's physical parameters in real time. Wearable sensor nodes can promote healthy lifestyles and prevent the occurrence of potential illness or injuries. This paper presents a flexible wearable sensor system powered by an efficient solar energy harvesting technique. It can measure the subject's heartbeats using a photoplethysmography (PPG) sensor and perform activity monitoring using an accelerometer. The solar energy harvester adopts an output current based maximum power point tracking (MPPT) algorithm, which controls the solar panel to operate within its high output power range. The power consumption of the flexible sensor nodes has been investigated under different operation conditions. Experimental results demonstrate that wearable sensor nodes can work for more than 12 hours when they are powered by the solar energy harvester for 3 hours in the bright sunlight.

  8. aTRAM 2.0: An Improved, Flexible Locus Assembler for NGS Data

    PubMed Central

    Allen, Julie M; LaFrance, Raphael; Folk, Ryan A; Johnson, Kevin P; Guralnick, Robert P

    2018-01-01

    Massive strides have been made in technologies for collecting genome-scale data. However, tools for efficiently and flexibly assembling raw outputs into downstream analytical workflows are still nascent. aTRAM 1.0 was designed to assemble any locus from genome sequencing data but was neither optimized for efficiency nor able to serve as a single toolkit for all assembly needs. We have completely re-implemented aTRAM and redesigned its structure for faster read retrieval while adding a number of key features to improve flexibility and functionality. The software can now (1) assemble single- or paired-end data, (2) utilize both read directions in the database, (3) use an additional de novo assembly module, and (4) leverage new built-in pipelines to automate common workflows in phylogenomics. Owing to reimplementation of databasing strategies, we demonstrate that aTRAM 2.0 is much faster across all applications compared to the previous version. PMID:29881251

  9. Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1989-01-01

    The Control/Structures Integration Program, a survey of available software for control of flexible structures, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software are discussed.

  10. Mounting for diodes provides efficient heat sink

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Efficient heat sink is provided by soldering diodes to metal support bars which are brazed to a ceramic base. Electrical connections between diodes on adjacent bars are made flexible by metal strips which aid in heat dissipation.

  11. Flexible-Device Injector with a Microflap Array for Subcutaneously Implanting Flexible Medical Electronics.

    PubMed

    Song, Kwangsun; Kim, Juho; Cho, Sungbum; Kim, Namyun; Jung, Dongwuk; Choo, Hyuck; Lee, Jongho

    2018-06-25

    Implantable electronics in soft and flexible forms can reduce undesired outcomes such as irritations and chronic damages to surrounding biological tissues due to the improved mechanical compatibility with soft tissues. However, the same mechanical flexibility also makes it difficult to insert such implants through the skin because of reduced stiffness. In this paper, a flexible-device injector that enables the subcutaneous implantation of flexible medical electronics is reported. The injector consists of a customized blade at the tip and a microflap array which holds the flexible implant while the injector penetrates through soft tissues. The microflap array eliminates the need of additional materials such as adhesives that require an extended period to release a flexible medical electronic implant from an injector inside the skin. The mechanical properties of the injection system during the insertion process are experimentally characterized, and the injection of a flexible optical pulse sensor and electrocardiogram sensor is successfully demonstrated in vivo in live pig animal models to establish the practical feasibility of the concept. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  13. An efficient approach to the analysis of rail surface irregularities accounting for dynamic train-track interaction and inelastic deformations

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-11-01

    A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.

  14. Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai

    2018-03-01

    Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.

  15. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics

    NASA Astrophysics Data System (ADS)

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  16. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.

    PubMed

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  17. [Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].

    PubMed

    Zhang, Daoxcing; Zhang, Yankun

    2006-02-01

    Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.

  18. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  19. Balancing Fairness and Efficiency: The Impact of Identity-Blind and Identity-Conscious Accountability on Applicant Screening

    PubMed Central

    Self, William T.; Mitchell, Gregory; Mellers, Barbara A.; Tetlock, Philip E.; Hildreth, J. Angus D.

    2015-01-01

    This study compared two forms of accountability that can be used to promote diversity and fairness in personnel selections: identity-conscious accountability (holding decision makers accountable for which groups are selected) versus identity-blind accountability (holding decision makers accountable for making fair selections). In a simulated application screening process, undergraduate participants (majority female) sorted applicants under conditions of identity-conscious accountability, identity-blind accountability, or no accountability for an applicant pool in which white males either did or did not have a human capital advantage. Under identity-conscious accountability, participants exhibited pro-female and pro-minority bias, particularly in the white-male-advantage applicant pool. Under identity-blind accountability, participants exhibited no biases and candidate qualifications dominated interview recommendations. Participants exhibited greater resentment toward management under identity-conscious accountability. PMID:26660723

  20. Optimization of TiO{sub 2} photoelectrode with titanium isopropoxide for flexible dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggraini, Putri Nur, E-mail: putr014@lipi.go.id; Retnaningsih, Lilis; Muliani, Lia

    2016-04-19

    Flexible DSSC uses plastic substrate such as polyethylene terephthalate (PET) to deposit photoelectrode, resulting in poor photoconversion efficiency of the solar cell due to the low temperature applied in the fabrication process. In this research, optimization process was examined in order to optimize the performance of flexible DSSC by adding titanium isopropoxide (TTIP) as a binder to TiO{sub 2} paste for DSSC photoelectrode. Small portion of TTIP with molar percentages of 0%, 5%, and 10% were added to a mixture of TiO{sub 2} nanocrystaline, butanol, DI water, and reflector powder. The mixtures were stirred using a magnetic stirrer for 24more » hours. Each of various pastes was then deposited on a plastic substrate with doctor blade method on 1 cm{sup 2} area. The films were sintered at temperature of 150 °C for 4 hours and soaked in dye solution for 24 hours. Furthermore, TiO{sub 2} photoelectrode and Pt counter electrode were assembled and injected by electrolyte. Flexible DSSCs were characterized by SEM and XRD to determine their morphological structures. J-V measurement was performed by sun simulator to calculate DSSC photoconversion efficiency. The optimum performance of flexible DSSC was achieved by DSSC with 10 mol% TTIP content.« less

  1. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  2. Flexibility within the rotor and stators of the vacuolar H+-ATPase.

