Science.gov

Sample records for accreting black hole

  1. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  2. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  3. Strongly Magnetized Accretion Disks Around Black Holes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2017-01-01

    Recent observations are suggestive of strongly magnetized accretion disks around black holes. Performing local (shearing box) simulations of accretion disks, we investigate how a strong magnetization state can develop and persist. We demonstrate that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion disks. We also show that black hole spin measurements can become unconstrained if magnetic fields provide a significant contribution to the vertical pressure support of the accretion disk atmosphere.

  4. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  5. Transonic disk accretion onto black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1980-01-01

    The solution for the radial drift velocity of thin disk accretion onto black holes must be transonic, and is analogous to the critical solution in spherical Bondi accretion, except for the presence of angular momentum. The transonic requirement yields a correct treatment of the inner region of the disk not found in the conventional Keplerian models and may lead to significantly different overall disk structures. Possible observational consequences, relevant to the black hole hypothesis for Cyg X-1 and other candidates, are discussed.

  6. Chaotic Accretion and Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Nixon, Christopher James

    2012-09-01

    The main driver of the work in this thesis is the idea of chaotic accretion in galaxy centres. Most research in this area focuses on orderly or coherent accretion where supermassive black holes or supermassive black hole binaries are fed with gas always possessing the same sense of angular momentum. If instead gas flows in galaxies are chaotic, feeding occurs through randomly oriented depositions of gas. Previous works show that this chaotic mode of feeding can explain some astrophysical phenomena, such as the lack of correlation between host galaxy structure and the direction of jets. It has also been shown that by keeping the black hole spin low this feeding mechanism can grow supermassive black holes from stellar mass seeds. In this thesis I show that it also alleviates the "final parsec problem" by facilitating the merger of two supermassive black holes, and the growth of supermassive black holes through rapid accretion. I also develop the intriguing possibility of breaking a warped disc into two or more distinct planes.

  7. Accretion Disk Emission Around Kerr Black Holes

    NASA Astrophysics Data System (ADS)

    Campitiello, Samuele; Sbarrato, T.; Ghisellini, G.

    2016-10-01

    Measuring the spin of supermassive Black holes in Active Galactic Nuclei is a further step towards a better understanding of the evolution of their physics. We proposed a new method to estimate the Black hole spin, based on data-fitting. We consider a numerical model called KERRBB, including all relativistic effects (i.e. light-bending, gravitational redshift and Doppler beaming). We found that the same spectrum can be produced by different masses, accretion rates and spins, but that these three quantities are related. In other words, having a robust indipendent estimate on one of these three quantities fixes the other two. By using the Black hole mass, estimated by the virial method, we can pinpoint a narrow range of possible spins and accretion rates for the 32 blazars we have studied. For these objects, we found a lower limit of the spin, that must be a/M > 0.6-0.7

  8. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  9. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  10. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  11. Minidisks in Binary Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey; MacFadyen, Andrew

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  12. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  13. Black hole growth and AGN feedback under clumpy accretion

    NASA Astrophysics Data System (ADS)

    DeGraf, C.; Dekel, A.; Gabor, J.; Bournaud, F.

    2017-04-01

    High-resolution simulations of supermassive black holes in isolated galaxies have suggested the importance of short (∼10 Myr) episodes of rapid accretion caused by interactions between the black hole and massive dense clouds within the host. Accretion of such clouds could potentially provide the dominant source for black hole growth in high-z galaxies, but it remains unresolved in cosmological simulations. Using a stochastic subgrid model calibrated by high-resolution isolated galaxy simulations, we investigate the impact that variability in black hole accretion rates has on black hole growth and the evolution of the host galaxy. We find this clumpy accretion to more efficiently fuel high-redshift black hole growth. This increased mass allows for more rapid accretion even in the absence of high-density clumps, compounding the effect and resulting in substantially faster overall black hole growth. This increased growth allows the black hole to efficiently evacuate gas from the central region of the galaxy, driving strong winds up to ∼2500 km s-1, producing outflows ∼10 × stronger than the smooth accretion case, suppressing the inflow of gas on to the host galaxy, and suppressing the star formation within the galaxy by as much as a factor of 2. This suggests that the proper incorporation of variability is a key factor in the co-evolution between black holes and their hosts.

  14. Diskoseismology - Signatures of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Nowak, Michael; Wagoner, Robert V.

    1992-01-01

    General relativity requires the existence of a spectrum of oscillations which are trapped near the inner edge of accretion disks around black holes. We have developed a general formalism for analyzing the normal modes of such acoustic perturbations of arbitrary thin disk models, approximating the dominant relativistic effects via a modified Newtonian potential (these modes do not exist in Newtonian gravity). The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall in to two main classes, which are analogous to the p-modes and g-modes in the sun. In this work, we compute the eigenfunctions and eigenfrequencies of isothermal disks. The (relatively small) rates of growth or damping of these oscillations due to gravitational radiation and parameterized models of viscosity are also computed.

  15. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  16. AGN Variability: Probing Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  17. Black hole accretion discs and screened scalar hair

    NASA Astrophysics Data System (ADS)

    Davis, Anne-Christine; Gregory, Ruth; Jha, Rahul

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ``Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  18. Accretion onto the first stellar mass black holes

    SciTech Connect

    Alvarez, Marcelo A.; Wise, John H.; Abel, Tom

    2009-08-05

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M{sub {circle_dot}} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the two hundred million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation - stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx} 10{sup 4} K, facilitating intermediate mass black hole formation at their centers.

  19. Hot accretion flows onto binary and single black holes

    NASA Astrophysics Data System (ADS)

    Gold, Roman; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart; Etienne, Zachariah; Pfeiffer, Harald; McKinney, Jonathan

    2015-04-01

    Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. Binary Black Holes are one of the most promising gravitational wave sources for adLIGO and Pulsar Timing Arrays and - if accreting - can provide a strong electromagnetic counterpart. I will present results from global GRMHD simulations of both single and binary BHs embedded in a hot, magnetized disk, highlighting differences in their observational appearance including their gravitational and electromagnetic radiation.

  20. Accretion of phantom scalar field into a black hole

    SciTech Connect

    Gonzalez, J. A.; Guzman, F. S.

    2009-06-15

    Using numerical methods we present the first full nonlinear study of a phantom scalar field accreted into a black hole. We study different initial configurations and find that the accretion of the field into the black hole can reduce its area down to 50 percent within time scales of the order of few masses of the initial horizon. The analysis includes the cases where the total energy of the space-time is positive or negative. The confirmation of this effect in full nonlinear general relativity implies that the accretion of exotic matter could be considered an evaporation process. We speculate that if this sort of exotic matter has some cosmological significance, this black hole area reduction process might have played a crucial role in black hole formation and population.

  1. Magnetic Field Roles in Black-Holes Accretion Disk's Structure

    NASA Astrophysics Data System (ADS)

    Abbassi, S.; Samadi, M.

    2016-09-01

    We study several factors which play remarkable roles in vertical structure and dynamics of hot accretion flows around black holes. These factors are large-scale magnetic field, thermal conduction, outflow and self-gravity. We consider an axisymmetric, rotating, steady viscous-resistive hot accretion flows.

  2. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  3. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  4. Neutrino oscillation above a black hole accretion disk

    SciTech Connect

    Malkus, A.; Kneller, J. P.; McLaughlin, G. C.; Surman, R.

    2015-05-15

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.

  5. Constraints for transonic black hole accretion

    NASA Technical Reports Server (NTRS)

    Abramowicz, Marek A.; Kato, Shoji

    1989-01-01

    Regularity conditions and global topological constraints leave some forbidden regions in the parameter space of the transonic isothermal, rotating matter onto black holes. Unstable flows occupy regions touching the boundaries of the forbidden regions. The astrophysical consequences of these results are discussed.

  6. TEARING UP THE DISK: HOW BLACK HOLES ACCRETE

    SciTech Connect

    Nixon, Chris; King, Andrew; Price, Daniel; Frank, Juhan

    2012-10-01

    We show that in realistic cases of accretion in active galactic nuclei or stellar-mass X-ray binaries, the Lense-Thirring effect breaks the central regions of tilted accretion disks around spinning black holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment of the outer disk to the spin axis of the hole is 45 Degree-Sign {approx}< {theta} {approx}< 135 Degree-Sign , as in {approx}70% of randomly oriented accretion events, the continued precession of these disks sets up partially counterrotating gas flows. This drives rapid infall as angular momentum is canceled and gas attempts to circularize at smaller radii. Disk breaking close to the black hole leads to direct dynamical accretion, while breaking further out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still occur and may lead to other observable phenomena such as quasi-periodic oscillations. For such effects not to appear, the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disk. Qualitatively similar results hold for any accretion disk subject to a forced differential precession, such as an external disk around a misaligned black hole binary.

  7. Retrograde binaries of massive black holes in circumbinary accretion discs

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica

    2016-06-01

    Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under

  8. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    SciTech Connect

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C. E-mail: jafsma@rit.edu

    2012-01-20

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick angle with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.

  9. More on accreting black hole spacetime in equatorial plane

    NASA Astrophysics Data System (ADS)

    Salahshoor, K.; Nozari, K.; Khesali, A. R.

    2017-02-01

    Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.

  10. Where do Accretion Disks Around Black Holes End?

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Duschl, W. J.

    2010-10-01

    Accretion disks around (supermassive) black holes act as "machines" which extract gravitational energy. In fact, the observed radiation allows to sample the physical conditions very close to the event horizon. For a test particle, the innermost stable circular orbit (ISCO) is located at 3 rS for a non-rotating hole (Schwarzschild metrics; at smaller radii for a rotating black hole). This ISCO is usually identified with the inner edge of the accretion disk. For a given black hole mass, it allows, in principle, to determine the Kerr parameter. In "real life," however, we deal not with test particles but with a viscous flow, which introduces additional forces. We have calculated the location of the inner edge in a more realistic environment. The results show that the true inner edge of the disk is no longer located at the ISCO, when radial advection of energy is taken into account with a careful treatment of the transonic nature of the flow.

  11. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  12. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  13. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  14. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  15. Rossby Wave Instability in the Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Gholipour, Mahmoud

    2017-01-01

    The roles of the Rossby wave instability (RWI) have been significantly developed in some important processes, such as planet formation and angular momentum transport through thin accretion disks. However, their development on accretion flows with advection is insignificant. In this paper, we investigate the effect of advection in the occurrence of RWI through accretion flows around black holes (BHs). In the absence of advection, the occurrence of RWI is extremely low because of high viscosity in the accretion flows around BHs. The results of this paper show that there is a significant chance for the occurrence of RWI in some wavelengths if we consider advection even in low amounts. Therefore, the RWI can be a suitable candidate for angular momentum transport in the accretion flows around BHs. Also, the results show that the advection parameter and the ratio of heat capacity, which are special characters of advection flows, play important roles in the occurrence of RWI.

  16. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  17. Evolution of an accretion disc in binary black hole systems

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.

  18. EFFECTIVE INNER RADIUS OF TILTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Fragile, P. Chris

    2009-12-01

    One of the primary means of determining the spin a of an astrophysical black hole is by actually measuring the inner radius r {sub in} of a surrounding accretion disk and using that to infer a. By comparing a number of different estimates of r {sub in} from simulations of tilted accretion disks with differing black hole spins, we show that such a procedure can give quite wrong answers. Over the range 0 <= a/M <= 0.9, we find that, for moderately thick disks (H/r approx 0.2) with modest tilt (15 deg.), r {sub in} is nearly independent of spin. This result is likely dependent on tilt, such that for larger tilts, it may even be that r {sub in} would increase with increasing spin. In the opposite limit, we confirm through numerical simulations of untilted disks that, in the limit of zero tilt, r {sub in} recovers approximately the expected dependence on a.

  19. MAGNETICALLY LEVITATING ACCRETION DISKS AROUND SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Gaburov, Evghenii; Johansen, Anders; Levin, Yuri

    2012-10-20

    In this paper, we report on the formation of magnetically levitating accretion disks around supermassive black holes (SMBHs). The structure of these disks is calculated by numerically modeling tidal disruption of magnetized interstellar gas clouds. We find that the resulting disks are entirely supported by the pressure of the magnetic fields against the component of gravitational force directed perpendicular to the disks. The magnetic field shows ordered large-scale geometry that remains stable for the duration of our numerical experiments extending over 10% of the disk lifetime. Strong magnetic pressure allows high accretion rate and inhibits disk fragmentation. This in combination with the repeated feeding of magnetized molecular clouds to an SMBH yields a possible solution to the long-standing puzzle of black hole growth in the centers of galaxies.

  20. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  1. Chaotic cold accretion on to black holes in rotating atmospheres

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat< 1. Extended multiphase filaments condense out of the hot phase via thermal instability (TI) and rain toward the black hole, boosting the accretion rate up to 100 times the Bondi rate (Ṁ• ~ Ṁcool). Initially, turbulence broadens the angular momentum distribution of the hot gas, allowing the cold phase to condense with prograde or retrograde motion. Subsequent chaotic collisions between the cold filaments, clouds, and a clumpy variable torus promote the cancellation of angular momentum, leading to high accretion rates. As turbulence weakens (Tat > 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images

  2. Black Hole Accretion Discs on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey

    2017-01-01

    We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.

  3. Black hole accretion disks with coronae

    NASA Technical Reports Server (NTRS)

    Svensson, Roland; Zdziarski, Andrzej A.

    1994-01-01

    Observations suggest the existence of both hot and cold dark matter in the centers of active galactic nuclei. Recent spectral models require a major fraction of power to be dissipated in the hot matter. We study the case when the hot matter forms a corona around a standard cold alpha-disk. In particular, we investigate the case when a major fraction, f, of the power released when the cold matter accretes is transported to and dissipated in the corona. This has major effects on the cold disk, making it colder, more geometrically thin, denser, and having larger optical depths. One important consequence is the disappearance of the effectively optically thin zone as well as of the radiation pressure dominated zone for values of f sufficiently closed to unity. The disappearance of the radiation pressure dominated zone will result in a cold disk with only a gas pressure dominated zone that is stable against thermal and viscous instabilities. We also show that the pressure ( and the radiation) from the corona will only affect the surface layers of the cold disk. Our results disagree with those of other recent work on accretion disks with coronae. We find those works to be based on unphysical assumptions.

  4. Small Seed Black Hole Growth in Various Accretion Regimes

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.

    2016-03-01

    Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.

  5. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  6. Mergers of accreting stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Tagawa, H.; Umemura, M.; Gouda, N.

    2016-11-01

    We present post-Newtonian N-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericentre shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of 10 BHs with initial mass of 30 M⊙. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three-body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is ˜10 Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate (dot{m}_c), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce dot{m}_c especially in gas number density higher than 108 cm-3, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a ˜30 M⊙ BH binary has been detected. Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few M⊙ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.

  7. Bulk viscosity of accretion disks around non rotating black holes

    NASA Astrophysics Data System (ADS)

    Moeen Moghaddas, M.

    2017-01-01

    In this paper, we study the Keplerian, relativistic accretion disks around the non rotating black holes with the bulk viscosity. Many of authors studied the relativistic accretion disks around the black holes, but they ignored the bulk viscosity. We introduce a simple method to calculate the bulk in these disks. We use the simple form for the radial component of the four velocity in the Schwarzschild metric, then the other components of the four velocity and the components of the shear and the bulk tensor are calculated. Also all components of the bulk viscosity, the shear viscosity and stress tensor are calculated. It is seen that some components of the bulk tensor are comparable with the shear tensor. We calculate some of the thermodynamic quantities of the relativistic disks. Comparison of thermodynamic quantities shows that in some states influences of the bulk viscosity are important, especially in the inner radiuses. All calculations are done analytically and we do not use the boundary conditions. Finally, we find that in the relativistic disks around the black holes, the bulk viscosity is non-negligible in all the states.

  8. Cosmic microwave background limits on accreting primordial black holes

    NASA Astrophysics Data System (ADS)

    Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2017-02-01

    Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has recently been rekindled following LIGO's first direct detection of a binary-black-hole merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being considered. We analyze Planck CMB temperature and polarization data and find, under our most conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses ≳1 02 M⊙ as the dominant component of dark matter.

  9. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  10. Black Hole Accretion and Feedback Driven by Thermal Instability

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.

    2013-03-01

    Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.

  11. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  12. Phantom Accretion onto the Schwarzschild AdS Black Hole with Topological Defect

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Farahani, H.

    2012-09-01

    In this paper, we have studied phantom energy accretion of prefect fluid onto the Schwarzschild AdS black hole with topological defect. We have obtained critical point during the accretion of fluid on the black hole where the speed of flow is equal speed of sound (Sharif and Abbas in Phantom accretion onto the Schwarzschild de-Sitter black hole, 2011, arXiv:1109.1043 [gr-qc]). The critical velocities have been computed so that the speed of fluid into the black hole is less than speed of sound. Finally, we have found that the critical point is near the black hole horizon.

  13. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  14. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  15. [Predicting Spectra of Accretion Disks Around Galactic Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2004-01-01

    The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.

  16. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  17. The SEDs of Gapped Accretion Disks surrounding Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Gultekin, Kayhan; Miller, J. M.

    2014-01-01

    We calculate the observability of a black hole (BH) accretion disk with a gap or a hole created by a secondary BH embedded in the disk. We find that for an interesting range of parameters of BH masses 10^6-10^9 M⊙), orbital separation 1 AU to ~0.1 pc), and gap width (10-190 disk scale heights), the missing thermal emission from a gap manifests itself in an observable decrement in the spectral energy distribution (SED). The change in slope in the broken power law is strongly dependent on the width of the gap in the accretion disk, which in turn is uniquely determined by the mass ratio of the BHs (under our assumptions), such that it scales roughly as q^(5/12). Thus, one can use spectral observations of the continuum of bright AGNs to infer not only the presence of a closely separated BH binary, but also the mass ratio. When the BH merger opens an entire hole (or cavity) in the inner disk, the broadband SED of the AGNs or quasar may serve as a diagnostic. We note future directions for this research.

  18. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  19. Diagnosing the Black Hole Accretion Physics of Sgr A*

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  20. Quiescent accretion disks in black hole X-ray novae

    NASA Technical Reports Server (NTRS)

    Orosz, Jerome A.; Bailyn, Charles D.; Remillard, Ronald A.; Mcclintock, Jeffrey E.; Foltz, Craig B.

    1994-01-01

    We present detailed time-resolved spectroscopy of the Balmer emission lines from two black hole binary systems in quiescence, A0620-00 and Nova Muscae 1991. We find extraordinary similarities between the two systems. There are 30-40 km/s velocity variations of the emission lines over the orbital period, the phases of which are not aligned with the expected phase of the motion of the compact primary. Detailed modeling of both systems is complicated by variable hot spot components, regions of optical thickness, and intermittent excess emission in the blue line wings of the H-alpha lines. Both sources also display low velocities at the outer edge of the accretion disk, implying a large primary Roche lobe and extreme mass ratios. These complications suggest that although simple optically thin, Keplerian alpha-disk models provide a useful parameterization of emission lines from these systems, the straightforward physical models they imply should be treated with great caution.

  1. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    SciTech Connect

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef; Krolik, Julian H.; Yunes, Nicolas

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  2. Black-Hole Accretion Disks --- Towards a New Paradigm ---

    NASA Astrophysics Data System (ADS)

    Kato, S.; Fukue, J.; Mineshige, S.

    2008-03-01

    Part I: Concepts of Accretion Disks: Chap. 1: Introduction, 1.1 Accretion Energy - Historical Origin, { Accretion-Disk Paradigm - Active Universe, 1.3 Accretion-Powered Objects - Observational Reviews, 1.4 X-Ray Binaries and Ultra-Luminous X-Ray Sources, 1.5 Active Galactic Nuclei, 1.6 Present Paradigm, Chap. 2: Physical Processes Related to Accretion, 2.1 Eddington Luminosity, 2.2 Bondi Accretion, 2.3 Viscous Process, 2.4 Magnetic Instabilities, 2.5 Relativistic Effects Part II: Classical Picture: Chap. 3: Classical Models, 3.1 Viscous Accretion Disks, 3.2 Standard Disks, 3.3 Optically Thin Disks, 3.4 Accretion Disk Coronae, 3.5 Relativistic Standard Disks, 3.6 Relativistic Tori Chap. 4: Secular and Thermal Instabilities, 4.1 Secular Instability, 4.2 Thermal Instability, 4.3 Stability Examination on dot{M}-Σ and T-Σ Planes, 4.4 Mathematical Derivation of the Stability Criterion, Chap. 5: Dwarf-Nova Type Instability, 5.1 Thermal-Ionization Instability, 5.2 Time Evolution of Disks in X-Ray Novae Chap. 6: Observability of Relativistic Effects, 6.1 Ray Tracing, 6.2 Imaging - Black Hole Silhouette, 6.3 Spectroscopy - Continuum and Line, 6.4 Photometry - Light Curve Diagnosis, 6.5 Other Effects - Lensing and Jets, Part III: Modern Picture: Chap. 7: Equations to Construct Generalized Models, 7.1 Basic Equations and Importance of Advection, 7.2 One-Temperature Disks, 7.3 Two-Temperature Disks, 7.4 Time-Dependent Equations Chap. 8: Transonic Nature of Accretion Flows, 8.1 Topology of Black-Hole Accretion, 8.2 Regularity Condition at a Critical Radius, 8.3 Topology around the Critical Radius in Isothermal Disks, 8.4 Numerical Examples of Transonic Flows, 8.5 Transonic Flows with Standing Shocks Chap. 9: Radiatively Inefficient Accretion Flows, 9.1 Advection-Dominated Accretion Flow, 9.2 Radial Structure of Advection-Dominated Flow, 9.3 Radiation Spectra of Advection-Dominated Flow, 9.4 Stability of Advection-Dominated Flow, 9.5 Multi-Dimensional Effects, Chap. 10: Slim

  3. ON THE LAMPPOST MODEL OF ACCRETING BLACK HOLES

    SciTech Connect

    Niedźwiecki, Andrzej; Szanecki, Michał

    2016-04-10

    We study the lamppost model, in which the X-ray source in accreting black hole (BH) systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp, e.g., neglecting the redshift of the photons emitted by the lamppost that are directly observed. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, if those results were correct, most of the photons produced in the lamppost would be trapped by the BH, and the luminosity generated in the source as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction also present a problem for active galactic nuclei. Then, those models imply the luminosity measured in the local frame is much higher than that produced in the source and measured at infinity, due to the additional effects of time dilation and redshift, and the electron temperature is significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the e{sup ±} pair equilibrium. On the other hand, the above issues pose relatively minor problems for sources at large distances from the BH, where relxilllp can still be used.

  4. The growth of supermassive black holes fed by accretion disks

    NASA Astrophysics Data System (ADS)

    Montesinos Armijo, M. A.; de Freitas Pacheco, J. A.

    2011-02-01

    Context. Supermassive black holes are probably present in the centre of the majority of the galaxies. There is consensus that these exotic objects are formed by the growth of seeds either by mass accretion from a circumnuclear disk and/or by coalescences during merger episodes. Aims: The mass fraction of the disk captured by the central object and the related timescale are still open questions, as is how these quantities depend on parameters, such as the initial mass of the disk or the seed, or on the angular momentum transport mechanism. This paper addresses these particular aspects of the accretion disk evolution and the growth of seeds. Methods: The time-dependent hydrodynamic equations were solved numerically for an axisymmetric disk in which the gravitational potential includes contributions from both the central object and the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. Results: The present simulations indicate that seeds capture about a half of the initial disk mass, a result weakly dependent on model parameters. The timescales required for accreting 50% of the disk mass are in the range 130-540 Myr, depending on the adopted parameters. These timescales can explain the presence of bright quasars at z ~ 6.5. Moreover, at the end of the disk evolution, a "torus-like" geometry develops, offering a natural explanation for the presence of these structures in the central regions of AGNs, representing an additional support to the unified model.

  5. Are BL Lac-type objects nearby black holes. [gas accretion model

    NASA Technical Reports Server (NTRS)

    Shapiro, S. L.; Elliot, J. L.

    1974-01-01

    It is pointed out that isolated black holes accreting interstellar gas can account for the characteristic properties of the Lacertids. Emission spectra for various interstellar gas densities and black hole masses are compared with the data plotted by Strittmatter et al. (1972) for the BL Lac-type objects. Rough estimates indicate that there may indeed be a finite number of stellar-mass black holes close to the earth as required by the theory. If it is determined that the BL Lac-type objects lie outside of the galactic disk a black hole accretion model may still apply if certain conditions are satisfied.

  6. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  7. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  8. Black hole accretion versus star formation rate: theory confronts observations

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-09-01

    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction (`stochastic' phase), during the `merger' proper, lasting ˜0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bivariate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star-forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bivariate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.

  9. Accretion and Feedback from Supermassive Black Holes in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Bogdanovic, Tamara; Park, KwangHo

    2017-01-01

    A significant fraction of galaxy clusters, namely the cool-core clusters, exhibit a dip in their central temperature profiles, with radiative cooling times much shorter than the Hubble time. Unchecked, radiative cooling of this magnitude is expected to cause the accumulation of cold gas at the cluster center that leads to star formation rates 100-1000 times higher than those inferred by observations. This discrepancy suggests the existence of active heating mechanisms that counteract the overcooling in cluster centers. The dominant mechanism has now been widely recognized as the mechanical feedback from the radio-loud active galactic nuclei. However, recent observations find substantial amounts of cold gas in a number of cool-core clusters, as well as evidence that some clusters host quasars in their central dominant galaxies, raising concerns about the significance of radiative feedback in such systems. Motivated by these findings we use 3D radiation hydrodynamic simulations to explore the joint role of the radio- and quasar-mode feedback in the accretion and feedback cycle of supermassive black holes in cool-core clusters.

  10. X-RAY POLARIZATION FROM ACCRETING BLACK HOLES: CORONAL EMISSION

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H. E-mail: jhk@pha.jhu.ed

    2010-04-01

    We present new calculations of X-ray polarization from accreting black holes (BHs), using a Monte Carlo ray-tracing code in full general relativity. In our model, an optically thick disk in the BH equatorial plane produces thermal seed photons with polarization oriented parallel to the disk surface. These seed photons are then inverse-Compton scattered through a hot (but thermal) corona, producing a hard X-ray power-law spectrum. We consider three different models for the corona geometry: a wedge 'sandwich' with aspect ratio H/R and vertically integrated optical depth tau{sub 0} constant throughout the disk; an inhomogeneous 'clumpy' corona with a finite number of hot clouds distributed randomly above the disk within a wedge geometry; and a spherical corona of uniform density, centered on the BH and surrounded by a truncated thermal disk with inner radius R{sub edge}. In all cases, we find a characteristic transition from horizontal polarization at low energies to vertical polarization above the thermal peak; the vertical direction is defined as the projection of the BH spin axis on the plane of the sky. We show how the details of the spectropolarization signal can be used to distinguish between these models and infer various properties of the corona and BH. Although the bulk of this paper focuses on stellar-mass BHs, we also consider the effects of coronal scattering on the X-ray polarization signal from supermassive BHs in active galactic nuclei.

  11. Dark matter and dark energy accretion on to intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Pepe, C.; Pellizza, L. J.; Romero, G. E.

    2012-03-01

    In this work we investigate the accretion of cosmological fluids on to an intermediate-mass black hole at the centre of a globular cluster, focusing on the influence of the parent stellar system on the accretion flow. We show that the accretion of cosmic background radiation and the so-called dark energy on to an intermediate-mass black hole is negligible. On the other hand, if cold dark matter has a non-vanishing pressure, the accretion of dark matter is large enough to increase the black hole mass well beyond the present observed upper limits. We conclude that either intermediate-mass black holes do not exist, or dark matter does not exist, or it is not strictly collisionless. In the latter case, we set a lower limit for the parameter of the cold dark matter equation of state.

  12. Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X

    NASA Astrophysics Data System (ADS)

    Corbel, Stéphane

    2009-05-01

    In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.

  13. Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X

    SciTech Connect

    Corbel, Stephane

    2009-05-11

    In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.

