Science.gov

Sample records for accreting compact object

  1. Physics of accretion flows around compact objects

    NASA Astrophysics Data System (ADS)

    Lasota, Jean-Pierre

    2007-01-01

    Several physical and astrophysical problems related to accretion onto black holes and neutron stars are briefly reviewed. I discuss the observed differences between these two types of compact objects in quiescent Soft X-ray Transients. Then I review the status of various non-standard objects suggested as an alternative to black holes. Finally, I present new results and a suggestion about the nature of the jet activity in Active Galactic Nuclei. To cite this article: J.-P. Lasota, C. R. Physique 8 (2007).

  2. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  3. Probing the Environment of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since

  4. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1986-01-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  5. Super-spinning compact objects generated by thick accretion disks

    SciTech Connect

    Li, Zilong; Bambi, Cosimo E-mail: bambi@fudan.edu.cn

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  6. Accretion Effects on Disks Around Non-Magnetic Compact Objects

    NASA Astrophysics Data System (ADS)

    Montgomery, Michele M.

    2013-02-01

    Accretion disks in compact binaries are thought to sometimes tilt and precess in the retrograde direction as indicated by modulations in light curves and/or signals. Using 3D Smoothed Particle Hydrodynamics and a low mass transfer rate, Montgomery (2012) shows the disk in non-magnetic Cataclysmic Variables tilts naturally after enough time has passed. In that work, twice the fundamental negative superhump signal 2ν_ is associated with disk tilt around the line of nodes, gas stream overflow approximately twice per orbital period, and retrograde precession. In this work, we show that after enough additional time has passed in the same simulation, the 4ν_ harmonic appears. The decrease in the 2ν_ amplitude approximately equals the amplitude of the 4ν_ harmonic. We discuss the implications.

  7. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  8. Neutron and antineutron production in accretion onto compact objects

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Ramaty, Reuven

    1986-01-01

    Nuclear reactions in the hot accretion plasma surrounding a collapsed star are a source of neutrons, primarily through spallation and pion-producing reactions, and antineutrons, principally through the reaction p+p yields p+p+n+anti-n. We calculate spectra of neutrons and antineutrons produced by a variety of nonthermal energetic particle distributions in which the target particles are either at rest or in motion. If only neutral particles are free to escape the interaction site, a component of the proton and antiproton fluxes in the cosmic radiation results from the neutrons and antineutrons which leave the accretion plasma and subsequently decay in the interstellar medium. This additional antiproton component could account for the enhanced flux of antiprotons in the cosmic radiation, compared to values expected from the standard leaky-box model of cosmic-ray propagation and confinement. Moreover, the low-energy antiproton flux measured by Buffington et al. (1981) could result from target-particle motion in the accretion plasma. This model for the origin of antiprotons predicts a narrow 2.223 MeV line which could be observable.

  9. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  10. Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects

    NASA Technical Reports Server (NTRS)

    Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.

    1991-01-01

    A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.

  11. Evolution of the spin parameter of accreting compact objects with non-Kerr quadrupole moment

    SciTech Connect

    Bambi, Cosimo

    2011-05-01

    There is robust observational evidence supporting the existence of 5−20 M{sub s}un compact bodies in X-ray binary systems and of 10{sup 5}−10{sup 9} M{sub s}un bodies at the center of many galaxies. All these objects are commonly interpreted as black holes, even is there is no direct evidence that they have an event horizon. A fundamental limit for a black hole in 4-dimensional general relativity is the Kerr bound |a{sub *}| ≤ 1, where a{sub *} is the spin parameter. This is just the condition for the existence of the event horizon. The accretion process can spin a black hole up to a{sub *} ≈ 0.998 and some super-massive objects in galactic nuclei could be rapidly rotating black holes with spin parameter close to this limit. However, if these super-massive objects are not black holes, the Kerr bound does not hold and the accretion process can spin them up to a{sub *} > 1. In this paper, I consider compact bodies with non-Kerr quadrupole moment. I study the evolution of the spin parameter due to accretion and I find its equilibrium value. Future experiments like the gravitational wave detector LISA will be able to test if the super-massive objects at the center of galaxies are the black holes predicted by general relativity. If they are not black holes, some of them may be super-spinning objects with a{sub *} > 1.

  12. Time evolution of accreting magnetofluid around a compact object-Newtonian analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Fahimeh; Shaghaghian, Mahboobeh; Pazhouhesh, Reza

    2015-07-01

    Time evolution of a thick disc with finite conductivity around a nonrotating compact object is presented. Along with the Maxwell equations and the Ohm's law, the Newtonian limit of the relativistic fluid equations governing the motion of a finitely conducting plasma is derived. The magnetofluid is considered to possess only the poloidal components of the electromagnetic field. Moreover, the shear viscous stress is neglected, as well as the self-gravity of the disc. In order to solve the equations, we have used a self-similar solution. The main features of this solution are as follows. The azimuthal velocity is somewhat increased from the Keplerian value in the equator plane to the super-Keplerian values at the surface of disc. Moreover, the radial velocity is obtained proportional to the meridional velocity. Magnetofluid does not have any nonzero component of the current density. Subsequently, the electromagnetic force is vanished and does not play any role in the force balance. While the pressure gradient maintains the disc structure in latitudinal direction, magnetofluid has no accretion on the central compact object. Analogously to the parameter α in the standard model, our calculations contain one parameter η0 which specifies the size of the electrical resistivity.

  13. Lightman-Eardley instabilities and accretion disk thickening. [for compact astronomical objects

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.

    1979-01-01

    After reviewing the role of Compton scattering in accretion disks around black holes, it is discussed whether Lightman-Eardley (LE) secular instabilities can trigger and maintain Pringle-Rees (PR) thermal instabilities. The radiative-transfer-equation and equation-of-state criteria for LE stability in alpha-viscosity-law disk models and dynamic viscosity criteria for more general situations is derived. On the basis of these considerations the LE instability is insufficient for inducing PR instabilities and hot thick inner regions important in accretion-disk models of compact hard X-ray sources. The density thinning due to radial velocity gradients in the accretion flow is suggested as a more likely and satisfactory mechanism.

  14. Accretion onto Compact Objects Viewed as a Flow in Converging-Diverging Ducts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, K.; Majumdar, M. M.; Chakrabarti, Sandip K.

    Black hole accretion is necessarily transonic and the number of physical sonic points depends on the angular momentum of the flow. We study the properties of such a flow by recasting this idea into an engineering problem in which a flow has a subsonic to supersonic transition when it passes through a de Laval nozzle, i.e. a converging and diverging duct in a flat geometry in the presence of sufficient end pressure difference. Particularly interesting is the case of the centrifugal pressure supported standing shock formation inside an accretion flow, because the flow passes through at least two saddle type sonic points, one before and one after the shock. In this case, the duct itself has two minima and a maximum. We study the properties of such a duct as a function of the inflow parameters and classify all possible types of the flow through this composite nozzle.

  15. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. II; Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Maisack, Michael; Begelman, Mitchell C.

    1997-01-01

    We apply our self-consistent accretion disk corona (ADC) model, with two different geometries, to the broadband X-ray spectrum of the black hole candidate Cygnus X-1. As shown in a companion paper, models in which the Comptonizing medium is a slab surrounding the cold accretion disk cannot have a temperature higher than about 140 keV for optical depths greater than 0.2, resulting in spectra that are much softer than the observed 10-30 keV spectrum of Cyg X-1. In addition, the slab-geometry models predict a substantial "soft excess" at low energies, a feature not observed for Cyg X-1, and Fe K-alpha fluorescence lines that are stronger than observed. Previous Comptonization models in the literature have invoked a slab geometry with optical depth tau(sub T) approx. greater than 0.3 and coronal temperature T(sub c) approx. 150 keV, but they are not self-consistent. Therefore, ADC models with a slab geometry are not appropriate for explaining the X-ray spectrum of Cyg X-1. Models with a spherical corona and an exterior disk, however, predict much higher self-consistent coronal temperatures than the slab-geometry models. The higher coronal temperatures are due to the lower amount of reprocessing of coronal radiation in the accretion disk, giving rise to a lower Compton cooling rate. Therefore, for the sphere-plus-disk geometry, the predicted spectrum can be hard enough to describe the observed X-ray continuum of Cyg X-1 while predicting Fe fluorescence lines having an equivalent width of approx. 40 eV. Our best-fit parameter values for the sphere-plus-disk geometry are tau(sub T) approx. equal to 1.5 and T(sub c) approx. equal to 90 keV.

  16. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  17. Compact stars and accretion disks: Workshop summary

    NASA Astrophysics Data System (ADS)

    Li, J.

    1998-07-01

    A workshop on `Compact Stars and Accretion Disks' was held on 11-12 August 1997 at the Australian National University. The workshop was opened by Professor Jeremy Mould, the Director of Mount Stromlo Observatory. The workshop was organised to coincide with visits to the ANU Astrophysical Theory Centre by Professor Ron Webbink from the University of Illinois, Professor Rainer Wehrse from the University of Heidelberg and Dr Chris Tout from the University of Cambridge. The workshop attracted over 25 participants nationwide. Participants included members of the Special Research Centre for Theoretical Astrophysics, University of Sydney, led by Professor Don Melrose, Professor Dick Manchester from the ATNF, Professor Ravi Sood from ADFA, Dr John Greenhill from the University of Tasmania and Dr Rosemary Mardling from Monash University. Dr Helen Johnston from AAO and Dr Kurt Liffman from AFDL also attended the workshop. The abstracts of twelve of the workshop papers are presented in this summary.

  18. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  19. An accurate geometric distance to the compact binary SS Cygni vindicates accretion disc theory.

    PubMed

    Miller-Jones, J C A; Sivakoff, G R; Knigge, C; Körding, E G; Templeton, M; Waagen, E O

    2013-05-24

    Dwarf novae are white dwarfs accreting matter from a nearby red dwarf companion. Their regular outbursts are explained by a thermal-viscous instability in the accretion disc, described by the disc instability model that has since been successfully extended to other accreting systems. However, the prototypical dwarf nova, SS Cygni, presents a major challenge to our understanding of accretion disc theory. At the distance of 159 ± 12 parsecs measured by the Hubble Space Telescope, it is too luminous to be undergoing the observed regular outbursts. Using very long baseline interferometric radio observations, we report an accurate, model-independent distance to SS Cygni that places the source substantially closer at 114 ± 2 parsecs. This reconciles the source behavior with our understanding of accretion disc theory in accreting compact objects.

  20. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  1. Gravitational waves from compact objects

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, José Antonio

    2010-11-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and, consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a “pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  2. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  3. Time-dependent spherically symmetric accretion onto compact X-ray sources

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Ostriker, J. P.; Stark, A. A.

    1978-01-01

    Analytical arguments and a numerical hydrodynamic code are used to investigate spherically symmetric accretion onto a compact object, in an attempt to provide some insight into gas flows heated by an outgoing X-ray flux. It is shown that preheating of spherically symmetric accretion flows by energetic radiation from an X-ray source results in time-dependent behavior for a much wider range of source parameters than was determined previously and that there are two distinct types of instability. The results are compared with observations of X-ray bursters and transients as well as with theories on quasars and active galactic nuclei that involve quasi-spherically symmetric accretion onto massive black holes. Models based on spherically symmetric accretion are found to be inconsistent with observations of bursters and transients.

  4. Studies of compact objects with Einstein - Review and prospects

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1990-01-01

    X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.

  5. Gravitational effects of condensate dark matter on compact stellar objects

    SciTech Connect

    Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com

    2012-10-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.

  6. Nucleosynthesis and neutrino physics in compact object mergers

    NASA Astrophysics Data System (ADS)

    Surman, Rebecca

    2017-01-01

    The merger of two compact objects produces a range of environments suitable for interesting element synthesis, from cold or mildly heated prompt ejecta to hot winds influenced by the neutrino emission from the resulting accretion disk. The nuclei newly synthesized in these environments can power an electromagnetic transient via their radioactive decay and likely make key contributions to galactic chemical evolution. Here we will describe how new and anticipated advances in nuclear and neutrino physics are shaping our understanding of nucleosynthesis in this important astrophysical site. Supported in part by the Department of Energy under contract DE-SC0013039.

  7. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  8. Impacts by Compact Ultra Dense Objects

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremey; Labun, Lance; Rafelski, Johann

    2012-03-01

    We propose to search for nuclear density or greater compact ultra dense objects (CUDOs), which could constitute a significant fraction of the dark matter [1]. Considering their high density, the gravitational tidal forces are significant and atomic-density matter cannot stop an impacting CUDO, which punctures the surface of the target body, pulverizing, heating and entraining material near its trajectory through the target [2]. Because impact features endure over geologic timescales, the Earth, Moon, Mars, Mercury and large asteroids are well-suited to act as time-integrating CUDO detectors. There are several potential candidates for CUDO structure such as strangelet fragments or more generally dark matter if mechanisms exist for it to form compact objects. [4pt] [1] B. J. Carr, K. Kohri, Y. Sendouda, & J.'i. Yokoyama, Phys. Rev. D81, 104019 (2010). [0pt] [2] L. Labun, J. Birrell, J. Rafelski, Solar System Signatures of Impacts by Compact Ultra Dense Objects, arXiv:1104.4572.

  9. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial

  10. Growing Magnetic Fields in Central Compact Objects

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Page, D.

    2011-10-01

    We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.

  11. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  12. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Urry, C. Megan; Wandel, Amri

    1990-01-01

    The accretion disk is an attractive model for BL Lac objects because of its preferred axis and high efficiency. While the smooth continuum spectra of BL Lacs do not show large UV bumps, in marked contrast to quasars, high quality simultaneous data do reveal deviations from smoothness. Using detailed calculations of cool accretion disk spectra, the best measured ultraviolet and soft x ray spectra of the BL Lac object PKS 2155-304 are fitted. The mass and accretion rate required are determined. A hot disk or corona could comptonize soft photons from the cool disk and produce the observed power law spectrum in the 1 to 10 keV range. The dynamic time scales in the disk regions that contribute most of the observed ultraviolet and soft x ray photons are consistent with the respective time scales for intensity variations. The mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard x ray variability.

  13. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Urry, C. Megan

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability.

  14. Thermal Evolution of Ceres: Coupled Modelling of Accretion and Compaction by Creep

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2015-08-01

    Ceres with a radius of ~475 km and a mean density of ~2.1 g cm3 likely experienced a complex thermal evolution influenced by the heating of radioactive elements, accretion, and compaction. Short-lived radionuclides can substantially heat a body due to radioactive decay depending on the formation time and the porosity structure of the body. The higher the porosity the smaller is the thermal conductivity and the weaker the cooling (and vice versa). Assuming an initially porous structure, compaction is thus an important process that influenced the temperature but also structure of planetesimals, since it causes a radius decrease. It has been shown that porosity loss by hot pressing is the most efficient compaction process in planetesimals and can be described by the thermally activated creep flow. Furthermore, the size of a body (i.e. the volume to surface ratio) plays an important role in the temperature evolution, therefore accretion (radius increase), its duration and the porosity of the accreting material need to be considered.Here, we investigate the coupled effects of accretion and compaction on the thermal evolution of Ceres. We trace the development of the porosity and density both during and after the accretion that occurs in a late runaway regime to answer following questions. 1. How and at which temperatures does compaction proceed? Is Ceres expected to be partially porous? Is a differentiated interior compatible with a porous outer shell? 2. How does the combination of accretion and compaction influence the temperature? Can accretion reduce the time scale of compaction and differentiation or even prevent them? Can prolonged accretion be approximated adequately by instantaneous formation?We will show that while the temperature evolution varies strongly with the duration of accretion, the final porosity profiles are rather similar due to the heating by the long-lived radiogenic nuclides. Compared to models neglecting porosity, insulating properties of a low

  15. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  16. Young Stellar Objects in Lynds 1641: Disks and Accretion

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.

  17. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  18. Radioactive powered transients from compact object mergers

    NASA Astrophysics Data System (ADS)

    Roberts, Luke

    2017-01-01

    The origin of the r-process elements remains the biggest unsolved question in our understanding of chemical evolution in the Milky Way. The most likely astrophysical sites for the formation of these nuclei involve dynamical events in the lives of neutron stars: the merger of a neutron star and another compact object. In these environments, nuclear physics plays a paramount role in determining both the evolution of the dense object itself and what nuclei are synthesized in material that is ejected from the system. When the radioactive nuclei produced in these events decay, they can heat material that is unbound during the merger and power optical or infrared transients. In this talk, I will discuss nucleosynthesis and matter ejection in neutron star mergers, with an eye toward electromagnetic observables associated with these events that may give us a direct window into the formation of the r-process elements.