    PubMed

    Song, Chun Feng; Papachristos, Kostas; Rawson, Shaun; Huss, Markus; Wieczorek, Helmut; Paci, Emanuele; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2013-01-01

    The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.

  3. Thermally stable, highly efficient, ultraflexible organic photovoltaics

    PubMed Central

    Xu, Xiaomin; Fukuda, Kenjiro; Karki, Akchheta; Park, Sungjun; Kimura, Hiroki; Jinno, Hiroaki; Watanabe, Nobuhiro; Yamamoto, Shuhei; Shimomura, Satoru; Kitazawa, Daisuke; Yokota, Tomoyuki; Umezu, Shinjiro; Nguyen, Thuc-Quyen; Someya, Takao

    2018-01-01

    Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation. PMID:29666257

  4. High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Benjia; Miller, Elisa M.; Christians, Jeffrey A.

    For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. Here, we highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. And while tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devicesmore » underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.« less

  5. High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO

    DOE PAGES

    Dou, Benjia; Miller, Elisa M.; Christians, Jeffrey A.; ...

    2017-09-27

    For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. Here, we highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. And while tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devicesmore » underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.« less

  6. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays.

    PubMed

    Hanna, Amir Nabil; Kutbee, Arwa Talal; Subedi, Ram Chandra; Ooi, Boon; Hussain, Muhammad Mustafa

    2018-01-01

    A novel wavy-shaped thin-film-transistor (TFT) architecture, capable of achieving 70% higher drive current per unit chip area when compared with planar conventional TFT architectures, is reported for flexible display application. The transistor, due to its atypical architecture, does not alter the turn-on voltage or the OFF current values, leading to higher performance without compromising static power consumption. The concept behind this architecture is expanding the transistor's width vertically through grooved trenches in a structural layer deposited on a flexible substrate. Operation of zinc oxide (ZnO)-based TFTs is shown down to a bending radius of 5 mm with no degradation in the electrical performance or cracks in the gate stack. Finally, flexible low-power LEDs driven by the respective currents of the novel wavy, and conventional coplanar architectures are demonstrated, where the novel architecture is able to drive the LED at 2 × the output power, 3 versus 1.5 mW, which demonstrates the potential use for ultrahigh resolution displays in an area efficient manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Voices from the Field: Performance Assessments in State Accountability as Discussed at the National Conference on Student Assessment

    ERIC Educational Resources Information Center

    Lyons, Susan; Qiu, Yuxi

    2017-01-01

    This field report from 2017's National Conference on Student Assessment shares possibilities for flexibility and innovation in assessment and accountability made possible by the Every Student Succeeds Act.

  8. Flexible thermal laminate

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Sauers, D. G.

    1977-01-01

    Lightweight flexible laminate of interwoven conducting and insulating yarns, designed to provide localized controlled heating for propellant tanks on space vehicles, is useful for nonspace applications where weight, bulk, and flexibility are critical concerns.

  9. Effects of high-dose ethanol intoxication and hangover on cognitive flexibility.

    PubMed

    Wolff, Nicole; Gussek, Philipp; Stock, Ann-Kathrin; Beste, Christian

    2018-01-01

    The effects of high-dose ethanol intoxication on cognitive flexibility processes are not well understood, and processes related to hangover after intoxication have remained even more elusive. Similarly, it is unknown in how far the complexity of cognitive flexibility processes is affected by intoxication and hangover effects. We performed a neurophysiological study applying high density electroencephalography (EEG) recording to analyze event-related potentials (ERPs) and perform source localization in a task switching paradigm which varied the complexity of task switching by means of memory demands. The results show that high-dose ethanol intoxication only affects task switching (i.e. cognitive flexibility processes) when memory processes are required to control task switching mechanisms, suggesting that even high doses of ethanol compromise cognitive processes when they are highly demanding. The EEG and source localization data show that these effects unfold by modulating response selection processes in the anterior cingulate cortex. Perceptual and attentional selection processes as well as working memory processes were only unspecifically modulated. In all subprocesses examined, there were no differences between the sober and hangover states, thus suggesting a fast recovery of cognitive flexibility after high-dose ethanol intoxication. We assume that the gamma-aminobutyric acid (GABAergic) system accounts for the observed effects, while they can hardly be explained by the dopaminergic system. © 2016 Society for the Study of Addiction.

  10. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics

    PubMed Central

    Armen, Roger S.; Chen, Jianhan; Brooks, Charles L.

    2009-01-01

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and “noise” that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds. PMID:20160879

  11. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer

    PubMed Central

    Hutchins, G. D.; Perry, K.; Territo, W.; Chisholm, R.; Acton, A.; Glick-Wilson, B.; Considine, R. V.; Moberly, S.; DeGrado, T. R.

    2015-01-01

    Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[18F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([11C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m−2·min−1) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM. PMID:26732686

  12. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.

    PubMed

    Mather, K J; Hutchins, G D; Perry, K; Territo, W; Chisholm, R; Acton, A; Glick-Wilson, B; Considine, R V; Moberly, S; DeGrado, T R

    2016-03-15

    Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[(18)F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([(11)C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m(-2)·min(-1)) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM. Copyright © 2016 the American Physiological Society.

  13. Light-Emitting GaAs Nanowires on a Flexible Substrate.

    PubMed

    Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun

    2018-06-18

    Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.