  14. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  15. LOW-MASS AGNs AND THEIR RELATION TO THE FUNDAMENTAL PLANE OF BLACK HOLE ACCRETION

    SciTech Connect

    Gültekin, Kayhan; King, Ashley L.; Miller, Jon M.; Cackett, Edward M.; Pinkney, Jason

    2014-06-20

    We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion—the plane that relates X-ray emission, radio emission, and mass of an accreting black hole—to test whether or not the relation is universal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than 10{sup 6.3} M {sub ☉}, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than ∼10{sup 7} M {sub ☉}, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates.

  16. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  17. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  18. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    SciTech Connect

    Wang Yan; Li Xiangdong

    2012-01-10

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  19. On the dynamics of misaligned accretion discs and spinning black holes

    NASA Astrophysics Data System (ADS)

    Lodato, G.; Pringle, J. E.

    2005-12-01

    In this contribution, I discuss the dynamics of misaligned accretion discs and spinning black holes in Active Galactic Nuclei, by using a nself-consistent time-dependent approach, that allows to properly track the evolution of the spin of the black hole during the alignment process. I show that, contrary to previous beliefs, the disc angular momentum and the black hole spin can end up counter-aligned, in such a way that accretion proceeds through retrograde orbits. I will discuss the implications that this counter-aligned mode of accretion has on observables from AGNs, such as the shape of X-ray iron lines, the shape of jets, and the possibility of obscuration of the central engine. I will also discuss, more in general, the effects of the alignment (or counter-alignment) process on the spin history of super-massive black holes.

  20. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  1. The impact of non-thermal electrons on resolved black hole accretion disk images

    NASA Astrophysics Data System (ADS)

    Mao, Shengkai; Dexter, Jason; Quataert, Eliot

    2015-01-01

    Recent developments in radio astronomy (in particular, the Event Horizon Telescope) allow us for the first time to resolve length scales around the Milky Way's Sgr A* comparable to the event horizon radius. These observations are opening up new opportunities to study strong gravity and accretion physics in the vicinity of a supermassive black hole. However, the processes governing black hole accretion are not well understood. In particular, the electron thermodynamics in black hole accretion disks remain mysterious, and current models vary significantly from each other. The impact of these differences between current electron thermodynamics models on results obtained from EHT images is not well understood. Thus, in this work, we explore the effects of non-thermal electrons on black hole images and radio spectra in the context of both semi-analytic and numerical models of accretion flows. Using general relativistic ray-tracing and radiative transfer code, we simulate images of the accretion disk around Sgr A* and compare our simulations to observed radio data. We estimate the range of electron energy distribution functions permissible by the data. In so doing, we also explore the range and variety of black hole images obtained by varying the distribution function.

  2. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  3. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  4. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  5. Accretion Problem in a Kerr Black Hole Geometry Viewed as Flows in Converging-Diverging Ducts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, K.; Majumdar, M. M.; Chakrabarti, Sandip K.

    Accretion flow on a horizon is supersonic, no matter what the flow angular momentum or the spin of the black hole is. This means that a black hole accretion can always be viewed as a flow in a flat space-time through one or more convergent-divergent ducts. In this paper, we study how the area of cross-sections must vary in order that the flow has the same properties in both systems. We show that the accretion flow experiencing a shock is equivalent to having two ducts connected back-to-back, both with a neck where the flow becomes supersonic. We study the pressure and Mach number variations for corotating, contrarotating flows and flows around a black hole with evolving spin.

  6. From Accretion to Explosion and Beyond: Transforming White Dwarfs to Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Harris, R.

    2010-03-01

    White dwarfs accreting at high rates can grow in mass, exhibiting episodes of supersoft-source activity. Some can achieve the Chandrasekhar mass and will either become Type Ia supernovae or else will collapse, becoming neutron stars. We consider white dwarfs with giant donors, computing the rates of both supernovae and collapses. For the collapses, we follow each system to the end of accretion. Some of these systems will appear as ultraluminous x-ray sources and some will go on to become low-mass black holes. This scenario should be fairly common in young stellar populations and links a wide range of astrophysical phenomena. Indeed, it is a veritable cornucopia for the high-energy astrophysicist, offering accreting white dwarfs, neutron stars, and black holes, Type Ia supernovae, gamma-ray bursts, supersoft sources, ultraluminous sources, and neutron star and black hole binaries in globular clusters.

  7. A simple accretion model of a rotating gas sphere onto a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Mendoza, S.

    2007-04-01

    We construct a simple accretion model of a rotating gas sphere onto a Schwarzschild black hole. We show how to build analytic solutions in terms of Jacobi elliptic functions. This construction represents a general relativistic generalisation of the Newtonian accretion model first proposed by Ulrich (1976). In exactly the same form as it occurs for the Newtonian case, the flow naturally predicts the existence of an equatorial rotating accretion disc about the hole. However, the radius of the disc increases monotonically without limit as the flow reaches its minimum allowed angular momentum for this particular model.

  8. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  9. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  10. TRUNCATION OF THE INNER ACCRETION DISK AROUND A BLACK HOLE AT LOW LUMINOSITY

    SciTech Connect

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-12-10

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R {sub in}) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R {sub in} is very close to the black hole at high and moderate luminosities (approx>1% of the Eddington luminosity, L {sub Edd}). Here, we report on X-ray observations of the black hole GX 339 - 4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L {sub Edd} and show that R {sub in} increases by a factor of >27 over the value found when GX 339 - 4 was bright. The exact value of R {sub in} depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R {sub in} > 35R{sub g} at i = 0{sup 0} and R {sub in} > 175R{sub g} at i = 30{sup 0}. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  11. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  12. STUDIES OF THERMALLY UNSTABLE ACCRETION DISKS AROUND BLACK HOLES WITH ADAPTIVE PSEUDOSPECTRAL DOMAIN DECOMPOSITION METHOD. II. LIMIT-CYCLE BEHAVIOR IN ACCRETION DISKS AROUND KERR BLACK HOLES

    SciTech Connect

    Xue Li; Lu Jufu; Sadowski, Aleksander; Abramowicz, Marek A. E-mail: lujf@xmu.edu.cn

    2011-07-01

    For the first time ever, we derive equations governing the time evolution of fully relativistic slim accretion disks in the Kerr metric and numerically construct their detailed non-stationary models. We discuss applications of these general results to a possible limit-cycle behavior of thermally unstable disks. Our equations and numerical method are applicable in a wide class of possible viscosity prescriptions, but in this paper we use a diffusive form of the 'standard alpha prescription' that assumes that the viscous torque is proportional to the total pressure. In this particular case, we find that the parameters that dominate the limit-cycle properties are the mass-supply rate and the value of the alpha-viscosity parameter. Although the duration of the cycle (or the outburst) does not exhibit any clear dependence on the black hole spin, the maximal outburst luminosity (in the Eddington units) is positively correlated with the spin value. We suggest a simple method for a rough estimate of the black hole spin based on the maximal luminosity and the ratio of outburst to cycle durations. We also discuss a temperature-luminosity relation for the Kerr black hole accretion disk limit cycle. Based on these results, we discuss the limit-cycle behavior observed in microquasar GRS 1915+105. We also extend this study to several non-standard viscosity prescriptions, including a 'delayed heating' prescription recently addressed by the MHD simulations of accretion disks.

  13. CLUMPY ACCRETION ONTO BLACK HOLES. I. CLUMPY-ADVECTION-DOMINATED ACCRETION FLOW STRUCTURE AND RADIATION

    SciTech Connect

    Wang Jianmin; Cheng Cheng; Li Yanrong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  14. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.

    2015-12-01

    Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.

  15. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  16. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  17. Accretion Onto Supermassive Black Holes: Observational Signals from 3-Dimensional Disk Models

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Miller, Warner A.

    2003-01-01

    Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.

  18. Observable Consequences of Merger-driven Gaps and Holes in Black Hole Accretion Disks

    NASA Astrophysics Data System (ADS)

    Gültekin, Kayhan; Miller, Jon M.

    2012-12-01

    We calculate the observable signature of a black hole (BH) accretion disk with a gap or a hole created by a secondary BH embedded in the disk. We find that for an interesting range of parameters of BH masses (~106-109 M ⊙), orbital separation (~1 AU to ~0.1 pc), and gap width (10-190 disk scale heights), the missing thermal emission from a gap manifests itself in an observable decrement in the spectral energy distribution (SED). We present observational diagnostics in terms of power-law forms that can be fit to line-free regions in active galactic nucleus (AGN) spectra or in fluxes from sequences of broad filters. Most interestingly, the change in slope in the broken power law is almost entirely dependent on the width of the gap in the accretion disk, which in turn is uniquely determined by the mass ratio of the BHs, such that it scales roughly as q 5/12. Thus, one can use spectral observations of the continuum of bright AGNs to infer not only the presence of a closely separated BH binary, but also the mass ratio. When the BH merger opens an entire hole (or cavity) in the inner disk, the broadband SED of the AGNs or quasar may serve as a diagnostic. Such sources should be especially luminous in optical bands but intrinsically faint in X-rays (i.e., not merely obscured). We briefly note that viable candidates may have already been identified, though extant detailed modeling of those with high-quality data have not yet revealed an inner cavity.

  19. Magnetic connection and current distribution in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng-Xuan; Wang, Ding-Xiong; Gan, Zhao-Ming

    2009-10-01

    We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford-Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.

  20. Growing massive black holes through supercritical accretion of stellar-mass seeds

    NASA Astrophysics Data System (ADS)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  1. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  2. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  3. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  4. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  5. NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE

    SciTech Connect

    Fragile, P. Chris; Gillespie, Anna; Monahan, Timothy; Rodriguez, Marco; Anninos, Peter

    2012-08-01

    Modeling the radiation generated by accreting matter is an important step toward realistic simulations of black hole accretion disks, especially at high accretion rates. To this end, we have recently added radiation transport to the existing general relativistic magnetohydrodynamic code, Cosmos++. However, before attempting to model radiative accretion disks, we have tested the new code using a series of shock tube and Bondi (spherical inflow) problems. The four radiative shock tube tests, first presented by Farris et al., have known analytic solutions, allowing us to calculate errors and convergence rates for our code. The Bondi problem only has an analytic solution when radiative processes are ignored, but it is pertinent because it is closer to the physics we ultimately want to study. In our simulations, we include Thomson scattering and thermal bremsstrahlung in the opacity, focusing exclusively on the super-Eddington regime. Unlike accretion onto bodies with solid surfaces, super-Eddington accretion onto black holes does not produce super-Eddington luminosity. In our examples, despite accreting at up to 300 times the Eddington rate, our measured luminosity is always several orders of magnitude below Eddington.

  6. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  7. Accretion model of a rotating gas sphere onto a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Huerta, E. A.

    2008-04-01

    We construct a simple accretion model of a rotating pressureless gas sphere onto a Schwarzschild black hole. Far away from the hole, the flow is assumed to rotate as a rigid body. We show how to build analytic solutions in terms of Jacobi elliptic functions. This construction represents a general relativistic generalization of the Newtonian accretion model first proposed by Ulrich (1976). In exactly the same form as it occurs for the Newtonian case, the flow naturally predicts the existence of an equatorial rotating accretion disk about the hole. However, the radius of the disk increases monotonically without limit as the flow reaches the angular momentum corresponding to the maximum limit allowed by the model.

  8. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.

    PubMed

    Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B

    2003-10-30

    Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

  9. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  10. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  11. Gravitational shock wave inside a steadily accreting spherical charged black hole

    NASA Astrophysics Data System (ADS)

    Eilon, Ehud

    2017-02-01

    We numerically investigate the interior of a four-dimensional, spherically symmetric charged black hole accreting neutral null fluid. Previous study by Marolf and Ori suggested that late infalling observers encounter an effective shock wave as they approach the outgoing portion of the inner horizon. Nonlinear perturbations could generate an effective gravitational shock wave, which manifests as a drop of the area coordinate r from inner horizon value r- towards zero in an extremely short proper time duration of the infalling observer. We consider three different scenarios: a) A charged black hole accreting a single (ingoing) null fluid; b) a charged black hole perturbed by two null fluids, ingoing and outgoing; c) a charged black hole perturbed by an ingoing null fluid and a self-gravitating scalar field. While we do not observe any evidence for a gravitational shock in the first case, we detect the shock in the other two, using ingoing timelike and null geodesics. The shock width Δ τ decreases rapidly with a fairly good match to a new, generalized exponential law, Δ τ ˜e-∫κ-(V˜ f)d V˜ f , where V˜f is a specific timing parameter for the ingoing timelike geodesics and κ-(V˜f) is a generalized (Reissner-Nordström-like) surface gravity of the charged black hole at the inner horizon. We also gain new insight into the internal (classical) structure of a charged black hole perturbed by two null fluids, including strong evidence for the existence of a spacelike r =0 singularity. We use a finite-difference numerical code with double-null coordinates combined with an adaptive gauge method in order to solve the field equations from the region outside the black hole down to the vicinity of the r =0 singularity.

  12. Theory of magnetohydrodynamic accretion of matter with an ultrahard equation of state onto a black hole

    SciTech Connect

    Chernov, S. V.

    2015-06-15

    We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ{sup 2}, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.

  13. A new way to measure supermassive black hole spin in accretion disc-dominated active galaxies

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, C.; Middleton, M.; Ward, Martin

    2013-09-01

    We show that disc continuum fitting can be used to constrain black hole spin in a subclass of narrow-line Seyfert 1 (NLS1) active galactic nuclei as their low mass and high mass accretion rate means that the disc peaks at energies just below the soft X-ray bandpass. We apply the technique to the NLS1 PG1244+026, where the optical/UV/X-ray spectrum is consistent with being dominated by a standard disc component. This gives a best estimate for black hole spin which is low, with a firm upper limit of a* <0.86. This contrasts with the recent X-ray determinations of (close to) maximal black hole spin in other NLS1 based on relativistic smearing of the iron profile. While our data on PG1244+026 do not have sufficient statistics at high energy to give a good measure of black hole spin from the iron line profile, cosmological simulations predict that black holes with similar masses have similar growth histories and so should have similar spins. This suggests that there is a problem either in our understanding of disc spectra, or/and X-ray reflection or/and the evolution of black hole spin.

  14. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  15. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.

  16. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    PubMed

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  17. NO EVIDENCE OF OBSCURED, ACCRETING BLACK HOLES IN MOST z = 6 STAR-FORMING GALAXIES

    SciTech Connect

    Willott, Chris J.

    2011-11-20

    It has been claimed that there is a large population of obscured, accreting black holes at high redshift and that the integrated black hole density at z = 6 as inferred from X-ray observations is {approx}100 times greater than that inferred from optical quasars. I have performed a stacking analysis of very deep Chandra X-ray data at the positions of photometrically selected z = 6 galaxy candidates. It is found that there is no evidence for a stacked X-ray signal in either the soft (0.5-2 keV) or hard (2-8 keV) X-ray bands. Previous work which reported a significant signal is affected by an incorrect method of background subtraction which underestimates the true background within the target aperture. The puzzle remains as to why the z = 6 black hole mass function has such a flat slope and a low normalization compared to the stellar mass function.

  18. Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case.

    NASA Astrophysics Data System (ADS)

    Proga, D.; Begelman, M. C.

    2003-03-01

    We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means of numerical 2D, axisymmetric, MHD simulations with and without resistive heating. Our main result is that the properties of the accretion flow depend mostly on an equatorial accretion torus. Initially, accretion occurs only through the polar funnel, as in the hydrodynamic inviscid case, where material has zero or very low angular momentum. The material that has too much angular momentum to be accreted directly forms a thick torus near the equator. However, in the later phase of the evolution, the transport of angular momentum due to the magnetorotational instability (MRI) facilitates accretion through the torus, too. The torus thickens towards the poles and develops a corona or an outflow or both. Consequently, the mass accretion through the funnel is stopped. The accretion of rotating gas through the torus is significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate). Our results do not change if we switch on or off resistive heating. Overall our simulations are very similar those presented by Stone, Pringle, Hawley and Balbus despite different initial and outer boundary conditions. Thus, we confirm that the MRI is very robust and controls the nature of radiatively inefficient accretion flows. DP acknowledges support from NASA under LTSA grant NAG5-11736 and support provided by NASA through grant AR-09532 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. MB acknowledges support from NSF grant AST-9876887.

  19. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.

  20. Using Simulations of Black Holes to Study General Relativity and the Properties of Inner Accretion Flow

    NASA Astrophysics Data System (ADS)

    Hoormann, Janie Katherine

    2016-06-01

    While Albert Einstein's theory of General Relativity (GR) has been tested extensively in our solar system, it is just beginning to be tested in the strong gravitational fields that surround black holes. As a way to study the behavior of gravity in these extreme environments, I have used and added to a ray-tracing code that simulates the X-ray emission from the accretion disks surrounding black holes. In particular, the observational channels which can be simulated include the thermal and reflected spectra, polarization, and reverberation signatures. These calculations can be performed assuming GR as well as four alternative spacetimes. These results can be used to see if it is possible to determine if observations can test the No-Hair theorem of GR which states that stationary, astrophysical black holes are only described by their mass and spin. Although it proves difficult to distinguish between theories of gravity, it is possible to exclude a large portion of the possible deviations from GR using observations of rapidly spinning stellar mass black holes such as Cygnus X-1. The ray-tracing simulations can furthermore be used to study the inner regions of black hole accretion flows. I examined the dependence of X-ray reverberation observations on the ionization of the disk photosphere. My results show that X-ray reverberation and X-ray polarization provides a powerful tool to constrain the geometry of accretion disks which are too small to be imaged directly. The second part of my thesis describes the work on the balloon-borne X-Calibur hard X-ray polarimetry mission and on the space-borne PolSTAR polarimeter concept.

  1. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    NASA Technical Reports Server (NTRS)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  2. Resolving the Bondi Accretion Flow toward the Supermassive Black Hole of NGC 3115 with Chandra

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Irwin, J.; Million, E.; Yukita, M.; Mathews, W.; Bregman, J.

    2011-09-01

    Gas undergoing Bondi accretion on to a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observation show has a very massive SMBH. Our observations show that the gas temperature rises toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. The data support that the Bondi radius is at least about 4-5 arcsec (188-235 pc), suggesting a supermassive blackhole of two billion solar masses that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power law index of 1.03, and we will discuss the interpretations of the results.

  3. Black hole accretion disks - Coronal stabilization of the Lightman-Eardley instability

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.; Kuperus, M.

    1984-01-01

    Physical processes by which the presence of a corona around a black hole can raise the threshold of onset of the Lightman-Eardley (L-E, 1976) instability are explored analytically. The L-E model predicts that an optically thick disk becomes unstable when the disk radiation pressure exceeds the disk gas pressure. The model has important implications for the validity of either the coronal disk or two-temperature disk models for accretion zones around black holes. It is shown that a corona can dissipate accreting gravitational energy through radiative cooling. Specific ratios of hard/soft X-rays are quantified for stable and unstable conditions. X-ray spectra from Cyg X-1 are cited as residing below the instability threshold value and thus are supportive of the coronal disk model.

  4. Variabilities of gamma-ray bursts from black hole hyper-accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Lu, Zu-Jia; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lü, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-11-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) display significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disc, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  5. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  6. Cosmological evolution of supermassive black holes and AGN: a synthesis model for accretion and feedback .

    NASA Astrophysics Data System (ADS)

    Merloni, A.

    The growth of supermassive black holes (SMBH) through accretion is accompanied by the release of enormous amounts of energy which can either be radiated away, as happens in quasars, advected into the black hole, or disposed of in kinetic form through powerful jets, as is observed, for example, in radio galaxies. Here, I will present new constraints on the evolution of the SMBH mass function and Eddington ratio distribution, obtained from a study of AGN luminosity functions aimed at accounting for both radiative and kinetic energy output of AGN in a systematic way. First, I discuss how a refined Soltan argument leads to joint constraints on the mass-weighted average spin of SMBH and of the total mass density of high redshift (z˜ 5) and ``wandering'' black holes. Then, I will show how to describe the ``downsizing'' trend observed in the AGN population in terms of cosmological evolution of physical quantities (black hole mass, accretion rate, radiative and kinetic energy output). Finally, the redshift evolution of the AGN kinetic feedback will be briefly discussed and compared with the radiative output of the evolving SMBH population, thus providing a robust physical framework for phenomenological models of AGN feedback within structure formation.

  7. Numerical simulation of the disk dynamics around the black hole: Bondi-Hoyle accretion

    NASA Astrophysics Data System (ADS)

    Koyuncu, Fahrettin; Dönmez, Orhan

    2014-06-01

    We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip-flop oscillation around the black holes. The flip-flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.

  8. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  9. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.

    1979-01-01

    A general procedure is developed for describing non-Keplerian accretion in the region between the event horizon of a black hole or a Rosen collapsed object and a distance greater than or equal to the marginally stable circular orbit. The relevant equations and boundary conditions are described, ways to obtain solutions are discussed, and some flow solutions are examined. The consistency and advantages of the proposed method are examined.

  10. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  11. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  12. Super-Eddington accreting massive black holes as long-lived cosmological standards.

    PubMed

    Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai

    2013-02-22

    Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler.

  13. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  14. Magnetohydrodynamic Accretion Around Supermassive Black Holes : Short-Length Disc for Stronger Field

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    Thin accretion flow, i.e., geometrically thin accretion disc was first studied by Shakura and Sunyaev. Relativistic fluid flows around a black hole produce enormous energy on the cost of permanent lost of the gravitational potential due to the fall into a infinitely sloped gravitational well or to be specific, into a space time singularity. This energy is actually observed in different wavelengths and we specify the source as Active Galactic Nuclei, quasars, Gamma-ray burst sources etc. Eventually, two popular kind of accretion disc models are there. The first one is advection dominated, known as geometrically thin optically thick accretion disc. The other is geometrically thick but optically thin as it does not capture photons inside! The jets formed by accretion phenomena are still not well explained. Size of the accretion disc, power of the jets can be powered by magnetic fields generated by the ionized particles of the accretion flow. We show the exact dependency of the disc size upon the magnetic field present along with the quantity of the central gravitating mass.

  15. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  16. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  17. Accretion and ejection in black-hole X-ray transients

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Belloni, T. M.

    2015-02-01

    Context. A rich phenomenology has been accumulated over the years regarding accretion and ejection in black-hole X-ray transients (BHTs) and it needs an interpretation. Aims: Here we summarize the current observational picture of the outbursts of BHTs, based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson cosmic battery (PRCB), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form, whose characteristic time scale is much longer than the dynamical or the cooling ones. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state, i.e., at very low accretion rate, and that state transitions take place over long time scales (hours to days). The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Last, but not least, we demonstrate that the previous history of the system is absolutely necessary for the interpretation of the HLD. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. Finally, the counterclockwise traversal of the HLD is explained as follows: all outbursts start from the quiescent state, in which the inner part of the accretion flow is ADAF-like, threaded by a poloidal magnetic field. As the

  18. A SWIFT SURVEY OF ACCRETION ONTO STELLAR-MASS BLACK HOLES

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2013-05-20

    We present a systemic analysis of all of the stellar-mass black hole binaries (confirmed and candidate) observed by the Swift observatory up to 2010 June. The broad Swift bandpass enables a trace of disk evolution over an unprecedented range in flux and temperature. The final data sample consists of 476 X-ray spectra containing greater than 100 counts, in the 0.6-10 keV band. This is the largest sample of high-quality CCD spectra of accreting black holes published to date. In addition, strictly simultaneous data at optical/UV wavelengths are available for 255 (54%) of these observations. The data are modeled with a combination of an accretion disk and a hard spectral component. For the hard component we consider both a simple power-law model and a thermal Comptonization model. An accretion disk is detected at greater than the 5{sigma} confidence level in 61% of the observations. Light curves and color-color diagrams are constructed for each system. Hardness-luminosity and disk fraction-luminosity diagrams are constructed and are observed to be consistent with those typically observed by RXTE, noting the sensitivity below 2 keV provided by Swift. The observed spectra have an average luminosity of {approx}1% Eddington, though we are sensitive to accretion disks down to a luminosity of 10{sup -3} L{sub Edd}. Thus, this is also the largest sample of such cool accretion disks studied to date. The accretion disk temperature distribution displays two peaks consistent with the classical hard and soft spectral states, with a smaller number of disks distributed between these. The distribution of inner disk radii is observed to be continuous regardless of which model is used to fit the hard continua. There is no evidence for large-scale truncation of the accretion disk in the hard state (at least for L{sub x} {approx}> 10{sup -3} L{sub Edd}), with all of the accretion disks having radii {approx}< 40 R{sub g} . Plots of the accretion disk inner radius versus hardness ratio

  19. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  20. RESOLVING THE BONDI ACCRETION FLOW TOWARD THE SUPERMASSIVE BLACK HOLE OF NGC 3115 WITH CHANDRA

    SciTech Connect

    Wong, Ka-Wah; Irwin, Jimmy A.; Yukita, Mihoko; Million, Evan T.; Mathews, William G.

    2011-07-20

    Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. Our analysis suggests that we are resolving, for the first time, the accretion flow within the Bondi radius of an SMBH. We show that the temperature is rising toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. There is no hard central point source that could cause such an apparent rise in temperature. The data support that the Bondi radius is at about 4''-5'' (188-235 pc), suggesting an SMBH of 2 x 10{sup 9} M{sub sun} that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power-law index of 1.03{sup +0.23}{sub -0.21}, which is consistent with gas in transition from the ambient medium and the accretion flow. The accretion rate at the Bondi radius is determined to be M-dot{sub B} = 2.2x10{sup -2} M{sub sun} yr{sup -1}. Thus, the accretion luminosity with 10% radiative efficiency at the Bondi radius (10{sup 44} erg s{sup -1}) is about six orders of magnitude higher than the upper limit of the X-ray luminosity of the nucleus.

  1. Probing the Evolving X-ray Sources of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Wilkins, Dan

    2013-04-01

    Material spiralling into black holes powers some of the most luminous objects we see in the Unviverse; AGN and galactic black hole binaries. X-rays are emitted from a corona of energetic particles around the black hole and are seen to reflect off of the accretion disc. As well as being impressive objects in their own right, the black holes in AGN can emit such large amounts of energy that they are important in governing the growth of galaxies and clusters. Through detailed analysis of the observed reflection features in the X-ray spectrum and the variability of the detected emission showing reverberation time lags between the directly observed continuum and the reflection, it is possible to detect the emission from material right down to the innermost stable orbit around the black hole. Comparing these observations to the results of general relativistic ray tracing simulations allows them to be analysed in the context of the geometry of the X-ray emitting region and it has been possible to constrain the locations of the X-ray sources in a number of AGN including 1H 0707-495, IRAS 13224-3809 and MCG-6-30-15. With high quality data from long X-ray observations of these sources, it has, for the first time, been possible to follow the evolution of the coronal X-ray source as the luminosity of the source goes up and down. We are able to find evidence that the size and other properties of the X-ray source changes on the timescale of a few hours, giving rise to the extreme variability seen in these sources with the source increasing in size as the luminosity increases. Such detailed analysis of observations (both of spectra and variability) and studies of how the X-ray source is changing is paving the way to the science that will be possible with the next generation of X-ray instruments (NuStar and Astro-H) and will allow us to understand the processes at work in the innermost regions of accretion black holes, releasing energy from the accretion flow to power some of the

  2. ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK-JET CONNECTIONS

    SciTech Connect

    Miller, J. M.; Reis, R. C.; Pooley, G. G.; Fabian, A. C.; Cackett, E. M.; Nowak, M. A.; Pottschmidt, K.; Wilms, J.

    2012-09-20

    Models of jet production in black hole systems suggest that the properties of the accretion disk-such as its mass accretion rate, inner radius, and emergent magnetic field-should drive and modulate the production of relativistic jets. Stellar-mass black holes in the 'low/hard' state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v/c {approx_equal} 0.3 or the escape velocity for a vertical height of z {approx_equal} 20 GM/c {sup 2} above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z {approx_equal} 20 GM/c {sup 2} for hard X-ray production above a black hole, with a spin in the range 0.6 {<=} a {<=} 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM/c {sup 2}. We discuss these results in the context of disk-jet connections

  3. CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2013-07-15

    The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius, respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.