  19. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  20. The lack of large compact symmetric objects

    NASA Astrophysics Data System (ADS)

    Augusto, P.

    2009-02-01

    In recent years, `baby' (< 103 yr) and `young' (103-105 yr) radio galaxies have been found and classified, although their numbers are still small (tens). Also, they have many different names, depending on the type of survey and scientific context in which they were found: compact steep spectrum sources (CSS), giga-Hertz peaked spectrum sources (GPS) and compact-medium symmetric objects (C-MSO). The latter have the radio galaxy structure more obvious and correspond to the `babies' (CSOs; < 1 kpc) and `young' (MSOs; 1-15 kpc) radio galaxies. The log-size distribution of CSOs shows a sharp drop at 0.3 kpc. This trend continues through flat-spectrum MSOs (over the full 1-15 kpc size range). In order to find out if this lack of large CSOs and flat-spectrum MSOs is due to poor sampling (lack of surveys that probe efficiently the 0.3-15 kpc size range) and/or has physical meaning (e.g. if the lobes of CSOs expand as they grow and age, they might become CSSs, `disappearing' from the flat-spectrum MSO statistics), we have built a sample of 157 flat-spectrum radio sources with structure on ˜0.3-15 kpc scales. We are using new, archived and published data to produce and inspect hundreds of multi-frequency multi-instrument maps and models. We have already found 13 new secure CSO/MSOs. We expect to uncover ˜30-40 new CSOs and MSOs, most on the 0.3-15 kpc size range, when our project is complete.

  1. Hunting for Orphaned Central Compact Objects among Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Luo, J.; Ng, C.-Y.; Ho, W. C. G.; Bogdanov, S.; Kaspi, V. M.; He, C.

    2015-08-01

    Central compact objects (CCOs) are a handful of young neutron stars found at the center of supernova remnants (SNRs). They show high thermal X-ray luminosities but no radio emission. Spin-down rate measurements of three CCOs with X-ray pulsations indicate surface dipole fields much weaker than those of typical young pulsars. To investigate if CCOs and known radio pulsars are objects at different evolutionary stages, we carried out a census of all weak-field (\\lt {10}11 G) isolated radio pulsars in the Galactic plane to search for CCO-like X-ray emission. None of the 12 candidates are detected at X-ray energies, with luminosity limits of {10}32-{10}34 erg s-1. We consider a scenario in which the weak surface fields of CCOs are due to a rapid accretion of supernova materials and show that as the buried field diffuses back to the surface, a CCO descendant is expected to leave the P-\\dot{P} parameter space of our candidates at a young age of a few ×10 kyr. Hence, the candidates are likely to just be old ordinary pulsars in this case. We suggest that further searches for orphaned CCOs, which are aged CCOs with parent SNRs that have dissipated, should include pulsars with stronger magnetic fields.

  2. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments

    USGS Publications Warehouse

    Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.

    2000-01-01

    High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.

  3. Hans A. Bethe Prize: Mergers of Binary Compact Objects

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki

    2016-03-01

    The inspiral and eventual merger of two compact objects in binary systems are important in astrophysics across the electromagnetic spectrum and as potential gravitational-wave sources. In this talk I will select a few topics of current interest to highlight compact-object mergers, including in the context of multi-messenger astrophysics.

  4. On the formation of compact planetary systems via concurrent core accretion and migration

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-04-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion on to planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low-mass multiplanet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since the mobility of these bodies is required to overcome the local isolation masses for growing embryos. The existence of short-period super-Earths around low-metallicity stars provides strong evidence that small, mobile bodies (planetesimals, boulders or pebbles) played a central role in the formation of the observed planets.

  5. Runaway accretion of metals from compact discs of debris on to white dwarfs

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2011-09-01

    It was recently proposed that metal-rich white dwarfs (WDs) accrete their metals from compact discs of debris found to exist around more than a dozen of them. At the same time, elemental abundances measured in atmospheres of some WDs imply vigorous metal accretion at rates up to 1011 g s-1, far in excess of what can be supplied solely by Poynting-Robertson drag acting on such discs of debris. To explain this observation we propose a model, in which rapid transport of metals from the disc on to the WD naturally results from interaction between this particulate disc and a spatially coexisting disc of metallic gas. The latter is fed by evaporation of debris particles at the sublimation radius located at several tens of WD radii. Because of pressure support the gaseous disc orbits the WD slower than the particulate disc. Resultant azimuthal drift between them at speed ≲1 m s-1 causes aerodynamic drag on the disc of solids and drives inward migration of its constituent particles. Upon reaching the sublimation radius, particles evaporate, enhancing the density of the metallic gaseous disc and leading to positive feedback. Under favourable circumstances (low viscosity in the disc of metallic gas and efficient aerodynamic coupling between the discs) a system evolves in a runaway fashion, destroying the discs of debris on time-scale of ˜105 yr, and giving rise to high metal accretion rates up to ? g s-1, in agreement with observations.

  6. KEPLER OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS

    SciTech Connect

    Rowe, Jason F.; Borucki, William J.; Koch, David; Lissauer, Jack J.; Howell, Steve B.; Basri, Gibor; Marcy, Geoff; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; Jenkins, Jon; Cochran, William D.; Dunham, Edward; Dupree, Andrea K.; Latham, David W.; Sasselov, Dimitar; Fortney, Jonathan J.; Gautier, Thomas N.; Monet, David G.

    2010-04-20

    Kepler photometry has revealed two unusual transiting companions: one orbiting an early A-star and the other orbiting a late B-star. In both cases, the occultation of the companion is deeper than the transit. The occultation and transit with follow-up optical spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a companion in a 5.2 day orbit with a radius of 0.08 R {sub sun} and a 10,000 K late B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a radius of 0.2 R {sub sun}. We infer a temperature of 12,250 K for KOI-74b and 13,500 K for KOI-81b. We present 43 days of high duty cycle, 30 minute cadence photometry, with models demonstrating the intriguing properties of these objects, and speculate on their nature.

  7. High-ionization accretion signatures in compact binary candidates from SOAR Telescope observations

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F.; Silva, K. M. G.; Almeida, L. A.

    2014-10-01

    The increasing number of synoptic surveys made by small robotic telescopes, like the photometric Catalina Real-Time Transient Survey (CRTS - Drake et al., 2009, ApJ, 696, 870), represents a unique opportunity for the discovery of new variable objects and also to improve the samples of many classes of variables. Our goal in this work was the discovery of new polars, a subclass of magnetic Cataclysmic Variables (mCVs) with no accretion disk, and Close Binary Supersoft X-ray Sources (CBSS), strong candidates to Type Ia Supernova progenitors. Both are rare objects and probe interesting accretion scenarios. Finding spectral features associated to high-ionization mass accretion constrains the CBSS or magnetic CV nature for the candidates, expanding the hitherto small samples of these classes (specially CBSS) and allowing for detailed observational follow-up. We used the Goodman Spectrograph on SOAR 4.1 m Telescope to search for signatures of high-ionization mass accretion, as He II 468,6 nm emission line and inverted Balmer decrement, on 39 variable objects selected mostly from CRTS. In this sample we found 14 strong candidates to mCVs, 1 Nova in the final stages of eruption, 14 candidates to Dwarf Novae, 5 extragalactic sources (AGN), 1 object previously identified as a Black Hole Nova, 3 objects with pure absorption spectral features and 1 unidentified object with low S/N ratio. The mCVs candidates found in this work will be studied using time-resolved spectroscopic, polarimetric, and photometric observations in a follow-up project.

  8. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  9. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  10. Evolution of binaries with compact objects in globular clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia

    2016-02-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries with neutron stars, and how mass-transferring binaries with a black hole and a white dwarf can be formed. We discuss as well one old unsolved puzzle and two new puzzles posed by recent observations: what descendants do ultra-compact X-ray binaries produce, how are very compact triples formed, and how can black hole low-mass X-ray binaries acquire non-degenerate companions?

  11. GLOBAL MODELING OF RADIATIVELY DRIVEN ACCRETION OF METALS FROM COMPACT DEBRIS DISKS ONTO WHITE DWARFS

    SciTech Connect

    Bochkarev, Konstantin V.; Rafikov, Roman R. E-mail: rrr@astro.princeton.edu

    2011-11-01

    Recent infrared observations have revealed the presence of compact (radii {approx}< R{sub sun}) debris disks around more than a dozen metal-rich white dwarfs (WDs), likely produced by a tidal disruption of asteroids. Accretion of high-Z material from these disks may account for the metal contamination of these WDs. It was previously shown using local calculations that the Poynting-Robertson (PR) drag acting on the dense, optically thick disk naturally drives metal accretion onto the WD at the typical rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1}. Here we extend this local analysis by exploring the global evolution of the debris disk under the action of the PR drag for a variety of assumptions about the disk properties. We find that massive disks (mass {approx}> 10{sup 20} g), which are optically thick to incident stellar radiation, inevitably give rise to metal accretion at rates M-dot {approx}>0.2 M-dot{sub PR}. The magnitude of M-dot and its time evolution are determined predominantly by the initial pattern of the radial distribution of the debris (i.e., ring-like versus disk-like) but not by the total mass of the disk. The latter determines only the disk lifetime, which can be several Myr or longer. The evolution of an optically thick disk generically results in the development of a sharp outer edge of the disk. We also find that the low-mass ({approx}< 10{sup 20} g), optically thin disks exhibit M-dot << M-dot{sub PR} and evolve on a characteristic timescale {approx}10{sup 5}-10{sup 6} yr, independent of their total mass.

  12. Disk-mediated accretion burst in a high-mass young stellar object

    NASA Astrophysics Data System (ADS)

    Caratti O Garatti, A.; Stecklum, B.; Garcia Lopez, R.; Eislöffel, J.; Ray, T. P.; Sanna, A.; Cesaroni, R.; Walmsley, C. M.; Oudmaijer, R. D.; de Wit, W. J.; Moscadelli, L.; Greiner, J.; Krabbe, A.; Fischer, C.; Klein, R.; Ibañez, J. M.

    2016-11-01

    Solar-mass stars form via disk-mediated accretion. Recent findings indicate that this process is probably episodic in the form of accretion bursts, possibly caused by disk fragmentation. Although it cannot be ruled out that high-mass young stellar objects arise from the coalescence of their low-mass brethren, the latest results suggest that they more likely form via disks. It follows that disk-mediated accretion bursts should occur. Here we report on the discovery of the first disk-mediated accretion burst from a roughly twenty-solar-mass high-mass young stellar object. Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical for accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the released energy and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk-accretion as the common mechanism of star formation across the entire stellar mass spectrum.

  13. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  14. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  15. Detection, classification, and tracking of compact objects in video imagery

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.; Nebrich, Mark A.

    2012-06-01

    A video data conditioner (VDC) for automated full-­motion video (FMV) detection, classification, and tracking is described. VDC extends our multi-­stage image data conditioner (IDC) to video. Key features include robust detection of compact objects in motion imagery, coarse classification of all detections, and tracking of fixed and moving objects. An implementation of the detection and tracking components of the VDC on an Apple iPhone is discussed. Preliminary tracking results of naval ships captured during the Phoenix Express 2009 Photo Exercise are presented.

  16. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa; Hernández, Jesus; Briceno, Cesar; Espaillat, Catherine E-mail: ncalvet@umich.edu

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  17. The Evolution of Accretion in Young Stellar Objects: Strong Accretors at 3-10 Myr

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Hernández, Jesus; Hartmann, Lee; Briceno, Cesar; Miller, Jon; Espaillat, Catherine; McClure, Melissa

    2014-07-01

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ~3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ~10-8 M ⊙ yr-1. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. A central compact object in Kes 79: the hypercritical regime and neutrino expectation

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Fraija, N.

    2016-11-01

    We present magnetohydrodynamical simulations of a strong accretion on to magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the centre of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called central compact objects (CCOs), which exhibits no evidence for a surrounding pulsar wind nebula. In this work, we show that the submergence of the magnetic field during the hypercritical phase can explain such behaviour for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733 ± 364. In addition, we compute the flavour ratio on Earth for a progenitor model.

  19. Are BL Lac-type objects nearby black holes. [gas accretion model

    NASA Technical Reports Server (NTRS)

    Shapiro, S. L.; Elliot, J. L.

    1974-01-01

    It is pointed out that isolated black holes accreting interstellar gas can account for the characteristic properties of the Lacertids. Emission spectra for various interstellar gas densities and black hole masses are compared with the data plotted by Strittmatter et al. (1972) for the BL Lac-type objects. Rough estimates indicate that there may indeed be a finite number of stellar-mass black holes close to the earth as required by the theory. If it is determined that the BL Lac-type objects lie outside of the galactic disk a black hole accretion model may still apply if certain conditions are satisfied.

  20. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  1. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  2. A search for massive compact halo objects in our Galaxy

    NASA Astrophysics Data System (ADS)

    Bennett, D. P.; Alcock, C.; Axelrod, T.; Cook, K.; Park, H.; Griest, K.; Stubbs, C.; Freeman, K.; Peterson, B.; Quinn, P.; Rogers, A.

    1991-04-01

    Massive compact halo objects such as brown dwarfs, Jupiters, and black holes are prime candidates to comprise the dark halo of our galaxy. Our group is currently involved in constructing a dedicated observing system at the Mount Stromlo Observatory in Australia. We will use a refurbished 1.27 meter telescope and an innovative two-color CCD camera with 3.4 x 10 exp 7 pixels to monitor 10 exp 6 - 10 exp 7 stars in the Magellanic Clouds. During the first year of operation (1991-1992), we hope to detect (or rule out) objects in the mass range between 0.001 and 0.1 solar mass, and after five years, we hope to have covered the range 10 exp -6 solar mass - 10 exp 2 solar masses.

  3. Stability of anisotropic compact objects in f(T) gravity

    NASA Astrophysics Data System (ADS)

    Bhatti, M. Zaeem-Ul-Haq; Yousaf, Z.; Hanif, Sonia

    2017-03-01

    We exhibit the dynamical instability of cylindrical compact object in the gravitational field of f(T) gravity, which is the simplest modification of teleparallel theory (TPT). We explore the field equations and conservation laws to provide the extra degrees of freedom governed by f(T) gravity. We investigate the behavior of small perturbations on geometric and material profile in the background of collapsing fluid configuration. The un/stable eras are studied under Newtonian (N) and post-Newtonian (pN) approximations. Our results show that the stiffness parameter has major role in determining the un/stable epochs of cylindrical object. The dark source terms of f(T) gravity lead to relatively more unstable configuration during its evolutionary process.

  4. Intense accretion and mass loss of a very low mass young stellar object

    NASA Astrophysics Data System (ADS)

    Fernández, M.; Comerón, F.

    2001-12-01

    We present visible and near-infrared photometry and spectroscopy of LS-RCrA 1, a faint, very late-type object (M 6.5-M 7) seen in the direction of the R Coronae Australis star forming complex. While its emission spectrum shows prominent features of accretion and mass loss typical of young stellar objects, its underlying continuum and photometric properties are puzzling when trying to derive a mass and age based on pre-main sequence evolutionary tracks: the object appears to be far too faint for a young member of the R Coronae Australis complex of its spectral type. We speculate that this may be due to either its evolution along pre-main sequence tracks being substantially altered by the intense accretion, or to a combination of partial blocking and scattering of the light of the object by a nearly edge-on circumstellar disk. The rich emission line spectrum superimposed on the stellar continuum is well explained by an intense accretion process: the Halpha , CaII infrared triplet, and HeI 6678 lines show equivalent widths typical of very active classical T Tauri stars. The near-infrared observations show anomalously weak spectral features and no significant excess emission in the K band, which we tentatively interpret as indicating line filling due to emission in a magnetic accretion funnel flow. At the same time, numerous, strong forbidden optical lines ([OI], [NII] and [SII]) and H2 emission at 2.12 mu m suggest that the object is simultaneously undergoing mass loss, providing another example that shows that mass loss and accretion are closely related processes. Such an intense accretion and mass loss activity is observed for the first time in a young stellar object in the transition region between low mass stars and brown dwarfs, and provides a valuable observational test on the effects of accretion on the evolution of objects with such low masses. Based on observations collected at the European Southern Observatory in La Silla and Cerro Paranal (Chile), in

  5. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea

    2014-11-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.