  14. A flexible curvilinear electromagnetic filter for direct current cathodic arc source.

    PubMed

    Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2007-09-01

    Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

  15. Ultrathin and lightweight organic solar cells with high flexibility

    PubMed Central

    Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2012-01-01

    Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014

  16. A Contextual Behavior Science Framework for Understanding How Behavioral Flexibility Relates to Anxiety.

    PubMed

    Palm Reed, Kathleen M; Cameron, Amy Y; Ameral, Victoria E

    2017-09-01

    There is a growing literature focusing on the emerging idea that behavioral flexibility, rather than particular emotion regulation strategies per se, provides greater promise in predicting and influencing anxiety-related psychopathology. Yet this line of research and theoretical analysis appear to be plagued by its own challenges. For example, middle-level constructs, such as behavioral flexibility, are difficult to define, difficult to measure, and difficult to interpret in relation to clinical interventions. A key point that some researchers have made is that previous studies examining flexible use of emotion regulation strategies (or, more broadly, coping) have failed due to a lack of focus on context. That is, examining strategies in isolation of the context in which they are used provides limited information on the suitability, rigid adherence, or effectiveness of a given strategy in that situation. Several of these researchers have proposed the development of new models to define and measure various types of behavioral flexibility. We would like to suggest that an explanation of the phenomenon already exists and that we can go back to our behavioral roots to understand this phenomenon rather than focusing on defining and capturing a new process. Indeed, thorough contextual behavioral analyses already yield a useful account of what has been observed. We will articulate a model explaining behavioral flexibility using a functional, contextual framework, with anxiety-related disorders as an example.

  17. Stretchable interconnections for flexible electronic systems.

    PubMed

    Jianhui, Lin; Bing, Yan; Xiaoming, Wu; Tianling, Ren; Litian, Liu

    2009-01-01

    Sensors, actuators and integrated circuits (IC) can be encapsulated together on an elastic substrate, which makes a flexible electronic system. In this system, electrical interconnections that can sustain large and reversible stretching are in great need. This paper is devoted to the fabrication of highly stretchable metal interconnections. Transfer printing technology is utilized, which mainly involves the transfer of 100-nm-thick gold ribbons from silicon wafers to pre-stretched elastic substrates. After the elastic substrates relax from the pre-strain, the gold ribbons buckle and form wavy geometries. These wavy geometries change in shapes to accommodate the applied strain and can be reversely stretched without cracks or fractures occurring, which will greatly raise the stretchability of the gold ribbons. As an application example, some of these wavy ribbons can accommodate high levels of stretching (up to 100%) and bending (with curvature radius down to 1.20 mm). Moreover, the efficiency and reliability of the transfer, especially for slender ribbons, have been increased due to the improvement of the technology. All the characteristics above will permit making stretchable gold conductors as interconnections for flexible electronic systems such as implantable medical systems and smart clothes.

  18. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    PubMed

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  19. Flexible Plasmonic Sensors

    PubMed Central

    Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan

    2016-01-01

    Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023

  20. Accountability: A New Disneyland Fantasy

    ERIC Educational Resources Information Center

    Bundy, Robert F.

    1974-01-01

    Parents, professional educators, boards of education, legislators, and the general public are justifiably questioning the monies spent on education, school efficiency, what schools are actually accomplishing, and who controls the results of schooling. However, accountability, as envisioned by its major supporters, will address none of these…

  1. Kentucky's Early Childhood Continuous Assessment and Accountability System: Local Decisions and State Supports

    ERIC Educational Resources Information Center

    Rous, Beth; McCormick, Katherine; Gooden, Caroline; Townley, Kim F.

    2007-01-01

    Kentucky has developed an assessment and accountability system that provides outcome data for a set of state early childhood standards for children birth to 5 years of age that are aligned with early childhood outcomes designated by the Office of Special Education Programs (OSEP). Within this flexible and comprehensive state assessment system,…

  2. SYFSA: A Framework for Systematic Yet Flexible Systems Analysis

    PubMed Central

    Johnson, Todd R.; Markowitz, Eliz; Bernstam, Elmer V.; Herskovic, Jorge R.; Thimbleby, Harold

    2013-01-01

    Although technological or organizational systems that enforce systematic procedures and best practices can lead to improvements in quality, these systems must also be designed to allow users to adapt to the inherent uncertainty, complexity, and variations in healthcare. We present a framework, called Systematic Yet Flexible Systems Analysis (SYFSA) that supports the design and analysis of Systematic Yet Flexible (SYF) systems (whether organizational or technical) by formally considering the tradeoffs between systematicity and flexibility. SYFSA is based on analyzing a task using three related problem spaces: the idealized space, the natural space, and the system space. The idealized space represents the best practice—how the task is to be accomplished under ideal conditions. The natural space captures the task actions and constraints on how the task is currently done. The system space specifies how the task is done in a redesigned system, including how it may deviate from the idealized space, and how the system supports or enforces task constraints. The goal of the framework is to support the design of systems that allow graceful degradation from the idealized space to the natural space. We demonstrate the application of SYFSA for the analysis of a simplified central line insertion task. We also describe several information-theoretic measures of flexibility that can be used to compare alternative designs, and to measure how efficiently a system supports a given task, the relative cognitive workload, and learnability. PMID:23727053

  3. Recursive flexible multibody system dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1992-01-01

    This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.

  4. Flexibility in data interpretation: effects of representational format.

    PubMed

    Braithwaite, David W; Goldstone, Robert L

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.

  5. Flexibility in data interpretation: effects of representational format

    PubMed Central

    Braithwaite, David W.; Goldstone, Robert L.

    2013-01-01

    Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design. PMID:24427145

  6. Large-angle slewing maneuvers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Chun, Hon M.; Turner, James D.

    1988-01-01

    A new class of closed-form solutions for finite-time linear-quadratic optimal control problems is presented. The solutions involve Potter's solution for the differential matrix Riccati equation, which assumes the form of a steady-state plus transient term. Illustrative examples are presented which show that the new solutions are more computationally efficient than alternative solutions based on the state transition matrix. As an application of the closed-form solutions, the neighboring extremal path problem is presented for a spacecraft retargeting maneuver where a perturbed plant with off-nominal boundary conditions now follows a neighboring optimal trajectory. The perturbation feedback approach is further applied to three-dimensional slewing maneuvers of large flexible spacecraft. For this problem, the nominal solution is the optimal three-dimensional rigid body slew. The perturbation feedback then limits the deviations from this nominal solution due to the flexible body effects. The use of frequency shaping in both the nominal and perturbation feedback formulations reduces the excitation of high-frequency unmodeled modes. A modified Kalman filter is presented for estimating the plant states.