  4. GENERAL RELATIVISTIC SIMULATIONS OF ACCRETION INDUCED COLLAPSE OF NEUTRON STARS TO BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba

    2012-10-10

    Neutron stars (NSs) in the astrophysical universe are often surrounded by accretion disks. Accretion of matter onto an NS may increase its mass above the maximum value allowed by its equation of state, inducing its collapse to a black hole (BH). Here we study this process for the first time, in three-dimensions, and in full general relativity. By considering three initial NS configurations, each with and without a surrounding disk (of mass {approx}7% M{sub NS}), we investigate the effect of the accretion disk on the dynamics of the collapse and its imprint on both the gravitational wave (GW) and electromagnetic (EM) signals that can be emitted by these sources. We show in particular that, even if the GW signal is similar for the accretion induced collapse (AIC) and the collapse of an NS in vacuum (and detectable only for Galactic sources), the EM counterpart could allow us to discriminate between these two types of events. In fact, our simulations show that, while the collapse of an NS in vacuum leaves no appreciable baryonic matter outside the event horizon, an AIC is followed by a phase of rapid accretion of the surviving disk onto the newly formed BH. The post-collapse accretion rates, on the order of {approx}10{sup -2} M{sub Sun} s{sup -1}, make these events tantalizing candidates as engines of short gamma-ray bursts.

  5. Binary Black Hole Accretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity

    NASA Astrophysics Data System (ADS)

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-01

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 <= q <= 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent "mini disks" surrounding each black hole. We find that for q >~ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  6. Binary black hole accretion from a circumbinary disk: Gas dynamics inside the central cavity

    SciTech Connect

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-10

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 ≤ q ≤ 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent 'mini disks' surrounding each black hole. We find that for q ≳ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  7. Exploring mass-scaling physics and outflow geometry in accreting black holes

    NASA Astrophysics Data System (ADS)

    Connors, Riley Michael Thomas

    2017-01-01

    One of the main tasks facing studies of black hole accretion in both black hole X-ray binaries (XRB) and Active Galactic Nuclei (AGN) is to break spectral model-fitting degeneracies. We explore two methods of simultaneous spectral modelling to reduce these degeneracies: (a) simultaneous fitting of XRBs and AGN, and (b) folding in timing properties in a novel way to better understand the outflow evolution of XRBs during outburst.It is a long-standing idea that AGN are scaled up versions of XRBs, such that the physics of accretion cares only about accretion rate, and not the black hole mass. We show that this principle of scale-invariance may provide us with a way to break degeneracies in broadband spectral modelling of both XRBs and AGN, focusing primarily on low-luminosity sources where degeneracies are more prevalent. We simultaneously model the broadband spectra of the two most quiescent (LX ~ 10-9 LEdd) accreting black holes on opposite ends of the mass scale, the XRB A0620-00 and Sgr A*, the Galactic centre supermassive black hole (during bright flaring). We use an outflow-dominated model capable of reproducing the broadband spectrum from radio to X-ray frequencies, co-evolving parameters that are representative of the mass-scaling properties. Such a method reduces the degeneracies in our model parameters, contributing to answering this question regarding the dominant emission mechanisms.We adopt a similar technique to investigate how spatial parameters of an XRB outflow can be better understood by tracking our model parameters as a function of the XRB variability properties during outburst, focusing in particular on GX 339-4. I shall discuss how utilising a novel characterisation of the timing properties of XRBs allows us to do this in a simple, quantitative way.We are currently developing our models further to incorporate the most up-to-date disc reflection routines in order to describe the jet/disc interaction more accurately. I shall briefly discuss this

  8. ON THE ROLE OF FAST MAGNETIC RECONNECTION IN ACCRETING BLACK HOLE SOURCES

    SciTech Connect

    Singh, C. B.; De Gouveia Dal Pino, E. M.; Kadowaki, L. H. S. E-mail: dalpino@iag.usp.br

    2015-01-30

    We attempt to explain the observed radio and gamma-ray emission produced in the surroundings of black holes by employing a magnetically dominated accretion flow model and fast magnetic reconnection triggered by turbulence. In earlier work, a standard disk model was used and we refine the model by focusing on the sub-Eddington regime to address the fundamental plane of black hole activity. The results do not change substantially with regard to previous work, ensuring that the details of accretion physics are not relevant in the magnetic reconnection process occurring in the corona. Rather, our work puts fast magnetic reconnection events as a powerful mechanism operating in the core region near the jet base of black hole sources on more solid ground. For microquasars and low-luminosity active galactic nuclei, the observed correlation between radio emission and the mass of the sources can be explained by this process. The corresponding gamma-ray emission also seems to be produced in the same core region. On the other hand, emission from blazars and gamma-ray bursts cannot be correlated to core emission based on fast reconnection.

  9. Effects of Spin on High-energy Radiation from Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford-Znajek (BZ) mechanism. We find that the X-ray and γ-ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  10. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  11. X-ray reflection from black-hole accretion discs with a radially stratified ionisation

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Domcek, V.; Dovčiak, M.; Guainazzi, M.; Marinucci, A.

    2015-07-01

    Recent X-ray observations have suggested a very high compactness of coronae in Active Galactic Nuclei as well as in X-ray Binaries. The compactness of the source implies that the black-hole accretion disc irradiation is a strong function of radius. We will show how the X-ray spectra are modified assuming the radially stratified ionisation according to the illumination by a point-like source on the black-hole rotational axis. We will discuss how this affects the measurements of the other model parameters, such as spin and radial emissivity. We will show the application of this model to the recent XMM-Newton/NUSTAR data of an active galaxy MCG-6-30-15.

  12. TCAF model in XSPEC : An efficient tool to understand accretion flow dynamics around black holes

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali

    2016-07-01

    It has been more than two decades of the classic work by Chakrabarti and his collaborators on the two component advective flow (TCAF) model. Recently we successfully been able to include it in HEASARC's spectral analysis software package XSPEC as an additive local model to fit energy spectra from black hole candidates (BHCs) and obtain physical accretion flow parameters, such as, two component (Keplerian disk and sub-Keplerian halo) accretion rates, shock (location, i.e., the size of the Compton cloud, and the compression ratio) parameters. Evolutions of spectral and timing properties are transparent from the TCAF model fitted/derived physical parameters. Reason of different spectral states and their transitions during an outburst of a transient BHC are also clear. One can also predict frequency of the dominating quasi-periodic oscillation (QPO) from TCAF model fitted shock parameters and even predict most preferable mass range of an unknown BHC from TCAF fits. To our knowledge this gives us the most physical tool to investigate the accretion flow dynamics around black hole candidates.

  13. Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity

    NASA Astrophysics Data System (ADS)

    Sakurai, Yuya; Inayoshi, Kohei; Haiman, Zoltán

    2016-10-01

    We perform 1D radiation hydrodynamical simulations to solve accretion flows on to massive black holes (BHs) with a very high rate. Assuming that photon trapping limits the luminosity emerging from the central region to L ≲ LEdd, Inayoshi, Haiman & Ostriker (2016) have shown that an accretion flow settles to a `hyper-Eddington solution, with a steady and isothermal (T ≃ 8000 K) Bondi profile reaching ≳ 5000 times the Eddington accretion rate dot{M}_Eddequiv L_Edd/c^2. Here, we address the possibility that gas accreting with finite angular momentum forms a bright nuclear accretion disc, with a luminosity exceeding the Eddington limit (1 ≲ L/LEdd ≲ 100). Combining our simulations with an analytic model, we find that a transition to steady hyper-Eddington accretion still occurs, as long as the luminosity remains below L/LEdd ≲ 35 (MBH/104 M⊙)3/2(n∞/105 cm-3)(T∞/104 K)-3/2(r⋆/1014 cm)-1/2, where n∞ and T∞ are the density and temperature of the ambient gas, and r⋆ is the radius of the photosphere, at which radiation emerges. If the luminosity exceeds this value, accretion becomes episodic. Our results can be accurately recovered in a toy model of an optically thick spherical shell, driven by radiation force into a collapsing medium. When the central source is dimmer than the above critical value, the expansion of the shell is halted and reversed by ram pressure of the collapsing medium, and by shell's weight. Our results imply that rapid, unimpeded hyper-Eddington accretion is possible even if the luminosity of the central source far exceeds the Eddington limit, and can be either steady or strongly episodic.

  14. Diagnosing the Black Hole Accretion Physics of Sgr A*: Spitzer/Chandra Observations

    NASA Astrophysics Data System (ADS)

    Hora, Joseph L.; Fazio, Giovanni G.; Willner, Steven P.; Gurwell, Mark A.; Smith, Howard Alan; Ashby, Matthew; Baganoff, Frederick K.; Witzel, Gunther; Morris, Mark; Ghez, Andrea M.; Meyer, Leo; Becklin, Eric E.; Ingalls, James G.; Glaccum, William J.; Carey, Sean J.; Haggard, Daryl; Marrone, Daniel P.; Gammie, Charles F.

    2017-01-01

    The Galactic center offers the closest opportunity for studying accretion onto a supermassive black hole. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and its flux may originate in either the accretion flow or a jet, or both. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Following our successful Spitzer observations of the variability of Sgr A* in 2013 and 2014, we have undertaken a program of simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. In addition, several ground-based observatories participated in the campaigns, at wavelengths including radio, sub-mm, and the near-infrared. We will present initial Spitzer/Chandra results from the two 24-hour epochs in 2016 July. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon.

  15. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  16. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  17. Accretion Disks around Black Holes: Dynamical Evolution, Meridional Circulations, and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lee, William H.; Ramirez-Ruiz, Enrico

    2002-10-01

    We study the hydrodynamic evolution of massive accretion disks around black holes, formed when a neutron star is disrupted by a black hole in a binary system. The initial conditions are taken from three-dimensional calculations of coalescing binaries. By assuming azimuthal symmetry we are able to follow the time dependence of the disk structure for 0.2 s in cylindrical coordinates (r,z). We use an ideal gas equation of state and assume that all the dissipated energy is radiated away. The disks evolve because of viscous stresses, modeled with an α law. We study the disk structure and, in particular, the strong meridional circulations that are established and persist throughout our calculations. These consist of strong outflows along the equatorial plane that reverse direction close to the surface of the disk and converge on the accretor. In the context of gamma-ray bursts (GRBs), we estimate the energy released from the system in neutrinos and through magnetic-dominated mechanisms and find it can be as high as Eν~1052 ergs and EBZ~1051 ergs, respectively, during an estimated accretion timescale of 0.1-0.2 s. The νν annihilation is likely to produce bursts from only a short, impulsive energy input Lνν~t-5/2 and so would be unable to account for a large fraction of bursts that show complicated light curves. On the other hand, a gas mass ~0.1-0.25 Msolar survives in the orbiting debris, which enables strong magnetic fields ~1016 G to be anchored in the dense matter long enough to power short duration GRBs. We highlight the effects that the initial disk and black holes masses, viscosity, and binary mass ratio have on the evolution of the disk structure. Finally, we investigate the continuous energy injection that arises as the black hole slowly swallows the rest of the disk and discuss its consequences on the GRB afterglow emission.

  18. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  19. Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Jang, I.; Gliozzi, M.; Hughes, C.; Titarchuk, L.

    2014-09-01

    In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BHs), can be reliably extended to estimate the mass of supermassive BHs accreting at a moderate to high level. Here we investigate the limits of applicability of this method to low-accreting active galactic nuclei (AGN), using a control sample with good-quality X-ray data and dynamically measured mass. For low-accreting AGN (LX/LEdd ≤ 10-4), because the basic assumption that the photon index positively correlates with the accretion rate no longer holds the X-ray scaling method cannot be used. Nevertheless, the inverse correlation in the Γ-LX/LEdd diagram, found in several low-accreting BHs and confirmed by this sample, can be used to constrain MBH within a factor of ˜10 from the dynamically determined values. We provide a simple recipe to determine MBH using solely X-ray spectral data, which can be used as a sanity check for MBH determination based on indirect optical methods.

  20. A two-fluid model for black-hole accretion flows: particle acceleration and disc structure

    NASA Astrophysics Data System (ADS)

    Lee, Jason P.; Becker, Peter A.

    2017-02-01

    Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.

  1. X-ray Fe-lines from Relativistic Accretion Disks Around Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Stella, Luigi

    2013-01-01

    The Gas Scintillation Proportional Counter (GSPC) on board the European X-ray Satellite EXOSAT (1983-1986) provided detections of Fe K-alpha emission features around 6-7 keV in the X-ray spectra of accreting neutron star and black hole candidates in X-ray binaries. Surprisingly the width of these lines was found to be broader than the GSPC resolution 10% at 6 keV): it could not be explained by thermal broadening, nor blending of (unresolved) lines from different ionization stages of Fe; very large Doppler shifts and, perhaps, thermal Comptonisation provided more promising interpretations. In 1989 Nick White and I developed the first general relativistic model for the Fe-line profile that is produced by matter orbiting in an accretion disk. By fitting the GSPC Fe-line of the black hole candidate Cyg X-1 with our model we inferred an emitting line region extending to a few tens Schwarzschild radii from the black hole, where matter orbits at ~0.1-0.2 the speed of light and effects such as relativistic Doppler shifts and boosting, as well as gravitational and transverse redshifts are conspicuous. We joined forces with Andy Fabian and Martin Rees, who were working on the same interpretation, and published the results in a MNRAS paper. The relativistic disk interpretation of the broad Fe-lines gave rise to much interest on the possibility of measuring black hole mass and spin and probing the innermost regions of accretion flows and the very strong gravitational fields close to compact objects. Very broad and sometimes highly redshifted Fe-lines have been studied by now in tens of X-ray binaries and bright Active Galactic Nuclei with the CCD detectors of the Chandra and XMM/Newton X-ray telescopes; in some cases the line profile implies the presence of a fast spinning black hole. The potential of the Fe-line diagnostics remains to be largely exploited. Moreover some alternative interpretations are not yet ruled out. An X-ray instrument with a broad energy response

  2. X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C. E-mail: jhk@pha.jhu.edu

    2013-06-01

    We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T{sub e} {approx} 10 keV in a boundary layer near the disk and rises smoothly to T{sub e} {approx}> 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to Almost-Equal-To 6M as the accretion rate decreases, we find that the shape of the Fe K{alpha} line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  3. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    SciTech Connect

    Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

  4. Dependence of the Spin of Supermassive Black Holes on the Eddington Factor for Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Buliga, S. D.; Gnedin, Yu. N.; Mikhailov, A. G.; Natsvlishvili, T. M.

    2016-12-01

    An equation relating the spin of supermassive black holes (SMBH) to the Eddington factor, i.e., the ratio of the bolometric and Eddington luminosities for accretion disks in active galactic nuclei (AGN), is presented. This equation also depends on the relationship between the magnetic field pressure and the flux of accreted matter at the radius of the event horizon for a black hole. When the pressures of the magnetic field and of the accreted matter are equal, there is a direct relationship between the spin of the black hole and the Eddington factor. Based on available data on the bolometric luminosity and mass of black holes, it is possible to determine the spin of a black hole. The spins of the central SMBH are given for a number of AGN. The proposed method can also be used to determine the ratio of the magnetic field pressure and the pressure of the accreted gas at the event horizon of SMBH for AGN for which the spin of the black hole has been determined reliably.

  5. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  6. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  7. Contrasting Magnetohydrodynamic Turbulence with alpha-Viscosity in Simulations of Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Fragile, P. Christopher Christopher; Etheridge, Sarina Marie; Anninos, Peter; Mishra, Bhupendra

    2017-01-01

    Many analytic, semi-analytic, and even some numerical treatments of black hole accretion parametrize the stresses within the disk as an effective viscosity, even though the true source of stresses is likely to be turbulence driven by the magneto-rotational instability. Despite some attempts to quantify the differences between these treatments, it remains unclear exactly what the consequences of a viscous treatment are, especially in the context of the temporal and spatial variability of global disk parameters. We use the astrophysics code, Cosmos++, to create two accretion disk simulations using alpha-viscosity, one thin and one thick. These simulations are then compared to similar work done using MHD in order to analyze the extent of the validity of the alpha-model. One expected result, which we, nevertheless, demonstrate is the greater spatial and temporal variability of MHD.

  8. Rapid variability as a probe of warped space-time around accreting black holes

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564, and compare these to the time-averaged spectrum and the spectrum of the rapid (<0.1 s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, softer at larger radii closer to the truncated disc and harder in the innermost parts where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole.

  9. Beyond the Standard Scheme for Relativistic Spectral Line Profiles from Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Sochora, V.; Svoboda, J.; Dovciak, M.

    2011-09-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of strong gravitational field acting on the light emitting gas. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus we show that the required sensitivity and energy resolution could be reached with Large Area Detector of the proposed LOFT mission.

  10. Binary Active Galactic Nuclei in Stripe 82: Constraints on Synchronized Black Hole Accretion in Major Mergers

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Wrobel, J. M.; Myers, A. D.; Djorgovski, S. G.; Yan, Lin

    2015-12-01

    Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method for identifying a large and uniform sample of binary AGNs because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kiloparsec-scale binaries over the 92 deg2 of the Sloan Digital Sky Survey Stripe 82 area with 2″-resolution Very Large Array (VLA) images. Here we present 0.″3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line of sight projections of radio structures from single AGNs. The four binary AGNs at z ˜ 0.1 reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between 10.3\\lt {{log}}({M}\\star /{M}⊙ )\\lt 11.5 and velocity dispersions between 120\\lt {σ }\\star \\lt 320 km s-1. The radio emission is compact (≲0.″4) and shows a steep spectrum (-1.8\\lt α \\lt -0.5) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs ≥slant {23}-8+15% of the time when a kiloparsec-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.

  11. Black hole accretion rings revealed by future X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Sochora, V.; Karas, V.; Svoboda, J.; Dovčiak, M.

    2011-11-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of a strong gravitational field acting on the light-emitting gas. The observed shape of the reflection line is formed by integrating contributions over a range of radii across the accretion disc plane, where the individual photons experience a different level of energy shifts, boosting and amplification by relativistic effects. These have to be convolved with the intrinsic emissivity of the line, which is a function of radius and the emission angle in the local frame. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and its interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with a radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus of a type 1 Seyfert galaxy (inclination ≃30°, X-ray flux ≃1-2 mCrab in a keV energy band) we show that the required sensitivity and energy resolution could be reached with a large area detector of the proposed Large Observatory for X-ray Timing mission. Galactic black holes will provide another category of potentially suitable targets if the relativistic spectral features are indeed produced by reflection from their accretion discs.

  12. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    SciTech Connect

    Wellons, Sarah; Zhu, Yucong; Narayan, Ramesh; McClintock, Jeffrey E.; Psaltis, Dimitrios

    2014-04-20

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  13. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    SciTech Connect

    Fragile, P. Chris; Olejar, Ally; Anninos, Peter

    2014-11-20

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M {sub 1} closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  14. VARIABILITY FROM NON-AXISYMMETRIC FLUCTUATIONS INTERACTING WITH STANDING SHOCKS IN TILTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Henisey, Ken B.; Blaes, Omer M.; Fragile, P. Chris

    2012-12-10

    We study the spatial and temporal behavior of fluid in fully three-dimensional, general relativistic, magnetohydrodynamical simulations of both tilted and untilted black hole accretion flows. We uncover characteristically greater variability in tilted simulations at frequencies similar to those predicted by the formalism of trapped modes, but ultimately conclude that its spatial structure is inconsistent with a modal interpretation. We find instead that previously identified, transient, overdense clumps orbiting on roughly Keplerian trajectories appear generically in our global simulations, independent of tilt. Associated with these fluctuations are acoustic spiral waves interior to the orbits of the clumps. We show that the two non-axisymmetric standing shock structures that exist in the inner regions of these tilted flows effectively amplify the variability caused by these spiral waves to markedly higher levels than in untilted flows, which lack standing shocks. Our identification of clumps, spirals, and spiral-shock interactions in these fully general relativistic, magnetohydrodynamical simulations suggests that these features may be important dynamical elements in models that incorporate tilt as a way to explain the observed variability in black hole accretion flows.

  15. EXCITATION OF TRAPPED WAVES IN SIMULATIONS OF TILTED BLACK HOLE ACCRETION DISKS WITH MAGNETOROTATIONAL TURBULENCE

    SciTech Connect

    Henisey, Ken B.; Blaes, Omer M.; Fragile, P. Chris; Ferreira, Barbara T.

    2009-11-20

    We analyze the time dependence of fluid variables in general relativistic, magnetohydrodynamic simulations of accretion flows onto a black hole with dimensionless spin parameter a/M = 0.9. We consider both the cases where the angular momentum of the accretion material is aligned with the black hole spin axis (an untilted flow) and where it is misaligned by 15 deg. (a tilted flow). In comparison to the untilted simulation, the tilted simulation exhibits a clear excess of inertial variability, that is, variability at frequencies below the local radial epicyclic frequency. We further study the radial structure of this inertial-like power by focusing on a radially extended band at 118(M/10 M{sub sun}){sup -1} Hz found in each of the three analyzed fluid variables. The three-dimensional density structure at this frequency suggests that the power is a composite oscillation whose dominant components are an over dense clump corotating with the background flow, a low-order inertial wave, and a low-order inertial-acoustic wave. Our results provide preliminary confirmation of earlier suggestions that disk tilt can be an important excitation mechanism for inertial waves.

  16. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  17. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  18. Unstable mass-outflows in geometrically thick accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Okuda, Toru; Das, Santabrata

    2015-10-01

    Accretion flows around black holes generally result in mass-outflows that exhibit irregular behaviour quite often. Using 2D time-dependent hydrodynamical calculations, we show that the mass-outflow is unstable in the cases of thick accretion flows such as the low angular momentum accretion flow and the advection-dominated accretion flow. For the low angular momentum flow, the inward accreting matter on the equatorial plane interacts with the outflowing gas along the rotational axis and the centrifugally supported oblique shock is formed at the interface of both the flows, when the viscosity parameter α is as small as α ≤ 10-3. The hot and rarefied blobs, which result in the eruptive mass-outflow, are generated in the inner shocked region and grow up towards the outer boundary. The advection-dominated accretion flow attains finally in the form of a torus disc with the inner edge of the disc at 3Rg ≤ r ≤ 6Rg and the centre at 6Rg ≤ r ≤ 10Rg, and a series of hot blobs is intermittently formed near the inner edge of the torus and grows up along the outer surface of the torus. As a result, the luminosity and the mass-outflow rate are modulated irregularly where the luminosity is enhanced by 10-40 per cent and the mass-outflow rate is increased by a factor of few up to 10. We interpret the unstable nature of the outflow to be due to the Kelvin-Helmholtz instability, examining the Richardson number for the Kelvin-Helmholtz criterion in the inner region of the flow. We propose that the flare phenomena of Sgr A* may be induced by the unstable mass-outflow as is found in this work.

  19. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  20. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  1. Accretions of dark matter and dark energy onto (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2015-12-01

    In this work, we have studied accretion of the dark matter and dark energy onto of (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass not sensitively depends on the dimension.

  2. Variability of accretion disks surrounding black holes: The role of inertial-acoustic mode instabilities

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1995-01-01

    The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.

  3. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-11-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of <~2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes >~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.

  4. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    NASA Astrophysics Data System (ADS)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  5. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  6. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  7. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  8. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  9. Testing black hole neutrino-dominated accretion discs for long-duration gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Song, Cui-Ying; Liu, Tong; Gu, Wei-Min; Tian, Jian-Xiang

    2016-05-01

    Long-duration gamma-ray bursts (LGRBs) are generally considered to originate from the massive collapsars. It is believed that the central engine of gamma-ray bursts (GRBs) is a neutrino-dominated accretion flow (NDAF) around a rotating stellar-mass black hole (BH). The neutrino annihilation above the NDAF is a feasible mechanism to power GRB. In this work, we analyse the distributions of the isotropic gamma-ray-radiated energy and jet kinetic energy of 48 LGRBs. According to the NDAF and fireball models, we estimate the mean accreted masses of LGRBs in our sample to investigate whether the NDAFs can power LGRBs with the reasonable BH parameters and conversion efficiency of neutrino annihilation. The results indicate that most of the values of the accreted masses are less than 5 M⊙ for the extreme Kerr BHs and high conversion efficiency. It suggests that the NDAFs may be suitable for most of LGRBs except for some extremely high energy sources.

  10. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  11. The vertical structure and stability of accretion disks surrounding black holes and neutron stars

    NASA Technical Reports Server (NTRS)

    Milsom, J. A.; Chen, Xingming; Taam, Ronald E.

    1994-01-01

    The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd

  12. The response of relativistic outflowing gas to the inner accretion disk of a black hole

    NASA Astrophysics Data System (ADS)

    Parker, Michael L.; Pinto, Ciro; Fabian, Andrew C.; Lohfink, Anne; Buisson, Douglas J. K.; Alston, William N.; Kara, Erin; Cackett, Edward M.; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C.; Garcia, Javier; Harrison, Fiona A.; King, Ashley L.; Middleton, Matthew J.; Miller, Jon M.; Miniutti, Giovanni; Reynolds, Christopher S.; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J.; Wilkins, Daniel R.; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these—the ultrafast outflows—are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224‑3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very

  13. Launching proton-dominated jets from accreting Kerr black holes: the case of M87

    NASA Astrophysics Data System (ADS)

    Brezinski, F.; Hujeirat, A. A.

    2011-07-01

    A general relativistic model for the formation and acceleration of lowmass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iiia transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally

  14. Multiphase, non-spherical gas accretion on to a black hole

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, Daniel; Nagamine, Kentaro

    2012-07-01

    We investigate non-spherical behaviour of gas accreting on to a central supermassive black hole. Assuming optically thin conditions, we include radiative cooling and radiative heating by the central X-ray source. Our simulations are performed using the 3D smoothed particle hydrodynamic (SPH) code GADGET-3 and are compared to theoretical predictions as well as to 1D simulations performed using the grid code ZEUS. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (LX) for a fixed density at infinity and accretion efficiency. In the low LX limit, gas accretes in a stable, spherically symmetric fashion. In the high LX limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate LX, the accretion flow becomes unstable developing prominent non-spherical features. Our detailed analysis and tests show that the key reason for this unstable non-spherical nature of the flow is thermal instability (TI). Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate LX quickly grow to form cold and dense clumps surrounded by overheated low-density regions. The cold clumps continue their inwards motion forming filamentary structures, while the hot infalling gas slows down because of buoyancy and can even start outflowing through the channels in between the filaments. We measured various local and global properties of our solutions. In particular, we found that the ratio between the mass inflow rates of the cold and hot gas is a dynamical quantity depending on several factors: time, spatial location and LX; and ranges between 0 and 4. We briefly discuss astrophysical implications of such TI-driven fragmentation of accreting gas on the formation of clouds in narrow- and broad-line regions of active galactic

  15. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    PubMed

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  16. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    SciTech Connect

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C

    2003-10-17

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.

  17. Direct probe of the inner accretion flow around the supermassive black hole in NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Costantini, E.; De Marco, B.; Svoboda, J.; Motta, S. E.; Proga, D.; Saxton, R.; Ferrigno, C.; Longinotti, A. L.; Miniutti, G.; Grupe, D.; Mathur, S.; Shappee, B. J.; Prieto, J. L.; Stanek, K.

    2017-01-01

    Aims: NGC 2617 is a nearby (z 0.01) active galaxy that recently switched from being a Seyfert 1.8 to be a Seyfert 1.0. At the same time, it underwent a strong increase of X-ray flux by one order of magnitude with respect to archival measurements. We characterise the X-ray spectral and timing properties of NGC 2617 with the aim of studying the physics of a changing-look active galactic nucleus (AGN). Methods: We performed a comprehensive timing and spectral analysis of two XMM-Newton pointed observations spaced by one month, complemented by archival quasi-simultaneous INTEGRAL observations. Results: We found that, to the first order, NGC 2617 looks like a type 1 AGN in the X-ray band and, with the addition of a modest reflection component, its continuum can be modelled well either with a power law plus a phenomenological blackbody, a partially covered power law, or a double Comptonisation model. Independent of the continuum adopted, in all three cases a column density of a few 1023 cm-2 of neutral gas covering 20-40% of the continuum source is required by the data. Most interestingly, absorption structures due to highly ionised iron have been detected in both observations with a redshift of about 0.1c with respect to the systemic redshift of the host galaxy. Conclusions: The redshifted absorber can be ascribed to a failed wind/aborted jets component, to gravitational redshift effects, and/or to matter directly falling towards the central supermassive black hole. In either case, we are probing the innermost accretion flow around the central supermassive black hole of NGC 2617 and might be even watching matter in a direct inflow towards the black hole itself.