  6. The impact of accretion material composition and properties on interior structure dynamics of Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Shchuko, Oleg; Shchuko, Svetlana D.; Kartashov, Daniil; Orosei, Roberto

    The building material of the forming Kuiper belt objects is supposed in the model to consist of solid dust material of protosolar cloud fringe regions and H2 O amorphous ice. A spheri-cally symmetric celestial body was being created as a result of accretion. The body's internal structure was determined by the composition and the properties of the accretion material and the evolution of the structure -by internal thermal processes. The accretion material compo-sition and structure have been studied, which provide now the existence of large icy Kuiper belt objects. Radionuclides 26 Al, 40 K, 232 Th, 235 U and 238 U embedded in solid dust matter particles have been main sources of radiogenic heat for the Kuiper belt object life time. The impact of the heat-and-power potentials of radiogenic heat sources on H2 O phase transition dynamics in the celestial body matter has been investigated. The parameter variation domains of these potentials have been found at which there can be formed areas partly or fully filled with H2 O of different phase states. In addition, the dynamic boundaries of areas have been determined where the ice component is presented by amorphous ice or cubic and hexagonal crystal ice. The parameter domains of celestial body accretion and radiogenic heat processes have been determined where the body evolution may have a catastrophic scenario up to its complete destruction.

  7. Higher order spin effects in inspiralling compact objects binaries

    NASA Astrophysics Data System (ADS)

    Marsat, Sylvain

    2015-04-01

    We present recent progress on higher order spin effects in the post-Newtonian dynamics of compact objects binaries. We present first an extension of a Lagrangian formalism for point particle with spins, where finite size effects are represented by an additional multipolar structure. When applied to the case of a spin-induced octupole, the formalism allows for the computation of the cubic-in-spin effects that enter at the order 3.5PN. We also report on results obtained for quadratic-in-spin effects at the next-to-leading order 3PN. In both cases, we recover existing results for the dynamics, and derive for the first time the gravitational wave energy flux and orbital phasing. These results will be useful for the data analysis of the upcoming generation of advanced detectors of gravitational waves. NASA Grant 11-ATP-046.

  8. Evidence for a binary origin of a central compact object

    NASA Astrophysics Data System (ADS)

    Doroshenko, Victor; Pühlhofer, Gerd; Kavanagh, Patrick; Santangelo, Andrea; Suleimanov, Valery; Klochkov, Dmitry

    2016-05-01

    Central compact objects (CCOs) are thought to be young thermally emitting isolated neutron stars that were born during the preceding core-collapse supernova explosion. Here, we present evidence that at least in one case the CCO could have been formed within a binary system. We show that the highly reddened optical source IRAS 17287-3443, located 25 arcsec away from the CCO candidate XMMUJ173203.3-344518 and classified previously as a post asymptotic giant branch star, is indeed surrounded by a dust shell. This shell is heated by the central star to temperatures of ˜90 K and observed as extended infrared emission in 8-160 μm band. The dust temperature also increases in the vicinity of the CCO which implies that it likely resides within the shell. We estimate the total dust mass to be ˜0.4-1.5 M⊙ which significantly exceeds expected dust yields by normal stars and thus likely condensed from supernova ejecta. Taking into account that both the age of the supernova remnant and the duration of active mass-loss phase by the optical star are much shorter than the total lifetime of either object, the supernova and the onset of the active mass-loss phase of the companion have likely occurred approximately simultaneously. This is most easily explained if the evolution of both objects is interconnected. We conclude, therefore, that both stars were likely members of the same binary system disrupted by a supernova.

  9. A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. I. QUASI-KERR BLACK HOLES

    SciTech Connect

    Psaltis, Dimitrios; Johannsen, Tim

    2012-01-20

    We describe a new numerical algorithm for ray tracing in the external spacetimes of spinning compact objects characterized by arbitrary quadrupole moments. Such spacetimes describe non-Kerr vacuum solutions that can be used to test the no-hair theorem in conjunction with observations of accreting black holes. They are also appropriate for neutron stars with spin frequencies in the {approx_equal} 300-600 Hz range, which are typical of the bursting sources in low-mass X-ray binaries. We use our algorithm to show that allowing for the quadrupole moment of the spacetime to take arbitrary values leads to observable effects in the profiles of relativistic broadened fluorescent iron lines from geometrically thin accretion disks.

  10. Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  11. On the accretion properties of young stellar objects in the L1615/L1616 cometary cloud

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Alcalá, J. M.; Frasca, A.; Zusi, M.; Getman, F.; Covino, E.; Gandolfi, D.

    2014-12-01

    We present the results of FLAMES/UVES and FLAMES/GIRAFFE spectroscopic observations of 23 low-mass stars in the L1615/L1616 cometary cloud, complemented with FORS2 and VIMOS spectroscopy of 31 additional stars in the same cloud. L1615/L1616 is a cometary cloud in which the star formation was triggered by the impact of massive stars in the Orion OB association. From the measurements of the lithium abundance and radial velocity, we confirm the membership of our sample to the cloud. We use the equivalent widths of the Hα, Hβ, and the He i λ5876, λ6678, λ7065 Å emission lines to calculate the accretion luminosities, Lacc, and the mass accretion rates, Ṁacc. We find in L1615/L1616 a fraction of accreting objects (~30%), which is consistent with the typical fraction of accretors in T associations of similar age (~3 Myr). The mass accretion rate for these stars shows a trend with the mass of the central object similar to that found for other star-forming regions, with a spread at a given mass that depends on the evolutionary model used to derive the stellar mass. Moreover, the behavior of the 2MASS/WISE colors with Ṁacc indicates that strong accretors with log Ṁacc ≳ -8.5 dex show large excesses in the JHKs bands, as in previous studies. We also conclude that the accretion properties of the L1615/L1616 members are similar to those of young stellar objects in T associations, like Lupus. Based on FLAMES (UVES+GIRAFFE) observations collected at the Very Large Telescope (VLT; Paranal, Chile). Program 076.C-0385(A).Tables 3-6 and Appendices are available in electronic form at http://www.aanda.org

  12. Recent developments in the tidal deformability of spinning compact objects

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2016-04-01

    We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.

  13. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.

    1979-01-01

    A general procedure is developed for describing non-Keplerian accretion in the region between the event horizon of a black hole or a Rosen collapsed object and a distance greater than or equal to the marginally stable circular orbit. The relevant equations and boundary conditions are described, ways to obtain solutions are discussed, and some flow solutions are examined. The consistency and advantages of the proposed method are examined.

  14. Accretion, jets and winds: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2011-06-01

    This article summarizes the processes of high-energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high-resolution X-ray and UV spectroscopy and modeling. Three mechanisms contribute to the high-energy emission from CTTS: 1) CTTS have active coronae similar to main-sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X-ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X-ray observations of accreting CTTS. Specifically, the model explains the peculiar line-ratios in the He-like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X-ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s-1 are required to explain the observed spectrum. Doctoral Thesis Award Lecture 2010

  15. DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Berti, Emanuele; O’Shaughnessy, Richard; Mandel, Ilya; Fryer, Christopher; Holz, Daniel E.; Pannarale, Francesco

    2015-06-20

    The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)—i.e., neutron star–neutron star (NS–NS), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) binary systems—is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations. We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS–NS and BH–NS systems, but it boosts rates by a factor of ∼1.5 for BH–BH systems; (2) in almost all of our models BH–BH systems yield by far the largest rates, followed by NS–NS and BH–NS systems, respectively; and (3) a majority of the detectable BH–BH systems were formed in the early universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.

  16. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  17. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  18. Kinetic Theory of Equilibrium Axisymmetric Collisionless Plasmas in Off-equatorial Tori around Compact Objects

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  19. Accretion discs around young stellar objects and the proto-sun

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.

    1989-01-01

    Observed IR and UV excesses have widely been interpreted as signatures for accretion disks around young stellar objects. Analyses of the observed properties of these disks are important for the investigation of star formation as well as the dynamics of the protoplanetary disk out of which the solar system was formed. Accretion-disk theories suggest that evolution of protoplanetary disks is determined by the efficiency of angular momentum transport. During the formation stages, the disk dynamics are regulated by mixing of infalling material and disk gas. In the outermost regions of the disk, self-gravity may promote the growth of nonaxisymmetric perturbations which can transfer angular momentum outwards. After infall has ceased, convectively driven turbulence can redistribute angular momentum with an evolutionary timescale of 0.1 - 1 Myr. Convection in protoplanetary disks may eventually be stabilized by surface heating as the disk material is depleted.

  20. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    SciTech Connect

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M.

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  1. WHAT IS ON TAP? THE ROLE OF SPIN IN COMPACT OBJECTS AND RELATIVISTIC JETS

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gueltekin, Kayhan; Walton, Dominic J.; Fabian, Andrew C.; Reynolds, Christopher S.; Nandra, Kirpaul

    2013-07-10

    We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes 3 different Seyfert samples with a total of 37 unique Seyferts, as well as 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with simple Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with more relativistically blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3{sigma} confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3{sigma} confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4{sigma} and 4.1{sigma} confidence level, respectively) between radio luminosity per bolometric luminosity and spin, as well as radio luminosity corrected for the fundamental plane (i.e., log ({nu}L{sub R}/L{sub Bol}{sup 0.67}/M{sub BH}{sup 0.78})) and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e., bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the

  2. Magnetized accretion

    NASA Astrophysics Data System (ADS)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  3. AN ULTRA-LOW-MASS AND SMALL-RADIUS COMPACT OBJECT IN 4U 1746-37?

    SciTech Connect

    Li, Zhaosheng; Qu, Zhijie; Guo, Yanjun; Xu, Renxin; Chen, Li; Qu, Jinlu

    2015-01-01

    Photospheric radius expansion (PRE) bursts have already been used to constrain the masses and radii of neutron stars. RXTE observed three PRE bursts in 4U 1746-37, all with low touchdown fluxes. We discuss here the possibility of a low-mass neutron star in 4U 1746-37 because the Eddington luminosity depends on stellar mass. With typical values of hydrogen mass fraction and color correction factor, a Monte Carlo simulation was applied to constrain the mass and radius of a neutron star in 4U 1746-37. 4U 1746-37 has a high inclination angle. Two geometric effects, the reflection of the far-side accretion disk and the obscuration of the near-side accretion disk, have also been included in the mass and radius constraints of 4U 1746-37. If the reflection of the far-side accretion disk is accounted for, a low-mass compact object (mass of 0.41 ± 0.14 M {sub ☉} and radius of 8.73 ± 1.54 km at 68% confidence) exists in 4U 1746-37. If another effect operated, 4U 1746-37 may contain an ultra-low-mass and small-radius object (M = 0.21 ± 0.06 M {sub ☉}, R = 6.26 ± 0.99 km at 68% confidence). Combining all possibilities, the mass of 4U 1746-37 is 0.41{sub −0.30}{sup +0.70} M{sub ⊙} at 99.7% confidence. For such low-mass neutron stars, it could be reproduced by a self-bound compact star, i.e., a quark star or quark-cluster star.

  4. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Manara, C. F.; Natta, A.; Frasca, A.; Testi, L.; Nisini, B.; Stelzer, B.; Williams, J. P.; Antoniucci, S.; Biazzo, K.; Covino, E.; Esposito, M.; Getman, F.; Rigliaco, E.

    2017-03-01

    The mass accretion rate, Ṁacc, is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M⋆ ≲ 2.0 M⊙) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, L⋆, with an overall slope of 1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L⋆ ≈ 0.1 L⊙, where Lacc is always lower than 0.01 L⋆. We argue that the Lacc - L⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁacc - log M⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M⋆ ≲ 0.2 M⊙ and a flatter slope for higher masses. The bimodality of the Ṁacc - M⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may

  5. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets - a survey

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2016-03-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  6. Evolution of photon and particle spectra in compact, luminous objects

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.; Caroff, Lawrence J.; Noerdlinger, Peter D.

    1988-01-01

    The physics of high energy photons and particles (especially electrons and positrons) in the compact, high-energy-density of galactic nuclei and quasars was investigated. A numerical code was developed which follows the nonlinear spectral evolution of a pair/photon plasma, due to two-body scattering and interaction process, in an unmagnetized system. The code was applied both to static plasmas and to relativistic expanding winds.

  7. The exotic remnants of compact object binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2017-01-01

    The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.

  8. Nonconformally flat initial data for binary compact objects

    SciTech Connect

    Uryu, Koji; Limousin, Francois; Gourgoulhon, Eric; Friedman, John L.; Shibata, Masaru

    2009-12-15

    A new method is described for constructing initial data for a binary neutron-star system in quasiequilibrium circular orbit. Two formulations for nonconformally flat data, waveless and near-zone helically symmetric, are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the spatially nonconformally flat potentials, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational binary neutron-stars with matter approximated by parametrized equations of state that use a few segments of polytropic equations of state. The binding energy and total angular momentum of solution sequences computed within the conformally flat--Isenberg-Wilson-Mathews--formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the closest orbits, for the more compact stars, whereas sequences resulting from the waveless/near-zone helically symmetric formulations deviate from the 3PN curve even more for the sequences with larger compactness. We think it likely that this correction reflects an overestimation in the Isenberg-Wilson-Mathews formulation as well as in the 3PN formula, by {approx}1 cycle in the gravitational-wave phase during the last several orbits. The work suggests that imposing spatial conformal flatness results in an underestimate of the quadrupole deformation of the components of binary neutron-star systems in the last few orbits prior to merger.

  9. Magnetar-like Activity from the Central Compact Object in the SNR RCW103

    NASA Astrophysics Data System (ADS)

    Rea, N.; Borghese, A.; Esposito, P.; Coti Zelati, F.; Bachetti, M.; Israel, G. L.; De Luca, A.

    2016-09-01

    The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348-5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348-5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348-5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the “anti-magnetar” scenario for other CCOs.

  10. Kilonova light curves from the disc wind outflows of compact object mergers

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel; Fernández, Rodrigo; Metzger, Brian D.

    2015-06-01

    We study the radioactively powered transients produced by accretion disc winds following a compact object merger. Based on the outflows found in two-dimensional hydrodynamical disc models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that resulting kilonova transients generally produce both optical and infrared emission, with the brightness and colour carrying information about the merger physics. In those regions of the wind subject to high neutrino irradiation, r-process nucleosynthesis may halt before producing high-opacity, complex ions (the lanthanides). The kilonova light curves thus typically has two distinct components: a brief (˜2 d) blue optical transient produced in the outer lanthanide-free ejecta, and a longer (˜10 d) infrared transient produced in the inner, lanthanide line-blanketed region. Mergers producing a longer lived neutron star, or a more rapidly spinning black hole, have stronger neutrino irradiation, generate more lanthanide-free ejecta and are optically brighter and bluer. At least some optical emission is produced in all disc wind models, which should enhance the detectability of electromagnetic counterparts to gravitational wave sources. However, the presence of even a small amount (10-4 M⊙) of overlying, neutron-rich dynamical ejecta will act as a `lanthanide-curtain', obscuring the optical wind emission from certain viewing angles. Because the disc outflows have moderate velocities (˜10 000 km s-1), numerous resolved line features are discernible in the spectra, distinguishing disc winds from fast-moving dynamical ejecta, and offering a potential diagnostic of the detailed composition of freshly produced r-process material.