  7. Flexible Foam Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less

  8. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  9. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  10. Flexibility Demonstration Programs: Education Needs To Better Target Program Information. Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    Shaul, Marnie S.

    The No Child Left Behind Act (NCLBA) established 2 flexibility demonstration programs--State- and Local-Flex--that allow up to 7 states and 80 school districts to redirect up to 100 percent of certain NCLBA programs funds. The General Accounting Office (GAO) was asked to determine factors that affect states' and districts' decisions about whether…

  11. A user-friendly approach to cost accounting in laboratory animal facilities.

    PubMed

    Baker, David G

    2011-08-19

    Cost accounting is an essential management activity for laboratory animal facility management. In this report, the author describes basic principles of cost accounting and outlines steps for carrying out cost accounting in laboratory animal facilities. Methods of post hoc cost accounting analysis for maximizing the efficiency of facility operations are also described.

  12. Flexible reusable mandrels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis S. (Inventor)

    1995-01-01

    A reusable laminate mandrel which is unaffected by extreme temperature changes. The flexible laminate mandrel is comprised of sheets stacked to produce the required configuration, a cover wrap that applies pressure to the mandrel laminate, maintaining the stack cross-section. Then after use, the mandrels can be removed, disassembled, and reused. In the method of extracting the flexible mandrel from one end of a composite stiffener, individual ones of the laminae of the flexible mandrel or all are extracted at the same time, depending on severity of the contour.

  13. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  14. The flow dynamics behind a flexible finite cylinder as a flexible agitator

    NASA Astrophysics Data System (ADS)

    Yong, T. H.; Chan, H. B.; Dol, S. S.; Wee, S. K.; Kumar, P.

    2017-06-01

    This paper investigates the flow dynamics behind a flexible finite cylinder in a single-phase flow using a water tunnel. The cylinder was individually submerged in water at ReD = 4000, 6000 and 8000. The cylinder investigated has a AR = 10 and 16 and is made of EVA in order to achieve the lower stiffness for flexibility. A same AR of its aluminium rigid cylinder was investigated to serve as a benchmark to the flow dynamics behind a flexible cylinder. The results the downwash that hinders the transportation of vortices to the downstream was diminished. As a direct consequence of this phenomenon, the turbulence production has seen significant improvement for flexible finite cylinder.

  15. Reliable Radiographic Inspection of Flexible Risers for the Oil Industry

    NASA Astrophysics Data System (ADS)

    Almeida, Rômulo M.; Rebello, Joao Marcos A.; Vaz, Murilo A.

    2010-02-01

    Flexible risers are composite tubular structures manufactured by the concentric assemblage of cylindrical polymeric and helically wound metallic layers employed to convey pressurized fluids such as oil, gas and water in the ocean environment. The metallic layers account for the flexible risers' structural strength and are dimensioned according to the static and dynamic loads. They are usually installed in a free hanging catenary configuration and are subjected to the direct action of waves and marine currents and wave induced motions from the oil production platform. The fatigue rupture of wire armours in the end fitting or within the riser segment protected by the bend stiffener is an object of major concern. Integrity models have been developed, however inspection techniques are mandatory to ensure that failure is detected. Gammagraphy has been used as a common inspection technique in all regions of the flexible riser, mainly with the single wall-single view method. On the other side, there is not any qualified radiographic procedure to this kind of structure. Radiographic simulation was adopted and its validation with actual gammagraphies and establishment of radiographic parameters to complex radiation geometries were done. Results show the viability of the radiographic inspection analyzing the armour wires' rupture and the displacement between wires.

  16. RELIABLE RADIOGRAPHIC INSPECTION OF FLEXIBLE RISERS FOR THE OIL INDUSTRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Romulo M.; Rebello, Joao Marcos A.; Vaz, Murilo A.

    2010-02-22

    Flexible risers are composite tubular structures manufactured by the concentric assemblage of cylindrical polymeric and helically wound metallic layers employed to convey pressurized fluids such as oil, gas and water in the ocean environment. The metallic layers account for the flexible risers' structural strength and are dimensioned according to the static and dynamic loads. They are usually installed in a free hanging catenary configuration and are subjected to the direct action of waves and marine currents and wave induced motions from the oil production platform. The fatigue rupture of wire armours in the end fitting or within the riser segmentmore » protected by the bend stiffener is an object of major concern. Integrity models have been developed, however inspection techniques are mandatory to ensure that failure is detected. Gammagraphy has been used as a common inspection technique in all regions of the flexible riser, mainly with the single wall-single view method. On the other side, there is not any qualified radiographic procedure to this kind of structure. Radiographic simulation was adopted and its validation with actual gammagraphies and establishment of radiographic parameters to complex radiation geometries were done. Results show the viability of the radiographic inspection analyzing the armour wires' rupture and the displacement between wires.« less

  17. Flexible ferroelectric organic crystals

    DOE PAGES

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; ...

    2016-10-13

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. But, until now, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. We report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity-the properties that originate from their non-centrosymmetric crystal lattice-but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules.more » This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.« less

  18. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo

    2017-10-01

    Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

  19. Selection of an In-House Accounting System

    ERIC Educational Resources Information Center

    Napello, Dolores W.