  18. Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Ostriker, Jeremiah P.; Natarajan, Priyamvada; Lackner, Claire N.; Cen, Renyue

    2015-02-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain "orbiting" due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M *, bul = 1010 M ⊙, increasing to 4% at M *, bul >~ 1011 M ⊙, and in the cluster it is 4% at M *, bul = 1010 M ⊙ and 23% at 1012 M ⊙. We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3%. Quantifying the growth due to mergers at these late times, we calculate the total energy

  19. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Kulier, Andrea; Ostriker, Jeremiah P.; Lackner, Claire N.; Cen, Renyue; Natarajan, Priyamvada

    2015-02-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M {sub *,} {sub bul} = 10{sup 10} M {sub ☉}, increasing to 4% at M {sub *,} {sub bul} ≳ 10{sup 11} M {sub ☉}, and in the cluster it is 4% at M {sub *,} {sub bul} = 10{sup 10} M {sub ☉} and 23% at 10{sup 12} M {sub ☉}. We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3

  20. Powerful radiative jets in supercritical accretion discs around non-spinning black holes

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh

    2015-11-01

    We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.

  1. Electromagnetic versus Lense-Thirring alignment of black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Polko, Peter; McKinney, Jonathan C.

    2017-01-01

    Accretion discs and black holes (BHs) have angular momenta that are generally misaligned, which can lead to warped discs and bends in any jets produced. We examine whether a disc that is misaligned at large radii can be aligned more efficiently by the torque of a Blandford-Znajek (BZ) jet than by Lense-Thirring (LT) precession. To obtain a strong result, we will assume that these torques maximally align the disc, rather than cause precession, or disc tearing. We consider several disc states that include radiatively inefficient thick discs, radiatively efficient thin discs, and super-Eddington accretion discs. The magnetic field strength of the BZ jet is chosen as either from standard equipartition arguments or from magnetically arrested disc (MAD) simulations. We show that standard thin accretion discs can reach spin-disc alignment out to large radii long before LT would play a role, due to the slow infall time that gives even a weak BZ jet time to align the disc. We show that geometrically thick radiatively inefficient discs and super-Eddington discs in the MAD state reach spin-disc alignment near the BH when density profiles are shallow as in magnetohydrodynamical simulations, while the BZ jet aligns discs with steep density profiles (as in advection-dominated accretion flows) out to larger radii. Our results imply that the BZ jet torque should affect the cosmological evolution of BH spin magnitude and direction, spin measurements in active galactic nuclei and X-ray binaries, and the interpretations for Event Horizon Telescope observations of discs or jets in strong-field gravity regimes.

  2. Effects of high-energy particles on accretion flows onto a supermassive black hole

    SciTech Connect

    Kimura, Shigeo S.; Takahara, Fumio; Toma, Kenji

    2014-08-20

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10{sup −4} M-dot c{sup 2} to 10{sup −2} M-dot c{sup 2}, where M-dot is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  3. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    SciTech Connect

    Gracia-Linares, M.; Guzmán, F. S.

    2015-10-10

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methods used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.

  4. Active galactic nuclei at z ˜ 1.5 - III. Accretion discs and black hole spin

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Netzer, H.; Lira, P.; Trakhtenbrot, B.; Mejía-Restrepo, J.

    2016-07-01

    This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at z ˜ 1.5, selected to cover a large range in black hole mass (MBH) and Eddington ratio (L/LEdd). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of nine new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved MBH estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter (a*) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from ˜-0.6 to maximum spin for our sample, and our results are consistent with the `spin-up' scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.

  5. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    NASA Technical Reports Server (NTRS)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  6. Evolution of accretion discs around a kerr black hole using extended magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Chandra, Mani; Gammie, Charles F.; Quataert, Eliot

    2016-02-01

    Black holes accreting well below the Eddington rate are believed to have geometrically thick, optically thin, rotationally supported accretion discs in which the Coulomb mean free path is large compared to GM/c2. In such an environment, the disc evolution may differ significantly from ideal magnetohydrodynamic (MHD) predictions. We present non-ideal global axisymmetric simulations of geometrically thick discs around a rotating black hole. The simulations are carried out using a new code GRIM, which evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal MHD. Non-ideal effects are modelled through heat conduction along magnetic field lines, and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. We find that the pressure anisotropy grows to match the magnetic pressure, at which point it saturates due to the mirror instability. The pressure anisotropy produces outward angular momentum transport with a magnitude comparable to that of MHD turbulence in the disc, and a significant increase in the temperature in the wall of the jet. We also find that, at least in our axisymmetric simulations, conduction has a small effect on the disc evolution because (1) the heat flux is constrained to be parallel to the field and the field is close to perpendicular to temperature gradients, and (2) the heat flux is choked by an increase in effective collisionality associated with the mirror instability.

  7. Numerical simulation of vertical oscillations in an axisymmetric thick accretion flow around a black hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.

    2016-11-01

    We study time evolution of rotating, axisymmetric, two-dimensional inviscid accretion flows around black holes using a grid-based finite difference method. We do not use reflection symmetry on the equatorial plane in order to inspect if the disc along with the centrifugal barrier oscillated vertically. In the inviscid limit, we find that the CENtrifugal pressure supported BOundary Layer (CENBOL) is oscillating vertically, more so, when the specific angular momentum is higher. As a result, the rate of outflow produced from the CENBOL, also oscillates. Indeed, the outflow rates in the upper half and the lower half are found to be anticorrelated. We repeat the exercise for a series of specific angular momentum λ of the flow in order to demonstrate effects of the centrifugal force on this interesting behaviour. We find that, as predicted in theoretical models of discs in vertical equilibrium, the CENBOL is produced only when the centrifugal force is significant and more specifically, when λ > 1.5. Outflow rate itself is found to increase with λ as well and so is the oscillation amplitude. The cause of oscillation appears to be due to the interaction among the back flow from the centrifugal barrier, the outflowing winds and the inflow. For low angular momentum, the back flow as well as the oscillation are missing. To our knowledge, this is the first time that such an oscillating solution is found with a well-tested grid-based finite difference code, and such a solution could be yet another reason of why quasi-periodic oscillations should be observed in black hole candidates that are accreting low angular momentum transonic flows.

  8. Black Holes (With 16 figures)

    NASA Astrophysics Data System (ADS)

    Novikov, Igor

    Astrophysics of Black Holes Introduction The Origin of Stellar Black Holes A Nonrotating Black Hole Introduction Schwarzschild Gravitational Field Motion of Photons Along the Radial Direction Radial Motion of Nonrelativistic Particles The Puzzle of the Gravitational Radius R and T Regions Two Types of T-Regions Gravitational Collapse and White Holes Eternal Black Hole? Black Hole Celestial Mechanics Circular Motion Around a Black Hole Gravitational Capture of Particles by a Black Hole Corrections for Gravitational Radiation A Rotating Black Hole Introduction Gravitational Field of a Rotating Black Hole Specific Reference Frames General Properties of the Spacetime of a Rotating Black Hole; - Spacetime Inside the Horizon Celestial Mechanics of a Rotating Black Hole Motion of Particle in the Equatorial Plane Motion of Particles off the Equatorial Plane Peculiarities of the Gravitational Capture of Bodies by a Rotating - Black Hole Electromagnetic Fields Near a Black Hole Introduction Maxwell's Equations in the Neighborhood of a Rotating Black Hole Stationary Electrodynamics Boundary Conditions at the Event Horizon Electromagnetic Fields in Vacuum Magnetosphere of a Black Hole Some Aspects of Physics of Black Holes, Wormholes, and Time Machines Observational Appearence of the Black Holes in the Universe Black Holes in the Interstellar Medium Disk Accretion Black Holes in Stellar Binary Systems Black Holes in Galactic Centers Dynamical Evidence for Black Holes in Galaxy Nuclei Primordial Black Holes Acknowledgements References

  9. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

    PubMed

    Kocsis, Bence; Loeb, Abraham

    2008-07-25

    Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

  10. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    SciTech Connect

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  11. XMM-Newton reveals matter accreting onto the central supermassive black hole of NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-06-01

    NGC 2617 (z=0.042) underwent a strong broad-band outburst during 2013/14, concurrently switching from being a Seyfert 1.8 to be a Seyfert 1.0 sometimes during the previous 10 years. Thanks to the combination of the large effective area and the good spectral resolution of the EPIC-pn onboard XMM-Newton, striking insights about the very inner accretion flow of this AGN have been revealed. In particular, persistent Fe K absorption redshifted by ˜ 35,000 km/s was solidly detected in two observations spaced by one month: a highly ionised flow of mass toward the central supermassive black hole of NGC 2617 has started to be traced. So far NGC 2617 is a quasi-unique observational example: what are the perspectives of enlarging these studies in the future? Thanks to current large and prolonged optical surveys like the SDSS/BOSS, many "optically changing-look AGN" like NGC 2617 are being discovered month after month: XMM-Newton has the ideal instruments to perform a proper X-ray study of such objects in the near future. I will assess the impact of XMM-Newton on studying the dynamics of the inner accretion flow in AGN in a systematic way and in synergy with near- and mid-future X-ray instruments such as (ASTRO-H)Hitomi and ATHENA.

  12. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  13. The Effects of Accretion Flow Dynamics on the Black Hole Shadow of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Akiyama, Kazunori; Asada, Keiichi

    2016-11-01

    A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission is dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.

  14. Time-dependent X-ray emission from unstable accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  15. Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Bing; Li, Ye; Ma, Ren-Yi; Xue, Li

    2016-06-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/antineutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 1050- 1051 erg s-1 peaking at ˜10 MeV , making NDAFs potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed gamma-ray burst (GRB) event rate in the local universe and requiring that at least three neutrinos are detected to claim a detection, we estimate a detection rate up to ˜(0.10 - 0.25 ) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be ˜(1 - 3 ) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the Universe.

  16. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.

    2015-11-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  17. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    SciTech Connect

    Bregman, Michal; Alexander, Tal

    2012-03-20

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales {approx}> (M{sub .}/M{sub d} )P(R{sub d} ), where M{sub .} and M{sub d} are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius R{sub d}. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10 Degree-Sign ) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  18. The Torquing of Circumnuclear Accretion Disks by Stars and the Evolution of Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Bregman, Michal; Alexander, Tal

    2012-03-01

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales >~ (M •/Md )P(Rd ), where M • and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd . The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  19. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  20. Ion Viscosity Mediated by Tangled Magnetic Fields: An Application to Black Hole Accretion Disks

    NASA Technical Reports Server (NTRS)

    Subramanian, Prasad; Becker, Peter A.; Kafatos, Menas

    1996-01-01

    We examine the viscosity associated with the shear stress exerted by ions in the presence of a tangled magnetic field. As an application, we consider the effect of this mechanism on the structure of black hole accretion disks. We do not attempt to include a self-consistent description of the magnetic field. Instead, we assume the existence of a tangled field with coherence length lambda(sub coh), which is the average distance between the magnetic 'kinks' that scatter the particles. For simplicity, we assume that the field is self-similar, and take lambda(sub coh) to be a fixed fraction zeta of the local disk height H. Ion viscosity in the presence of magnetic fields is generally taken to be the cross-field viscosity, wherein the effective mean free path is the ion Larmor radius lambda(sub L), which is much less than the ion-ion Coulomb mean free path A(sub ii) in hot accretion disks. However, we arrive at a formulation for a 'hybrid' viscosity in which the tangled magnetic field acts as an intermediary in the transfer of momentum between different layers in the shear flow. The hybrid viscosity greatly exceeds the standard cross-field viscosity when (lambda/lambda(sub L)) much greater than (lambda(sub L)/lambda(sub ii)), where lambda = ((lambda(sub ii)(sup -1) + lambda(sub (coh)(sup -1))(sup -1) is the effective mean free path for the ions. This inequality is well satisfied in hot accretion disks, which suggests that the ions may play a much larger role in the momentum transfer process in the presence of magnetic fields than was previously thought. The effect of the hybrid viscosity on the structure of a steady-state, two-temperature, quasi-Keplerian accretion disk is analyzed. The hybrid viscosity is influenced by the degree to which the magnetic field is tangled (represented by zeta = lambda(sub coh)), and also by the relative accretion rate M/M(sub E), where M(sub E) = L(sub E)/c(sup 2) and L(sub E) is the Eddington luminosity. We find that ion viscosity in the

  1. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Huang, Ying-Ke; Cheng, Cheng; Qiu, Jie; Li, Yan-Rong; Zhang, Yang-Wei; Fan, Xu-Liang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Kaspi, Shai; Ho, Luis C.; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2015-06-01

    We have completed two years of photometric and spectroscopic monitoring of a large number of active galactic nuclei (AGNs) with very high accretion rates. In this paper, we report on the result of the second phase of the campaign, during 2013-2014, and the measurements of five new Hβ time lags out of eight monitored AGNs. All five objects were identified as super-Eddington accreting massive black holes (SEAMBHs). The highest measured accretion rates for the objects in this campaign are \\mathscr{\\dot{M}} {\\mkern 1mu} ≳ 200, where \\mathscr{\\dot{M}} {\\mkern 1mu} ={{\\dot{M}}\\bullet }/{{L}Edd}{{c}-2}, {{\\dot{M}}\\bullet } is the mass accretion rates, {{L}Edd} is the Eddington luminosity and c is the speed of light. We find that the Hβ time lags in SEAMBHs are significantly shorter than those measured in sub-Eddington AGNs, and the deviations increase with increasing accretion rates. Thus, the relationship between broad-line region size ({{R}_{Hβ }}) and optical luminosity at 5100 Å, {{R}_{Hβ }}-{{L}5100}, requires accretion rate as an additional parameter. We propose that much of the effect may be due to the strong anisotropy of the emitted slim-disk radiation. Scaling {{R}_{Hβ }} by the gravitational radius of the black hole (BH), we define a new radius-mass parameter (Y) and show that it saturates at a critical accretion rate of \\mathscr{\\dot{M}} {\\mkern 1mu} {{}c}=6˜ 30, indicating a transition from thin to slim accretion disk and a saturated luminosity of the slim disks. The parameter Y is a very useful probe for understanding the various types of accretion onto massive BHs. We briefly comment on implications to the general population of super-Eddington AGNs in the universe and applications to cosmology.

  2. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    SciTech Connect

    Esquej, P.; Alonso-Herrero, A.; Hernán-Caballero, A.; González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Roche, P.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  3. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  4. Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS

    NASA Astrophysics Data System (ADS)

    Mainieri, V.; Bongiorno, A.; Merloni, A.; Aller, M.; Carollo, M.; Iwasawa, K.; Koekemoer, A. M.; Mignoli, M.; Silverman, J. D.; Bolzonella, M.; Brusa, M.; Comastri, A.; Gilli, R.; Halliday, C.; Ilbert, O.; Lusso, E.; Salvato, M.; Vignali, C.; Zamorani, G.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Renzini, A.; Scodeggio, M.; Balestra, I.; Bardelli, S.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Nair, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Pozzetti, L.; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Aussel, H.; Capak, P.; Cappelluti, N.; Elvis, M.; Fiore, F.; Hasinger, G.; Impey, C.; Le Floc'h, E.; Scoville, N.; Taniguchi, Y.; Trump, J.

    2011-11-01

    Aims: We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( ⟨ Lbol ⟩ = 8 × 1045 erg s-1) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. Methods: To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We evaluate the effect on galaxy properties estimates of being unable to remove the nuclear emission from the SED. The superb multi-wavelength coverage of the COSMOS field allows us to obtain reliable estimates of the total stellar masses and star formation rates (SFRs) of the hosts. We supplement this information with a morphological analysis of the ACS/HST images, optical spectroscopy, and an X-ray spectral analysis. Results: We confirm that obscured quasars mainly reside in massive galaxies (M ⋆ > 1010M⊙) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color - magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between SFR and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~ 1, ≈62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ~ 2, and 100% at z ~ 3. We also find that the evolution from z ~ 1 to z ~ 3 of the specific SFR of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge

  5. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  6. The dim inner accretion disk of the quiescent black hole A0620-00

    NASA Technical Reports Server (NTRS)

    Mcclintock, Jeffrey E.; Horne, Keith; Remillard, Ronald A.

    1995-01-01

    We observed the X-ray nova A0620-00 with the Hubble Space Telescope (HST) Faint object Spectrograph 16 yr after its 1975 outburst. We present a single spectrum (1250-4750 A), which is approximately an average over a full 7.8 hr orbital cycle of the source. The continuum can be fitted approximately by a blackbody model with T = 9000 K and a small projected source area, which is approximately 1 % of the expected area of the accretion disk. AS0620-00 is faint in the far-UV band; its luminosity is comparable to the luminosity of the quiescent dwarf-nova accretion disk (i.e., excluding the white dwarf). By analogy with dwarf novae, the optical luminosity of the disk (M(sub nu) approximately = 7) and the orbital period of A0620-00 imply that the rate of mass transfer onto the outer disk in M(sub d) approximately 10(exp -10) solar mass/yr. We also observed A0620-00 with the ROSAT PSPC X-ray detector for 3 x 10(exp 4) s and detected a faint source (5 sigma) at the location of the X-ray nova. For an assumed blackbody spectrum the source temperature and luminosity are approximately 0.16 keV and 6 x 10(exp 30) ergs/s, respectively (d = 1 kpc). This luminosity implies that the rate of mass transfer into the black hole is extraordinarily small: M(sub BH) less than 5 x 10(exp -15) solar mass/yr. The much larger mass transfer rate onto the outer disk, and the UV/X-ray faintness of the inner disk confirm key predictions of the disk instability model for the nova outburst of A0620-00 published by Huang and Wheeler and by Mineshige and Wheeler.

  7. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    SciTech Connect

    García, J.; Steiner, J. F.; McClintock, J. E.; Brenneman, L. E-mail: jsteiner@head.cfa.harvard.edu E-mail: lbrenneman@cfa.harvard.edu; and others

    2014-02-20

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  8. Predictions for the Reverberating Spectral Line from a Newly Formed Black Hole Accretion Disk: Case of Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Zhang, Wenda; Yu, Wenfei; Karas, Vladimír; Dovčiak, Michal

    2015-07-01

    Tidal disruption events (TDEs) can be perfect probes of dormant supermassive black holes in normal galaxies. During the rising phase, the accretion luminosity can increase by orders of magnitude in several weeks, and the emergent ionizing radiation illuminates the fresh accretion flow. In this paper, we simulated the evolution of the expected spectral line profile of iron due to such a flare by using a ray-tracing code with effects of general relativity taken into account. We found that the time-dependent profile changes significantly with black hole spin, inclination angle with respect to the black hole equatorial plane, and the expansion velocity of the ionization front. At low values of spin, a “loop” feature appears in the line profile versus time plot when the inclination is no less than 30° and the expansion velocity {v}{exp} is no less than half the speed of light, owing to a shadow in the emission of the truncated disk. In the light curve two peaks occur depending on the inclination angle. At large {v}{exp}, a shallow “nose” feature may develop ahead of the loop; its duration depends on the expansion velocity and the inclination angle. We explore the entire interval of black hole spin parameter ranging from extreme prograde to extreme retrograde rotation, -1\\lt a\\lt 1. In the prograde case, a low-energy tail appears to be more pronounced in the evolving centroid energy of the line. Our results demonstrate the importance of searching for X-ray spectral lines in the early phase of TDE flares in order to constrain black hole mass and spin, as well as properties of the innermost accretion flow.

  9. The Emission Line AGN Census: Biases of Line Ratio Selection, and Uniform Black Hole Accretion Regardless of Galaxy Mass

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Zeimann, Gregory; Juneau, Stephanie; Sun, Mouyuan; Luck, Cuyler

    2015-01-01

    Optical emission line ratios offer a powerful tool to reveal accretion onto supermassive black holes, with the ability to find both unobscured and obscured active galactic nuclei (AGNs) in extraordinarily large galaxy samples (like the SDSS). I will demonstrate, however, that classic line ratio selection techniques significantly underestimate the AGN fraction by a factor of >10 in low-mass and star-forming galaxies. Previous conclusions that AGNs require massive green-valley hosts are purely a result of this "star formation dilution" bias. Careful treatment of the biases reveals that AGN accretion is uniform across star-forming galaxies of any stellar mass, similar to the results of bias-corrected X-ray AGN studies. This has dramatic implications for AGN feedback in dwarf galaxies and constraints on the black hole seed population.

  10. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    SciTech Connect

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  11. From White Dwarf To Neutron Star To Black Hole: Accretion, Gamma-ray Bursts, And Their Aftermath

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2010-01-01

    When white dwarfs with massive companions experience accretion-induced-collapse, the newborn neutron star may continue to accrete until its mass becomes larger than the maximum neutron-star mass. The resulting black hole may have special properties that allow it to be identified post-collapse. We present a set of such evolutions, punctuated by gamma-ray bursts, and assess the expected rates. An individual system may exhibit a remarkable range of high-energy states: supersoft source, ultraluminous x-ray source, hard x-ray binary, and gamma-ray bursts.

  12. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  13. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillations decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.

  14. DO MAGNETIC FIELDS DESTROY BLACK HOLE ACCRETION DISK g-MODES?

    SciTech Connect

    Ortega-Rodríguez, Manuel; Solís-Sánchez, Hugo; Arguedas-Leiva, J. Agustín; Wagoner, Robert V.; Levine, Adam

    2015-08-10

    Diskoseismology, the theoretical study of normal-mode oscillations in geometrically thin, optically thick accretion disks, is a strong candidate for explaining some quasi-periodic oscillations in the power spectra of many black hole X-ray binary systems. The existence of g-modes, presumably the most robust and visible of the modes, depends on general relativistic gravitational trapping in the hottest part of the disk. As the existence of the required cavity in the presence of magnetic fields has been put into doubt by theoretical calculations, we will explore in greater generality what effect the inclusion of magnetic fields has on the existence of g-modes. We use an analytical perturbative approach on the equations of MHD to assess the impact of such effects. Our main conclusion is that there appears to be no compelling reason to discard g-modes. In particular, the inclusion of a non-zero radial component of the magnetic field enables a broader scenario for cavity non-destruction, especially taking into account recent simulations’ saturation values for the magnetic field.

  15. The structure and stability of transonic accretion disks surrounding black holes

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1993-01-01

    Stationary transonic alpha-viscosity models of accretion disks surrounding nonrotating black holes have been investigated. The viscosity is modified such that it vanishes in the supersonic region to ensure its effect does not violate the causality condition. In contrast to previous studies, the viscous stress is taken to be explicitly proportional to the angular velocity gradient and is not assumed to depend solely on the local pressure in the disk. The numerical results reveal that the structure of the innermost regions of the disk are more sensitive to the modified form of the viscosity than to the form of the viscous stress. The critical sonic point is located inside the innermost stable circular orbit of a test particle at 3 Schwarzschild radii. In these solutions, the transition from subsonic to supersonic flow results from pressure effects and not viscous effects. The linear stability of these disks has been examined in the local approximation. It is found that radiative energy transport and viscous stresses in the radial direction can have important effects. As a result, it is shown that the growth rate of the inertial-acoustic mode reaches a maximum at a critical wavelength.

  16. A toy model for magnetic connection in black hole accretion disc

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Ye, Yong-Chun; Li, Yang; Liu, Dong-Mei

    2007-01-01

    A toy model for magnetic connection in black hole (BH) accretion disc is discussed based on a poloidal magnetic field generated by a single electric current flowing around a Kerr BH in the equatorial plane. We discuss the effects of the coexistence of two kinds of magnetic connection (MC) arising, respectively, from (1) the closed field lines connecting the BH horizon with the disc (henceforth MCHD) and (2) the closed field lines connecting the plunging region with the disc (henceforth MCPD). The magnetic field configuration is constrained by conservation of magnetic flux and a criterion of the screw instability of the magnetic field. Two parameters λ and αm are introduced to describe our model instead of resolving the complicated magnetohydrodynamic equations. Compared with MCHD, energy and angular momentum of the plunging particles are extracted via MCPD more effectively, provided that the BH spin is not very high. It turns out that negative energy can be delivered to the BH by the plunging particles without violating the second law of BH thermodynamics, however it cannot be realized via MCPD in a stable way.

  17. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  18. Stronger Reflection from Black Hole Accretion Disks in Soft X-Ray States

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely, the Compton power law. We find that reflection is several times more pronounced (˜3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  19. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  20. Photon-conserving Comptonization in simulations of accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh

    2015-12-01

    We introduce a new method for treating Comptonization in computational fluid dynamics. By construction, this method conserves the number of photons. Whereas the traditional `blackbody Comptonization' approach assumes that the radiation is locally a perfect blackbody and therefore uses a single parameter, the radiation temperature, to describe the radiation, the new `photon-conserving Comptonization' approach treats the photon gas as a Bose-Einstein fluid and keeps track of both the radiation temperature and the photon number density. We have implemented photon-conserving Comptonization in the general relativistic radiation magnetohydrodynamical code KORAL and we describe its impact on simulations of mildly supercritical black hole accretion discs. We find that blackbody Comptonization underestimates the gas and radiation temperature by up to a factor of 2 compared to photon-conserving Comptonization. This discrepancy could be serious when computing spectra. The photon-conserving simulation indicates that the spectral colour correction factor of the escaping radiation in the funnel region of the disc could be as large as 5.

  1. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  2. Global General Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Flows: A Convergence Study

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.

    2012-01-01

    Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ("shearing box") calculations and with the recent non-relativistic global convergence studies of Hawley et al.

  3. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  4. Accretion onto Black Holes from Large Scales Regulated by Radiative Feedback. III. Enhanced Luminosity of Intermediate-mass Black Holes Moving at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Ricotti, Massimo

    2013-04-01

    In this third paper of a series, we study the growth and luminosity of black holes (BHs) in motion with respect to their surrounding medium. We run a large set of two-dimensional axis-symmetric simulations to explore a large parameter space of initial conditions and formulate an analytical model for the accretion. Contrary to the case without radiation feedback, the accretion rate increases with increasing BH velocity v bh reaching a maximum value at v bh = 2c s, in ~ 50 km s-1, where c s, in is the sound speed inside the "cometary-shaped" H II region around the BH, before decreasing as v_bh^{-3} when the ionization front (I-front) becomes R-type (rarefied) and the accretion rate approaches the classical Bondi-Hoyle-Lyttleton solution. The increase of the accretion rate with v bh is produced by the formation of a D-type (dense) I-front preceded by a standing bow shock that reduces the downstream gas velocity to transonic values. There is a range of densities and velocities where the dense shell is unstable producing periodic accretion rate peaks which can significantly increase the detectability of intermediate-mass BHs. We find that the mean accretion rate for a moving BH is larger than that of a stationary BH of the same mass if the medium temperature is T ∞ < 104 K. This result could be important for the growth of seed BHs in the multi-phase medium of the first galaxies and for building an early X-ray background that may affect the formation of the first galaxies and the reionization process.

  5. A connection between accretion state and Fe K absorption in an accreting neutron star: black hole-like soft-state winds?

    NASA Astrophysics Data System (ADS)

    Ponti, Gabriele; Muñoz-Darias, Teodoro; Fender, Robert P.

    2014-10-01

    High-resolution X-ray spectra of accreting stellar-mass black holes reveal the presence of accretion disc winds, traced by high-ionization Fe K lines. These winds appear to have an equatorial geometry and to be observed only during disc-dominated states in which the radio jet is absent. Accreting neutron star systems also show equatorial high-ionization absorbers. However, the presence of any correlation with the accretion state has not been previously tested. We have studied EXO 0748-676, a transient neutron star system, for which we can reliably determine the accretion state, in order to investigate the Fe K absorption/accretion state/jet connection. Not one of 20 X-ray spectra obtained in the hard state revealed any significant Fe K absorption line. However, intense Fe XXV and Fe XXVI (as well as a rarely observed Fe XXIII line plus S XVI; a blend of S XVI and Ar XVII; Ca XX and Ca XIX, possibly produced by the same high-ionization material) absorption lines (EW_{Fe {XXIII-XXV}}=31± 3, EW_{Fe {XXVI}}=8± 3 eV) are clearly detected during the only soft-state observation. This suggests that the connection between Fe K absorption and states (and anticorrelation between the presence of Fe K absorption and jets) is also valid for EXO 0748-676 and therefore it is not a unique property of black hole systems but a more general characteristic of accreting sources.