  11. Hoag's Object: evidence for cold accretion on to an elliptical galaxy

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Moiseev, Alexei; Brosch, Noah; Katkov, Ivan

    2011-12-01

    We present new photometric and spectroscopic observations of the famous Hoag's Object, a peculiar ring galaxy with a central roundish core. The nature of Hoag's Object is still under controversy. Previous studies demonstrated that a major accretion event that took place at least 2-3 Gyr ago can account for the observational evidence. However, the role of internal non-linear mechanisms in forming the outer ring was not yet completely ruled out. The observations reported here consist of WFPC2 optical data retrieved from the Hubble Space Telescope archive as well as long-slit and 3D spectroscopic data obtained at the Russian BTA 6-m telescope. These new data, together with H I and optical information from the literature, are used to demonstrate that Hoag's Object is a relatively isolated system surrounded by a luminous quasi-spiral pattern and a massive, low-density H I disc. The main stellar body is an old, mildly triaxial elliptical galaxy with very high angular momentum. We review previous formation scenarios of Hoag's Object in light of the new data and conclude that the peculiar morphology could not represent a late phase in barred early-type galaxies evolution. In addition, no observational evidence supports late merging events in the evolution of the galaxy, although further tests are required before safely dismissing this idea. Combining all the information, we propose a new scenario where the elliptical core formed in the early Universe with the H I disc forming shortly after the core by prolonged 'cold' accretion of primordial gas from the intergalactic medium. The low gas density does not allow intense star formation to occur everywhere in the disc, but only along a tightly wound spiral pattern of enhanced density induced by the triaxial gravitational potential. According to this view, the physical mechanism that forms rings in Hoag-like galaxies is closely linked with that in some non-barred disc galaxies, although the formation and evolution of both

  12. The fate of fallback matter around newly Born compact objects

    SciTech Connect

    Perna, Rosalba; Duffell, Paul; MacFadyen, Andrew I.; Cantiello, Matteo

    2014-02-01

    The presence of fallback disks around young neutron stars (NSs) has been invoked over the years to explain a large variety of phenomena. Here we perform a numerical investigation of the formation of such disks during a supernova (SN) explosion, considering both NS and black hole (BH) remnants. Using the public code MESA, we compute the angular momentum distribution of the pre-SN material, for stars with initial masses M in the range 13-40 M {sub ☉}, initial surface rotational velocities v {sub surf} between 25% and 75% of the critical velocity, and for metallicities Z of 1%, 10%, and 100% of the solar value. These pre-SN models are exploded with energies E varying between 10{sup 50}-3 × 10{sup 52} erg, and the amount of fallback material is computed. We find that, if magnetic torques play an important role in angular momentum transport, then fallback disks around NSs, even for low-metallicity main-sequence stars, are not an outcome of SN explosions. Formation of such disks around young NSs can only happen under the condition of negligible magnetic torques and a fine-tuned explosion energy. For those stars that leave behind BH remnants, disk formation is ubiquitous if magnetic fields do not play a strong role; however, unlike the NS case, even with strong magnetic coupling in the interior, a disk can form in a large region of the Z, M, v {sub surf}, E parameter space. Together with the compact, hyperaccreting fallback disks widely discussed in the literature, we identify regions in the above parameter space that lead to extended, long-lived disks around BHs. We find that the physical conditions in these disks may be conducive to planet formation, hence leading to the possible existence of planets orbiting BHs.

  13. Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zensus, J. A.

    2016-02-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.

  14. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  15. The PISA Pre-Main Sequence accreting models

    NASA Astrophysics Data System (ADS)

    Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla

    2013-07-01

    The poster investigates the effect of accretion processes on the evolution of stellar models computed by means of the well tested and updated PROSECCO evolutionary code, under the hypothesis of thin-disk accretion. We analysed the effect on the evolution of the adoption of different parameters as the accretion rate, accretion history, seed mass, and the fraction of the infalling matter energy (alpha_acc) deposed in to the star (accretion energy). We confirm that the most critical parameter is the accretion energy. We show that, depending on alpha_acc the evolution of accreting and non-accreting objects can be completely different, confirming that the adoption of small alpha_acc value (i.e. small accretion energy, cold accretion) produces fainter and more compact models with respect to the ones predicted from non-accreting structures at the same mass and age, models that can not be reconciled with the data available for young objects (i.e. position in the HR diagram, lithium abundances). On the contrary, if a large part of the accretion luminosity is deposed into the star (alpha_acc = 1, hot accretion), at least during the fisrt stages of the accretion phase or during bursts episodes, large radii and luminosities are achievable, with resulting structures much more similar to the non-accreting ones.

  16. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  17. The Visit of Prof. R. Sunayev and the Topical Meeting "Accretion onto Compact Objects"

    NASA Astrophysics Data System (ADS)

    Alloin, D.; Mason, E.; O'Brien, K.

    2004-06-01

    Over the period April 4 to April 17, we had the great pleasure of the visit of Prof. Rashid Sunyaev in Chile. This was an opportunity for him to visit some of ESO's facilities (Paranal, Santiago) as well as APEX, and also to pay a visit to the new facilities of our colleagues in La Serena (among others Magellan and Gemini).

  18. The LOFT mission: new perspectives in the research field of (accreting) compact objects

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Stella, L.; van der Klis, M.; Watts, A.; Barret, D.; Wilms, J.; Uttley, P.; den Herder, J. W.; Feroci, M.

    2014-01-01

    LOFT, the Large Observatory For X-ray Timing, is one of five ESA M3 candidate missions. It will address the Cosmic Vision theme: "Matter under Extreme Conditions". By coupling for the first time a huge collecting area for the detection of X-ray photons with CCD-quality spectral resolution (15 times bigger in area than any previously flown X-ray instrument and >100 times bigger for spectroscopy than any similar-resolution instrument), the instruments onboard LOFT have been designed to (i) determine the properties of ultradense matter by reconstructing its Equation of State through neutron star mass and radius measurements of unprecedented accuracy; (ii) measure General Relativity effects in the strong field regime in the stationary spacetimes of neutron stars and black holes of all masses down to a few gravitational radii. Besides the above two themes, LOFT's observations will be devoted to "observatory science", providing new insights in a number of research fields in high energy astrophysics (e.g. Gamma-ray Bursts). The assessment study phase of LOFT, which ended in September 2013, demonstrated that the mission is low risk and the required Technology Readiness Level can be easily reached in time for a launch by the end of 2022.

  19. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo

    2016-10-01

    Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.

  20. Wide-field tracking of moving objects with a compact multi-object dispersed fixed-delay interferometer

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Wan, Xiaoke; Myers, Derek; Powell, Scott

    2012-09-01

    We present a new concept for a Doppler imaging remote sensing instrument to track moving objects within a wide field of view using a compact multi-object Dispersed Fixed-Delay Interferometer (DFDI). The instrument is a combination of a Michelson type interferometer with a fixed optical delay and a medium resolution spectrograph. This takes advantage of the strength of the DFDI approach over the traditional cross-dispersed echelle spectrograph approach for high radial velocity (RV) precision measurements: multi-object capability, high throughput and a compact design. The combination of a fiber integral field unit (IFU) with a DFDI instrument allows simultaneous sampling of all of the objects within the observing field of view (FOV) to provide differential RV measurements of moving objects over background objects. Due to the three dimensional nature of the IFU spectroscopy the object location and spectral features can be simultaneously acquired. With the addition of RV signals to the measurements, this approach allows precise extraction of trajectories and spectral properties of moving objects (such as space debris and near Earth Objects (NEOs)) through sequential monitoring of moving objects. Measurement results from moving objects in a lab as well as moving cars in a field using this innovative approach are reported.

  1. Mass bounds for compact spherically symmetric objects in generalized gravity theories

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2016-09-01

    We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.

  2. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  3. Maria Goeppert-Mayer Award Talk: Formation and Evolution of Compact Objects in Binary Systems

    NASA Astrophysics Data System (ADS)

    Kalogera, Vicky

    2008-04-01

    Ever since their discovery, first as X-ray sources and later as radio pulsars, binary stellar systems harboring neutron stars or black holes have been pivotal in our efforts to understand the formation and evolution of these most compact objects and the implications for gravitational wave searches. I will review some recent surprising results linking the formation of neutron stars and black holes. I will also discuss how studies of double compact objects can help uncover the origin of short gamma-ray bursts and assess the prospects for gravitational wave detections in the near future.

  4. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  5. On the Nature of the Compact Object in SS 433. Observational Evidence of X-Ray Photon Index Saturation

    NASA Technical Reports Server (NTRS)

    Seifina, Elena; Titarchuk, Lev

    2010-01-01

    We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.

  6. Analytic solutions to the accretion of a rotating finite cloud towards a central object - I. Newtonian approach

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Tejeda, E.; Nagel, E.

    2009-02-01

    We construct a steady analytic accretion flow model for a finite rotating gas cloud that accretes material to a central gravitational object. The pressure gradients of the flow are considered to be negligible, and so the flow is ballistic. We also assume a steady flow and consider the particles at the boundary of the spherical cloud to be rotating as a rigid body, with a fixed amount of inwards radial velocity. This represents a generalization to the traditional infinite gas cloud model described by Ulrich. We show that the streamlines and density profiles obtained deviate largely from the ones calculated by Ulrich. The extra freedom in the choice of the parameters on the model can naturally account for the study of protostars formed in dense clusters by triggered mechanisms, where a wide variety of external physical mechanisms determine the boundary conditions. Also, as expected, the model predicts the formation of an equatorial accretion disc about the central object with a radius different from the one calculated by Ulrich.

  7. NuSTAR and XMM-Newton Observations of 1E1743.1-2843: Indications of a Neutron Star LMXB Nature of the Compact Object

    NASA Technical Reports Server (NTRS)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; Krivonos, Roman A.; Rahoui, Farid; Stern, Daniel; Tomsick, John A.; Zhang, Shuo; Zhang, William W.

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with kT approximately 1.8 keV emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with kTe approximately 4.6 keV. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 MHz-49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a Kaline from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density (N(sub H) approximately 1.6 x 10(exp 23) cm(exp -2)).

  8. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  9. Casimir potential of a compact object enclosed by a spherical cavity

    SciTech Connect

    Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.

    2010-11-15

    We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic spheres both outside and within one another.

  10. Galaxies in Clusters : Gas Stripping and Accretion

    NASA Astrophysics Data System (ADS)

    O'Dea, Chris; Balsara, Dinshaw; Livio, Mario

    1994-05-01

    We study the process of a galaxy moving through the intercluster gas in a cluster of galaxies, using a high quality hydrocode run at high resolutions. We find that ram pressure stripping occurs in the form of individual events that are separated by about ten million years. In addition we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial "pumping" mode, similar to the one found previously in simulations of wind accretion onto compact objects. Some implications of our results for the understanding of a few recent observations are discussed.

  11. Gravitational Lensing of Rays through the Levitating Atmospheres of Compact Objects

    NASA Astrophysics Data System (ADS)

    Rogers, Adam

    2017-01-01

    Electromagnetic rays travel on curved paths under the influence of gravity. When a dispersive optical medium is included, these trajectories are frequency-dependent. In this work we consider the behaviour of rays when a spherically symmetric, luminous compact object described by the Schwarzschild metric is surrounded by an optically thin shell of plasma supported by radiation pressure. Such levitating atmospheres occupy a position of stable radial equilibrium, where radiative flux and gravitational effects are balanced. Using general relativity and an inhomogeneous plasma we find the existence of a stable circular orbit within the atmospheric shell for low-frequency rays. We explore families of bound orbits that exist between the shell and the compact object, and identify sets of novel periodic orbits. Finally, we examine conditions necessary for the trapping and escape of low-frequency radiation.

  12. A new direction for dark matter research: intermediate-mass compact halo objects

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Frampton, Paul H.

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.

  13. SUBARU AND GEMINI OBSERVATIONS OF SS 433: NEW CONSTRAINT ON THE MASS OF THE COMPACT OBJECT

    SciTech Connect

    Kubota, K.; Ueda, Y.; Fabrika, S.; Barsukova, E. A.; Sholukhova, O.; Medvedev, A.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 A. This region is selected to avoid 'strong' absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig and Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 +- 3.8 km s{sup -1} with a systemic velocity of 59.2 +- 2.5 km s{sup -1}. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M{sub O} = 12.4 +- 1.9 M{sub sun} and M{sub X} = 4.3 +- 0.6 M{sub sun}, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 +- 5 km s{sup -1} in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M{sub O} = 10.4{sup +2.3}{sub -1.9} M{sub sun} and M{sub X} = 2.5{sup +0.7}{sub -0.6} M{sub sun}. Our final constraint, 1.9 M{sub sun} <=M{sub X}<= 4.9 M{sub sun}, indicates that the compact object in SS 433 is most likely a

  14. Estimation of Mass of Compact Object in H 1743-322 from 2010 and 2011 Outbursts using TCAF Solution and Spectral Index–QPO Frequency Correlation

    NASA Astrophysics Data System (ADS)

    Molla, Aslam Ali; Chakrabarti, Sandip K.; Debnath, Dipak; Mondal, Santanu

    2017-01-01

    The well-known black hole candidate (BHC) H 1743-322 exhibited temporal and spectral variabilities during several outbursts. The variation of the accretion rates and flow geometry that change on a daily basis during each of the outbursts can be very well understood using the recent implementation of the two-component advective flow solution of the viscous transonic flow equations as an additive table model in XSPEC. This has dramatically improved our understanding of accretion flow dynamics. Most interestingly, the solution allows us to treat the mass of the BHC as a free parameter and its mass could be estimated from spectral fits. In this paper, we fitted the data of two successive outbursts of H 1743-322 in 2010 and 2011 and studied the evolution of accretion flow parameters, such as two-component (Keplerian and sub-Keplerian) accretion rates, shock location (i.e., size of the Compton cloud), etc. We assume that the model normalization remains the same across the states in both these outbursts. We used this to estimate the mass of the black hole and found that it comes out in the range of 9.25{--}12.86 {M}ȯ . For the sake of comparison, we also estimated mass using the Photon index versus Quasi Periodic Oscillation frequency correlation method, which turns out to be 11.65+/- 0.67 {M}ȯ using GRO J1655-40 as a reference source. Combining these two estimates, the most probable mass of the compact object becomes {11.21}-1.96+1.65 {M}ȯ .

  15. Obtaining mass parameters of compact objects from redshifts and blueshifts emitted by geodesic particles around them

    NASA Astrophysics Data System (ADS)

    Becerril, Ricardo; Valdez-Alvarado, Susana; Nucamendi, Ulises

    2016-12-01

    The mass parameters of compact objects such as boson stars, Schwarzschild, Reissner-Nordström, and Kerr black holes are computed in terms of the measurable redshift-blueshift (zred , zblue ) of photons emitted by particles moving along circular geodesics around these objects and the radius of their orbits. We find bounds for the values of (zred , zblue ) that may be observed. For the case of the Kerr black hole, recent observational estimates of Sgr A* mass and rotation parameter are employed to determine the corresponding values of these red-blue shifts.

  16. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  17. TRANSITION FROM REGULAR TO CHAOTIC CIRCULATION IN MAGNETIZED CORONAE NEAR COMPACT OBJECTS

    SciTech Connect

    Kopacek, O.; Karas, V.; Kovar, J.; StuchlIk, Z.

    2010-10-20

    Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field. We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness. To characterize the motion, we construct the recurrence plots (RPs) and we compare them with Poincare surfaces of section. We describe the RPs in terms of the recurrence quantification analysis, which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently and provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black hole spin in setting the chaos is more complicated than initially thought.

  18. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    SciTech Connect

    Pokrovsky, Yu. E.

    2015-12-15

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  19. Insights into stellar and binary evolution from gravitational-wave observations of merging compact objects

    NASA Astrophysics Data System (ADS)

    Stevenson, Simon

    2016-07-01

    Advanced LIGO finished its first observing run (O1) at the begining of 2016, at a sensitivity ~3 times that of the initial LIGO detectors. This increased sensitivity makes the possibility of detecting gravitational-waves a realistic prospect over the next few years. One of the most promising sources for advanced gravitational-wave detectors is the merger of two compact objects; neutron stars or black holes. These objects are formed as the end point of the evolution of massive stars in close binaries. There remain many poorly understood processes in the lives of massive stars and the evolution of close binary systems. These processes include the distribution of kicks received by black holes at birth, the amount of angular momentum lost from a system during a mass transfer episode, and the common envelope event. One way of attempting to understand these processes is to attempt to constrain them observationally using eventual gravitational-wave observations of compact binary mergers. Here we present recent work on this front.