    1988-01-01

    An inhouse accounting program can increase the productivity and efficiency of the school business office. Discusses basic questions regarding software, hardware requirements, training, and obtaining staff support and cooperation. (MLF)

  20. Efficient flapping flight of pterosaurs

    NASA Astrophysics Data System (ADS)

    Strang, Karl Axel

    the membrane subject to glide loads and pretension from the wing joint positions. The flapping gait is optimized in a two-stage procedure. First the design space is explored using a binary genetic algorithm. The best design points are then used as starting points in a sequential quadratic programming optimization algorithm. This algorithm is used to refine the solutions by precisely satisfying the constraints. The refined solutions are found in generally less than twenty major iterations and constraints are violated generally by less than 0.1%. We find that the optimal motions are in agreement with previous results for simple wing motions. By adding joint motions, the required flapping power is reduced by 7% to 17%. Because of the large uncertainties for some estimates, we investigate the sensitivity of the optimized flapping gait. We find that the optimal motions are sensitive mainly to flight speed, body accelerations, and to the material properties of the wing membrane. The optimal flight speed found correlates well with other studies of pterosaur flapping flight, and is 31% to 37% faster than previous estimates based on glide performance. Accounting for the body accelerations yields an increase of 10% to 16% in required flapping power. When including the aeroelastic effects, the optimal flapping gait is only slightly modified to accommodate for the deflections of stiff membranes. For a flexible membrane, the motion is significantly modified and the power increased by up to 57%. Finally, the flapping gait and required power compare well with published results for similar wing motions. Some published estimates of required power assumed a propulsive efficiency of 100%, whereas the propulsive efficiency computed for Coloborhynchus robustus ranges between 54% and 87%.

  1. Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    DOE PAGES

    Roald, Line Alnaes; Andersson, Goran

    2017-08-29

    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less

  2. New Source Review (NSR) Air Permitting and Energy Efficiency for Industrial Projects, IECA Manufacturers for Energy Efficiency Coalition Meeting (Presentation) – April 18, 2012

    EPA Pesticide Factsheets

    This presentation provides information about major new source review (NSR), including recent improvement changes and court rulings, flexible air permits rule, significant deterioration rules, and energy efficiency considerations.

  3. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility.

    PubMed

    Khan, Naiman A; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Hillman, Charles H

    2015-10-01

    Identification of health behaviors and markers of physiological health associated with childhood cognitive function has important implications for public health policy targeted toward cognitive health throughout the life span. Although previous studies have shown that aerobic fitness and obesity exert contrasting effects on cognitive flexibility among prepubertal children, the extent to which diet plays a role in cognitive flexibility has received little attention. Accordingly, this study examined associations between saturated fats and cholesterol intake and cognitive flexibility, assessed using a task switching paradigm, among prepubertal children between 7 and 10 years (N = 150). Following adjustment of confounding variables (age, sex, socioeconomic status, IQ, VO2max, and BMI), children consuming diets higher in saturated fats exhibited longer reaction time during the task condition requiring greater amounts of cognitive flexibility. Further, increasing saturated fat intake and dietary cholesterol were correlated with greater switch costs, reflecting impaired ability to maintain multiple task sets in working memory and poorer efficiency of cognitive control processes involved in task switching. These data are among the first to indicate that children consuming diets higher in saturated fats and cholesterol exhibit compromised ability to flexibly modulate their cognitive operations, particularly when faced with greater cognitive challenge. Future longitudinal and intervention studies are necessary to comprehensively characterize the interrelationships between diet, aerobic fitness, obesity, and children's cognitive abilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    PubMed

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  5. Flexible Parsing.

    DTIC Science & Technology

    1986-06-30

    Machine Studies .. 14. Minton, S. N., Hayes, P. J., and Fain, J. E. Controlling Search in Flexible Parsing. Proc. Ninth Int. Jt. Conf. on Artificial...interaction through the COUSIN command interface", International Journal of Man- Machine Studies , Vol. 19, No. 3, September 1983, pp. 285-305. 8...in a gracefully interacting user interface," "Dynamic strategy selection in flexible parsing," and "Parsing spoken language: a semantic case frame

  6. Accounting Information Systems in Healthcare: A Review of the Literature.

    PubMed

    Hammour, Hadal; Househ, Mowafa; Razzak, Hira Abdul

    2017-01-01

    As information technology progresses in Saudi Arabia, the manual accounting systems have become graduallyinadequate for decision needs. Subsequently, private and public healthcare divisions in Saudi Arabia perceive Computerized accounting information system (CAIS) as a vehicle to safeguard efficient and effective flow of information during the analysis, processes, and recording of financial data. Efficient and effective flow of information improvesthe decision making of staff, thereby improving the capability of health care sectors to reduce cost of the medical services.In this paper, we define computerized accounting systems from the point of view of health informatics. Also, the challenges and benefits of supporting CAIS applications in hospitals of Saudi Arabia. With these elements, we conclude that CAIS in Saudi Arabia can serve as a valuable tool for evaluating and controlling the cost of medical services in healthcare sectors. Supplementary education on the significance of having systems of computerized accounting within hospitals for nurses, doctors, and accountants with other health care staff is warranted in future.

  7. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay

    2017-02-01

    A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.

  8. Energy Upgrades at City-Owned Facilities: Understanding Accounting for Energy Efficiency Financing Options. City of Dubuque Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventis, Greg; Schiller, Steve; Kramer, Chris

    The city of Dubuque, Iowa, aimed for a twofer — lower energy costs for public facilities and reduced air emissions. To achieve that goal, the city partnered with the Iowa Economic Development Authority to establish a revolving loan fund to finance energy efficiency and other energy projects at city facilities. But the city needed to understand approaches for financing energy projects to achieve both of their goals in a manner that would not be considered debt — in this case, obligations booked as a liability on the city’s balance sheet. With funding from the U.S. Department of Energy’s Climate Actionmore » Champions Initiative, Lawrence Berkeley National Laboratory (Berkeley Lab) provided technical assistance to the city to identify strategies to achieve these goals. Revolving loans use a source of money to fund initial cost-saving projects, such as energy efficiency investments, then use the repayments and interest from these loans to support subsequent projects. Berkeley Lab and the city examined two approaches to explore whether revolving loans could potentially be treated as non-debt: 1) financing arrangements containing a non-appropriation clause and 2) shared savings agreements. This fact sheet discusses both, including considerations that may factor into their treatment as debt from an accounting perspective.« less

  9. Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.