  6. Flaring Black Hole Accretion Disk in the Binary System V404 Cygni

    NASA Video Gallery

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this syste...

  7. AMUSE-Virgo. II. Down-sizing in Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Gallo, Elena; Treu, Tommaso; Marshall, Philip J.; Woo, Jong-Hak; Leipski, Christian; Antonucci, Robert

    2010-05-01

    We complete the census of nuclear X-ray activity in 100 early-type Virgo galaxies observed by the Chandra X-ray Telescope as part of the AMUSE-Virgo survey, down to a (3σ) limiting luminosity of 3.7 × 1038 erg s-1 over 0.5-7 keV. The stellar mass distribution of the targeted sample, which is mostly composed of formally "inactive" galaxies, peaks below 1010 M sun, a regime where the very existence of nuclear supermassive black holes (SMBHs) is debated. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival Hubble Space Telescope images. After carefully accounting for contamination from nuclear low-mass X-ray binaries based on the shape and normalization of their X-ray luminosity function (XLF), we conclude that between 24% and 34% of the galaxies in our sample host an X-ray active SMBH (at the 95% confidence level). This sets a firm lower limit to the black hole (BH) occupation fraction in nearby bulges within a cluster environment. The differential logarithmic XLF of active SMBHs scales with the X-ray luminosity as L X -0.4±0.1 up to 1042 erg s-1. At face value, the active fraction—down to our luminosity limit—is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with BH mass as M BH ^{-0.62^{+0.13}_{-0.12}}, with an intrinsic scatter of 0.46+0.08 -0.06 dex. This finding can be interpreted as observational evidence for "down-sizing" of BH accretion in local early types, that is, low-mass BHs shine relatively closer to their Eddington limit than higher mass objects. As a consequence, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing BH mass.

  8. Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Loeb, Abraham

    2007-04-01

    Recent data indicates that almost all galaxies possess a supermassive black hole at their center. When gas accretes onto the black hole it heats-up and shines, resulting in the appearance of a bright quasar. The earliest quasars are found to exist only a billion years after the big-bang. I will describe recent observations of both the nearest and the most distant supermassive black holes in the universe. The formation and evolution of the black hole population can be described in the context of popular models for galaxy formation. I will describe the key questions that drive current research on supermassive black holes and present theoretical work on the radiative and hydrodynamic effects that quasars have on their cosmic habitat. Within the coming decade it would be possible to test general relativity by monitoring over time, and possibly even imaging, the polarized emission from hot spots around the black hole in the center of our Galaxy (SgrA*).

  9. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Metzger, Brian D.

    2013-10-01

    Expulsion of neutron-rich matter following the merger of neutron star binaries is crucial to the radioactively powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion discs formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modelled as a lightbulb that accounts for the disc geometry and moderate optical depth effects. Over several viscous times (˜1 s), a fraction of ˜10 per cent of the initial disc mass is ejected as a moderately neutron-rich wind (Ye ˜ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the properties of the outflow vary in time and direction, their mean values in the heavy-element production region are relatively robust to variations in the initial conditions of the disc and the magnitude of its viscosity. The outflow is sufficiently neutron-rich that most of the ejecta forms heavy r-process elements with mass number A ≳ 130, thus representing a new astrophysical source of r-process nucleosynthesis, distinct from that produced in the dynamical ejecta. Due to its moderately high entropy, disc outflows contain a small residual fraction ˜1 per cent of helium, which could produce a unique spectroscopic signature.

  10. THE SPIN OF THE BLACK HOLE GS 1124–683: OBSERVATION OF A RETROGRADE ACCRETION DISK?

    SciTech Connect

    Morningstar, Warren R.; Miller, Jon M.; Reis, Rubens C.; Ebisawa, Ken E-mail: jonmm@umich.edu

    2014-04-01

    We re-examine archival Ginga data for the black hole binary system GS 1124–683, obtained when the system was undergoing its 1991 outburst. Our analysis estimates the dimensionless spin parameter a {sub *} = cJ/GM{sup 2} by fitting the X-ray continuum spectra obtained while the system was in the ''thermal dominant'' state. For likely values of mass and distance, we find the spin to be a{sub ∗}=−0.25{sub −0.64}{sup +0.05} (90% confidence), implying that the disk is retrograde (i.e., rotating antiparallel to the spin axis of the black hole). We note that this measurement would be better constrained if the distance to the binary and the mass of the black hole were more accurately determined. This result is unaffected by the model used to fit the hard component of the spectrum. In order to be able to recover a prograde spin, the mass of the black hole would need to be at least 15.25 M {sub ☉}, or the distance would need to be less than 4.5 kpc, both of which disagree with previous determinations of the black hole mass and distance. If we allow f {sub col} to be free, we obtain no useful spin constraint. We discuss our results in the context of recent spin measurements and implications for jet production.

  11. An Accretion Model for the Growth of the Central Black Holes Associated with Ionization Instability in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.

  12. AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION

    SciTech Connect

    Markoff, Sera; Silva, Catia V.; Nowak, Michael A.; Gallo, Elena; Plotkin, Richard M.; Hynes, Robert; Wilms, Jörn; Maitra, Dipankar; Drappeau, Samia E-mail: C.V.DeJesusSilva@uva.nl E-mail: egallo@umich.edu E-mail: joern.wilms@sternwarte.uni-erlangen.de E-mail: samia.drappeau@irap.omp.eu

    2015-10-20

    Over the past decade, evidence has mounted that several aspects of black hole (BH) accretion physics proceed in a mass-invariant way. One of the best examples of this scaling is the empirical “fundamental plane of BH accretion” relation linking mass, radio, and X-ray luminosity over eight orders of magnitude in BH mass. The currently favored theoretical interpretation of this relation is that the physics governing power output in weakly accreting BHs depends more on relative accretion rate than on mass. In order to test this theory, we explore whether a mass-invariant approach can simultaneously explain the broadband spectral energy distributions from two BHs at opposite ends of the mass scale but that are at similar Eddington accretion fractions. We find that the same model, with the same value of several fitted physical parameters expressed in mass-scaling units to enforce self-similarity, can provide a good description of two data sets from V404 Cyg and M81*, a stellar and supermassive BH, respectively. Furthermore, only one of several potential emission scenarios for the X-ray band is successful, suggesting it is the dominant process driving the fundamental plane relation at this accretion rate. This approach thus holds promise for breaking current degeneracies in the interpretation of BH high-energy spectra and for constructing better prescriptions of BH accretion for use in various local and cosmological feedback applications.

  13. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  14. Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; García, Javier A.; Eikmann, Wiebke; McClintock, Jeffrey E.; Brenneman, Laura W.; Dauser, Thomas; Fabian, Andrew C.

    2017-02-01

    Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339–4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state’s accretion rate. For bright hard states, we show that disk truncation to large scales R\\gg {R}{ISCO} is unlikely as this would require accretion rates far in excess of the observed \\dot{M} of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.

  15. Black hole accretion disks - Electrodynamic coupling of accretion-disk coronae and the partitioning of soft and hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.

    1985-01-01

    It is demonstrated that the observed large ratio of hard to soft X-ray emission and the bimodel behavior of black hole accreting X-ray sources such as Cygnus X-1 can be described in terms of a magnetically structured accretion disk corona which is electrodynamically coupled to the disk turbulent motions while the disk is thermodynamically coupled to the corona as described by a feedback parameter delta. The observed ratio of hard to soft X-ray emission is independent of the disk thickness, and weakly dependent of the disk parameter alpha relating the disk viscous stresses to the total pressure. Observed values of the luminosity ratio point towards strong differences of the feedback of the low state compared to the high state, in the sense that low state means small feedback (delta less than 0.2) and high state means strong feedback delta of about 0.5.

  16. EVIDENCE FOR THREE ACCRETING BLACK HOLES IN A GALAXY AT z {approx} 1.35: A SNAPSHOT OF RECENTLY FORMED BLACK HOLE SEEDS?

    SciTech Connect

    Schawinski, Kevin; Urry, Meg; Treister, Ezequiel; Simmons, Brooke; Natarajan, Priyamvada; Glikman, Eilat

    2011-12-20

    One of the key open questions in cosmology today pertains to understanding when, where, and how supermassive black holes form. While it is clear that mergers likely play a significant role in the growth cycles of black holes, the issue of how supermassive black holes form, and how galaxies grow around them, still needs to be addressed. Here, we present Hubble Space Telescope Wide Field Camera 3/IR grism observations of a clumpy galaxy at z = 1.35, with evidence for 10{sup 6}-10{sup 7} M{sub Sun} rapidly growing black holes in separate sub-components of the host galaxy. These black holes could have been brought into close proximity as a consequence of a rare multiple galaxy merger or they could have formed in situ. Such holes would eventually merge into a central black hole as the stellar clumps/components presumably coalesce to form a galaxy bulge. If we are witnessing the in situ formation of multiple black holes, their properties can inform seed formation models and raise the possibility that massive black holes can continue to emerge in star-forming galaxies as late as z = 1.35 (4.8 Gyr after the big bang).

  17. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    SciTech Connect

    Miller, J. M.; King, A. L.; Tomsick, J. A.; Boggs, S. E.; Bachetti, M.; Wilkins, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Kara, E.; Grefenstette, B. W.; Harrison, F. A.; Hailey, C. J.; Stern, D. K; Zhang, W. W.

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  18. Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

    NASA Technical Reports Server (NTRS)

    T.Dauser; Garcia, J.; Wilms, J.; Boeck, M.; Brenneman, L. W.; Falanga, M.; Fukumura, Keigo; Reynolds, C. S.

    2013-01-01

    X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given

  19. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  20. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  1. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  2. THE COOL ACCRETION DISK IN ESO 243-49 HLX-1: FURTHER EVIDENCE OF AN INTERMEDIATE-MASS BLACK HOLE

    SciTech Connect

    Davis, Shane W.; Narayan, Ramesh; Zhu Yucong; Servillat, Mathieu; Barret, Didier; Godet, Olivier; Webb, Natalie A.; Farrell, Sean A.

    2011-06-20

    With an inferred bolometric luminosity exceeding 10{sup 42} erg s{sup -1}, HLX-1 in ESO 243-49 is the most luminous of ultraluminous X-ray sources and provides one of the strongest cases for the existence of intermediate-mass black holes. We obtain good fits to disk-dominated observations of the source with BHSPEC, a fully relativistic black hole accretion disk spectral model. Due to degeneracies in the model arising from the lack of independent constraints on inclination and black hole spin, there is a factor of 100 uncertainty in the best-fit black hole mass M. Nevertheless, spectral fitting of XMM-Newton observations provides robust lower and upper limits with 3000 M{sub sun} {approx}< M {approx}< 3 x 10{sup 5} M{sub sun}, at 90% confidence, placing HLX-1 firmly in the intermediate-mass regime. The lower bound on M is entirely determined by matching the shape and peak energy of the thermal component in the spectrum. This bound is consistent with (but independent of) arguments based solely on the Eddington limit. Joint spectral modeling of the XMM-Newton data with more luminous Swift and Chandra observations increases the lower bound to 6000 M{sub sun}, but this tighter constraint is not independent of the Eddington limit. The upper bound on M is sensitive to the maximum allowed inclination i, and is reduced to M {approx}< 10{sup 5} M{sub sun} if we limit i {approx}< 75{sup 0}.

  3. THE CENTRAL ENGINE STRUCTURE OF 3C120: EVIDENCE FOR A RETROGRADE BLACK HOLE OR A REFILLING ACCRETION DISK

    SciTech Connect

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2012-06-20

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. Spectral fits to the X-ray Imaging Spectrometer and Hard X-ray Detector/positive intrinsic negative data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow K{alpha} core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, the inner region of the disk appears to be truncated, with an inner radius of r{sub in} = 11.7{sup +3.5}{sub -5.2} r{sub g} . If we assume that fluorescent iron line features terminate at the inner-most stable circular orbit (ISCO), then we measure a black hole spin of a-hat < -0.1 at a 90% confidence level. A rapidly spinning prograde black hole ( a-hat > 0.8) can be ruled out at the 99% confidence level. Alternatively, the disk may be truncated well outside of the ISCO of a rapid prograde hole. The most compelling scenario is the possibility that the inner regions of the disk were destroyed/ejected by catastrophic instabilities just prior to the time these observations were made.

  4. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Wang, Fang; Qiu, Jie; Li, Yan-Rong; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2014-02-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6^{+1.7}_{-2.9}, 6.4^{+0.8}_{-2.2} and 11.4^{+2.9}_{-1.9} days, respectively. The corresponding BH masses are (8.3_{-3.2}^{+2.6})\\times 10^6\\,M_{\\odot }, (3.4_{-1.2}^{+0.5})\\times 10^6\\,M_{\\odot }, and (7.5_{-4.1}^{+4.3})\\times 10^6\\,M_{\\odot }, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  5. Warping of an accretion disc and launching of a jet by a spinning black hole in NGC 4258

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Yan, Hao; Yi, Zhu

    2013-12-01

    We fit the most up-to-date broad-band spectral energy distribution from radio to X-rays for NGC 4258 with a coupled accretion-jet model that surrounds a Kerr black hole (BH). Here, both the jet and the warped H2O maser disc are assumed to be triggered by a spinning BH through the Blandford-Znajek mechanism and the Bardeen-Petterson effect, respectively. The accretion flow consists of an inner radiatively inefficient accretion flow and an outer truncated standard thin disc, where the transition radius Rtr ≃ 3 × 103Rg for NGC 4258, based on the width and variability of its narrow Fe Kα line. The hybrid jet formation model, as a variant of the Blandford-Znajek model, is used to model the jet power. Therefore, we can estimate the accretion rate and BH spin through the two observed quantities (i.e. X-ray emission and jet power), where the observed jet power is estimated from the low-frequency radio emission. Using this method, we find that the BH of NGC 4258 should be mildly spinning with dimensionless spin parameter a* ≃ 0.7 ± 0.2. The outer thin disc mainly radiates at the near-infrared waveband and the jet contributes predominantly at the radio waveband. Using the above-estimated BH spin and the inferred accretion rate at the region of the maser disc based on the physical existence of the H2O maser, we find that the warp radius is ˜8.6 × 104Rg if it is driven by the Bardeen-Petterson effect. This is very consistent with the observational result.

  6. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  7. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  8. Quasi-Periodic Oscillations and Frequencies in AN Accretion Disk and Comparison with the Numerical Results from Non-Rotating Black Hole Computed by the Grh Code

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    The shocked wave created on the accretion disk after different physical phenomena (accretion flows with pressure gradients, star-disk interaction etc.) may be responsible observed Quasi Periodic Oscillations (QPOs) in X-ray binaries. We present the set of characteristics frequencies associated with accretion disk around the rotating and non-rotating black holes for one particle case. These persistent frequencies are results of the rotating pattern in an accretion disk. We compare the frequency's from two different numerical results for fluid flow around the non-rotating black hole with one particle case. The numerical results are taken from Refs. 1 and 2 using fully general relativistic hydrodynamical code with non-selfgravitating disk. While the first numerical result has a relativistic tori around the black hole, the second one includes one-armed spiral shock wave produced from star-disk interaction. Some physical modes presented in the QPOs can be excited in numerical simulation of relativistic tori and spiral waves on the accretion disk. The results of these different dynamical structures on the accretion disk responsible for QPOs are discussed in detail.

  9. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  10. Testing Gravity with Quasi-periodic Oscillations from Accreting Black Holes: The Case of Einstein-Dilaton-Gauss-Bonnet Theory

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Gualtieri, Leonardo; Pani, Paolo; Stella, Luigi; Ferrari, Valeria

    2015-03-01

    Quasi-periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting black holes are associated with phenomena occurring near the horizon. Future very large area X-ray instruments will be able to measure QPO frequencies with very high precision, thus probing this strong-field region. Using the relativistic precession model, we show the way in which QPO frequencies could be used to test general relativity (GR) against those alternative theories of gravity which predict deviations from the classical theory in the strong-field and high-curvature regimes. We consider one of the best-motivated high-curvature corrections to GR, namely, the Einstein-Dilaton-Gauss-Bonnet theory, and show that a detection of QPOs with the expected sensitivity of the proposed ESA M-class mission LOFT would set the most stringent constraints on the parameter space of this theory.

  11. HYDROMAGNETICS OF ADVECTIVE ACCRETION FLOWS AROUND BLACK HOLES: REMOVAL OF ANGULAR MOMENTUM BY LARGE-SCALE MAGNETIC STRESSES

    SciTech Connect

    Mukhopadhyay, Banibrata; Chatterjee, Koushik E-mail: kchatterjee009@gmail.com

    2015-07-01

    We show that the removal of angular momentum is possible in the presence of large-scale magnetic stresses in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady state, in the complete absence of α-viscosity. The efficiency of such an angular momentum transfer could be equivalent to that of α-viscosity with α = 0.01–0.08. Nevertheless, the required field is well below its equipartition value, leading to a magnetically stable disk flow. This is essentially important in order to describe the hard spectral state of the sources when the flow is non/sub-Keplerian. We show in our simpler 1.5 dimensional, vertically averaged disk model that the larger the vertical-gradient of the azimuthal component of the magnetic field is, the stronger the rate of angular momentum transfer becomes, which in turn may lead to a faster rate of outflowing matter. Finding efficient angular momentum transfer in black hole disks via magnetic stresses alone, is very interesting when the generic origin of α-viscosity is still being explored.

  12. The effects of high density on the X-ray spectrum reflected from accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    García, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Michael L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jörn

    2016-10-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter ξ, which is the ratio of the incident flux to the gas density. The density is typically fixed at ne = 1015 cm-3. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for ne ≳ 1017 cm-3 that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies ≲ 2 keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  13. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  14. NLTE Models of Vertical structure of Accretion Disks around Stellar Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Hubeny, I.; Blaes, O.; Krolik, J. H.; Agol, E.; Lanz, T.

    2001-12-01

    Recent upgrades of our computer program TLUSDISK are briefly described. These include a self-consistent treatment of Compton scattering, and the effects of X-ray continuum opacities of the most important metal species (C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni). In the case the central degenerate object is a neutron star or a black hole, we allow for a full general relativistic treatment. We show the effects of Comptonization and metal opacities on the structure of disk under various conditions. We also present a simple analytic prescription for the vertical temperature structure of the disk in the presence of Comptonization, and show under what conditions a hot outer layer (a corona) is formed.

  15. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  16. Using Multiwavelength Observations to Determine the Black Hole Mass and Accretion Rate in the Type 1 Seyfert Galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Chiang, James; Blaes, Omer

    2002-01-01

    We model the spectral energy distribution of the type 1 Seyfert galaxy NGC 5548, fitting data from simultaneous optical, UV, and X-ray monitoring observations. We assume a geometry consisting of a hot central Comptonizing region surrounded by a thin accretion disk. The properties of the disk and the hot central region are determined by the feedback occurring between the hot Comptonizing region and thermal reprocessing in the disk that, along with viscous dissipation, provides the seed photons for the Comptonization process. The constraints imposed upon this model by the multiwavelength data allow us to derive limits on the central black hole mass, Mu is approximately or less than 2x10(exp 7) solar mass, the accretion rate, Mu is approximately or less than 2.5x10(exp 5) sq solar mass per year/Mu, and the radius of the transition region between the thin outer disk and the geometrically thick, hot inner region, is approximately 2-5x10(exp 14) cm.

  17. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  18. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  19. EFFECTS OF COMPTON COOLING ON OUTFLOW IN A TWO-COMPONENT ACCRETION FLOW AROUND A BLACK HOLE: RESULTS OF A COUPLED MONTE CARLO TOTAL VARIATION DIMINISHING SIMULATION

    SciTech Connect

    Garain, Sudip K.; Ghosh, Himadri; Chakrabarti, Sandip K. E-mail: himadri@bose.res.in

    2012-10-20

    We investigate the effects of cooling of the Compton cloud on the outflow formation rate in an accretion disk around a black hole. We carry out a time-dependent numerical simulation where both the hydrodynamics and the radiative transfer processes are coupled together. We consider a two-component accretion flow in which the Keplerian disk is immersed into an accreting low-angular momentum flow (halo) around a black hole. The soft photons which originate from the Keplerian disk are inverse-Comptonized by the electrons in the halo and the region between the centrifugal pressure supported shocks and the horizon. We run several cases by changing the rate of the Keplerian disk and see the effects on the shock location and properties of the outflow and the spectrum. We show that as a result of Comptonization of the Compton cloud, the cloud becomes cooler with the increase in the Keplerian disk rate. As the resultant thermal pressure is reduced, the post-shock region collapses and the outflow rate is also reduced. Since the hard radiation is produced from the post-shock region, and the spectral slope increases with the reduction of the electron temperature, the cooling produces softer spectrum. We thus find a direct correlation between the spectral states and the outflow rates of an accreting black hole.

  20. Horndeski scalar-tensor black hole geodesics

    NASA Astrophysics Data System (ADS)

    Tretyakova, Darya; Melkoserov, Dmitry; Adyev, Timur

    2016-10-01

    We examine massive particles and null geodesics for the scalar-tensor black hole in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits, corresponding to circular and elliptic orbits, are absent for the black hole solution with the static scalar field. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations.

  1. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  2. Wavelength dependence of polarization and physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Buliga, S. D.; Natsvlishvili, T. M.

    2014-08-01

    Analysis of the wavelength dependence of the polarization of radiation from active galactic nuclei (AGNs) is shown to allow the main physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in these objects to be determined. These main processes include the generation of magnetic fields as a result of the equality between the magnetic and radiation pressures or as a result of the equality between the magnetic and gas pressures. In several cases, the wavelength dependence of polarization is shown to be explained, provided that the Shakura-Sunyaev viscosity parameter depends on the accretion-disk radius.

  3. Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field

    NASA Astrophysics Data System (ADS)

    Mosallanezhad, Amin; Bu, Defu; Yuan, Feng

    2016-03-01

    We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the r - θ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical θ angle, θ ˜ 47°, the inflow changes its direction of radial motion and becomes wind. The driving forces are analysed and found to be the centrifugal force and the gradient of gas and magnetic pressure. The properties of wind are also calculated. The specific angular momentum of wind is found to be significantly larger than that of inflow, thus wind can transfer angular momentum outward. These analytical results are compared to those obtained by the trajectory analysis based on MHD numerical simulation data and good agreements are found.

  4. High-energy gamma-ray observations of the accreting black hole V404 Cygni during its 2015 June outburst

    NASA Astrophysics Data System (ADS)

    Loh, A.; Corbel, S.; Dubus, G.; Rodriguez, J.; Grenier, I.; Hovatta, T.; Pearson, T.; Readhead, A.; Fender, R.; Mooley, K.

    2016-10-01

    We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in 2015 June-July. Detailed analyses reveal a possible excess of γ-ray emission on 2015 26 June, with a very soft spectrum above 100 MeV, at a position consistent with the direction of V404 Cyg (within the 95 per cent confidence region and a chance probability of 4 × 10-4). This emission cannot be associated with any previously known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the light curve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the γ-ray emission is associated with V404 Cyg, the simultaneous detection of 511 keV annihilation emission by INTEGRAL reqires that the high-energy γ-rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically arrested disc where a bright γ-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.

  5. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-07-01

    We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band

  6. The Black-Hole Accretion Disk in NGC 4258: One of Nature's Most Beautiful Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moran, J. M.

    2008-08-01

    In this talk I will summarize some of the work that the CfA group has done to study the structure of the water masers in the accretion disk of NGC 4258. A series of 18 epochs of VLBA data taken from 1997.3 to 2000.8 were used for this study. The vertical distribution of maser features in the systemic group was found to be Gaussian, as expected for hydrostatic equilibrium, with a σ-width of 5.1 microarcsec (μas). If the disk is in hydrostatic equilibrium, its temperature is about 600 K. The systemic features exhibit a small, but persistent, gradient in acceleration versus impact parameter. This characteristic may indicate the presence of a spiral density wave rotating at sub-Keplerian speed. A more precise understanding of the dynamical properties of the disk is expected to lead to a more refined estimate of the distance to the galaxy.

  7. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  8. Orbital Resonances Around Black Holes

    NASA Astrophysics Data System (ADS)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-01

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  9. Magnetic Reconnection-Powered Relativistic Particle Acceleration, High-Energy Gamma-Ray Emission, and Pair Production in Coronae of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    2015-11-01

    Magnetic reconnection is a fundamental plasma process believed to play an important role in energetics of magnetically-dominated coronae of various astrophysical objects including accreting black holes. Building up on recent advances in kinetic simulations of relativistic collisionless reconnection, we investigate nonthermal particle acceleration and its key observational consequences for these systems. We argue that reconnection can efficiently accelerate coronal electrons (as well as ions) up to hundreds of MeV or even GeV energies. In brightest systems, radiation back-reaction due to inverse-Compton (and/or synchrotron) emission becomes important at these energies and limits any further electron acceleration, thereby turning reconnection layers into powerful and efficient radiators of γ-rays. We then evaluate the rate of absorption of the resulting γ-ray photons by the ambient soft (X-ray) photon fields and show that it can be a significant source of pair production, with important implications for the composition of black-hole coronae and jets. Finally, we assess the prospects of laboratory studies of magnetic reconnection in the physical regimes relevant to black-hole accretion flows using modern and future laser-plasma facilities. This work is supported by DOE, NSF, and NASA.

  10. OPTICAL VARIABILITY OF THE ACCRETION DISK AROUND THE INTERMEDIATE-MASS BLACK HOLE ESO 243-49 HLX-1 DURING THE 2012 OUTBURST

    SciTech Connect

    Webb, N. A.; Godet, O.; Barret, D.; Wiersema, K.; Lasota, J.-P.; Farrell, S. A.; Maccarone, T. J.; Servillat, M.

    2014-01-01

    We present dedicated quasi-simultaneous X-ray (Swift) and optical (Very Large Telescope, V-, and R-band) observations of the intermediate-mass black hole candidate HLX-1 before and during the 2012 outburst. We show that the V-band magnitudes vary with time, thus proving that a portion of the observed emission originates in the accretion disk. Using the first quiescent optical observations of HLX-1, we show that the stellar population surrounding HLX-1 is fainter than V ∼ 25.1 and R ∼ 24.2. We show that the optical emission may increase before the X-ray emission consistent with the scenario proposed by Lasota et al. in which the regular outbursts could be related to the passage at periastron of a star circling the intermediate-mass black hole in an eccentric orbit, which triggers mass transfer into a quasi-permanent accretion disk around the black hole. Further, if there is indeed a delay in the X-ray emission we estimate the mass-transfer delivery radius to be ∼10{sup 11} cm.

  11. A Dancing Black Hole

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  12. The First Black Holes

    NASA Astrophysics Data System (ADS)

    Abel, T.

    star. Within this wide range of possible initial masses the death of these star will lead very different remnants (Heger and Woosley 2001). In the case of stars with masses larger than 260 solar mass no metals may be released in black holes are the natural outcome. This may be an interesting possibility to form intermediate mass black holes which are attractive seeds to be nurtured to the super-massive black holes observed in the centers of nearby galaxies. However, no metals would be released and it would prove difficult to understand the transition to the formation of low mass metal enriched population II stars. Stars with masses below 140 solar masses would enrich the intergalactic medium as well as form massive black holes. The coincidence of the Kelvin Helmholtz time with our computed accretion times at about 120 solar masses may argue in favor of such smaller masses. These first black holes may well leave the halos in which they formed for even rather modest kick velocities >~ 10 km/s. Nevertheless, up to about one hundred thousand of these first black holes may remain in the Milky Way. The realization that structure formation began within one hundred million years after big bang makes it difficult to study observationally these first crucial steps. Future observatories have hence to focus on larger collecting areas and wavelengths for which the universe is transparent up to redshifts of 30. XEUS offers the chance to open a new window to these so far dark ages. The limiting masses quoted here rely on stellar models of primordial stars that do not include rotation, magnetic fields or mass loss and hence are somewhat uncertain.