  20. VLBI OBSERVATIONS OF 10 COMPACT SYMMETRIC OBJECT CANDIDATES: EXPANSION VELOCITIES OF HOT SPOTS

    SciTech Connect

    An Tao; Wu Fang; Hong Xiaoyu; Wang Weihua; Chen Xi; Yang Jun; Taylor, Gregory B.; Baan, Willem A.; Liu Xiang; Wang Min; Hao Longfei; Cui Lang E-mail: an@astron.nl

    2012-01-01

    Observations of 10 Compact Symmetric Object (CSO) candidates have been made with the Very Long Baseline Array (VLBA) at 8.4 GHz in 2005 and with a combined Chinese and European Very Long Baseline Interferometry (VLBI) array at 8.4 GHz in 2009. The 2009 observations incorporate for the first time the two new Chinese telescopes at Miyun and Kunming for international astrophysical observations. The observational data, in combination with archival VLBA data from previous epochs, have been used to derive the proper motions of the VLBI components. Because of the long time baseline of {approx}16 years of the VLBI data sets, the expansion velocities of the hot spots can be measured at an accuracy as high as {approx}1.3 {mu}as yr{sup -1}. Six of the ten sources are identified as CSOs with a typical double or triple morphology on the basis of both spectral index maps and their mirror symmetry of proper motions of the terminal hot spots. The compact double source J1324+4048 is also identified as a CSO candidate. Among the three remaining sources, J1756+5748 and J2312+3847 are identified as core-jet sources with proper motions of their jet components relating to systemic source expansion. The third source J0017+5312 is likely also a core-jet source, but a robust detection of a core is needed for an unambiguous identification. The kinematic ages of the CSOs derived from proper motions range from 300 to 2500 years. The kinematic age distribution of the CSOs confirm an overabundance of compact young CSOs with ages less than 500 years. CSOs with known kinematic ages may be used to study the dynamical evolution of extragalactic radio sources at early stages.

  1. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  2. Time lag in transient cosmic accreting sources

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Giovannelli, F.

    2017-02-01

    Context. We develop models for time lag between the maxima of the source brightness in different wavelengths during a transient flash of luminosity that is connected with a short-period increase of the mass flux onto the central compact object. Aims: We derive a simple formula for finding the time delay among events in different wavelengths which is valid in general for all disk-accreting cosmic sources. We quantitatively also discuss a model for time-lag formation in active galactic nuclei (AGNs). Methods: In close binaries with accretion disks, the time lag is connected with effects of viscosity that define a radial motion of matter in the accretion disk. In AGN flashes, the infalling matter has a low angular momentum, and the time lag is defined by the free-fall time to the gravitating center. Results: We show the validity of these models by means of several examples of galactic and extragalactic accreting sources.

  3. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  4. Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; Haster, Carl-Johan; Dominik, Michal; Belczynski, Krzysztof

    2015-06-01

    We analyse the distinguishability of populations of coalescing binary neutron stars, neutron-star black hole binaries, and binary black holes, whose gravitational-wave signatures are expected to be observed by the advanced network of ground-based interferometers LIGO and Virgo. We consider population-synthesis predictions for plausible merging binary distributions in mass space, along with measurement accuracy estimates from the main gravitational-wave parameter-estimation pipeline. We find that for our model compact-object binary mass distribution, we can always distinguish binary neutron stars and black hole-neutron-star binaries, but not necessarily black hole-neutron-star binaries and binary black holes; however, with a few tens of detections, we can accurately identify the three subpopulations and measure their respective rates.

  5. Role of tilted congruence and f (R ) gravity on regular compact objects

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bamba, Kazuharu; Bhatti, M. Zaeem-ul-Haq

    2017-01-01

    The purpose of this paper is to check the impact of observer and Palatini f (R ) terms in the formulations of inhomogeneity factors of spherical relativistic systems. We consider the Lemaître-Tolman-Bondi dynamical model as a compact object and studied its evolution with both tilted and nontilted observers. We performed our analysis for particular cases of fluid distribution in tilted frame and found some energy density irregularity variables. We found that these variables are drastically different from those observed by a nontilted observer. The conformal flat dust and perfect matter contents are homogeneous as long as they impregnate vacuum core. However, this restriction is relaxed, when the complexity in the fluid description is increased. The radial fluid velocity due to tilted congruences and Palatini f (R ) curvature terms tends to produce hindrances in the appearance of energy-density inhomogeneities in the initially regular spherical stellar populations.

  6. Hunting for Buried Treasure: Prospecting for a Population of Compact Objects in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Reba M.; Eikenberry, S. S.; DeWitt, C.; Gosling, A. J.; Blundell, K.; Blum, R.; Olsen, K.; Sarajedini, A.

    2010-03-01

    I describe the observational campaign we have undertaken to determine the nature of the faint discrete X-ray source population discovered in the Galactic Center (GC). Data obtained to date includes a deep Chandra survey; deep, high resolution IR imaging from VLT/ISAAC, CTIO/ISPI, and the UKIDSS Galactic Plane Survey; and IR spectroscopy from VLT/ISAAC and IRTF/SpeX. Astrometric cross-correlation of our ISAAC imaging with the revised X-ray source position catalogs from Muno et al. (2003, 2006) results in a statistically significant excess in the number of candidate IR counterparts to the 130 X-ray sources encompassed within our 26 ISAAC fields. Cross-correlation of our ISPI imaging of the central 17' square around Sgr A*, an area containing 4339 Chandra sources, with the X-ray catalog reveals 2214 candidate IR counterparts. We explore the likelihood of these astrometric matches being actual physical counterparts and find that, statistically, 443+/-56 are likely to be true counterparts. We categorize these matches by X-ray and IR characteristics (hardness, colour, magnitude). After statistical analysis, we find that by selecting carefully from the subset of X-ray hard, highly reddened candidate matches, we can identify 91 IR sources which have a 45% probability of being true physical counterparts. In both the ISAAC and ISPI data we find an over-abundance of relatively unextinguished, bright, blue candidate counterparts to the X-ray sources as compared to the IR field star population. It is likely that these matches are dominated by local, massive X-ray active stars. We will use the multi-object IR spectrograph FLAMINGOS-2 on Gemini-South to perform a spectroscopic survey of the identified candidate counterparts, to search for emission line signatures which are a hallmark of accreting binaries. By determining the nature of these X-ray sources, this FLAMINGOS-2 Galactic Center Survey will have a dramatic impact on our knowledge of the Galactic accreting binary

  7. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    SciTech Connect

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets of ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)

  8. Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths

    NASA Astrophysics Data System (ADS)

    Malbet, Fabien; Léger, Alain; Anglada Escudé, Guillem; Sozzetti, Alessandro; Spolyar, Douglas; Labadie, Lucas; Shao, Mike; Holl, Berry; Goullioud, Renaud; Crouzier, Antoine; Boehm, Céline; Krone-Martins, Alberto

    2016-07-01

    Theia is a logical successor to Gaia, as a focused, very high precision astrometry mission which addresses two key science objectives of the ESA Cosmic Vision program: the nature of dark matter and the search for habitable planets. Theia addresses a number of other science cases strongly synergistic with ongoing/planned missions, such as the nature of compact objects, motions of stars in young stellar clusters, follow-up of Gaia objects of interest. Theia s "point and stare" operational mode will enable us to answer some of the most profound questions that the results of the Gaias survey will ask. Extremely-high-precision astrometry at 1-μas level can only be reached from space. The Theia spacecraft, which will carry a 0.8-m telescope, is foreseen to operate at L2 for 3,5 years. The preliminary Theia mission assessment allowed us to identify a safe and robust mission architecture that demonstrates the mission feasibility within the Soyuz ST launch envelope and a small M-class mission cost cap. We present here these features of the mission that has been submitted to the last ESA M4 call in January 2015.

  9. A ceramic/slag interface as an analog for accretion of hot refractory objects and rim formation

    NASA Technical Reports Server (NTRS)

    Paque, J. M.; Bunch, T. E.

    1994-01-01

    Refractory inclusions or Ca-Al-rich inclusions (CAI's) from carbonaceous chondrites span a wide range of bulk compositions that cannot be explained either by segregation from a gas of solar composition at different points in the condensation sequence or by fractional crystallization from a parent liquid. CAI's are commonly rimmed by Wark-Lovering (W-L) rims, a series of nearly monomineralic layers that have been a source of controversy since the variety of rim sequences occurring on different types of CAI's from Allende were described. The origin of these distinctive features has not yet been resolved, with proponents of accretion, condensation, flash heating, ablation, evaporation, etc. Rims have generated considerable interest because they potentially contain clues to conditions experienced by CAI's after the formation of the inclusion and prior to incorporation into the parent body. Ceramic bricks in contact with hot steel slag may produce reaction products in rimlike fashion similar to those found in CAI's. The similarity between the mineralogy of blast furnace slags and CAI's has long been recognized, with both containing unusual phases not found in terrestrial materials. We provide here a comparison between a ceramic brick/slag multiple-layered interface and a multiple-layered interface between a melilite-perovskite object and a melilite-spinel object in the Allende inclusion USNM 4691-1. These results have implications in interpreting the origin of rims and the textures and compositions of CAI's.

  10. Escape and trapping of low-frequency gravitationally lensed rays by compact objects within plasma

    NASA Astrophysics Data System (ADS)

    Rogers, Adam

    2017-02-01

    We consider the gravitational lensing of rays emitted by a compact object (CO) within a distribution of plasma with power-law density ∝r-h. For the simplest case of a cloud of spherically symmetric cold non-magnetized plasma, the diverging effect of the plasma and the converging effect of gravitational lensing compete with one another. When h < 2, the plasma effect dominates over the vacuum Schwarzschild curvature, potentially shifting the radius of the unstable circular photon orbit outside the surface of the CO. When this occurs, we define two relatively narrow radio frequency bands in which plasma effects are particularly significant. Rays in the escape window have ω0 < ω ≤ ω+ and are free to propagate to infinity from the CO surface. To a distant observer, the visible portion of the CO surface appears to shrink as the observed frequency is reduced, and vanishes entirely at ω0, in excess of the plasma frequency at the CO surface. We define the anomalous propagation window for frequencies ω- < ω ≤ ω0. Rays emitted from the CO surface within this frequency range are dominated by optical effects from the plasma and curve back to the surface of the CO, effectively cloaking the star from distant observers. We conclude with a study of neutron star (NS) compactness ratios for a variety of nuclear matter equations of state (EoS). For h = 1, NSs generated from stiff EoS should display significant frequency dependence in the EW, and lower values of h with softer EoS can also show these effects.

  11. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    NASA Astrophysics Data System (ADS)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang

    2016-11-01

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case of the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.

  12. ASYMMETRIC ACCRETION FLOWS WITHIN A COMMON ENVELOPE

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-10

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  13. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    SciTech Connect

    Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.

    2014-09-10

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.

  14. X-RAY OBSERVATIONS OF DISRUPTED RECYCLED PULSARS: NO REFUGE FOR ORPHANED CENTRAL COMPACT OBJECTS

    SciTech Connect

    Gotthelf, E. V.; Halpern, J. P.; Allen, B.; Knispel, B.

    2013-08-20

    We present a Chandra X-ray survey of the disrupted recycled pulsars (DRPs), isolated radio pulsars with P > 20 ms and B{sub s} < 3 Multiplication-Sign 10{sup 10} G. These observations were motivated as a search for the immediate descendants of the Almost-Equal-To 10 central compact objects (CCOs) in supernova remnants (SNRs), 3 of which have similar timing and magnetic properties as the DRPs, but are bright, thermal X-ray sources consistent with minimal neutron star (NS) cooling curves. Since none of the DPRs were detected in this survey, there is no evidence that they are ''orphaned'' CCOs, NSs whose SNRs has dissipated. Upper limits on their thermal X-ray luminosities are in the range of log L{sub x} [erg s{sup -1}] = 31.8-32.8, which implies cooling ages >10{sup 4}-10{sup 5} yr, roughly 10 times the ages of the Almost-Equal-To 10 known CCOs in a similar volume of the Galaxy. The order of a hundred CCO descendants that could be detected by this method are thus either intrinsically radio quiet or occupy a different region of (P, B{sub s} ) parameter space from the DRPs. This motivates a new X-ray search for orphaned CCOs among radio pulsars with larger B-fields, which could verify the theory that their fields are buried by the fall-back of supernova ejecta, but quickly regrow to join the normal pulsar population.

  15. On the diversity of compact objects within supernova remnants - II. Energy-loss mechanisms

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2017-02-01

    Energy losses from isolated neutron stars are commonly attributed to the emission of electromagnetic radiation from a rotating point-like magnetic dipole in vacuum. This emission mechanism predicts a braking index n = 3, which is not observed in highly magnetized neutron stars. Despite this fact, the assumptions of a dipole field and rapid early rotation are often assumed a priori, typically causing a discrepancy between the characteristic age and the associated supernova remnant (SNR) age. We focus on neutron stars with `anomalous' magnetic fields that have established SNR associations and known ages. Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are usually described in terms of the magnetar model that posits a large magnetic field established by dynamo action. The high magnetic field pulsars (HBPs) have extremely large magnetic fields just above quantum electrodynamics scale (but below that of the AXPs and SGRs), and central compact objects (CCOs) may have buried fields that will emerge in the future as nascent magnetars. In the first part of this series, we examined magnetic field growth as a method of uniting the CCOs with HBPs and X-ray dim isolated neutron stars (XDINSs) through evolution. In this work, we constrain the characteristic age of these neutron stars using the related SNR age for a variety of energy-loss mechanisms and allowing for arbitrary initial spin periods. In addition to the SNR age, we also use the observed braking indices and X-ray luminosities to constrain the models.

  16. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit

    SciTech Connect

    Han Wenbiao

    2010-10-15

    The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.

  17. Gravitational waves and the deformation of compact objects: Topics in relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Johnson-McDaniel, Nathan Kieran

    In this dissertation, we present various theoretical investigations of sources of gravitational waves, relevant to interpreting the data from current and planned gravitational wave detectors; an idee fixe is the deformation of compact objects. We begin in the strong field, vacuum regime, with a construction of initial data for the numerical simulation of black hole binaries (specializing to the case of nonspinning holes in a quasicircular orbit). The data we construct contain more of the binary's expected physics than any other current data set. In particular, they contain both the binary's outgoing radiation and the expected tidal deformations of the holes. Such improved initial data will likely be necessary for simulations to achieve the accuracy required to supply advanced gravitational wave detectors with templates for parameter estimation. We end in the weak field, hydrodynamic regime with a calculation of the expected accuracy with which one can combine standard electromagnetic and gravitational wave observations of white dwarf binaries to measure the masses of the binary's components. In particular, we show that this measurement will not be contaminated by finite size effects for realistic sources observed by LISA, though such effects could be important for exceptional sources and/or advanced mHz gravitational wave detectors. In the middle, we make a detour into the messy and poorly constrained realm of the physics of neutron star interiors, calculating the shear modulus of hadron--quark mixed phase in hybrid stars. Here we include a rough treatment of charge screening, dimensional continuation of the lattice, and the contributions from changing the cell volume when shearing lowerdimensional lattices. We find that the last of these contributions is necessary to stabilize the lattice for those dimensions, where it makes a considerable contribution to the shear modulus. We then move back to sounder theoretical footing in making a general relativistic

  18. Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2005-11-15

    We are developing a general, unified, and rigorous analytical framework for using gravitational lensing by compact objects to test different theories of gravity beyond the weak-deflection limit. In this paper we present the formalism for computing corrections to lensing observables for static, spherically symmetric gravity theories in which the corrections to the weak-deflection limit can be expanded as a Taylor series in one parameter, namely, the gravitational radius of the lens object. We take care to derive coordinate-independent expressions and compute quantities that are directly observable. We compute series expansions for the observables that are accurate to second order in the ratio {epsilon}={theta} /{theta}{sub E} of the angle subtended by the lens's gravitational radius to the weak-deflection Einstein radius, which scales with mass as {epsilon}{proportional_to}M {sup 1/2}. The positions, magnifications, and time delays of the individual images have corrections at both first and second order in {epsilon}, as does the differential time delay between the two images. Interestingly, we find that the first-order corrections to the total magnification and centroid position vanish in all gravity theories that agree with general relativity in the weak-deflection limit, but they can remain nonzero in modified theories that disagree with general relativity in the weak-deflection limit. For the Reissner-Nordstroem metric and a related metric from heterotic string theory, our formalism reveals an intriguing connection between lensing observables and the condition for having a naked singularity, which could provide an observational method for testing the existence of such objects. We apply our formalism to the galactic black hole and predict that the corrections to the image positions are at the level of 10 {mu}arc s (microarcseconds), while the correction to the time delay is a few hundredths of a second. These corrections would be measurable today if a pulsar were

  19. DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2012-11-01

    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{sup )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.

  20. New constraints on the cooling of the central compact object in CAS A

    SciTech Connect

    Posselt, B.; Pavlov, G. G.; Suleimanov, V.; Kargaltsev, O.