    PubMed

    Lee, Minoh; Ko, Yohan; Min, Byoung Koun; Jun, Yongseok

    2016-01-08

    Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method.

    PubMed

    Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok

    2014-08-27

    We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.

  11. High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Xingye; Wang, Xiaolei; Li, Ge; Yu, Aiping; Chen, Zhongwei

    2016-09-01

    A highly flexible electrodes based on electrodeposited MnO2 and polypyrrole composite on carbon cloth is designed and developed by a facile in-situ electrodeposition technique. Such flexible composite electrodes with multiply layered structure possess a high specific capacitance of 325 F g-1 at a current density of 0.2 A g-1, and an excellent rate capability with a capacitance retention of 70% at a high current density of 5.0 A g-1. The superior electrochemical performance is mainly due to the unique electrode with improved ion- and electron-transportation pathways as well as the efficient utilization of active materials and electrode robustness. The excellent electrochemical performance and the low cost property endow this flexible nanocomposite electrode with great promise in applications of flexible supercapacitors.

  12. Graphene-based materials for flexible supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Wang, Lisa J; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Mousavi, Mir F; Kaner, Richard B

    2015-06-07

    The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

  13. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  14. Agreement Between Face-to-Face and Free Software Video Analysis for Assessing Hamstring Flexibility in Adolescents.

    PubMed

    Moral-Muñoz, José A; Esteban-Moreno, Bernabé; Arroyo-Morales, Manuel; Cobo, Manuel J; Herrera-Viedma, Enrique

    2015-09-01

    The objective of this study was to determine the level of agreement between face-to-face hamstring flexibility measurements and free software video analysis in adolescents. Reduced hamstring flexibility is common in adolescents (75% of boys and 35% of girls aged 10). The length of the hamstring muscle has an important role in both the effectiveness and the efficiency of basic human movements, and reduced hamstring flexibility is related to various musculoskeletal conditions. There are various approaches to measuring hamstring flexibility with high reliability; the most commonly used approaches in the scientific literature are the sit-and-reach test, hip joint angle (HJA), and active knee extension. The assessment of hamstring flexibility using video analysis could help with adolescent flexibility follow-up. Fifty-four adolescents from a local school participated in a descriptive study of repeated measures using a crossover design. Active knee extension and HJA were measured with an inclinometer and were simultaneously recorded with a video camera. Each video was downloaded to a computer and subsequently analyzed using Kinovea 0.8.15, a free software application for movement analysis. All outcome measures showed reliability estimates with α > 0.90. The lowest reliability was obtained for HJA (α = 0.91). The preliminary findings support the use of a free software tool for assessing hamstring flexibility, offering health professionals a useful tool for adolescent flexibility follow-up.

  15. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    PubMed

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  16. Strengthening of back muscles using a module of flexible strain sensors.

    PubMed

    Chuang, Wan-Chun; Lin, Hwai-Ting; Chen, Wei-Long

    2015-02-09

    This research aims at developing a flexible strain module applied to the strengthening of back muscles. Silver films were sputtered onto flexible substrates to produce a flexible sensor. Assuming that back muscle elongation is positively correlated with the variations in skin surface length, real-time resistance changes exhibited by the sensor during simulated training sessions were measured. The results were used to identify the relationship between resistance change of sensors and skin surface stretch. In addition, muscle length changes from ultrasound images were used to determine the feasibility of a proof of concept sensor. Furthermore, this module is capable of detecting large muscle contractions, some of which may be undesirable for the prescribed training strategy. Therefore, the developed module can facilitate real-time assessments of the movement accuracy of users during training, and the results are instantly displayed on a screen. People using the developed training system can immediately adjust their posture to the appropriate position. Thus, the training mechanism can be constructed to help user improve the efficiency of back muscle strengthening.

  17. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  18. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna.

    PubMed

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-09

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors' knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna's matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  19. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    NASA Astrophysics Data System (ADS)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  20. Using high thermal stability flexible thin film thermoelectric generator at moderate temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping

    2018-04-01

    Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.

  1. Flexibility within Fidelity

    ERIC Educational Resources Information Center

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  2. Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator.

    PubMed

    Akama, Toshiki; Okita, Wakana; Nagai, Reito; Li, Chao; Kaneko, Toshiro; Kato, Toshiaki

    2017-09-20

    Few-layered transition metal dichalcogenides (TMDs) are known as true two-dimensional materials, with excellent semiconducting properties and strong light-matter interaction. Thus, TMDs are attractive materials for semitransparent and flexible solar cells for use in various applications. Hoewver, despite the recent progress, the development of a scalable method to fabricate semitransparent and flexible solar cells with mono- or few-layered TMDs remains a crucial challenge. Here, we show easy and scalable fabrication of a few-layered TMD solar cell using a Schottky-type configuration to obtain a power conversion efficiency (PCE) of approximately 0.7%, which is the highest value reported with few-layered TMDs. Clear power generation was also observed for a device fabricated on a large SiO 2 and flexible substrate, demonstrating that our method has high potential for scalable production. In addition, systematic investigation revealed that the PCE and external quantum efficiency (EQE) strongly depended on the type of photogenerated excitons (A, B, and C) because of different carrier dynamics. Because high solar cell performance along with excellent scalability can be achieved through the proposed process, our fabrication method will contribute to accelerating the industrial use of TMDs as semitransparent and flexible solar cells.

  3. Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell

    PubMed Central

    He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang

    2017-01-01

    Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53–80% and sheet resistances of 2.8–16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices. PMID:29186012

  4. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  5. Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell.

    PubMed

    He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang

    2017-11-29

    Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.

  6. Flexible services for the support of research.

    PubMed

    Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John

    2013-01-28

    Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.