  13. The Observed Galactic Annihilation Line: Possible Signature of Accreting Small Mass Black Holes in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Chardonnet, Pascal

    2006-01-01

    Various balloon and satellite observatories have revealed what appears to be an extended source of 0.511 MeV annihilation radiation with flux of approx. 10(exp -3) photons/sq cm/s centered on the Galactic Center. Positrons from radioactive products of stellar explosions can account for a significant fraction of the emission. We discuss an additional source for this emission: namely e(+)e(-) pairs produced when X-rays generated from the approx. 2.6 x 10(exp 6) solar mass Galactic Center Black Hole interact with approx. 10 MeV temperature blackbody emission from 10(exp 17) g black holes within 10(exp 14-l5) cm of the center. The number of such Small Mass Black Holes (SMMBHs) can account for the production of the 10(exp 42) e(+)/s that produces the observed annihilation in the inner Galaxy when transport effects are taken into account. We consider the possibility for confirming the presence of these SMMBHs in the Galactic Center region with future generations of gamma-ray instruments if a blackbody like emission of approx. 10 MeV temperature would be detected by them. Small Mass Black Hole can be a potential candidate for dark (invisible) matter hal

  14. Modelling the high-mass accretion rate spectra of GX 339-4: black hole spin from reflection?

    NASA Astrophysics Data System (ADS)

    Kolehmainen, Mari; Done, Chris; Díaz Trigo, María

    2011-09-01

    We extract all the XMM-Newton European Photon Imaging Camera (EPIC) pn burst mode spectra of GX 339-4, together with simultaneous/contemporaneous RXTE data. These include three disc-dominated and two soft intermediate spectra, and the combination of broad bandpass/moderate spectral resolution gives some of the best data on these bright soft states in black hole binaries. The disc-dominated spectra span a factor of 3 in luminosity, and all show that the disc emission is broader than the simplest multicolour disc model. This is consistent with the expected relativistic smearing and changing colour temperature correction produced by atomic features in the newest disc models. However, these models do not match the data at the 5 per cent level as the predicted atomic features are not present in the data, perhaps indicating that irradiation is important even when the high-energy tail is weak. Whatever the reason, this means that the data have smaller errors than the best physical disc models, forcing use of more phenomenological models for the disc emission. We use these for the soft intermediate state data, where previous analysis using a simple disc continuum found an extremely broad residual, identified as the red wing of the iron line from reflection around a highly spinning black hole. However, the iron line energy is close to where the disc and tail have equal fluxes, so using a broader disc continuum changes the residual 'iron line' profile dramatically. With a broader disc continuum model, the inferred line is formed outside of 30Rg, so it cannot constrain black hole spin. We caution that a robust determination of black hole spin from the iron line profile is very difficult where the disc makes a significant contribution at the iron line energy, i.e. in most bright black hole states.

  15. NASA Now: Black Holes

    NASA Video Gallery

    In this NASA Now episode, Dr. Daniel Patnaude talks about how his team discovered a baby black hole, why this is important and how black holes create tidal forces. Throughout his discussion, Patnau...

  16. Black hole hair removal

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-07-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair — degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  17. Black hole binaries and microquasars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan

    2013-12-01

    This is a general review on the observations and physics of black hole X-ray binaries and microquasars, with the emphasize on recent developments in the high energy regime. The focus is put on understanding the accretion flows and measuring the parameters of black holes in them. It includes mainly two parts: i) Brief review of several recent review article on this subject; ii) Further development on several topics, including black hole spin measurements, hot accretion flows, corona formation, state transitions and thermal stability of standard think disk. This is thus not a regular bottom-up approach, which I feel not necessary at this stage. Major effort is made in making and incorporating from many sources useful plots and illustrations, in order to make this article more comprehensible to non-expert readers. In the end I attempt to make a unification scheme on the accretion-outflow (wind/jet) connections of all types of accreting BHs of all accretion rates and all BH mass scales, and finally provide a brief outlook.

  18. Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  19. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  20. Black Hole Battery

    NASA Astrophysics Data System (ADS)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  1. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  2. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.

    2012-01-20

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations r{sub p} < 100 h{sup -1}{sub 70} kpc and velocity offsets <600 km s{sup -1} from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] {lambda}5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger H{delta} absorption and smaller 4000 A break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for r{sub p} {approx}< 10-30 h{sup -1}{sub 70} kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  3. Detection of Extended Radio Emission in the Center of NGC 404: Implications for the Accreting Intermediate-Mass Black Hole Scenario

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Wrobel, Joan; Young, Lisa

    2016-01-01

    We present the results of a 0.15"-resolution (2.25 pc), Ku-band (12-18 GHz) Karl G. Jansky Very Large Array (VLA) study of the nucleus of NGC 404. Previous 5 GHz VLA observations at a spatial resolution of 0.4" revealed compact radio emission co-located with a hard X-ray nuclear point source and the optical center of the galaxy, within the known errors. This was interpreted as evidence that the candidate intermediate-mass black hole (IMBH) in the center of NGC 404 is actively accreting material at low levels. However, follow-up milliarcsecond-resolution, very long baseline interferometric (VLBI) observations did not detect any emission, challenging the accreting IMBH interpretation. Our Ku-band observations bridge the gap in spatial resolution between the previous VLA and VLBI observations, and successfully resolve the radio emission (d ~ 17 pc) previously imaged at lower resolution. In combination with the existing VLA data, the new Ku-band data indicate a steep integrated radio spectral index from 1 to 18 GHz, suggesting the source is dominated by optically-thin synchrotron emission. We build upon the existing multiwavelength observations of this galaxy and provide a re-assessment of the physical origin of the extended radio emission near the center of NGC 404. While an accreting IMBH remains a strong possibility for the origin of the radio source, our new analysis strengthens the case for a supernova remnant origin. We discuss future observational tests needed to distinguish between these scenarios, as well as the importance of accurately determining the properties of the NGC 404 nuclear engine in the context of the fundamental plane of black hole activity.

  4. The effects of redshifts and focusing on the spectrum of an accretion disk in the galactic center black hole candidate Sagittarius A(sup *)

    NASA Technical Reports Server (NTRS)

    Hollywood, J. M.; Melia, Fulvio

    1995-01-01

    There are firm indications that Sgr A(sup *), a compact, nonthermal radio source at the Galactic center, may be powered by the dissipation of gravitational energy as gas trapped from an ambient wind descends down the potential well, first through a quasi-spherical inflow (extending out to approximately 3 x 10(exp 16) cm) and then through a small accretion disk at less than or approximately = 5-10 Schwarzschild radii. Earlier three-dimensional Bondi-Hoyle numerical simulations have indicated that fluctuations in the accreted specific angular momentum can lead to a variability in the disk flux on a timescale of years. With greatly improved flux measurements at K and H, and the hint of a approximately 10 minute modulation in the IR luminosity, it is crucial to model the disk emission much more precisely than has been attempted thus far. In this Letter we take into account the effects of Doppler and gravitational redshifts, the light-travel time factor, and the light bending near the black hole to determine the measurable spectrum of Sgr A(sup *) in the increasingly important 10(exp 13) Hz less than or approximately = v less than or approximately = 10(exp 16) Hz frequency range. We find that the relativistic disk spectrum is much softer than its Newtonian counterpart, with a predicted UV flux roughly an order of magnitude smaller than had previously been anticipated. In addition, we find that when the physical conditions in the disk are taken to be consistent with the properties of the quasi-spherical infall (specifically, in terms of the accretion rate and disk size), only a slowly spinning or Schwarzschild black hole appears to fit the observations. Our calculations also reveal that the disk flux is much more weakly dependent on the observer's inclination angle than had been suspected on the basis of earlier Newtonian estimates.

  5. Modelling the cross-spectral variability of the black hole binary MAXI J1659-152 with propagating accretion rate fluctuations

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; Kalamkar, M.; van der Klis, M.

    2016-11-01

    The power spectrum of the X-ray fluctuations of accreting black holes often consists of two broad humps. We quantitatively investigate the hypothesis that the lower frequency hump originates from variability in a truncated thin accretion disc, propagating into a large scaleheight inner hot flow which, in turn, itself is the origin of the higher frequency hump. We extend the propagating mass accretion rate fluctuations model PROPFLUC to accommodate double-hump power spectra in this way. Furthermore, we extend the model to predict the cross-spectrum between two energy bands in addition to their power spectra, allowing us to constrain the model using the observed time lags, which in the model result from both propagation of fluctuations from the disc to the hot flow, and inside the hot flow. We jointly fit soft and hard power spectrum, and the cross-spectrum between the two bands using this model for five Swift X-ray Telescope observations of MAXI J1659-152. The new double-hump model provides a better fit to the data than the old single-hump model for most of our observations. The data show only a small phase lag associated with the low-frequency hump. We demonstrate quantitatively that this is consistent with the model. We compare the truncation radius measured from our fits with that measured purely by spectral fitting and find agreement within a factor of two. This analysis encompasses the first joint fits of stellar-mass black hole cross-spectra and power spectra with a single self-consistent physical model.

  6. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  7. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  8. Hot versus cold: The dichotomy in spherical accretion of cooling flows onto supermassive black holes in elliptical galaxies, galaxy groups, and clusters

    SciTech Connect

    Guo, Fulai; Mathews, William G.

    2014-01-10

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ∼100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z {sub ☉}, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R {sub e} ∼ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  9. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    SciTech Connect

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Jian-Min; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C. E-mail: wangjm@ihep.ac.cn; Collaboration: SEAMBH Collaboration

    2016-03-20

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  10. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  11. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  12. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  13. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  14. Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Kalemci, Emrah; Kaaret, Philip; Markoff, Sera; Corbel, Stephane; Migliari, Simone; Fender, Rob; Bailyn, Charles D.; Buxton, Michelle M.

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (Rg) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and coworkers show evidence for disk material very close to the black hole's innermost stable circular orbit. That work studied GX 339-4 at a luminosity of approximately 5% of the Eddington limit (L(sub Edd) and used parameters from a relativistic reflection model and the presence of a thermal component as diagnostics. Here we use similar diagnostics but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approximately 0.2 keV at 2.3% L (sub Edd). At both luminosities, we detect broad features due to iron K-alpha that are likely related to reflection of hard X-rays off disk material. If these features are broadened by relativistic effects, they indicate that the material resides within 10 Rg, and the measurements are consistent with the disk's inner radius remaining at approximately 4 Rg down to 0.8% L(sub Edd). However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on the possibility that material may condense out of an Advection-Dominated Accretion Flow to maintain an inner optically thick disk.

  15. Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State

    NASA Technical Reports Server (NTRS)

    Tomsick; Kalemci; Kaaret; Markoff; Corbel; Migliari; Fender; Bailyn; Buxton

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state. In this state, the X-ray energy spectrum is dominated by a hard power-law component and radio observations indicate the presence of a steady and powerful "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (R(sub g)) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and co-workers show evidence for optically thick material very close to the black hole's innermost stable circular orbit. That work focused on an observation of GX 339-4 at a luminosity of about 5% of the Eddington limit (L(sub Edd)) and used parameters from a relativistic reflection model and the presence of a soft, thermal component as diagnostics. In this work, we use similar diagnostics, but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approx.0.2 keV at 2.3% L(sub Edd). At 0.8% L(sub Edd), the spectrum is consistent with the presence of such a component, but the component is not required with high confidence. At both luminosities, we detect broad features due to iron Ka that are likely related to reflection of hard X-rays off the optically thick material. If these features are broadened by relativistic effects, they indicate that optically thick material resides within 10 R(sub g) down to 0.8% L(sub Edd), and the measurements are consistent with the inner radius of the disk remaining at approx.4 R(sub g) down to this level. However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on

  16. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  17. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  18. Asymptotic black holes

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  19. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  20. Study of viscosity parameter in accretion disks around black holes with outflows: An analysis of 2010-11 outburst of GX 399-4.

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip Kumar

    2016-07-01

    We study axisymmetric steady state viscous accretion flows around Schwarzschild black holes and draw theoretical parameter space of allowed Quasi Periodic Oscillation (QPO) frequencies and viscosity parameter. The low frequency QPOs are considered to be the consequences of resonance of infall and cooling time scales. The outflows are considered to be confined in between the centrifugal barrier and the funnel wall. Comparing the data from TCAF fitting of GX 339-4 outburst in 2010-11, we find that viscosity parameter during the outburst evolved from 0.0005 to 0.04 during the rising phase of the outburst. This range of viscosity parameter has been quoted taking account of outflows and 10% thermal dissipation at the base of the outflow. Also, the maximum amount of outflow ejection possible was found to be ~14% of the inflow.

  1. TESTING GRAVITY WITH QUASI-PERIODIC OSCILLATIONS FROM ACCRETING BLACK HOLES: THE CASE OF THE EINSTEIN–DILATON–GAUSS–BONNET THEORY

    SciTech Connect

    Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria; Pani, Paolo; Stella, Luigi

    2015-03-10

    Quasi-periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting black holes are associated with phenomena occurring near the horizon. Future very large area X-ray instruments will be able to measure QPO frequencies with very high precision, thus probing this strong-field region. Using the relativistic precession model, we show the way in which QPO frequencies could be used to test general relativity (GR) against those alternative theories of gravity which predict deviations from the classical theory in the strong-field and high-curvature regimes. We consider one of the best-motivated high-curvature corrections to GR, namely, the Einstein–Dilaton–Gauss–Bonnet theory, and show that a detection of QPOs with the expected sensitivity of the proposed ESA M-class mission LOFT would set the most stringent constraints on the parameter space of this theory.

  2. MODERATE-LUMINOSITY GROWING BLACK HOLES FROM 1.25 < z < 2.7: VARIED ACCRETION IN DISK-DOMINATED HOSTS

    SciTech Connect

    Simmons, B. D.; Glikman, E.; Urry, C. M.; Schawinski, K.; Cardamone, C.

    2012-12-10

    We compute black hole masses and bolometric luminosities for 57 active galactic nuclei (AGNs) in the redshift range 1.25 {<=} z {<=} 2.67, selected from the GOODS-South deep multi-wavelength survey field via their X-ray emission. We determine host galaxy morphological parameters by separating the galaxies from their central point sources in deep Hubble Space Telescope images, and host stellar masses and colors by multi-wavelength spectral energy distribution fitting. Of GOODS AGNs at these redshifts, 90% have detected rest-frame optical nuclear point sources; bolometric luminosities range from 2 Multiplication-Sign 10{sup 43} to 2 Multiplication-Sign 10{sup 46} erg s{sup -1}. The black holes are growing at a range of accretion rates, with {approx}> 50% of the sample having L/L{sub Edd} < 0.1. Of the host galaxies, 70% have stellar masses M{sub *} > 10{sup 10} M{sub Sun }, with a range of colors suggesting a complex star formation history. We find no evolution of AGN bolometric luminosity within the sample, and no correlation between AGN bolometric luminosity and host stellar mass, color, or morphology. Fully half the sample of host galaxies are disk-dominated, with another 25% having strong disk components. Fewer than 15% of the systems appear to be at some stage of a major merger. These moderate-luminosity AGN hosts are therefore inconsistent with a dynamical history dominated by mergers strong enough to destroy disks, indicating that minor mergers or secular processes dominate the coevolution of galaxies and their central black holes at z {approx} 2.

  3. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    SciTech Connect

    Weng Shanshan; Zhang Shuangnan E-mail: zhangsn@ihep.ac.cn

    2011-09-20

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity ({approx}0.1 L{sub Edd}), compared with BH LMXBs at much lower luminosity ({approx}0.03 L{sub Edd}), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  4. X-RAY OBSERVATIONAL SIGNATURE OF A BLACK HOLE ACCRETION DISK IN AN ACTIVE GALACTIC NUCLEUS RX J1633+4718

    SciTech Connect

    Yuan, W.; Liu, B. F.; Zhou, H.; Wang, T. G.

    2010-11-01

    We report the discovery of a luminous ultra-soft X-ray excess in a radio-loud narrow-line Seyfert 1 galaxy, RX J1633+4718, from archival ROSAT observations. The thermal temperature of this emission, when fitted with a blackbody, is as low as 32.5{sup +8.0}{sub -6.0} eV. This is in remarkable contrast to the canonical temperatures of {approx}0.1-0.2 keV found hitherto for the soft X-ray excess in active galactic nuclei (AGNs) and is interestingly close to the maximum temperature predicted for a postulated accretion disk in this object. If this emission is indeed blackbody in nature, the derived luminosity (3.5{sup +3.3}{sub -1.5} x 10{sup 44} erg s{sup -1}) infers a compact emitting area with a size ({approx}5 x 10{sup 12} cm or 0.33 AU in radius) that is comparable to several times the Schwarzschild radius of a black hole (BH) at the mass estimated for this AGN ({approx}3 x 10{sup 6} M{sub sun}). In fact, this ultra-steep X-ray emission can be well fitted as the (Compton scattered) Wien tail of the multi-temperature blackbody emission from an optically thick accretion disk, whose inferred parameters (BH mass and accretion rate) are in good agreement with independent estimates using the optical emission-line spectrum. We thus consider this feature as a signature of the long-sought X-ray radiation directly from a disk around a supermassive BH, presenting observational evidence for a BH accretion disk in the AGN. Future observations with better data quality, together with improved independent measurements of the BH mass, may constrain the spin of the BH.

  5. Populations of supersoft X-ray sources: Novae, tidal disruption, Type Ia supernovae, accretion-induced collapse, ionization, and intermediate-mass black holes?

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Primini, F. A.; Liu, J.; Kong, A.; Patel, B.

    2010-02-01

    Observations of hundreds of supersoft X-ray sources (SSSs) in external galaxies have shed light on the diversity of the class and on the natures of the sources. SSSs are linked to the physics of Type Ia supernovae and accretion-induced collapse, ultraluminous X-ray sources and black holes, the ionization of the interstellar medium, and tidal disruption by supermassive black holes. The class of SSSs has an extension to higher luminosities: ultraluminous SSSs have luminosities above 1039 erg s-1. There is also an extension to higher energies: quasisoft X-ray sources (QSSs) emit photons with energies above 1 keV, but few or none with energies above 2 keV. Finally, a significant fraction of the SSSs found in external galaxies switch states between observations, becoming either quasisoft or hard. For many systems ``supersoft'' refers to a temporary state; SSSs are sources, possibly including a variety of fundamentally different system types, that pass through such a state. We review those results derived from extragalactic data and related theoretical work that are most surprising and that suggest directions for future research.

  6. Pregalactic black holes - A new constraint

    NASA Technical Reports Server (NTRS)

    Barrow, J. D.; Silk, J.

    1979-01-01

    Pregalactic black holes accrete matter in the early universe and produce copious amounts of X radiation. By using observations of the background radiation in the X and gamma wavebands, a strong constraint is imposed upon their possible abundance. If pregalactic black holes are actually present, several outstanding problems of cosmogony can be resolved with typical pregalactic black hole masses of 100 solar masses. Significantly more massive holes cannot constitute an appreciable mass fraction of the universe and are limited by a specific mass-density bound.

  7. Maximum spin of black holes driving jets

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.; Babul, Arif

    2009-08-01

    Unbound outflows in the form of highly collimated jets and broad winds appear to be a ubiquitous feature of accreting black hole systems. The most powerful jets are thought to derive a significant fraction, if not the majority, of their power from the rotational energy of the black hole. Whatever the precise mechanism that causes them, these jets must, therefore, exert a braking torque on the black hole. Consequently, we expect jet production to play a significant role in limiting the maximum spin attainable by accreting black holes. We calculate the spin-up function - the rate of change of black hole spin normalized to the black hole mass and accretion rate - for an accreting black hole, accounting for this braking torque. We assume that the accretion flow on to a Kerr black hole is advection-dominated (ADAF) and construct easy-to-use analytic fits to describe the global structure of such flows based on the numerical solutions of Popham & Gammie. We find that the predicted black hole spin-up function depends only on the black hole spin and dimensionless parameters describing the accretion flow. Using recent relativistic magnetohydrodynamical (MHD) numerical simulation results to calibrate the efficiency of angular momentum transfer in the flow, we find that an ADAF flow will spin a black hole up (or down) to an equilibrium value of about 96 per cent of the maximal spin value in the absence of jets. Combining our ADAF system with a simple model for jet power, we demonstrate that an equilibrium is reached at approximately 93 per cent of the maximal spin value, as found in the numerical simulation studies of the spin-up of accreting black holes, at which point the spin-up of the hole by accreted material is balanced by the braking torque arising from jet production. The existence of equilibrium spin means that optically dim active galactic nuclei (AGNs) that have grown via accretion from an advection-dominated flow will not be maximally rotating. It also offers a

  8. Observing Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.

    2015-08-01

    Black hole spin is important in both the fundamental physics and astrophysics realms. In fundamental terms, many extensions and alternatives to General Relativity (GR) reveal themselves through effects related to (or at least of the same order as) spin. Astrophysically, spin is a fossil record of how black holes have grown and may, in addition, be an important source of energy (e.g., powering relativistic jets from black hole systems). I shall review recent progress on observational studies of black hole spin, especially those made in the X-ray waveband. We now have multiple techniques that can be applied in our search for black hole spin; I shall discuss the concordance (or, sometimes, lack thereof) between these techniques. Finally, I shall discuss what we can expect in the next few years with the launch of new X-ray instrumentation as well as the deployment of the Event Horizon Telescope.

  9. FORCE-FEEDING BLACK HOLES

    SciTech Connect

    Begelman, Mitchell C.

    2012-04-10

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ({sup h}yperaccretion{sup )}. This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few percent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees kelvin, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion {sigma} of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and {sigma} that resembles the empirical M{sub BH}-{sigma} relation.

  10. Dumb holes: analogues for black holes.

    PubMed

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  11. Neutrino radiation of the AGN black holes

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.; Shidhani, S.; Sargsyan, L.

    2007-07-01

    In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1ṡ106 ÷4.2ṡ109) M ⊙ give the values of PRTs varying in the range of about T BH ≃(4.3ṡ105 ÷5.6ṡ1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (˜13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.

  12. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  13. Spherical boson stars as black hole mimickers

    SciTech Connect

    Guzman, F. S.; Rueda-Becerril, J. M.

    2009-10-15

    We present spherically symmetric boson stars as black hole mimickers based on the power spectrum of a simple accretion disk model. The free parameters of the boson star are the mass of the boson and the fourth-order self-interaction coefficient in the scalar field potential. We show that even if the mass of the boson is the only free parameter, it is possible to find a configuration that mimics the power spectrum of the disk due to a black hole of the same mass. We also show that for each value of the self-interaction a single boson star configuration can mimic a black hole at very different astrophysical scales in terms of the mass of the object and the accretion rate. In order to show that it is possible to distinguish one of our mimickers from a black hole, we also study the deflection of light.

  14. Black Hole Simulation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science.

  15. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  16. The M {sub BH} versus M {sub G}σ{sup 2} relation and the accretion of supermassive black holes

    SciTech Connect

    Feoli, A.

    2014-03-20

    We propose a possible scenario that can explain the physical processes underlying the relation log{sub 10}(M {sub BH}) = b + mlog{sub 10}(M {sub G}σ{sup 2}/c {sup 2}) between the mass M {sub BH} of supermassive black holes, growing in the center of many galaxies, and the kinetic energy of the corresponding bulges (M {sub G} being the bulge mass and σ the velocity dispersion). In a series of papers, this scaling law proved to be very useful to describe the evolution of galaxies thanks to its close similarity to the Hertzsprung-Russell diagram. Studying the relation with different samples of galaxies, we have generally found a slope that can vary between two extremal theoretical possibilities, m = 3/4 and m = 1. We will try to describe a possible scenario compatible with the second one. Finally, we also examine a case of a relation that is linear, not in kinetic energy, but in momentum parameter.

  17. Black holes and beyond

    SciTech Connect

    Mathur, Samir D.

    2012-11-15

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.

  18. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  19. Micro black holes and the democratic transition

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Pujolàs, Oriol

    2009-03-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  20. Testing conformal gravity with astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Cao, Zheng; Modesto, Leonardo

    2017-03-01

    Weyl conformal symmetry can solve the problem the spacetime singularities present in Einstein's gravity. In a recent paper, two of us have found a singularity-free rotating black hole solution in conformal gravity. In addition to the mass M and the spin angular momentum J of the black hole, the new solution has a new parameter, L , which here we consider to be proportional to the black hole mass. Since the solution is conformally equivalent to the Kerr metric, photon trajectories are unchanged, while the structure of an accretion disk around a black hole is affected by the value of the parameter L . In this paper, we show that x-ray data of astrophysical black holes require L /M <1.2 .

  1. Surfing a Black Hole

    NASA Astrophysics Data System (ADS)

    2002-10-01

    . PR Photo 23b/02 : NACO image of the central region of the Milky Way (close-up) . PR Photo 23c/02 : Orbit of the star "S2" around the central Black Hole. PR Video Clip 02/02 : Motion of "S2" and other stars around the central Black Hole. Quasars and Black Holes Ever since the discovery of the quasars (quasi-stellar radio sources) in 1963, astrophysicists have searched for an explanation of the energy production in these most luminous objects in the Universe. Quasars reside at the centres of galaxies, and it is believed that the enormous energy emitted by these objects is due to matter falling onto a supermassive Black Hole, releasing gravitational energy through intense radiation before that material disappears forever into the hole (in physics terminology: "passes beyond the event horizon" [4]). To explain the prodigious energy production of quasars and other active galaxies, one needs to conjecture the presence of black holes with masses of one million to several billion times the mass of the Sun. Much evidence has been accumulating during the past years in support of the above "accreting black hole" model for quasars and other galaxies, including the detection of dark mass concentrations in their central regions. However, an unambiguous proof requires excluding all possible other, non-black hole configurations of the central mass concentration. For this, it is imperative to determine the shape of the gravitational field very close to the central object - and this is not possible for the distant quasars due to technological limitations of the currently available telescopes. The centre of the Milky Way ESO PR Photo 23a/02 ESO PR Photo 23a/02 [Preview - JPEG: 400 x 427 pix - 95k [Normal - JPEG: 800 x 853 pix - 488k] Caption : PR Photo 23a/02 is a reproduction of an image of the innermost area of the Milky Way, only a few light-years across, obtained in mid-2002 with the NACO instrument [3] at the 8.2-m VLT YEPUN telescope. It combines frames in three infrared

  2. Introducing the Black Hole

    ERIC Educational Resources Information Center

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  3. Illuminating black holes

    NASA Astrophysics Data System (ADS)

    Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  4. SWIFT X-RAY TELESCOPE STUDY OF THE BLACK HOLE BINARY MAXI J1659–152: VARIABILITY FROM A TWO COMPONENT ACCRETION FLOW

    SciTech Connect

    Kalamkar, M.; Klis, M. van der; Heil, L.; Homan, J.

    2015-08-01

    We present an energy dependent X-ray variability study of the 2010 outburst of the black hole X-ray binary MAXI J1659–152 with the Swift X-ray Telescope (XRT). The broadband noise components and the quasi-periodic oscillations (QPO) observed in the power spectra show a strong and varied energy dependence. Combining Swift XRT data with data from the Rossi X-ray Timing Explorer, we report, for the first time, an rms spectrum (fractional rms amplitude as a function of energy) of these components in the 0.5–30 keV energy range. We find that the strength of the low-frequency component (<0.1 Hz) decreases with energy, contrary to the higher frequency components (>0.1 Hz) whose strengths increase with energy. In the context of the propagating fluctuations model for X-ray variability, we suggest that the low-frequency component originates in the accretion disk (which dominates emission below ∼2 keV) and the higher frequency components are formed in the hot flow (which dominates emission above ∼2 keV). As the properties of the QPO suggest that it may have a different driving mechanism, we investigate the Lense–Thirring precession of the hot flow as a candidate model. We also report on the QPO coherence evolution for the first time in the energy band below 2 keV. While there are strong indications that the QPO is less coherent at energies below 2 keV than above 2 keV, the coherence increases with intensity similar to what is observed at energies above 2 keV in other black hole X-ray binaries.

  5. Fe XXV and Fe XXVI Diagnostics of the Black Hole and Accretion Disk in Active Galaxies: Chandra Time-Resolved Spectroscopy of NGC 7314

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane

    2003-01-01

    We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.

  6. Charged Galileon black holes

    SciTech Connect

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar E-mail: christos.charmousis@th.u-psud.fr

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  7. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.

    1998-01-01

    Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.

  8. Newborn Black Holes

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  9. A Geometric Crescent Model for Black Hole Images

    NASA Astrophysics Data System (ADS)

    Kamruddin, Ayman Bin; Dexter, J.