    2013-12-20

    To examine the previously claimed fast cooling of the Central Compact Object (CCO) in the Cas A supernova remnant (SNR), we analyzed two Chandra observations of this CCO, taken in a setup minimizing instrumental spectral distortions. We fit the two CCO X-ray spectra from 2006 and 2012 with hydrogen and carbon neutron star atmosphere models. The temperature and flux changes in the 5.5 yr between the two epochs depend on the adopted constraints on the fitting parameters and the uncertainties of the effective area calibrations. If we allow a change of the equivalent emitting region size, R {sub Em}, the effective temperature remains essentially the same. If R {sub Em} is held constant, the best-fit temperature change is negative, but its statistical significance ranges from 0.8σ to 2.5σ, depending on the model. If we assume that the optical depth of the ACIS filter contaminant in 2012 was ±10% different from its default calibration value, the significance of the temperature drop becomes 0.8σ-3.1σ, for the carbon atmospheres with constant R {sub Em}. Thus, we do not see a statistically significant temperature drop in our data, but the involved uncertainties are too large to firmly exclude the previously reported fast cooling. Our analysis indicate a decrease of 4%-6% (1.9σ-2.9σ significance) for the absorbed flux in the energy range 0.6-6 keV between 2006 and 2012, most prominent in the ≈1.4-1.8 keV energy range. It could be caused by unaccounted changes of the detector response or contributions from unresolved SNR material along the line of sight to the CCO.

  1. Galaxies in clusters: Gas stripping and accretion

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw; Livio, Mario; O'Dea, Christopher P.

    1994-12-01

    We study the process of a galaxy moving through the intracluster gas in a cluster of galaxies, using two-dimensional hydrodynamic simulations at high resolution. We find that ram pressure stripping occurs in the form of individual events which are separated by a few times 107 yr. In addition, we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial 'pumping' mode, similar to the one found previously in simulations of wind accretion onto compact objects. The flow is found to exhibit a complex shock structure around the core. Some implications of our results for the understanding of a few recent observations are discussed.

  2. SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS

    SciTech Connect

    Eisner, J. A.

    2015-04-10

    Planets are often invoked as the cause of inferred gaps or inner clearings in transition disks. These putative planets would interact with the remnant circumstellar disk, accreting gas and generating substantial luminosity. Here I explore the expected appearance of accreting protoplanets at a range of evolutionary states. I compare synthetic spectral energy distributions with the handful of claimed detections of substellar-mass companions in transition disks. While observed fluxes of candidate companions are generally compatible with accreting protoplanets, challenges remain in reconciling the extended structure inferred in observed objects with the compact emission expected from protoplanets or circumplanetary disks. I argue that a large fraction of transition disks should harbor bright protoplanets, and that more may be detected as larger telescopes open up additional parameter space.

  3. Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Vlasyuk, V. V.; Petkov, V. B.

    2016-06-01

    The International Workshop on Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts (October, 7-14, 2015) was dedicated to Quantum ChromoDynamics (QCD) Phase Transitions and observational signals of these transitions related to formation of compact astrophysical objects. The aim of this workshop was to bring together researchers working on the problems of behavior of matter under critical conditions achievable in such astrophysical objects as "strange" or "hybrid" stars and in laboratories at heavy-ion collisions to discuss fundamental issues and recent developments. Topics included both observations (radio, optical and X-ray astronomy, gamma ray bursts, gravitational waves, neutrino detection, heavy-ion collisions, etc.) and theory (supernova simulations, proto-neutron and neutron stars, equation of state of dense matter, neutron star cooling, unstable modes, nucleosynthesis, explosive transitions, quark-gluon plasma).

  4. Anti-magnetars: Revealing the Pulsar Properties of Central Compact Objects in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric

    This proposal is to fund the analysis of large data sets that we were awarded in XMM- Newton AO9 to search for the pulsation periods and measure the spin-down rates of Central Compact Objects (CCOs) in supernova remnants (SNRs). These observations include a Large Program (350 ks) to search for the pulsar in Cas A, and a multi-epoch timing program (200 ks total) to measure the spin-down rate and dipole magnetic field strength of the newly discovered 0.112 s PSR J0821-4300 in Puppis A. These observations are motivated by growing evidence that the class of CCOs, which are detected only in X-rays and are the least conspicuous of young neutron stars, are characterized by weak dipole magnetic fields and relatively long initial spin periods. As such, they may comprise a large fraction of neutron star births. From upper limits that we established on their spin-down rates, as well as one measurement of P-dot in a CCO, we developed the "anti-magnetar" model, which describes CCOs as pulsars with even weaker magnetic fields (B_s = 1.e10-1.e11 G) than ordinary young pulsars. The approved observations will provide strong confirmation of this model if the expected slow spin-down rate of PSR J0821-4300 is measured, and if similar spin properties are discovered from the Cas A CCO. The remaining mystery of CCOs is what maintains their small, hot regions of surface thermal X-ray emission. Spin-down power is insufficient; otherwise, only the effects of strong (B_s > 1.e13 G) magnetic fields are thought able to enforce nonuniform surface temperature, in apparent contradiction to the anti-magnetar hypothesis. We will apply a detailed ray-tracing code to model the energy-dependent light curves and phase-resolved spectra of PSR J0821-430 and other CCOs in order to determine the geometry of their surface hot spots with respect to the rotation axis and viewing direction. Evidence for cyclotron resonance lines in the spectra will also be modeled as a function of rotation phase, which will

  5. Exploring a New Population of Compact Objects: X-ray and IR Observations of the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Reba M.; Gosling, Andrew J.; Eikenberry, Stephen E.; Muno, Michael P.; Blundell, Katherine M.; Podsiadlowski, Philipp; Mikles, Valerie J.; Dewitt, Curtis

    2008-10-01

    I describe the IR and X-ray observational campaign we have undertaken for the purpose of determining the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center (GC). Data obtained for this project includes a deep Chandra survey of the Galactic Bulge; deep, high resolution IR imaging from VLT/ISAAC, CTIO/ISPI, and the UKIDSS Galactic Plane Survey (GPS) and IR spectroscopy from VLT/ISAAC and IRTF/SpeX. By cross-correlating the GC X-ray imaging from Chandra with our IR surveys, we identify candidate counterparts to the X-ray sources via astrometry. Using a detailed IR extinction map, we are deriving magnitudes and colors for all the candidates. Having thus established a target list, we will use the multi-object IR spectrograph FLAMINGOS-2 on Gemini-South to carry out a spectroscopic survey of the candidate counterparts, to search for emission line signatures which are a hallmark of accreting binaries. By determining the nature of these X-ray sources, this FLAMINGOS-2 Galactic Center Survey will have a dramatic impact on our knowledge of the Galactic accreting binary population.

  6. On the mass of the compact object in the black hole binary A0620-00

    NASA Technical Reports Server (NTRS)

    Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.

    1993-01-01

    Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.

  7. New Constraints on Macroscopic Compact Objects as Dark Matter Candidates from Gravitational Lensing of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Metcalf, R. Benton; Silk, Joseph

    2007-02-01

    We use the distribution, and particularly the skewness, of high redshift type Ia supernovae brightnesses relative to the low redshift sample to constrain the density of macroscopic compact objects (MCOs) in the Universe. The supernova data favor dark matter made of microscopic particles (such as the lightest supersymmetric partner) over MCOs with masses between 10-2M⊙ and 1010M⊙ at 89% confidence. Future data will greatly improve this limit. Combined with other constraints, MCOs larger than one-tenth the mass of Earth (˜10-7M⊙) can be eliminated as the sole constituent of dark matter.

  8. New constraints on macroscopic compact objects as dark matter candidates from gravitational lensing of type Ia supernovae.

    PubMed

    Metcalf, R Benton; Silk, Joseph

    2007-02-16

    We use the distribution, and particularly the skewness, of high redshift type Ia supernovae brightnesses relative to the low redshift sample to constrain the density of macroscopic compact objects (MCOs) in the Universe. The supernova data favor dark matter made of microscopic particles (such as the lightest supersymmetric partner) over MCOs with masses between 10(-2)Mo and 10(10)Mo at 89% confidence. Future data will greatly improve this limit. Combined with other constraints, MCOs larger than one-tenth the mass of Earth (approximately 10(-7)Mo) can be eliminated as the sole constituent of dark matter.

  9. Circinus X-1: a Laboratory for Studying the Accretion Phenomenon in Compact Binary X-Ray Sources. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Robinson-Saba, J. L.

    1983-01-01

    Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.

  10. Optical, X-ray and gamma-ray observations of compact objects in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1993-01-01

    In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and Hubble Space Telescope (HST) as well as our balloon-borne hard x-ray telescope EXITE (Energetic X-ray Imaging Telescope Experiment) and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H-alpha images of two clusters with HST and found CV candiates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two 'dim source' fields in omega-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and low mass X-ray binaries (LMXBs) and the origin of hot gas in globulars.

  11. Constraints on r-process nucleosynthesis in accretion disks

    NASA Technical Reports Server (NTRS)

    Jin, Liping

    1991-01-01

    Systems in which accretion drives an outflow from a region near a compact object may enrich the interstellar medium in r-process elements. A detailed assessment of the efficacy of this mechanism for the r-process is presented here, taking into account the constraints imposed by typical accretion-disk conditions. It is concluded that r-process elements are unlikely to have been made in this way, largely because the total production is too low, by a factor of about 100,000, to explain the observed abundances.

  12. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms.

    PubMed

    Nagamine, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.

  13. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms

    PubMed Central

    NAGAMINE, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described. PMID:27725469

  14. Stable Levitation and Alignment of Compact Objects by Casimir Spring Forces

    SciTech Connect

    Rahi, Sahand Jamal; Zaheer, Saad

    2010-02-19

    We investigate a stable Casimir force configuration consisting of an object contained inside a spherical or spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center of the cavity and the dependence of the energy on the relative orientations of the inner object and the cavity walls are computed. We find that the stability of the force equilibrium--unlike the direction of the torque--can be predicted based on the sign of the force between two slabs of the same material.

  15. Partial accretion regime of accreting millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Eksi, Kazim

    2016-07-01

    The inner parts of the disks around neutron stars in low mass X-ray binaries may become geometrically thick due to inhibition of accretion at the disk mid-plane when the central object is rotating rapidly. In such a case matter inflowing through the disk may keep accreting onto the poles of the neutron star from the parts of the disk away from the disk mid-plane while the matter is propelled at the disk mid-plane. An important ingredient of the evolution of millisecond pulsars is then the fraction of the inflowing matter that can accrete onto the poles in the fast rotation regime depending on the fastness parameter. This ``soft'' propeller regime may be associated with the rapid decay stage observed in the light curves of several accreting millisecond pulsars. To date only a few studies considered the partial accretion regime. By using geometrical arguments we improve the existing studies and test the model by reproducing the lightcurves of millisecond X-ray pulsars via time dependent simulations of disk evolution. We also present analytical solutions that represent disks with partial accretion.

  16. Anomalous magnetic viscosity in relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Lin, Fujun; Liu, Sanqiu; Li, Xiaoqing

    2013-07-01

    It has been proved that the self-generated magnetic fields by transverse plasmons in the relativistic regime are modulationally unstable, leading to a self-similar collapse of the magnetic flux tubes and resulting in local magnetic structures; highly spatially intermittent flux is responsible for generating the anomalous viscosity. We derive the anomalous magnetic viscosity coefficient, in accretion disks around compact objects, such as black holes, pulsars and quasars, where the plasmas are relativistic, in order to help clarify the nature of viscosity in the theory of accretion disks. The results indicate that, the magnetic viscosity is modified by the relativistic effects of plasmas, and its' strength would be 1015 stronger than the molecular viscosity, which may be helpful in explaining the observations.

  17. The neutron star in HESS J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.

    2015-01-01

    Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is

  18. Magnetised accretion discs in Kerr spacetimes

    NASA Astrophysics Data System (ADS)

    Ranea-Sandoval, Ignacio F.; García, Federico

    2015-01-01

    Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1-5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims: We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods: We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results: We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black

  19. Formalism for testing theories of gravity using lensing by compact objects. II. Probing post-post-Newtonian metrics

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2006-02-15

    We study gravitational lensing by compact objects in gravity theories that can be written in a post-post-Newtonian (PPN) framework: i.e., the metric is static and spherically symmetric, and can be written as a Taylor series in m /r, where m is the gravitational radius of the compact object. Working invariantly, we compute corrections to standard weak-deflection lensing observables at first and second order in the perturbation parameter {epsilon}={theta}/{theta}{sub E}, where {theta} is the angular gravitational radius and {theta}{sub E} is the angular Einstein ring radius of the lens. We show that the first-order corrections to the total magnification and centroid position vanish universally for gravity theories that can be written in the PPN framework. This arises from some surprising, fundamental relations among the lensing observables in PPN gravity models. We derive these relations for the image positions, magnifications, and time delays. A deep consequence is that any violation of the universal relations would signal the need for a gravity model outside the PPN framework (provided that some basic assumptions hold). In practical terms, the relations will guide observational programs to test general relativity, modified gravity theories, and possibly the cosmic censorship conjecture. We use the new relations to identify lensing observables that are accessible to current or near-future technology, and to find combinations of observables that are most useful for probing the spacetime metric. We give explicit applications to the galactic black hole, microlensing, and the binary pulsar J0737-3039.

  20. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. III. Transition from inspiral to plunge

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence E.; Will, Clifford M.; Wiseman, Alan G.

    1993-04-01

    Late in its evolution, a binary system of compact objects will undergo a transition from an adiabatic inspiral induced by gravitational radiation damping to an unstable plunge, induced by strong spacetime curvature. This transition from inspiral to plunge is studied in detail using higher-order post-Newtonian methods. First, we study the innermost stable circular orbits of binary systems of nonrotating, compact objects of arbitrary mass ratio in the absence of gravitational radiation reaction. The method uses ``hybrid'' two-body equations of motion that are valid through (post)2-Newtonian order [order (Gm/rc2)2 ], but that also include the test-body limit in the Schwarzschild geometry exactly. Using a critical-point analysis, we show that circular orbits inside this innermost orbit are unstable to plunge. The separation of the innermost stable orbit (in harmonic, or de Donder coordinates) is found to vary with mass ratio, from the test-body value of 5m to about 6m for equal masses, where m is the total mass of the system. The orbital energy, angular momentum, and frequency of the innermost stable orbit are also determined as a function of the ratio of the two masses. We study the sensitivity of these values to higher-order post-Newtonian corrections. Incorporating gravitational radiation reaction in the hybrid equations of motion, we evaluate such variables as radial velocity, angular velocity, energy, and angular momentum for a coalescing binary at the corresponding innermost stable orbit, as a function of mass ratio. These variables could be used as initial conditions for numerical calculations of the ensuing coalescence.

  1. TRANSITS AND LENSING BY COMPACT OBJECTS IN THE KEPLER FIELD: DISRUPTED STARS ORBITING BLUE STRAGGLERS

    SciTech Connect

    Di Stefano, R.

    2011-05-15

    Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover {approx}1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of 'anti-transits' - i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.

  2. Transits and Lensing by Compact Objects in the Kepler Field: Disrupted Stars Orbiting Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.

    2011-05-01

    Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover ~1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of "anti-transits"—i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.

  3. Formalism for testing theories of gravity using lensing by compact objects. III. Braneworld gravity

    SciTech Connect

    Keeton, Charles R.; Petters, A.O.

    2006-05-15

    Braneworld gravity is a model that endows physical space with an extra dimension. In the type II Randall-Sundrum braneworld gravity model, the extra dimension modifies the spacetime geometry around black holes, and changes predictions for the formation and survival of primordial black holes. We develop a comprehensive analytical formalism for far-field black hole lensing in this model, using invariant quantities to compute all the geometric optics lensing observables: bending angle, image position, magnification, centroid, and time delay. We then make the first analysis of wave optics in braneworld lensing, working in the semiclassical limit. Through quantitative examples we show that wave optics offers the only realistic way to observe braneworld effects in black hole lensing. We point out that if primordial braneworld black holes exist, have mass M , and contribute a fraction f{sub bh} of the dark matter, then roughly {approx}3x10{sup 5}xf{sub bh}(M /10{sup -18}M{sub {center_dot}}){sup -1} of them lie within our Solar System. These objects, which we call 'attolenses', would produce interference fringes in the energy spectra of gamma-ray bursts at energies E{approx}100(M /10{sup -18}M{sub {center_dot}}){sup -1} MeV (which will soon be accessible with the GLAST satellite). Primordial braneworld black holes spread throughout the Universe could produce similar interference effects. If they contribute a fraction {omega} of the total energy density, the probability that gamma-ray bursts are 'attolensed' is at least {approx}0.1{omega} . If observed, attolensing interference fringes would yield a simple upper limit on M . Detection of a primordial black hole with M < or approx. 10{sup -19}M{sub {center_dot}} would challenge general relativity and favor the braneworld model. Further work on lensing tests of braneworld gravity must proceed into the physical optics regime, which awaits a description of the full spacetime geometry around braneworld black holes.