  7. Advances in Flexible Hybrid Electronics Reliability

    DTIC Science & Technology

    2017-03-01

    Advances in Flexible Hybrid Electronics Reliability Douglas R. Hackler, Richard L. Chaney, Brian N. Meek, Darrell E. Leber, Seth D. Leija, Kelly J...www.americansemi.com Abstract: Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance...presented for flexible hybrid electronics systems. Keywords: FleX; flexible; flexible hybrid electronics ; FHE; Silicon-on-Polymer Introduction

  8. Cognitive flexibility and religious disbelief.

    PubMed

    Zmigrod, Leor; Rentfrow, P Jason; Zmigrod, Sharon; Robbins, Trevor W

    2018-06-11

    Cognitive flexibility is operationalized in the neuropsychological literature as the ability to shift between modes of thinking and adapt to novel or changing environments. Religious belief systems consist of strict rules and rituals that offer adherents certainty, consistency, and stability. Consequently, we hypothesized that religious adherence and practice of repetitive religious rituals may be related to the persistence versus flexibility of one's cognition. The present study investigated the extent to which tendencies towards cognitive flexibility versus persistence are related to three facets of religious life: religious affiliation, religious practice, and religious upbringing. In a large sample (N = 744), we found that religious disbelief was related to cognitive flexibility across three independent behavioural measures: the Wisconsin Card Sorting Test, Remote Associates Test, and Alternative Uses Test. Furthermore, lower frequency of religious service attendance was related to cognitive flexibility. When analysing participants' religious upbringing in relation to their current religious affiliation, it was manifest that current affiliation was more influential than religious upbringing in all the measured facets of cognitive flexibility. The findings indicate that religious affiliation and engagement may shape and be shaped by cognitive control styles towards flexibility versus persistence, highlighting the tight links between flexibility of thought and religious ideologies.

  9. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    PubMed

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements.

    PubMed

    Deijs, M; Bongers, R M; Ringeling-van Leusen, N D M; van der Sluis, C K

    2016-03-15

    The current study examines the relevance of prosthetic wrist movement to facilitate activities of daily living or to prevent overuse complaints. Prosthesis hands with wrist flexion/extension capabilities are commercially available, but research on the users' experiences with flexible wrists is limited. In this study, eight transradial amputees using a myoelectric prosthesis tested two prosthesis wrists with flexion/extension capabilities, the Flex-wrist (Otto Bock) and Multi-flex wrist (Motion Control), in their flexible and static conditions. Differences between the wrists were assessed on the levels of functionality, user satisfaction and compensatory movements after two weeks use. No significant differences between flexible and static wrist conditions were found on activity performance tests and standardized questionnaires on satisfaction. Inter-individual variation was remarkably large. Participants' satisfaction tended to be in favour of flexible wrists. All participants but one indicated that they would choose a prosthesis hand with wrist flexion/extension capabilities if allowed a new prosthesis. Shoulder joint angles, reflecting compensatory movements, showed no clear differences between wrist conditions. Overall, positive effects of flexible wrists are hard to objectify. Users seem to be more satisfied with flexible wrists. A person's needs, work and prosthesis skills should be taken into account when prescribing a prosthesis wrist. Nederlands Trial Register NTR3984 .

  11. The Flexibility Hypothesis of Healing.

    PubMed

    Hinton, Devon E; Kirmayer, Laurence J

    2017-03-01

    Theories of healing have attempted to identify general mechanisms that may work across different modalities. These include altering expectations, remoralization, and instilling hope. In this paper, we argue that many forms of healing and psychotherapy may work by inducing positive psychological states marked by flexibility or an enhanced ability to shift cognitive sets. Healing practices may induce these states of cognitive and emotional flexibility through specific symbolic interventions we term "flexibility primers" that can include images, metaphors, music, and other media. The flexibility hypothesis suggests that cognitive and emotional flexibility is represented, elicited, and enacted through multiple modalities in healing rituals. Identifying psychological processes and cultural forms that evoke and support cognitive and emotional flexibility provides a way to understand the cultural specificity and potential efficacy of particular healing practices and can guide the design of interventions that promote resilience and well-being.

  12. Flexible organic tandem solar modules: a story of up-scaling

    NASA Astrophysics Data System (ADS)

    Spyropoulos, George D.; Kubis, Peter; Li, Ning; Lucera, Luca; Salvador, Michael; Baran, Derya; Machui, Florian; Ameri, Tayebeh; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    The competition in the field of solar energy between Organic Photovoltaics (OPVs) and several Inorganic Photovoltaic technologies is continuously increasing to reach the ultimate purpose of energy supply from inexpensive and easily manufactured solar cell units. Solution-processed printing techniques on flexible substrates attach a tremendous opportunity to the OPVs for the accomplishment of low-cost and large area applications. Furthermore, tandem architectures came to boost up even more OPVs by increasing the photon-harvesting properties of the device. In this work, we demonstrate the road of realizing flexible organic tandem solar modules constructed by a fully roll-to-roll compatible processing. The modules exhibit an efficiency of 5.4% with geometrical fill factors beyond 80% and minimized interconnection-resistance losses. The processing involves low temperature (<70 °C), coating methods compatible with slot die coating and high speed and precision laser patterning.

  13. The influence of mindfulness, self-compassion, psychological flexibility, and posttraumatic stress disorder on disability and quality of life over time in war veterans.

    PubMed

    Meyer, Eric C; Frankfurt, Sheila B; Kimbrel, Nathan A; DeBeer, Bryann B; Gulliver, Suzy B; Morrisette, Sandra B

    2018-07-01

    Posttraumatic stress disorder (PTSD) strongly predicts greater disability and lower quality of life (QOL). Mindfulness-based and other third-wave behavior therapy interventions improve well-being by enhancing mindfulness, self-compassion, and psychological flexibility. We hypothesized that these mechanisms of therapeutic change would comprise a single latent factor that would predict disability and QOL after accounting for PTSD symptom severity. Iraq and Afghanistan war veterans (N = 117) completed a study of predictors of successful reintegration. Principal axis factor analysis tested whether mindfulness, self-compassion, and psychological flexibility comprised a single latent factor. Hierarchical regression tested whether this factor predicted disability and QOL 1 year later. Mindfulness, self-compassion, and psychological flexibility comprised a single factor that predicted disability and QOL after accounting for PTSD symptom severity. PTSD symptoms remained a significant predictor of disability but not QOL. Targeting these mechanisms may help veterans achieve functional recovery, even in the presence of PTSD symptoms. © 2018 Wiley Periodicals, Inc.