    2013-01-01

    The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimeter wavelengths, is spatially resolving the immediate environment of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), have been interpreted in terms of unmotivated geometric models (e.g., a symmetric Gaussian) or detailed calculations involving accretion onto a black hole. The latter are subject to large systematic uncertainties. Motivated by relativistic effects around black holes, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A*, superior to the Gaussian. It also closely matches physically predicted models, bridging accretion theory and observation. Based on our results, we make predictions for future observations for the accessibility of the black hole shadow, direct evidence for a black hole event horizon.

  10. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brusa, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Luo, B.; Piconcelli, E.; Puccetti, S.; Ricci, C.; Saez, C.; Stern, D.; Walton, D. J.; Zhang, W. W.

    2016-05-01

    PG1247+267 is one of the most luminous known quasars at z ~ 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (Γ = 2.3 ± 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of ~100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  11. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  12. Janus black holes

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  13. Evolution of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Filloux, Charline; de Freitas Pacheco, J. A.; Durier, Fabrice; Silk, Joseph

    2010-05-01

    Cosmological simulations describing both the evolution of supermassive black holes and their host galaxies were performed by using the tree PM-SPH code GADGET-2 (Springel 2005). Physical mechanisms affecting the dynamics and the physical conditions of the gas (ionization and cooling processes, local heating by stars, injection of mechanical energy by supernovae, chemical enrichment) were introduced in the present version of the code (Filloux 2009). Black holes in a state of accretion (AGNs) also inject mechanical energy in the surrounding medium, contributing for quenching the star formation activity. In all simulations a ΛCDM cosmology was adopted (h = 0.7, ΩΛ=0.7, Ωm=0.3, Ωb=0.046 and σ8=0.9). Simulations were performed in a volume with a side of 50h-1 Mpc, starting at z = 50 and through the present time (z = 0). For low and intermediate resolution runs, the initial gas mass particles are respectively 5.35× 108 M⊙ and 3.09×108 M⊙. Black holes (BHs) are represented by collisionless particles and seeds of 100 M⊙ were introduced in density peaks at z = 15, growing either by accretion or coalescence. The accretion rate from the “disk mode” is based on a turbulent viscous thin disk model whereas in the “spherical mode” the rate is given by the Bondi-Hoyle formula. When accreting matter, jets, modeled by conical regions perpendicular to the disk plane, inject kinetic energy into the surrounding medium. Two models were tested: in the first, the injected energy rate is about 10% of the gravitational energy rate released in the accretion process while in the second, the injected energy rate is based on the Blandford & Znajek (1977) mechanism. All simulations give, at z = 0, similar black hole mass function but they overestimate slightly the BH density for masses above ~ 108 M⊙. The resulting BH density in this mass range is affected by feedback processes since they control the amount of gas available for accretion. The present simulations are not

  14. AN INTEGRATED MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS AND QUIESCENT SPECTRA FROM HOMOGENEOUS AND INHOMOGENEOUS BLACK HOLE ACCRETION CORONAE

    SciTech Connect

    Kroon, John J.; Becker, Peter A. E-mail: pbecker@gmu.edu

    2016-04-20

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.

  15. An Integrated Model for the Production of X-Ray Time Lags and Quiescent Spectra from Homogeneous and Inhomogeneous Black Hole Accretion Coronae

    NASA Astrophysics Data System (ADS)

    Kroon, John J.; Becker, Peter A.

    2016-04-01

    Many accreting black holes manifest time lags during outbursts, in which the hard Fourier component typically lags behind the soft component. Despite decades of observations of this phenomenon, the underlying physical explanation for the time lags has remained elusive, although there are suggestions that Compton reverberation plays an important role. However, the lack of analytical solutions has hindered the interpretation of the available data. In this paper, we investigate the generation of X-ray time lags in Compton scattering coronae using a new mathematical approach based on analysis of the Fourier-transformed transport equation. By solving this equation, we obtain the Fourier transform of the radiation Green’s function, which allows us to calculate the exact dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous coronal clouds. We use the new formalism to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. We show that our model can successfully reproduce both the observed time lags and the time-averaged (quiescent) X-ray spectra for Cyg X-1 and GX 339-04, using a single set of coronal parameters for each source. The time lags are the result of impulsive bremsstrahlung injection occurring near the outer edge of the corona, while the time-averaged spectra are the result of continual distributed injection of soft photons throughout the cloud.

  16. OT1_sserje01_1: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2010-07-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe.

  17. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  18. Merging Black Holes

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  19. Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole

    NASA Astrophysics Data System (ADS)

    Metzger, B. D.

    2012-01-01

    We construct one-dimensional steady-state models of accretion discs produced by the tidal disruption of a white dwarf (WD) by a neutron star (NS) or stellar mass black hole (BH). At radii r ≲ 108.5-109 cm the mid-plane density and temperature are sufficiently high to burn the initial WD material into increasingly heavier elements (e.g. Mg, Si, S, Ca, Fe and Ni) at sequentially smaller radii. When the energy released by nuclear reactions is comparable to that released gravitationally, we term the disc a nuclear-dominated accretion flow (NuDAF). At small radii ≲107 cm iron photodisintegrates into helium and then free nuclei, and in the very innermost disc cooling by neutrinos may be efficient. At the high accretion rates of relevance ˜10-4 to 0.1 M⊙ s-1, most of the disc is radiatively inefficient and prone to outflows powered by viscous dissipation and nuclear burning. Outflow properties are calculated by requiring that material in the mid-plane be marginally bound (Bernoulli constant ≲ 0), due (in part) to cooling by matter escaping the disc. For reasonable assumptions regarding the properties of disc winds, we show that a significant fraction (≳ 50-80 per cent) of the total WD mass is unbound. The composition of the ejecta is predominantly O, C, Si, Mg, Ne, Fe and S [He, C, Si, S, Ar and Fe], in the case of C-O [pure He] WDs, respectively, along with a small quantity ˜10-3 to 10-2 M⊙ of radioactive 56Ni and, potentially, a trace amount of hydrogen. Depending on the pressure dependence of wind cooling, we find that the disc may be thermally unstable to nuclear burning, the likelihood of which increases for higher mass WDs. We use our results to evaluate possible electromagnetic counterparts of WD-NS/BH mergers, including optical transients powered by the radioactive decay of 56Ni and radio transients powered by the interaction of the ejecta with the interstellar medium. We address whether recently discovered subluminous Type I supernovae result from

  20. Quasar Lifetimes and Black Hole Spins

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Hall, P. B.

    2007-12-01

    Wang et al. (2006) estimated a high average radiative efficiency of 30% to 35% for quasars (actively accreting black holes) at moderate redshift, strongly suggesting that all supermassive black holes are rotating very rapidly. Their method for determining radiative efficiencies has two advantages: it deals with changes in quantities rather than absolutes and it is independent of obscured sources. However, we have investigated the reliability of the assumptions made by Wang et al. and have found that their method is not independent of quasar lifetimes. Nonetheless, given constraints on quasar lifetimes, their method can be used to constrain quasar radiative efficiencies and black hole spins. Conversely, the range of radiative efficiencies possible for the full range of black hole spins can be used to constrain the average lifetimes of quasars (assuming that luminous quasars are not powered by radiatively inefficient accretion flows). We will present interrelated constraints on quasar lifetimes, Eddington ratios and radiative efficiencies (black hole spins) from a statistically complete sample of SDSS quasars with black hole mass estimates from Mg II. PBH and AR are supported in part by NSERC.

  1. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect

    Dehnen, Walter; King, Andrew E-mail: ark@astro.le.ac.uk

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  2. Discovery of a Three-Layered Atmospheric Structure in Accretion Disks around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang

    1999-01-01

    We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.

  3. SLIM DISKS AROUND KERR BLACK HOLES REVISITED

    SciTech Connect

    Sadowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  4. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  5. Noncommutative black hole thermodynamics

    SciTech Connect

    Banerjee, Rabin; Majhi, Bibhas Ranjan; Samanta, Saurav

    2008-06-15

    We give a general derivation, for any static spherically symmetric metric, of the relation T{sub h}=(K/2{pi}) connecting the black hole temperature (T{sub h}) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.

  6. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  7. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.

  8. Bringing Black Holes Home

    NASA Astrophysics Data System (ADS)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  9. Black Hole Paradoxes

    NASA Astrophysics Data System (ADS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-10-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals.

  10. Slowly balding black holes

    SciTech Connect

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-15

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N{sub B}=e{Phi}{sub {infinity}}/({pi}c({h_bar}/2{pi})), where {Phi}{sub {infinity}}{approx_equal}2{pi}{sup 2}B{sub NS}R{sub NS}{sup 3}/(P{sub NS}c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  11. Life Inside Black Holes

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav

    2013-11-01

    It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.

  12. Superfluid Black Holes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson

    2017-01-01

    We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  13. Superfluid Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  14. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.

  15. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  16. Euclidean black hole vortices

    NASA Technical Reports Server (NTRS)

    Dowker, Fay; Gregory, Ruth; Traschen, Jennie

    1991-01-01

    We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.

  17. Nonisolated dynamic black holes and white holes

    SciTech Connect

    McClure, M. L.; Anderson, Kaem; Bardahl, Kirk

    2008-05-15

    Modifying the Kerr-Schild transformation used to generate black and white hole spacetimes, new dynamic black and white holes are obtained using a time-dependent Kerr-Schild scalar field. Physical solutions are found for black holes that shrink with time and for white holes that expand with time. The black hole spacetimes are physical only in the vicinity of the black hole, with the physical region increasing in radius with time. The white hole spacetimes are physical throughout. Unlike the standard Schwarzschild solution the singularities are nonisolated, since the time dependence introduces a mass-energy distribution. The surfaces in the metrics where g{sub tt}=g{sup rr}=0 are dynamic, moving inward with time for the black holes and outward for the white holes, which leads to a question of whether these spacetimes truly have event horizons--a problem shared with Vaidya's cosmological black hole spacetimes. By finding a surface that shrinks or expands at the same rate as the null geodesics move, and within which null geodesics move inward or outward faster than the surfaces shrink or expand, respectively, it is verified that these do in fact behave like black and white holes.

  18. Aspects of hairy black holes

    SciTech Connect

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  19. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  20. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  1. Rotating black hole hair

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Kubizňák, David; Wills, Danielle

    2013-06-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that such a system displays much richer phenomenology than its static Schwarzschild or Reissner-Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is conical with respect to a local co-rotating frame, not with respect to the static frame at infinity.

  2. Octonionic black holes

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume

    2012-05-01

    Using algebraic tools inspired by the study of nilpotent orbits in simple Lie algebras, we obtain a large class of solutions describing interacting non-BPS black holes in {N} = 8 supergravity, which depend on 44 harmonic functions. For this purpose, we consider a truncation {E_{{{6}({6})}}}/S{p_{{c}}}( {8,{R}} ) subset {E_{{{8}({8})}}}/{{Spin}}_{{c}}^{ * }( {16} ) of the non-linear sigma model describing stationary solutions of the theory, which permits a reduction of algebraic computations to the multiplication of 27 by 27 matrices. The lift to {N} = 8 supergravity is then carried out without loss of information by using a pertinent representation of the moduli parametrizing E7(7)/SUc (8) in terms of complex valued Hermitian matrices over the split octonions, which generalise the projective coordinates of exceptional special K¨ahler manifolds. We extract the electromagnetic charges, mass and angular momenta of the solutions, and exhibit the duality invariance of the black holes distance separations. We discuss in particular a new type of interaction which appears when interacting non-BPS black holes are not aligned. Finally we will explain the possible generalisations toward the description of the most general stationary black hole solutions of {N} = 8 supergravity.

  3. Towards noncommutative quantum black holes

    SciTech Connect

    Lopez-Dominguez, J. C.; Obregon, O.; Sabido, M.; Ramirez, C.

    2006-10-15

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  4. Building a laboratory foundation for interpreting spectral emission from x-ray binary and black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume

    2016-10-01

    Emission from accretion powered objects accounts for a large fraction of all photons in the universe and is a powerful diagnostic for their behavior and structure. Quantitative interpretation of spectrum emission from these objects requires a spectral synthesis model for photoionized plasma, since the ionizing luminosity is so large that photon driven atomic processes dominate over collisions. This is a quandary because laboratory experiments capable of testing the spectral emission models are non-existent. The models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. We have used a decade of research at the Z facility to achieve the first simultaneous measurements of emission and absorption from photoionized plasmas. The extraordinary spectra are reproducible to within +/-2% and the E/dE 500 spectral resolution has enabled unprecedented tests of atomic structure calculations. The absorption spectra enable determination of plasma density, temperature, and charge state distribution. The emission spectra then enable tests of spectral emission models. The emission has been measured from plasmas with varying size to elucidate the radiation transport effects. This combination of measurements will provide strong constraints on models used in astrophysics. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  5. Black-hole astrophysics

    SciTech Connect

    Bender, P.; Bloom, E.; Cominsky, L.

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  6. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  7. OT2_sserje01_2: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2011-09-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe. In OT1 the HOTAC concluded "The science output from the proposed survey will be outstanding [...] The panel was convinced that these observations should be done" but it since became clear that priority 2 time is very unlikely to be executed, so we request reclassification to priority 1.

  8. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay Between Radiative Cooling, Star Formation, and Feedback Processes

    NASA Astrophysics Data System (ADS)

    Souza Lima, Rafael; Mayer, Lucio; Capelo, Pedro R.; Bellovary, Jillian M.

    2017-03-01

    We study the orbital decay of a pair of massive black holes (BHs) with masses 5× {10}5 and 107 {M}ȯ , using hydrodynamical simulations of circumnuclear disks (CNDs) with the alternating presence of sub-grid physics, such as radiative cooling, star formation, supernova feedback, BH accretion, and BH feedback. In the absence of such processes, the orbit of the secondary BH decays over timescales of ∼ 10 {Myr} to the center of the CND, where the primary BH resides. When strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds with densities in the range 104–107 amu cm‑3 occurs, causing stochastic torques and hits that can eject the secondary BH from the midplane. Outside the plane, the low-density medium provides only weak drag, and the BH return is governed by inefficient dynamical friction. In rare cases, clump–BH interactions can lead to a faster decay. Feedback processes lead to outflows, but do not significantly change the overall density of the CND midplane. However, with a spherically distributed BH feedback, a hot bubble is generated behind the secondary, which almost shuts off dynamical friction. We dub this phenomenon “wake evacuation.” It leads to delays in the decay, possibly of ∼ 0.3 {Gyr}. We discuss the non-trivial implications on the discovery space of the eLISA telescope. Our results suggest that the largest uncertainty in predicting BH merger rates lies in the potentially wide variety of galaxy host systems, with different degrees of gas dissipation and heating, yielding decay timescales from ∼ 10 to ∼ 300 {Myr}.

  9. Models of Dilute Relativistic Plasmas Around Black Holes

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot

    2016-10-01

    In some regimes, mass flowing onto a central black hole can become sufficiently hot and low density that the collisional mean free path is appreciable compared to the size of the system. I describe new analytical and numerical models of these relativistically hot low collisionality plasmas around black holes. I also describe the application of these models to interpreting observations of the accreting black holes being observed by the Event Horizon Telescope.

  10. The physical fundamental plane of black hole activity: revisited

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Han, Zhenhua; Zhang, Zhen

    2016-01-01

    The correlation between the jet power and accretion disk luminosity is investigated for active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs) from the literature. The power-law correlation index is steep (μ˜1.0 -1.4) for radio loud quasars and the `outliers' of BHXBs, and it is flatter (μ˜ 0.3 -0.6) for radio loud galaxies and the standard BHXBs. The steep-index groups are mostly at higher accretion rates (peaked at Eddington ratio > 0.01) and the flatter-index groups are at relatively low accretion rates (peaked at Eddington ratio < 0.01), implying that the former groups could be dominated by the inner disk accretion of black hole, while the jet in latter groups would be a hybrid production of the accretion and black hole spin. We could still have a fundamental plane of black hole activity for the BHXBs and AGNs with diverse (maybe two kinds of) correlation indices. It is noted that the fundamental plane of black hole activity should be referred to the correlation between the jet power and disk luminosity or equivalently to the correlation between jet power, Eddington ratio and black hole mass, rather than the jet power, disk luminosity and black hole mass.

  11. Grumblings from an Awakening Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404

  12. Black Holes in String Theory

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; El-Showk, Sheer; Vercnocke, Bert

    These lectures notes provide a fast-track introduction to modern developments in black hole physics within string theory, including microscopic computations of the black hole entropy as well as construction and quantization of microstates using supergravity. These notes are largely self-contained and should be accessible to students at an early PhD or Masters level. Topics covered include the black holes in supergravity, D-branes, Strominger-Vafa's computation of the black hole entropy via D-branes, AdS-CFT and its applications to black hole phyisics, multicenter solutions, and the geometric quantization of the latter.

  13. Magnonic Black Holes.

    PubMed

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  14. Magnonic Black Holes

    NASA Astrophysics Data System (ADS)

    Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.

    2017-02-01

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  15. Prisons of light : black holes

    NASA Astrophysics Data System (ADS)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  16. Black Holes and Firewalls

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  17. Hyperaccreting black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Volonteri, Marta

    2017-01-01

    The rate at which matter flows into a galactic nucleus during early phases of galaxy evolution can sometimes exceed the Eddington limit of the growing central black hole by several orders of magnitude. We discuss the necessary conditions for the black hole to actually accrete this matter at such a high rate, and consider the observational appearance and detectability of a hyperaccreting black hole. In order to be accreted at a hyper-Eddington rate, the infalling gas must have a sufficiently low angular momentum. Although most of the gas is accreted, a significant fraction accumulates in an optically thick envelope with luminosity ˜LEdd, probably pierced by jets of much higher power. If dot{M} > 10^3 dot{M}_Edd, the envelope spectrum resembles a blackbody with a temperature of a few thousand kelvin, but for lower (but still hyper-Eddington) accretion rates the spectrum becomes a very dilute and hard Wien spectrum. We consider the likelihood of various regimes of hyperaccretion, and discuss its possible observational signatures.

  18. Perspectives: Black Holes

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.

  19. Black Hole Mass Determination Using X-ray Data

    NASA Astrophysics Data System (ADS)

    Jang, Insuk

    Supermassive black holes are located at the center of basically every galaxy and their mass appears to be tightly correlated with several galaxy properties, suggesting that black hole and galaxy growths are linked together. Determining the mass of black holes provides crucial information on the galaxy evolution and indeed significant progress has been achieved thanks to optically-based methods. However, since these methods are limited by several factors including absorption and galaxy contamination, it is important to develop and test alternative methods that use different energy bands to constrain the black hole mass. In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for stellar mass black holes, can be reliably extended to estimate the mass of highly-accreting supermassive black holes. Here we investigate the limits of applicability of this method to low-accreting black holes, using a control sample of low-luminosity active galactic nuclei with good-quality X-ray data and with dynamically measured black hole masses. We find the threshold value of the accretion rate for which the X-ray scaling method can still be used. Below this threshold, we provide a simple recipe to constrain the black hole mass based on the inverse correlation between X-ray spectral properties and accretion rate, which was found in several low-accreting black holes and confirmed by our sample. Then, we extend the X-ray scaling method to ultraluminous X-ray sources (ULXs), which are off-nuclear, point-like X-ray sources, whose nature is still debated. Their high X-ray brightness can be equally well explained by stellar mass black holes accreting at extreme rates or by intermediate mass black holes accreting at regular rates, therefore, constraining their mass may shed light on one of the outstanding questions of high energy astrophysics. Currently, no direct optically-based methods can dynamically determine the mass of ULXs, making X-ray methods the only

  20. Astrophysical flows near [Formula: see text] gravity black holes.

    PubMed

    Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f(T) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f(T) and f(R) gravity.

  1. Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Horowitz, Gary T.

    2012-04-01

    List of contributors; Preface; Part I. Introduction: 1. Black holes in four dimensions Gary Horowitz; Part II. Five Dimensional Kaluza-Klein Theory: 2. The Gregory-Laflamme instability Ruth Gregory; 3. Final state of Gregory-Laflamme instability Luis Lehner and Frans Pretorius; 4. General black holes in Kaluza-Klein theory Gary Horowitz and Toby Wiseman; Part III. Higher Dimensional Solutions: 5. Myers-Perry black holes Rob Myers; 6. Black rings Roberto Emparan and Harvey Reall; Part IV. General Properties: 7. Constraints on the topology of higher dimensional black holes Greg Galloway; 8. Blackfolds Roberto Emparan; 9. Algebraically special solutions in higher dimensions Harvey Reall; 10. Numerical construction of static and stationary black holes Toby Wiseman; Part V. Advanced Topics: 11. Black holes and branes in supergravity Don Marolf; 12. The gauge/gravity duality Juan Maldacena; 13. The fluid/gravity correspondence Veronika Hubeny, Mukund Rangamani and Shiraz Minwalla; 14. Horizons, holography and condensed matter Sean Hartnoll; Index.

  2. Possible evolution of supermassive black holes from FRI quasars

    NASA Astrophysics Data System (ADS)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  3. Cosmic microwave background radiation of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  4. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  5. Formation and Evolution of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Combes, F.

    The correlation between the mass of supermassive black holes in galaxy nuclei and the mass of the galaxy spheroids or bulges (or more precisely their central velocity dispersion), suggests a common formation scenario for galaxies and their central black holes. The growth of bulges and black holes can commonly proceed through external gas accretion or hierarchical mergers, and are both related to starbursts. Internal dynamical processes control and regulate the rate of mass accretion. Self-regulation and feedback are key to the correlation. It is possible that the growth of one component, either BH or bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1 objects. The formation of supermassive black holes can begin early in the Universe, from the collapse of Population III stars, and then through gas accretion. The active black holes can then play a significant role in the re-ionization of the Universe. The nuclear activity is now frequently invoked as a feedback to star formation in galaxies, and even more spectacularly in cooling flows. The growth of SMBH is certainly self-regulated there. SMBHs perturb their local environment, and the mergers of binary SMBHs help to heat and destroy central stellar cusps. The interpretation of the X-ray background yields important constraints on the history of AGN activity and obscuration, and the census of AGN at low and at high redshifts reveals the downsizing effect, already observed for star formation. History appears quite different for bright QSO and low-luminosity AGN: the first grow rapidly at high z, and their number density decreases then sharply, while the density of low-luminosity objects peaks more recently, and then decreases smoothly.

  6. Black hole evolution - I. Supernova-regulated black hole growth

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Volonteri, Marta; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2015-09-01

    The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, and also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 1012 M⊙ halo at z = 2, which is the progenitor of a group of galaxies at z = 0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z > 3.5, efficient feedback from SNe forbids the formation of a settled disc as well as the accumulation of dense cold gas in the vicinity of the BH and starves the central compact object. As the galaxy and its halo accumulate mass, they become able to confine the nuclear inflows provided by major mergers and the BH grows at a sustained near-to-Eddington accretion rate. We argue that this mechanism should be ubiquitous amongst low-mass galaxies, corresponding to galaxies with a stellar mass below ≲ 109 M⊙ in our simulations.

  7. Cosmic Microwave Background Radiation of Black Hole Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2009-05-01

    Recently, the author has proposed an alternative cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient materials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe. When a hot and dense star-like black hole accretes its ambient matter and radiation or merges with other black holes, it expands and cools down. In terms of the Planck law of the black body radiation, a possible thermal history of the black hole universe is obtained. The result shows that the temperature of the present universe can be 3 K as observed if the universe originated from a hot star-like black hole. The initial properties (e.g., temperature, angular momentum, etc.) of the star-like black hole are not critical to the present universe, because most matter and radiation are from the mother universe. Therefore, the black hole universe model is also consistent with the observation of the cosmic microwave background radiation.

  8. Making Supermassive Black Holes Spin

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Where does the angular momentum come from that causes supermassive black holes (SMBHs) to spin on their axes and launch powerful jets? A new study of nearby SMBHs may help to answer this question.High-mass SMBHs are thought to form when two galaxies collide and the SMBHs at their centers merge. [NASA/Hubble Heritage Team (STScI)]High- vs. Low-Mass MonstersObservational evidence suggests a dichotomy between low-mass SMBHs (those with 106-7 M) and high-mass ones (those with 108-10 M). High-mass SMBHs are thought to form via the merger of two smaller black holes, and the final black hole is likely spun up by the rotational dynamics of the merger. But what spins up low-mass SMBHs, which are thought to build up very gradually via accretion?A team of scientists led by Jing Wang (National Astronomical Observatories, Chinese Academy of Sciences) have attempted to address this puzzle by examining the properties of the galaxies hosting low-mass SMBHs.A Sample of Neighboring SMBHsWang and collaborators began by constructing a sample of radio-selected nearby Seyfert 2 galaxies: those galaxies in which the stellar population and morphology of the host galaxy are visible to us, instead of being overwhelmed by continuum emission from the galaxys active nucleus.An example of a galaxy with a concentrated, classical bulge (M87; top) and a one with a disk-like pseudo bulge (Triangulum Galaxy; bottom). The authors find that for galaxies hosting low-mass SMBHs, those with more disk-like bulges appear to have more powerful radio jets. [Top: NASA/Hubble Heritage Team (STScI), Bottom: Hewholooks]From this sample, the authors then selected 31 galaxies that have low-mass SMBHs at their centers, as measured using the surrounding stellar dynamics. Wang and collaborators cataloged radio information revealing properties of the powerful jets launched by the SMBHs, and they analyzed the host galaxies properties by modeling their brightness profiles.Spin-Up From Accreting GasBy examining this

  9. BLACK HOLE-GALAXY CORRELATIONS WITHOUT SELF-REGULATION

    SciTech Connect

    Angles-Alcazar, Daniel; Oezel, Feryal; Dave, Romeel

    2013-06-10

    Recent models of black hole growth in a cosmological context have forwarded a paradigm in which the growth is self-regulated by feedback from the black hole itself. Here we use cosmological zoom simulations of galaxy formation down to z = 2 to show that such strong self-regulation is required in the popular spherical Bondi accretion model, but that a plausible alternative model in which black hole growth is limited by galaxy-scale torques does not require self-regulation. Instead, this torque-limited accretion model yields black holes and galaxies evolving on average along the observed scaling relations by relying only on a fixed, 5% mass retention rate onto the black hole from the radius at which the accretion flow is fed. Feedback from the black hole may (and likely does) occur, but does not need to couple to galaxy-scale gas in order to regulate black hole growth. We show that this result is insensitive to variations in the initial black hole mass, stellar feedback, or other implementation details. The torque-limited model allows for high accretion rates at very early epochs (unlike the Bondi case), which if viable can help explain the rapid early growth of black holes, while by z {approx} 2 it yields Eddington factors of {approx}1%-10%. This model also yields a less direct correspondence between major merger events and rapid phases of black hole growth. Instead, growth is more closely tied to cosmological disk feeding, which may help explain observational studies showing that, at least at z {approx}> 1, active galaxies do not preferentially show merger signatures.

  10. Menus for Feeding Black Holes

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Loeb, Abraham

    2014-09-01

    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.

  11. Scale-invariant radio jets and varying black hole spin

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, M.; Falcke, H.; Noble, S.