  4. FIRST-based survey of Compact Steep Spectrum sources. II. MERLIN and VLA observations of medium-sized symmetric objects

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, M.; Marecki, A.; Thomasson, P.; Spencer, R. E.

    2005-09-01

    A new sample of candidate Compact Steep Spectrum (CSS) sources that are much weaker than the CSS source prototypes has been selected from the VLA FIRST catalogue. MERLIN "snapshot" observations of the sources at 5 GHz indicate that six of them have an FR II-like morphology, but are not edge-brightened as is normal for Medium-sized Symmetric Objects (MSOs) and FR IIs. Further observations of these six sources with the VLA at 4.9 GHz and MERLIN at 1.7 GHz, as well as subsequent full-track observations with MERLIN at 5 GHz of what appeared to be the two sources of greatest interest are presented. The results are discussed with reference to the established evolutionary model of CSS sources being young but in which not all of them evolve to become old objects with extended radio structures. A lack of stable fuelling in some of them may result in an early transition to a so-called coasting phase so that they fade away instead of growing to become large-scale objects. It is possible that one of the six sources (1542+323) could be labelled as a prematurely "dying" MSO or a "fader".

  5. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  6. Magnetic viscosity: outbursts and outflows in accretion driven systems

    NASA Astrophysics Data System (ADS)

    Meintjes, P. J.; Breedt, E.

    In this paper magnetic viscosity is investigated in magnetized accretion discs. It will be shown that the effective coupling between the magnetic field of a slow-rotator and an accretion disc, can be a very effective mechanism to drive episodes of high mass accretion onto the surface of a compact object. Outside the corotation radius, angular momentum is effectively transferred outwards through a propeller-type process from the magnetospheric field and magnetic bubbles that are formed as a result of a Kelvin-Helmholtz instability, which can result in a centrifugal barrier and accumulation of disc matter outside the corotation radius which will become unstable at some point, triggering enhanced inward mass advection as a result of a magneto-gravitational instability. This may lead to periods of enhanced mass accretion and associated disc brightening, which may explain the dwarf novae phenomenon in certain disc accreting cataclysmic variables. This may be accompanied by mass outflows from the disc and possible non-thermal emission. The description of magnetic viscosity presented in this paper will rely on the values of two constants, i.e. the Hartmann and Reynolds numbers of the magnetized disc plasma. For both these numbers above unity, magnetic stresses in the disc can play a very important role in the kinematics of the plasma in disc accreting systems.

  7. FIRST-based survey of compact steep spectrum sources. III. MERLIN and VLBI observations of subarcsecond-scale objects

    NASA Astrophysics Data System (ADS)

    Marecki, A.; Kunert-Bajraszewska, M.; Spencer, R. E.

    2006-04-01

    Context: .According to a generally accepted paradigm, small intrinsic sizes of Compact Steep Spectrum (CSS) radio sources are a direct consequence of their youth, but in later stages of their evolution they are believed to become large-scale sources. However, this notion was established mainly for strong CSS sources.Aims.In this series of papers we test this paradigm on 60 weaker objects selected from the VLA FIRST survey. They have 5-GHz flux densities in the range 150 < S5 GHz < 550 mJy and steep spectra in the range 0.365 ≤ ν ≤ 5 GHz. The present paper is focused on sources that fulfill the above criteria and have angular sizes in the range ~0.2 arcsec -1 arcsec.Methods.Observations of 19 such sources were obtained using MERLIN in "snapshot" mode at 5 GHz. They are presented along with 1.7-GHz VLBA and 5-GHz EVN follow-up snapshot observations made for the majority of them. For one of the sources in this subsample, 1123+340, a full-track 5-GHz EVN observation was also carried out.Results.This study provides an important element to the standard theory of CSS sources, namely that in a number of them the activity of their host galaxies probably switched off quite recently and their further growth has been stopped because of that. In the case of 1123+340, the relic of a compact "dead source" is particularly well preserved by the presence of intracluster medium of the putative cluster of galaxies surrounding it.Conclusions.The observed overabundance of compact sources can readily be explained in the framework of the scenario of "premature" cessation of the activity of the host galaxy nucleus. It could also explain the relatively low radio flux densities of many such sources and, in a few cases, their peculiar, asymmetric morphologies. We propose a new interpretation of such asymmetries based on the light-travel time argument.

  8. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  9. Comparisons and connections between mean field dynamo theory and accretion disc theory

    NASA Astrophysics Data System (ADS)

    Blackman, E. G.

    2010-01-01

    The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.

  10. Parsec-scale H I absorption structure in a low-redshift galaxy seen against a compact symmetric object

    NASA Astrophysics Data System (ADS)

    Biggs, A. D.; Zwaan, M. A.; Hatziminaoglou, E.; Péroux, C.; Liske, J.

    2016-11-01

    We present global VLBI observations of the 21-cm transition of atomic hydrogen seen in absorption against the radio source J0855+5751. The foreground absorber (SDSS J085519.05+575140.7) is a dwarf galaxy at z = 0.026. As the background source is heavily resolved by VLBI, the data allow us to map the properties of the foreground H I gas with a spatial resolution of 2 pc. The absorbing gas corresponds to a single coherent structure with an extent >35 pc, but we also detect significant and coherent variations, including a change in the H I optical depth by a factor of 5 across a distance of ≲ 6 pc. The large size of the structure provides support for the Heiles & Troland model of the interstellar medium, as well as its applicability to external galaxies. The large variations in H I optical depth also suggest that caution should be applied when interpreting TS measurements from radio-detected DLAs. In addition, the distorted appearance of the background radio source is indicative of a strong jet-cloud interaction in its host galaxy. We have measured its redshift (z = 0.541 86) using optical spectroscopy on the William Herschel Telescope and this confirms that J0855+5751 is an FR II radio source with a physical extent of <1 kpc and supports the previous identification of this source as a compact symmetric object. These sources often show absorption associated with the host galaxy and we suggest that both H I and OH should be searched for in J0855+5751.

  11. NON-THERMAL RADIATION FROM COLLISIONS OF COMPACT OBJECTS WITH INTERMEDIATE-SCALE JETS IN ACTIVE GALAXIES

    SciTech Connect

    Bednarek, W.; Banasiński, P.

    2015-07-10

    Massive black holes in active galaxies are immersed in huge concentrations of late-type stars in the galactic bulges and also early-type massive stars in the nuclear stellar clusters, which are additionally surrounded by quasi-spherical halos on a scale of several kpc that contain from a few hundred up to several thousand globular clusters (GCs). It is expected that significant numbers of red giant stars, massive stars, and also GCs can move through the jet expelled from the central engine of the active galaxy. We consider collisions of stars from the galactic bulge, nuclear cluster, and GCs with the jet plasma. As a result of such collisions, multiple shocks are expected to appear in the jet around these compact objects. Therefore, the plasma in the kpc-scale jet can be significantly disturbed. We show that particles can be accelerated on these shocks up to multi-TeV energies. TeV leptons emit synchrotron radiation, extending up to X-ray energies, and also comptonize radiation produced in a stellar cluster and also the microwave background radiation to TeV γ-ray energies. We show that such non-thermal radiation is likely to be detectable from the intermediate-scale jets of nearby active galaxies for a reasonable number of stars and GCs immersed within the jet. As an example, we calculate the expected non-thermal emission in X-ray and gamma-ray energies from the nearby radio galaxy Cen A, from which steady gamma-ray emission with a complex spectrum has recently been reported by Fermi and the HESS Observatories.

  12. Radioactivity and Thermalization in the Ejecta of Compact Object Mergers and Their Impact on Kilonova Light Curves

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer; Kasen, Daniel; Wu, Meng-Ru; Martínez-Pinedo, Gabriel

    2016-10-01

    One promising electromagnetic signature of compact object mergers are kilonovae: approximately isotropic radioactively powered transients that peak days to weeks post-merger. Key uncertainties in kilonova modeling include the emission profiles of the radioactive decay products—non-thermal β -particles, α -particles, fission fragments, and γ -rays—and the efficiency with which their kinetic energy is absorbed by the ejecta. The radioactive energy emitted, along with its thermalization efficiency, sets the luminosity budget and is therefore crucial for predicting kilonova light curves. We outline uncertainties in the radioactivity, describe the processes by which the decay products transfer energy to the ejecta, and calculate time-dependent thermalization efficiencies for each particle type. We determine the net thermalization efficiency and explore its dependence on r-process yields—in particular, the production of α -decaying translead nuclei—and on ejecta mass, velocity, and magnetic fields. We incorporate our results into detailed radiation transport simulations, and calculate updated kilonova light curve predictions. Thermalization effects reduce kilonova luminosities by a factor of roughly 2 at peak, and by an order of magnitude at later times (15 days or more after explosion). We present analytic fits to time-dependent thermalization efficiencies, which can be used to improve light curve models. We revisit the putative kilonova that accompanied gamma-ray burst 130603B, and estimate the mass ejected in that event. We find later time kilonova light curves can be significantly impacted by α -decay from translead isotopes; data at these times may therefore be diagnostic of ejecta abundances.

  13. Free-fall accretion and emitting caustics in wind-fed X-ray sources

    NASA Astrophysics Data System (ADS)

    Illarionov, Andrei F.; Beloborodov, Andrei M.

    2001-05-01

    In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l>(GMR*)1/2 (where M and R* are the mass and radius of the compact object) intersect outside R* and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l<(GMR*)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a `Moon-like' X-ray source.

  14. Kronos: A Multiwavelength Observatory for Mapping Accretion-Driven Sources

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Polidan, Ronald S.; Robinson, Edward L.

    2002-01-01

    Kronos is a multiwavelength observatory proposed as a NASA Medium Explorer. Kronos is designed to make use of the natural variability of accreting sources to create microarcsecond-resolution maps of the environments of supermassive black holes in active galaxies and stella-size black holes in binary systems and to characterize accretion processes in Galactic compact binaries. Kronos will obtain broad energy range spectroscopic data with co-aligned X-ray, ultraviolet, and optical spectrometers. The high-Earth orbit of Kronos enables well-sampled, high time-resolution observations, critical for the innovative and sophisticated methods that are used to understand the accretion flows, mass outflows, jets, and other phenomena found in accreting sources. By utilizing reverberation mapping analysis techniques, Kronos produces advanced high-resolution maps of unprecedented resolution of the extreme environment in the inner cores of active galaxies. Similarly, Doppler tomography and eclipse mapping techniques characterize and map Galactic binary systems, revealing the details of the physics of accretion processes in black hole, neutron star, and white dwarf binary systems. The Kronos instrument complement, sensitivity, and orbital environment make it suitable to aggressively address time variable phenomena in a wide range of astronomical objects from nearby flare stars to distant galaxies.

  15. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    SciTech Connect

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  16. Massive compact halo objects viewed from a cosmological perspective: contribution to the baryonic mass density of the universe

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.; Freese, Katherine; Graff, David S.

    1998-09-01

    We estimate the contribution of massive compact halo objects (MACHOs) and their stellar progenitors to the mass density of the Universe. If the MACHOs that have been detected reside in the halo of our Galaxy, then a simple extrapolation of the Galactic population (out to 50 kpc) of MACHOs to cosmic scales gives a cosmic density ϱMACHO=(1-5)×10 9hM⊙Mpc -3, which in terms of the critical density corresponds to Ω MACHO = (0.0036-0.017)h -1. Should the MACHO halo extend out to much further than 50 kpc, then Ω MACHO would only be larger. Such a mass density is comparable to the cosmic baryon density implied by Big Bang nucleosynthesis. If we take the central values of the estimates, then MACHOs dominate the baryonic content of the Universe today, with Ω MACHO/Ω B˜0.7 h . However, the cumulative uncertainties in the density determinations only require that Ω MACHO/Ω B ≥ 1/6hf gal', where the fraction of galaxies that contain MACHOs fgal>;0.17 and h is the Hubble constant in units of 100 km s -1 Mpc -1. Our best estimate for Ω MACHO is hard to reconcile with the current best estimates of the baryonic content of the intergalactic medium indicated by measurements of the Lyman-α forest; however, measurements of Ω Lyα are at present uncertain, so that such a comparison may be premature. If the MACHOs are white dwarfs resulting from a single burst of star formation (without recycling), then their main sequence progenitors would have been at least twice more massive: Ω ∗ = (0.007-0.034)h -1. Thus, far too much gaseous baryonic material would remain in the Galaxy unless there is a Galactic wind to eject it. Indeed a MACHO population of white dwarfs and the gas ejected from their main sequence progenitors accounts for a significant fraction of all baryons. This fact must be taken into account when attempting to dilute the chemical by-products of such a large population of intermediate mass stars. We stress the difficulty of reconciling the MACHO mass budget

  17. Coalescing binary systems of compact objects to (post) sup 5/2 -Newtonian order: Late-time evolution and gravitational radiation emission

    SciTech Connect

    Lincoln, C.W.

    1990-01-01

    The late-time evolution of binary systems of compact objects (neutron stars or black holes) is studied using the Damour-Derueele (post){sup 5/2}-Newtonian equations of motion with relativistic corrections of all orders up to and including radiation reaction. Using the method of close orbital elements from celestial mechanics, the author evolves the orbits to separations of r {approx} 2 m, where m is the total mass, at which point the (post){sup 5/2}-Newtonian approximation breaks down. With the orbits as input, he calculates the gravitational waveform and luminosity using a post-Newtonian formalism of Wagoner and Will. Results are obtained for systems containing various combinations of compact objects, for various values of the mass ratio m{sub 1}/m{sub 2}, and forg various initial values of the orbital eccentricity.

  18. AGN Accretion Physics: Insights from K2

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    between the stochastic model parameters and physical parameters will provide new methods for classification of AGN from their variability and aid in identification of AGN from photometric surveys. (5) Results of this empirical study will serve as a guide to theorists who study the complex astrophysics of accretion. (6) Sensitivity analysis of these statistics to cadence will allow us to make forecasts for detection and classification of AGN from future surveys such as LSST. Results of this research will include new constraints on models of accretion physics, more powerful methods for classifying AGN by their variability, and forecasts that guide design of future time-domain surveys of AGN. Products of this program will include a catalog of precision light curves of AGN, variability model parameters for every light curve, and a software package for time series statistical analysis. Thus, the proposed research directly addresses a key NASA goal in astrophysics in the area of Cosmic Origins (understanding the formation of black holes and their impact on galaxies). This research pursues several science themes identified by the 2010 Decadal Survey: Discovery (Opening the Time Domain); Origins (Origin of black holes); and Frontiers of Knowledge (Nature of Compact Objects). The research team for this project combines expertise in time series analysis, variability studies of AGN, statistical analysis of large surveys, Kepler photometry, and multi-wavelength observations of quasars and AGN. This work is timely because observations from the K2 campaigns now include a large set of high-cadence light curves with very high-quality photometry and we have fully tested our methods and analysis software.

  19. mJIVE-20: A survey for compact mJy radio objects with the very long baseline array

    SciTech Connect

    Deller, A. T.; Middelberg, E.