  14. Microporous Ni₁₁(HPO₃)₈(OH)₆ nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors.

    PubMed

    Gao, Yanping; Zhao, Junhong; Run, Zhen; Zhang, Guangqin; Pang, Huan

    2014-12-07

    Microporous nickel phosphite [Ni11(HPO3)8(OH)6] nanocrystals were prepared using a hydrothermal method, and were successfully applied as a positive electrode in a flexible all solid-state asymmetric supercapacitor. Because of the specific micro/nanostructure, the flexible solid-state asymmetric supercapacitor can achieve a maximum energy density of 0.45 mW h cm(-3), which is higher than most reported supercapacitors. More importantly, the device performance remains efficient for 10,000 cycles.

  15. Breathing, bubbling, and bending: DNA flexibility from multimicrosecond simulations.

    PubMed

    Zeida, Ari; Machado, Matías Rodrigo; Dans, Pablo Daniel; Pantano, Sergio

    2012-08-01

    Bending of the seemingly stiff DNA double helix is a fundamental physical process for any living organism. Specialized proteins recognize DNA inducing and stabilizing sharp curvatures of the double helix. However, experimental evidence suggests a high protein-independent flexibility of DNA. On the basis of coarse-grained simulations, we propose that DNA experiences thermally induced kinks associated with the spontaneous formation of internal bubbles. Comparison of the protein-induced DNA curvature calculated from the Protein Data Bank with that sampled by our simulations suggests that thermally induced distortions can account for ~80% of the DNA curvature present in experimentally solved structures.

  16. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  17. Limits on efficient human mindreading: convergence across Chinese adults and Semai children.

    PubMed

    Wang, Bo; Hadi, Nur Shafiqah Abdul; Low, Jason

    2015-11-01

    We tested Apperly and Butterfill's (2009, Psychological Review, 116, 753) theory that humans have two mindreading systems whereby the efficient-system guiding anticipatory glances displays signature limits that do not apply to the flexible system guiding verbal predictions. Experiments 1 and 2 tested urban Mainland-Chinese adults (n = 64) and Experiment 3 tested Semai children living in the rainforests of Peninsular Malaysia (3- to 4-year-olds, n = 60). Participants - across different ages, groups and methods - anticipated others' false-beliefs about object-location but not object-identity. Convergence in signature limits signalled that the early-developing efficient system involved minimal theory-of-mind. Chinese adults and older Semai children showed flexibility in their direct predictions. The flexible mindreading system in ascribing others' beliefs as such was task-sensitive and implicated maturational and cultural contributions. © 2015 The British Psychological Society.

  18. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Nogar, Stephen Michael

    Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the

  19. Practical Efficiency of Photovoltaic Panel Used for Solar Vehicles

    NASA Astrophysics Data System (ADS)

    Koyuncu, T.

    2017-08-01

    In this experimental investigation, practical efficiency of semi-flexible monocrystalline silicon solar panel used for a solar powered car called “Firat Force” and a solar powered minibus called “Commagene” was determined. Firat Force has 6 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor and Commagene has 12 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor. In addition, both solar vehicles have MPPT (Maximum power point tracker), ECU (Electronic control unit), differential, instrument panel, steering system, brake system, brake and gas pedals, mechanical equipments, chassis and frame. These two solar vehicles were used for people transportation in Adiyaman city, Turkey, during one year (June 2010-May 2011) of test. As a result, the practical efficiency of semi-flexible monocrystalline silicon solar panel used for Firat Force and Commagene was determined as 13 % in despite of efficiency value of 18% (at 1000 W/m2 and 25 °C ) given by the producer company. Besides, the total efficiency (from PV panels to vehicle wheel) of the system was also defined as 9%.

  20. Computing Bounds on Resource Levels for Flexible Plans

    NASA Technical Reports Server (NTRS)

    Muscvettola, Nicola; Rijsman, David

    2009-01-01

    A new algorithm efficiently computes the tightest exact bound on the levels of resources induced by a flexible activity plan (see figure). Tightness of bounds is extremely important for computations involved in planning because tight bounds can save potentially exponential amounts of search (through early backtracking and detection of solutions), relative to looser bounds. The bound computed by the new algorithm, denoted the resource-level envelope, constitutes the measure of maximum and minimum consumption of resources at any time for all fixed-time schedules in the flexible plan. At each time, the envelope guarantees that there are two fixed-time instantiations one that produces the minimum level and one that produces the maximum level. Therefore, the resource-level envelope is the tightest possible resource-level bound for a flexible plan because any tighter bound would exclude the contribution of at least one fixed-time schedule. If the resource- level envelope can be computed efficiently, one could substitute looser bounds that are currently used in the inner cores of constraint-posting scheduling algorithms, with the potential for great improvements in performance. What is needed to reduce the cost of computation is an algorithm, the measure of complexity of which is no greater than a low-degree polynomial in N (where N is the number of activities). The new algorithm satisfies this need. In this algorithm, the computation of resource-level envelopes is based on a novel combination of (1) the theory of shortest paths in the temporal-constraint network for the flexible plan and (2) the theory of maximum flows for a flow network derived from the temporal and resource constraints. The measure of asymptotic complexity of the algorithm is O(N O(maxflow(N)), where O(x) denotes an amount of computing time or a number of arithmetic operations proportional to a number of the order of x and O(maxflow(N)) is the measure of complexity (and thus of cost) of a maximumflow