    2016-11-01

    Context. Compact radio cores associated with relativistic jets are often observed in both active galactic nuclei and X-ray binaries. Their radiative properties follow some general scaling laws that primarily depend on their masses and accretion rates. However, it has been suggested that black hole spin can also strongly influence the power and radio flux of these. Aims: We attempt to estimate the dependency of the radio luminosity of steady jets launched by accretion disks on black hole mass, accretion rate, and spin using numerical simulations. Methods: We make use of three-dimensional general relativistic magnetohydrodynamical simulations of accretion disks around low-luminosity black holes in which the jet radio emission is produced by the jet sheath. Results: We find that the radio flux increases roughly by a factor of 6 as the black hole spin increases from a∗ ≈ 0 to a∗ = 0.98. This is comparable to the increase in accretion power with spin, meaning that the ratio between radio jet and accretion power hardly changes. Although our jet spine power scales as expected for the Blandford-Znajek process, the dependency of jet radio luminosity on the black hole spin is somewhat weaker. Also weakly rotating black holes can produce visible radio jets. The overall scaling of the radio emission with black hole mass and accretion rate is consistent with the scale-invariant analytical models used to explain the fundamental plane of black hole activity. Spin does not introduce a significant scatter in this model. Conclusions: The jet-sheath model can describe well-resolved accreting systems, such as Sgr A* and M 87, as well as the general scaling behavior of low-luminosity black holes. Hence the model should be applicable to a wide range of radio jets in sub-Eddington black holes. The black hole spin has an effect on the production of visible radio jet, but it may not be the main driver to produce visible radio jets. An extension of our findings to powerful quasars

  12. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  13. Black holes and the multiverse

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  14. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  15. How black holes saved relativity

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  16. Finding Free-Floating Black Holes using Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.; Ofek, Eran Oded; Sinukoff, Evan; Udalski, Andrzej; Kozlowski, Szymon

    2017-01-01

    Our Galaxy most likely hosts 10-100 million stellar mass black holes. The exact number and mass function of these black holes contains important information regarding our Galaxy's star formation history, stellar mass function, and the fate of very massive stars. However, isolated stellar black holes have yet to be detected. To date, stellar mass black holes have only been definitively detected in binary systems with accreting companions or merging to produce gravitational waves. In principle, the presence of isolated black holes can be inferred from astrometric and photometric signatures produced when they lens light from a background star. We attempt to detect the astrometric lensing signatures of several photometrically identified microlensing events, toward the Galactic Bulge. Long-duration events (t_Einstein > 100 days) were selected as the most likely black hole candidates and were observed using several years of laser-guided adaptive optics observations from the W. M. Keck telescopes. We present results from this search.

  17. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  18. Can emission line profiles from perturbed accretion disks mimic those from the broad line region of a black hole in a supermassive binary?

    NASA Astrophysics Data System (ADS)

    Brown, Stephanie Meghan; Eracleous, Michael; Runnoe, Jessie C.; Bogdanovic, Tamara; Sigurdsson, Steinn; Boroson, Todd A.; Halpern, Jules P.

    2016-01-01

    Both observations and simulations from the last decade suggest a link between the evolution of galaxies and their central supermassive black holes. An important ingredient in these evolutionary models is galactic interaction and mergers. Consequently, we expect to see dual active galactic nuclei at the early stages of an interaction and close, bound binary black holes after the parent galaxies have merged. While binary active galactic nuclei have been detected at large separations, it has proven difficult to detect close, bound binaries. Our team has been carrying out an observing campaign to find binary black holes with sub-parsec separations. Thus, we have been studying a sample of 88 quasars from the Sloan Digital Sky Survey whose broad Hβ lines are offset from their nominal wavelength by a few thousand km/s. These offsets suggest orbital motion of one of the black holes and the gas that is bound to it. In this work, we play devil's advocate by exploring an alternative interpretation of the broad emission lines. We ask whether lines formed in a perturbed, non-axisymmetric disks can have profiles similar to those observed. Two categories of non-axisymmetric disks are explored - one with a prominent spiral arm and one that is elliptical. To make the model as general as possible, the radial emissivity of the disk was allowed to have a broken power-law profile. For certain combinations of model parameters, these models can match the observed profile shapes. A subset of these model parameters can mimic the sinusoidal procession of the peak velocity we would expect to see in a binary system on an observable time scale. However, the predominate, observed statistical trend between the Pearson Skewness and the peak position is not reproduced; instead, other trends are predicted by the models that we do not observe.

  19. Nucleosynthesis in the neighborhood of a black hole

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Sandip K.

    1986-01-01

    The preliminary results from simulations of nucleosynthesis inside a thick accretion disk around a black hole are discussed as a function of the accretion rate, the viscosity parameter, and the mass of the black hole. Results for the Bondi accretion case are also presented. Taking the case of a 10-solar mass and a 10 to the 6th-solar mass central Schwarzschild hole, detailed evolution of a representative element of matter as it accretes into the hole is presented in the case when the initial abundance (at the outer edge of the disk) is the same as the solar abundance. It is suggested that such studies may eventually shed light on the composition of the outgoing jets observed in the active galaxies and SS433.

  20. Black hole based tests of general relativity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Stein, Leo C.

    2016-03-01

    General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the Universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some important characteristics of general relativity include (but are not limited to) (i) only tensor gravitational degrees of freedom, (ii) the graviton is massless, (iii) no quadratic or higher curvatures in the action, and (iv) the theory is four-dimensional. Altering a characteristic leads to a different extension of general relativity: (i) scalar-tensor theories, (ii) massive gravity theories, (iii) quadratic gravity, and (iv) theories with large extra dimensions. Within each theory, we describe black hole solutions, their properties, and current and projected constraints on each theory using black hole based tests of gravity. We close this review by listing some of the open problems in model-independent tests and within each specific theory.

  1. General Relativistic Radiative Transfer: Applications to Black-Hole Systems

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan

    2007-01-01

    We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.

  2. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  3. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-07

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  4. Measuring the Spin of the Galactic Center Black Hole

    NASA Astrophysics Data System (ADS)

    Steeger, Jeremy; Dolence, J. C.; Doeleman, S. S.; Fish, V. L.; Gammie, C. F.; Noble, S. C.; Shiokawa, H.; Rogers, A. E. E.

    2011-05-01

    The Event Horizon Telescope (EHT) is an array of millimeter-wavelength telescopes that participate in very long baseline interferometry (VLBI) observations of supermassive black holes at extremely high angular resolution. For the Galactic Center black hole Sgr A*, the resolution of the EHT is a few Schwarzschild radii, sufficient to probe the inner accretion flow. Since the orbital period of material at the innermost stable circular orbit (ISCO) is a strong function of the spin of the black hole, measuring periodicity in the accretion flow provides a lower limit on the black hole spin. Recent general relativistic magnetohydrodynamic models (GRMHD) of the accretion flow are capable of qualitatively reproducing the variability in flux density seen at millimeter wavelengths. These models exhibit significant variability on scales near the ISCO. We examine prospects for detection of (quasi-)periodicity in the millimeter VLBI signatures of GRMHD models given expected performance parameters of the EHT. These simulations inform the feasibility of measuring the spin of the black hole in Sgr A* assuming a realistic model of the accretion flow around the black hole. This work is funded by grants from the National Science Foundation.

  5. Black-Hole Feedback in Quasars

    NASA Video Gallery

    This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...

  6. Resolving flows around black holes: numerical technique and applications

    NASA Astrophysics Data System (ADS)

    Curtis, Michael; Sijacki, Debora

    2015-12-01

    Black holes are believed to be one of the key ingredients of galaxy formation models, but it has been notoriously challenging to simulate them due to the very complex physics and large dynamical range of spatial scales involved. Here we address a significant shortcoming of a Bondi-Hoyle-like prescription commonly invoked to estimate black hole accretion in cosmological hydrodynamic simulations of galaxy formation, namely that the Bondi-Hoyle radius is frequently unresolved. We describe and implement a novel super-Lagrangian refinement scheme to increase, adaptively and `on the fly', the mass and spatial resolution in targeted regions around the accreting black holes at limited computational cost. While our refinement scheme is generically applicable and flexible, for the purpose of this paper we select the smallest resolvable scales to match black holes' instantaneous Bondi radii, thus effectively resolving Bondi-Hoyle-like accretion in full galaxy formation simulations. This permits us to not only estimate gas properties close to the Bondi radius much more accurately, but also allows us to improve black hole accretion and feedback implementations. We thus devise a more generic feedback model where accretion and feedback depend on the geometry of the local gas distribution and where mass, energy and momentum loading are followed simultaneously. We present a series of tests of our refinement and feedback methods and apply them to models of isolated disc galaxies. Our simulations demonstrate that resolving gas properties in the vicinity of black holes is necessary to follow black hole accretion and feedback with a higher level of realism and that doing so allows us to incorporate important physical processes so far neglected in cosmological simulations.

  7. Prisons of Light - Black Holes

    NASA Astrophysics Data System (ADS)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  8. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  9. String-Corrected Black Holes

    SciTech Connect

    Hubeny, Veronika; Maloney, Alexander; Rangamani, Mukund

    2005-02-07

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.

  10. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  11. Black hole final state conspiracies

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of “conspiracies” between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required “conspiracies” if real black holes are described by some kind of sum over all AdS black holes having the same entropy.

  12. Pair production close to black hole horizon

    NASA Astrophysics Data System (ADS)

    Laurent, Philippe; Titarchuk, Lev

    2012-07-01

    Accreting stellar-mass black holes in Galactic binaries exhibit a ``bi-modal" spectral behavior - namely the so called high-soft and low-hard spectral states. An increase in the soft blackbody luminosity component leads to the appearance of an extended power law. An important observational fact is that this effect is seen as a persistent phenomenon only in BH candidates, and thus it is apparently a unique black hole signature. Although similar power law components are detected in the intermediate stages in neutron star systems, they are of a transient nature, i.e. disappearing with increasing luminosity. It thus seems a reasonable assumption that the unique spectral signature of the soft state of BH binaries is directly tied to the black hole event horizon. This is the primary motivation for the Bulk Motion Comptonization Model, introduced in several previous papers, and recently applied with striking success to a substantial body of observational data. We argued that the BH X-ray spectrum in the high-soft state is formed in the relatively cold accretion flow with a subrelativistic bulk velocity close to c and a temperature of a few keV. In such a flow the effect of the bulk Comptonization is indeed much stronger than the effect of the thermal ones. Another property of these accreted flow, that we will explore during this talk, is that, very close to horizon, X-ray photons may be upscattered by bulk electrons to MeV energy. Most of these photons fall down then in the black hole, but some of them anyway have time to interact with another X-ray photon by the photon-photon process to make an electron-positron pairs. We will then explore in details the consequences of this pair creation process close to horizon and what can be the observational evidences of this effect.

  13. Hidden Structures of Black Holes

    NASA Astrophysics Data System (ADS)

    Vercnocke, Bert

    2010-11-01

    This thesis investigates two main topics concerning black holes in extensions of general relativity inspired by string theory. First, the structure of the equations of motion underlying black hole solutions is considered, in theories of D-dimensional gravity coupled to scalars and vectors. For solutions preserving supersymmetry, the equations of motion have a dramatic simplification: they become first-order instead of the second-order equations one would expect. Recently, it was found that this is a feature some non-supersymmetric black hole solutions exhibit as well. We investigate if this holds more generally, by examining what the conditions are to have first-order equations for the scalar fields of non-supersymmetric black holes, that mimic the form of their supersymmetric counterparts. This is illustrated in examples. Second, the structure of black holes themselves is investigated. String theory has been successful in explaining the Bekenstein-Hawking entropy for (mainly supersymmetric) black holes from a microscopic perspective. However, it is not fully established what the interpretation of the corresponding 'microstates' should be in the gravitational description where the black hole picture is valid. There have been recent advances to understand the nature of black hole microstates in the gravity regime, such as the fuzzball proposal. A related idea says that black hole configurations with multiple centers are related to microstates of single-centered black holes. We report on work relating both pictures. As an aside, a relation between violations of causality for certain spacetimes (presence of closed timelike curves in the geometry) and a breakdown of unitarity in the dual conformal field theory is given.

  14. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  15. Dance of Two Monster Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This past December, researchers all over the world watched an outburst from the enormous black hole in OJ 287 an outburst that had been predicted years ago using the general theory of relativity.Outbursts from Black-Hole OrbitsOJ 287 is one of the largest supermassive black holes known, weighing in at 18 billion solar masses. Located about 3.5 billion light-years away, this monster quasar is bright enough that it was first observed as early as the 1890s. What makes OJ 287 especially interesting, however, is that its light curve exhibits prominent outbursts roughly every 12 years.Diagram illustrating the orbit of the secondary black hole (shown in blue) in OJ 287 from 2000 to 2023. We see outbursts (the yellow bubbles) every time the secondary black hole crosses the accretion disk (shown in red, ina side view) surrounding the primary (the black circle). [Valtonen et al. 2016]What causes the outbursts? Astronomers think that there is a second supermassive black hole, ~100 times smaller, inspiraling as it orbits the central monster and set to merge within the next 10,000 years. In this model, the primary black hole of OJ 287 is surrounded by a hot accretion disk. As the secondary black hole orbits the primary, it regularly punches through this accretion disk, heating the material and causing the release of expanding bubbles of hot gas pulled from the disk. This gas then radiates thermally, causing the outbursts we see.Attempts to model this scenario using Newtonian orbits all fail; the timing of the secondary black holes crossings through the accretion disk (as measured by when we see the outbursts) can only be explained by a model incorporating general-relativistic effects on the orbit. Careful observations and precise timing of these outbursts therefore provide an excellent test of general relativity.Watching a Predicted CrossingThe model of OJ 287 predicted another disk crossing in December 2015, so professional and amateur astronomers around the world readied more

  16. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    NASA Astrophysics Data System (ADS)

    2007-01-01

    centres of galaxies. It is perhaps possible for a stellar-mass black hole to gain enough mass through merging with other stellar-mass black holes or accreting star gas to stay locked in a cluster. About 100 solar masses would do. Once entrenched, the black hole has the opportunity to merge with other black holes or accrete gas from a local neighbourhood rife with star-stuff. In this way, they could grow into IMBHs. "If a black hole is massive enough, there's a good chance it can survive the pressures of living in a globular cluster, since it will be too heavy to be kicked out," said Arunav Kundu of Michigan State University, a co-author on the Nature report. "That's what is intriguing about this discovery. We may be seeing how a black hole can grow considerably, become more entrenched in the cluster, and then grow some more. "On the other hand," continued Kundu, "there are a variety of ways to make ULXs without requiring intermediate mass black holes. In particular, if the light goes out in a different direction than the one from which the gas comes in, it doesn't put any force on the gas. Also, if the light can be 'focused' towards us by reflecting off the gas in the same way that light from a flashlight bulb bounces off the little mirror in the flashlight, making the object appear brighter than it really is." Ongoing work will help to determine whether this object is a stellar-mass black hole showing an unusual manner of sucking in gas, allowing it to be extra bright, or an IMBH. The team, which also includes Steve Zepf from Michigan State University, and Katherine Rhode from Wesleyan University, has data for thousands of other globular clusters, which they are now analyzing in an effort to determine just how common this phenomenon is. Note for editors The findings appear on line in the 4 January issue of the journal Nature, in the article titled: "A black hole in a globular cluster", by Thomas J. Maccarone, Arunav Kundu, Stephen E. Zepf and Katherine L. Rhode.

  17. Regular phantom black holes.

    PubMed

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  18. The accretion disk and ionized absorber of the 9.7 hr dipping black hole binary MAXI J1305–704

    SciTech Connect

    Shidatsu, M.; Ueda, Y.; Hori, T.; Yoshikawa, T.; Nakahira, S.; Matsuoka, M.; Done, C.; Morihana, K.; Sugizaki, M.; Mihara, T.; Serino, M.; Negoro, H.; Kawai, N.; Yamaoka, K.; Ebisawa, K.; Nagayama, T.; Matsunaga, N.

    2013-12-10

    We report the results from X-ray studies of the newly discovered black hole candidate MAXI J1305–704 based on Suzaku and Swift observations in the low/hard and high/soft states, respectively. The long Suzaku observation shows two types of clear absorption dips, both of which recur on a dip interval of 9.74 ± 0.04 hr, which we identify with the orbital period. There is also partially ionized absorption in the nondip (persistent) emission in both the high/soft state and, very unusually, the low/hard state. However, this absorption (in both states) has substantially lower ionization than that seen in other high inclination systems, where the material forms a homogeneous disk wind. Here instead the absorption is most likely associated with clumpy, compact structures associated with the dipping material, which we see uniquely in this source likely because we view it at a very large inclination angle. A large inclination angle is also favored, together with a low black hole mass, to explain the high disk temperature seen in the fairly low luminosity high/soft state, as Doppler boosting enhances the disk temperature at high inclination. The disk radius inferred from these data is significantly smaller than that of the soft component seen in the low/hard state, supporting models where the disk is truncated at low luminosities. We find, however, that the lack of variability power on timescales of ∼50 s in the Suzaku low/hard state data is difficult to explain, even with a low-mass black hole.

  19. Dynamical Evolution of Rotating Globular Clusters with Embedded Black Holes

    NASA Astrophysics Data System (ADS)

    Fiestas, J.; Porth, O.; Spurzem, R.

    2008-05-01

    Evolution of self-gravitating rotating dense stellar systems (e.g. globular clusters) with embedded black holes is investigated. The interplay between velocity diffusion due to relaxation and black hole star accretion is followed together with cluster differential rotation using 2D+1 Fokker Planck numerical methods. The models can reproduce the Bahcall-Wolf f E1/4 ( r-7/4) cusp inside the zone of influence of the black hole. Angular momentum transport and star accretion processes support the development of central rotation in relaxation time scales, before re-expansion and cluster dissolution due to mass loss in the tidal field of a parent galaxy. Gravogyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to models without black hole.

  20. More Hidden Black Hole Dangers

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Black holes such as GRO J1655-40 form from collapsed stars. When stars at least eight times more massive than our Sun exhaust their fuel supply, they no longer have the energy to support their tremendous bulk. These stars explode as supernovae, blasting their outer envelopes into space. If the core is more than three times the mass of the Sun, it will collapse into a singularity, a single point of infinite density.Although light cannot escape black holes, astronomers can see black holes by virtue of the hot, glowing gas often stolen from a neighboring star that orbits these objects. From our vantage point, the light seems to flicker. The Rossi Explorer has recorded this flickering (called quasiperiodic oscillations, or QPOs) around many black holes. QPOs are produced by gas very near the innermost stable orbit the closest orbit a blob of gas can maintain before falling pell-mell into the black hole. As gas whips around the black hole at near light speed, gravity pulls the gas in one direction, then another, adding to the flickering. The QPO is related to the speed and size of this orbit and the mass of the black hole.

  1. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  2. Supermassive Black Hole Mimics Smaller Cousins

    NASA Astrophysics Data System (ADS)

    2002-06-01

    shooting away perpendicularly from the plane of a black hole's accretion disk, moving at 98 percent of the speed of light. In microquasars, radio-emitting features become visible in a jet shortly after X rays from the accretion disk get dimmer -- as if the accretion disk suddenly flushes into the black hole and disappears, fueling the jet. These radio "blobs" then appear to move at faster-than- light speeds, an illusion caused by their ultra-high speeds and their orientation with respect to Earth. Now the team of scientists sees this same phenomenon in 3C120. Roughly every ten months, the X-ray-emitting accretion disk around its supermassive black hole becomes suddenly dim, and a month later the telltale bright spot of radio emission appears in the jet. Over a three-year period, the team observed a series of radio blobs floating along the particle jet like smoke puffs, each time following a dip in the brightness of X rays from the accretion disk. "What we are likely seeing is the inner part of the accretion disk becoming unstable and suddenly plunging into the black hole," said Marscher. "We detect a 'dip' in the X-ray flux as the hot gas in the disk disappears after it passes the event horizon. The remainder of the disk is channeled into the jets, which we see as a knot of radio emission bubbling away from the black hole. Slowly the accretion disk fills with more interstellar gas until about ten months later, when something disturbs the accretion disk orbit, and the whole thing flushes and blows again." Joining Marscher on this observation and analysis are Svetlana Jorstad of Boston University; Jose-Luis Gomez of the Astrophysical Institute of Andalucia in Granada, Spain; Margo Aller of the University of Michigan; Harri Terasranta of the Helsinki University of Technology; Matthew Lister of NRAO; and Alastair Stirling of the University of Central Lancashire, England. The VLBA is a continent-wide radio-telescope system, with one telescope on Hawaii, another on St. Croix in

  3. Can mixed star-plus-wormhole systems mimic black holes?

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2016-08-01

    We consider mixed strongly gravitating configurations consisting of a wormhole threaded by two types of ordinary matter. For such systems, the possibility of obtaining static spherically symmetric solutions describing compact massive central objects enclosed by high-redshift surfaces (black-hole-like configurations) is studied. Using the standard thin accretion disk model, we exhibit potentially observable differences allowing to distinguish the mixed systems from ordinary black holes with the same masses.

  4. Do massive black holes reside in elliptical galaxies?

    NASA Technical Reports Server (NTRS)

    Fabian, A. C.; Canizares, C. R.

    1988-01-01

    The accretion by a central black hole of the hot interstellar medium in an elliptical galaxy is investigated, and the minimum expected luminosity and manner of its emission is estimated. It is not obviously detected at any wavelength. The problem of 'starving the monster', if indeed there is a monster, is raised. The simplest conclusion from the evidence is that most bright elliptical galaxies do not contain massive black holes.

  5. Emergent flux from particle collisions near a Kerr black hole

    SciTech Connect

    Banados, Maximo; Hassanain, Babiker; Silk, Joseph; West, Stephen M.

    2011-01-15

    The escape fraction at infinity is evaluated for massless particles produced in collisions of weakly interacting particles accreted into a density spike near the particle horizon of an extremal Kerr black hole, for the case of equatorial orbits. We compare with the Schwarzschild case, and argue that in the case of extremal black holes, redshifted signatures can be produced that could potentially explore the physics of particle collisions at center of mass energies that extend beyond those of any feasible terrestrial accelerator.

  6. Black holes and Higgs stability

    SciTech Connect

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  7. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  8. Gravitational polarizability of black holes

    SciTech Connect

    Damour, Thibault; Lecian, Orchidea Maria

    2009-08-15

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  9. On regular rotating black holes

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.

    2017-01-01

    Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.

  10. Rotating regular black hole solution

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    Based on the Newman-Janis algorithm, the Ayón-Beato-García spacetime metric [Phys. Rev. Lett. 80, 5056 (1998)] of the regular spherically symmetric, static, and charged black hole has been converted into rotational form. It is shown that the derived solution for rotating a regular black hole is regular and the critical value of the electric charge for which two horizons merge into one sufficiently decreases in the presence of the nonvanishing rotation parameter a of the black hole.

  11. Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Baker, J. G.; Liu, F. K.

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

  12. AN ANOMALOUS QUIESCENT STELLAR MASS BLACK HOLE

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2011-06-10

    We present the results of a 40 ks Chandra observation of the quiescent stellar mass black hole GS 1354-64. A total of 266 net counts are detected at the position of this system. The resulting spectrum is found to be consistent with the spectra of previously observed quiescent black holes, i.e., a power law with a photon index of {Gamma} {approx} 2. The inferred luminosity in the 0.5-10 keV band is found to lie in the range 0.5-6.5 x 10{sup 34} erg s{sup -1}, where the uncertainty in the distance is the dominant source of this large luminosity range. Nonetheless, this luminosity is over an order of magnitude greater than that expected from the known distribution of quiescent stellar mass black hole luminosities and makes GS 1354-64 the only known stellar mass black hole to disagree with this relation. This observation suggests the possibility of significant accretion persisting in the quiescent state.

  13. ULXs: Neutron stars versus black holes

    NASA Astrophysics Data System (ADS)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  14. And All the Rest (Primordial, Intermediate, and Orphan Black Holes)

    NASA Astrophysics Data System (ADS)

    Miller, Cole

    2004-05-01

    Black holes, though exotic and mathematically beautiful, are notoriously difficult to detect because they emit no light of their own and hence can be seen only by their influence on nearby stars and gas. It is therefore probable that the observed stellar-mass and supermassive black holes are only the tip of the iceberg. In addition to the expected undetectable population of solitary black holes, there may be new classes of black holes yet to be discovered. For example, there is growing evidence for an intermediate-mass category of black holes that are too massive to form from solitary stars in the current universe, yet are less massive than the black holes in the centers of galaxies and are not located in environments where growth from gas accretion is significant. An even more intriguing prospect is that in the very early universe a population of primordial black holes could have formed. Although there are currently only limits to such a population, if they formed prior to big bang nucleosynthesis then there is a slim but nonzero chance that primordial black holes are the primary components of dark matter, which would imply that black holes are the dominant form of matter in the universe. We will discuss these scenarios in the context of structure formation and stellar dynamics, and consider future electromagnetic and gravitational wave observations that could yield further insight.

  15. Reconstructing the massive black hole cosmic history through gravitational waves

    SciTech Connect

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-02-15

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  16. Feedback Limits to Maximum Seed Masses of Black Holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Natarajan, Priyamvada; Ferrara, Andrea

    2017-02-01

    The most massive black holes observed in the universe weigh up to ∼1010 M ⊙, nearly independent of redshift. Reaching these final masses likely required copious accretion and several major mergers. Employing a dynamical approach that rests on the role played by a new, relevant physical scale—the transition radius—we provide a theoretical calculation of the maximum mass achievable by a black hole seed that forms in an isolated halo, one that scarcely merged. Incorporating effects at the transition radius and their impact on the evolution of accretion in isolated halos, we are able to obtain new limits for permitted growth. We find that large black hole seeds (M • ≳ 104 M ⊙) hosted in small isolated halos (M h ≲ 109 M ⊙) accreting with relatively small radiative efficiencies (ɛ ≲ 0.1) grow optimally in these circumstances. Moreover, we show that the standard M •–σ relation observed at z ∼ 0 cannot be established in isolated halos at high-z, but requires the occurrence of mergers. Since the average limiting mass of black holes formed at z ≳ 10 is in the range 104–6 M ⊙, we expect to observe them in local galaxies as intermediate-mass black holes, when hosted in the rare halos that experienced only minor or no merging events. Such ancient black holes, formed in isolation with subsequent scant growth, could survive, almost unchanged, until present.

  17. The Extreme Spin of the Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    Remarkably, an astronomical black hole is completely described by the two numbers that specify its mass and its spin. Knowledge of spin is crucial for understanding how, for example, black holes produce relativistic jets. Recently, it has become possible to measure the spins of black holes by focusing on the very inner region of an accreting disk of hot gas orbiting the black hole. According to General Relativity (GR), this disk is truncated at an inner radius 1 that depends only on the mass and spin of the black hole. We measure the radius of the inner edge of this disk by fitting its continuum X-ray spectrum to a fully relativistic model. Using our measurement of this radius, we deduce that the spin of Cygnus X-1 exceeds 97% of the maximum value allowed by GR.

  18. The early growth of the first black holes

    DOE PAGES

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  19. The early growth of the first black holes

    SciTech Connect

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  20. Exploring the range of black hole masses with Chandra

    NASA Astrophysics Data System (ADS)

    Fabbiano, G.

    Efficiently accreting super-massive black holes (SMBHs) in active galactic nuclei (AGNs, with masses in excess of 106 M⊙) and black holes in Galactic X-ray binaries (with masses ˜10 M⊙, e.g., see Tanaka & Lewin 1995) have long been studied in X-rays. AGNs and black hole X-ray binaries are luminous and fairly common X-ray sources that have been successfully observed with many X-ray observatories, since the beginning of X-ray astronomy nearly four decades ago. The study of black holes in X-rays has now acquired new dimensions thanks to the sub-arcsecond resolution, sensitive observations of the Chandra X-ray Observatory. In this paper I address two new lines of investigation that have been blossoming thanks to Chandra: quiescent galactic nuclei (QGNs) associated with SMBHs, and the hunt for intermediate mass black holes (IMBHs).

  1. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  2. Binary black holes in nuclei of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Roland, J.; Britzen, S.; Caproni, A.; Fromm, C.; Glück, C.; Zensus, A.

    2013-09-01

    If we assume that nuclei of extragalactic radio sources contain binary black hole systems, the two black holes can eject VLBI components, in which case two families of different VLBI trajectories will be observed. Another important consequence of a binary black hole system is that the VLBI core is associated with one black hole, and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole that is not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the center of gravity of the binary black hole system. We modeled the ejection of the component taking into account the two pertubations and present a method to fit the coordinates of a VLBI component and to deduce the characteristics of the binary black hole system. Specifically, this is the ratio Tp/Tb where Tp is the precession period of the accretion disk and Tb is the orbital period of the binary black hole system, the mass ratio M1/M2, and the radius of the binary black hole system Rbin. From the variations of the coordinates as a function of time of the ejected VLBI component, we estimated the inclination angle io and the bulk Lorentz factor γ of the modeled component. We applied the method to component S1 of 1823+568 and to component C5 of 3C 279, which presents a large offset of the space origin from the VLBI core. We found that 1823+568 contains a binary black hole system whose size is Rbin ≈ 60 μas (μas is a microarcsecond) and 3C 279 contains a binary black hole system whose size is Rbin ≈ 420