    2014-01-01

    We present the description and early results of the mJy Imaging VLBA Exploration at 20 cm (mJIVE-20). mJIVE-20 is a large project on the Very Long Baseline Array which is systematically inspecting a large sample of mJy radio sources, pre-selected from the Faint Images of the Radio Sky at Twenty cm (FIRST) survey made with the Very Large Array, to identify any compact emission that may be present. The survey is being undertaken using filler time on the VLBA, which utilizes short segments scheduled in bad weather and/or with a reduced number of antennas, during which no highly rated science projects can be scheduled. The newly available multifield capability of the VLBA makes it possible for us to inspect of the order of 100 sources per hour of observing time with a 6.75σ detection sensitivity of approximately 1 mJy beam{sup –1}. The results of the mJIVE-20 survey are made publicly available as soon as the data are calibrated. After 18 months of observing, over 20,000 FIRST sources have been inspected, with 4336 very long baseline interferometry detections. These initial results suggest that within the range 1-200 mJy, fainter sources are somewhat more likely to be dominated by a very compact component than brighter sources. Over half of all arcsecond-scale mJy radio sources contain a compact component, although the fraction of sources that are dominated by milliarcsecond scale structure (where the majority of the arcsecond scale flux is recovered in the mJIVE-20 image) is smaller at around 30%-35%, increasing toward lower flux densities. Significant differences are seen depending on the optical classification of the source. Radio sources with a stellar/point-like counterpart in the Sloan Digital Sky Survey (SDSS) are more likely to be detected overall, but this detection likelihood appears to be independent of the arcsecond-scale radio flux density. The trend toward higher radio compactness for fainter sources is confined to sources that are not detected in SDSS

  20. Accretion of the Moon from non-canonical impacts

    NASA Astrophysics Data System (ADS)

    Salmon, Julien; Canup, R. M.

    2013-10-01

    The generally accepted scenario for the formation of the Moon involves the impact of a Mars-size object into the proto-Earth, resulting in the formation of a disk from which the Moon accretes (Cameron and Ward 1976). In a first paper (Salmon & Canup 2012), we showed that the disks resulting from these “canonical” impacts can lead to the accretion of a 1 lunar mass object on a timescale of order 10^2 yr. Recent works have focused on alternative impact configurations: bigger impactors (Canup 2012) or higher speed impacts into a fast spinning Earth (Cuk & Stewart 2012). These impacts leave the Earth-Moon system with an angular momentum about twice that in the current system. This quantity can be made consistent with its current value if the newly formed Moon is captured for a prolonged period in the evection resonance with the Sun (Cuk & Stewart 2012). The protolunar disks that are formed from these “non-canonical” impacts are generally more massive and more compact, containing a much greater fraction of their total disk mass in the Roche-interior portion of the disk, compared to canonical impacts. We have investigated the dynamics of the accretion of the Moon from such disks. While the overall accretion process is similar to that found from disks typical of canonical impacts, the more massive, compact disks typically produce a final moon with a much larger initial eccentricity, i.e. > 0.1 vs. 10^-3 to 10^-2 in canonical disks. Such high initial eccentricities may substantially reduce the probability of capture of the Moon into the evection resonance (e.g., Touma & Wisdom 1998), which is required to lower the angular momentum of the system in the non-canonical impacts. We will discuss which disk configurations can lead to the successful formation of the Moon, and how the Moon’s initial orbital properties vary for different impact scenarios.

  1. On the diversity of compact objects within supernova remnants - I. A parametric model for magnetic field evolution

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2016-04-01

    A wealth of X-ray and radio observations has revealed in the past decade a growing diversity of neutron stars (NSs) with properties spanning orders of magnitude in magnetic field strength and ages, and with emission processes explained by a range of mechanisms dictating their radiation properties. However, serious difficulties exist with the magneto-dipole model of isolated NS fields and their inferred ages, such as a large range of observed braking indices (n, with values often <3) and a mismatch between the NS and associated supernova remnant (SNR) ages. This problem arises primarily from the assumptions of a constant magnetic field with n = 3, and an initial spin period that is much smaller than the observed current period. It has been suggested that a solution to this problem involves magnetic field evolution, with some NSs having magnetic fields buried within the crust by accretion of fall-back supernova material following their birth. In this work, we explore a parametric phenomenological model for magnetic field growth that generalizes previous suggested field evolution functions, and apply it to a variety of NSs with both secure SNR associations and known ages. We explore the flexibility of the model by recovering the results of previous work on buried magnetic fields in young NSs. Our model fits suggest that apparently disparate classes of NSs may be related to one another through the time evolution of the magnetic field.

  2. Measuring X-ray Binary Accretion State Distributions in Extragalactic Environments using XMM-Newton

    NASA Astrophysics Data System (ADS)

    West, Lacey; Lehmer, Bret; Yukita, Mihoko; Hornschemeier, Ann E.; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas

    2017-01-01

    X-ray binary systems (XRBs) in the MW can exist in several different accretion states, and many have been found to vary along specific tracks on intensity-color diagrams. Observationally measuring the distributions of these accretion states in a variety of environments can aid in population synthesis modeling and ultimately help us understand the formation and evolution of XRBs and their compact object components (i.e., black holes and neutron stars). Recent innovative studies with NuSTAR have demonstrated the utility of color-color and intensity-color diagrams in differentiating between XRB accretion states in extragalactic environments (NGC 253, M83, and M31). The key to NuSTAR’s success is its sensitivity above »10keV, where spectral differences between accretion states are most pronounced. However, due to the relatively low spatial resolution and large background of NuSTAR, the constraints from these diagrams is limited to only bright sources in nearby galaxies. In this poster, we present evidence that XMM-Newton observations of M83 in the 4.0-12.0 keV range can be used to create similar color-intensity and color-color diagrams and therefore differentiate between these accretion states. We will further discuss plans to leverage XMM-Newton’s vast archive and 17-year baseline to dramatically expand studies of accretion state distributions and state transitions for XRB populations in extragalactic environments.

  3. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    SciTech Connect

    Takahashi, Ryuichi; Asada, Hideki

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  4. The Physics of Wind-Fed Accretion

    SciTech Connect

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-05-27

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-1. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  5. Bulk Comptonization by turbulence in accretion discs

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  6. Bright hot impacts by erupted fragments falling back on the Sun: a template for stellar accretion.

    PubMed

    Reale, Fabio; Orlando, Salvatore; Testa, Paola; Peres, Giovanni; Landi, Enrico; Schrijver, Carolus J

    2013-07-19

    Impacts of falling fragments observed after the eruption of a filament in a solar flare on 7 June 2011 are similar to those inferred for accretion flows on young stellar objects. As imaged in the ultraviolet (UV)-extreme UV range by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, many impacts of dark, dense matter display uncommonly intense, compact brightenings. High-resolution hydrodynamic simulations show that such bright spots, with plasma temperatures increasing from ~10(4) to ~10(6) kelvin, occur when high-density plasma (>10(10) particles per cubic centimeter) hits the solar surface at several hundred kilometers per second, producing high-energy emission as in stellar accretion. The high-energy emission comes from the original fragment material and is heavily absorbed by optically thick plasma, possibly explaining the lower mass accretion rates inferred from x-rays relative to UV-optical-near infrared observations of young stars.

  7. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  8. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value

    NASA Astrophysics Data System (ADS)

    Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.

    1999-11-01

    The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.

  9. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  10. Roche Potential with Luminous Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Hanamoto, Keishi

    2002-12-01

    The radiative environments of an interacting binary, which contains a luminous accretion disk, are investigated. The disk radiation field has no effect in the direction of the orbital plane, while it significantly affects in the polar direction. As the disk luminosity increases, the Roche potential around the compact star becomes hollow in the polar direction. It further crashes toward the pole, and a cone of avoidance appears at the normalized luminosity Γd ≡ Ld/LE = 0.5, where Ld is the disk luminosity and LE the Eddington luminosity of the compact star. The disk corona, the wind-fed accretion flow, and the common envelope suffer a remarkable influence by the luminous disk in active binaries. Of these, the wind-fed accretion is briefly discussed.

  11. Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  12. Diskoseismology: Probing relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Nowak, Michael Allen

    1992-08-01

    Helioseismology has provided a wealth of information about the structure of the solar atmosphere. Little is known, however, about the structure of accretion disks that are thought to exist around black holes and neutron stars. In this thesis we present calculations of modes that are trapped in thin Keplerian accretion disks. We hope to use observations of thes modes to elucidate the structure of the inner relativistic regions of accretion disks. Our calculations assume that the thin disk is terminated by an innermost stable orbit, as would occur around a slowly rotating black hole or weakly magnetized compact neutron star. The dominant relativistic effects, which allow modes to be trapped within the inner region of the disk, are approximated via a modified Newtonian potential. Using the Lagrangian formulation of Friedman and Schutz, we develop a general formalism for investigating the adiabatic oscillations of arbitrary unperturbed disk models. First we consider the special case of acoustic waves in disks with isothermal atmospheres. Next we describe the Lagrangian perturbation vectors in terms of the derivatives of a scalar potential, as has been done by Ipser and Lindblom. Using this potential, we derive a single partial differential equation governing the oscillations of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically we use the potential formalism to compute the g-modes for disks with isothermal atmospheres. Physical arguments show that both the p-modes and g-modes belong to the same family of modes as the p-modes and g-modes in the sun, just viewed in a different parameter regime. With the aid of the Lagrangian formalism we consider possible growth or damping mechanisms and compute the (assumed) relatively small rates of growth or damping of the modes. Specifically, we consider gravitational radiation reaction and

  13. CONSTRAINTS ON THE COMPACT OBJECT MASS IN THE ECLIPSING HIGH-MASS X-RAY BINARY XMMU J013236.7+303228 IN M 33

    SciTech Connect

    Bhalerao, Varun B.; Harrison, Fiona A.; Van Kerkwijk, Marten H.

    2012-09-20

    We present optical spectroscopic measurements of the eclipsing high-mass X-ray binary (HMXB) XMMU J013236.7+303228 in M 33. Based on spectra taken at multiple epochs of the 1.73 day binary orbital period we determine physical as well as orbital parameters for the donor star. We find the donor to be a B1.5IV subgiant with effective temperature T = 22, 000-23, 000 K. From the luminosity, temperature, and known distance to M 33 we derive a radius of R 8.9 {+-} 0.5 R{sub Sun }. From the radial-velocity measurements, we determine a velocity semi-amplitude of K{sub opt} = 63 {+-} 12 km s{sup -1}. Using the physical properties of the B star determined from the optical spectrum, we estimate the star's mass to be M{sub opt} = 11 {+-} 1 M{sub Sun }. Based on the X-ray spectrum, the compact companion is likely a neutron star, although no pulsations have yet been detected. Using the spectroscopically derived B star mass we find the neutron star companion mass to be M{sub X} = 2.0 {+-} 0.4 M{sub Sun }, consistent with the neutron star mass in the HMXB Vela X-1, but heavier than the canonical value of 1.4 M{sub Sun} found for many millisecond pulsars. We attempt to use as an additional constraint that the B star radius inferred from temperature, flux, and distance should equate to the Roche radius, since the system accretes by Roche lobe overflow. This leads to substantially larger masses, but by trying to apply the technique to known systems, we find that the masses are consistently overestimated. Attempting to account for that in our uncertainties, we derive M{sub X} = 2.2{sup +0.8}{sub -0.6} M{sub Sun} and M{sub opt} = 13 {+-} 4 M{sub Sun }. We conclude that precise constraints require detailed modeling of the shape of the Roche surface.

  14. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  15. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  16. The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks

    NASA Astrophysics Data System (ADS)

    Repetto, Serena; Igoshev, Andrei P.; Nelemans, Gijs

    2017-01-01

    The aim of this work is to study the imprints that different models for black hole (BH) and neutron star (NS) formation have on the Galactic distribution of X-ray binaries (XRBs) which contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation scenarios, and that binary evolution following the BH/NS formation does not significantly affect the Galactic distributions of the binaries. We find that a population model in which at least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For the NS case, we find that a high NK distribution, consistent with the one derived from the measurement of pulsar proper motion, is the most preferable. We also analyse the simple method we previously used to estimate the minimal peculiar velocity of an individual BH-XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for certain models of the Galactic potential, but that our estimate is excellent for most of the BH-XRBs.

  17. Accretion states in X-ray binaries and their connection to GeV emission

    NASA Astrophysics Data System (ADS)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  18. Accretion Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge

    2014-03-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  19. Near-Infrared Observations of Compact Binary Systems

    NASA Astrophysics Data System (ADS)

    Khargharia, Juthika

    Low mass X-ray binaries (LMXBs) are a subset of compact binary systems in which a main-sequence or slightly evolved star fills its Roche lobe and donates mass to a neutron star or a black hole (BH) via an accretion disk. Robust estimates of compact object masses in these systems are required to enhance our current understanding of the physics of compact object formation, accretion disks and jets. Compact object masses are typically determined at near-infrared (NIR) wavelengths when the system is in quiescence and the donor star is the dominant source of flux. Previous studies have assumed that any non-stellar contribution at these wavelengths is minimal. However, this assumption is rarely true. By performing NIR spectroscopy, we determined the fractional donor star contribution to the NIR flux and the compact object masses in two LMXBs: V404 Cyg and Cen X-4. In our analysis, it was assumed that the light curve morphology remains consistent throughout quiescence. It has now been shown in several systems that veiling measurements from non-stellar sources are meaningful only if acquired contemporaneously with light curve measurements. We accounted for this in the measurement of the BH mass in the LMXB, XTE J1118+480. LMXBs are also considered to be the most likely candidates responsible for the formation of milli-second pulsars (MSP). Here, I present the unique case of PSR J1903+0327 that challenges this currently accepted theory of MSP formation and is a potential candidate for testing General Relativity. Observations in the NIR come with their own set of challenges. NIR detector arrays used in these observations generally have high dark current and readout noise. In an effort to lower the read noise in NICFPS at APO, we present a study done on the Hawaii-1RG engineering grade chip that served as a test bed for reducing the read noise in NICFPS.

  20. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  1. Plastic Deformation of Accreted Planetesimals

    NASA Astrophysics Data System (ADS)

    Kadish, J.

    2005-08-01

    The early stages of planetesimal growth follow an accretion model (Weidenschilling, Icarus 2000), which influences the intrinsic strength of a body and may control how its shape evolves after growth. In previous work we have determined the stress field of an accreted planetesimal accounting for possible variation in the object's spin as it accretes (Kadish et al., IJSS In Press) At the end of growth, these objects are subject to transport mechanisms that can distribute them throughout the solar system. As they are transported these objects can be spun-up by tidal forces (Scheeres et al, Icarus 2000), YORP (Bottke et al., Asteroids III 2002), and collisions (Binzel et al., Asteroids II 1989). Such an increase of spin will cause perturbations to the initial stress field and may lead to failure. We are able to show analytically that failure is initiated on the object's surface and a plastic zone propagates inward as the object's spin is increased. If we model an accreted body as a conglomeration of rocks similar to a gravel or sand, the deformation in the region of failure is characterized using a Mohr-Coulomb failure criterion with negligible cohesion and zero hardening(e.g. Holsapple, Icarus 2001). Such a response is highly non-linear and must be solved using finite elements and iterative methods (Simo and Hughes, Computational Inelasticity 1998). Using the commercial finite element code ABAQUS, we present the shape deformation resulting from an elasto-plastic analysis of a spinning, self-gravitating accreted sphere that is spun-up after growth is complete. The methodology can be extended to model plastic deformation due to local failure for more complex planetesimal shapes, such as for the asteroid Kleopatra. This work has implications for the evolution of planetesimal shapes, the creation of binary and contact binary asteroids, and for the maximum spin rate of small planetary bodies.

  2. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  3. Recognition of compact astrophysical objects

    NASA Technical Reports Server (NTRS)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  4. Electromagnetic jets from compact objects

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1987-01-01

    The possibility that at least some astrophysical jets are initially electromagnetic in origin is examined. Subsequent pick-up of ionization would convert such electromagnetic jets into hydrodynamic jets. In such a model, relativistic outflow is formed into highly collimated beams simply through the interaction with the surrounding medium. Forming jets under such general circumstances is encouraging in view of the range of scales that appear to be involved. The overall properties of such jets are largely determined by a single dimensionless parameter: the characteristic electrostatic potential drop rewritten as a particle Lorentz factor. Consequently, the determination of any one observable, such as the total power output, also determines the particle energy scale, the electromagnetic field strengths, etc.

  5. Dynamics of compact object mergers

    NASA Astrophysics Data System (ADS)

    Bauswein, Andreas

    2017-01-01

    Advanced LIGO's first detection of gravitational waves (GWs) from merging black holes has opened a new window to the Universe. The observation of neutron-star (NS) mergers is imminent and promises far-reaching implications. We will describe the dynamics of NS mergers focusing on the postmerger dynamics. In particular, we will point out the implications for matter ejection from these events. Neutron-rich outflows from NS mergers are invoked to explain the still mysterious origin of heavy elements which are formed through the rapid neutron-capture process. The nuclear decays in these ejecta power electromagnetic counterparts which are potentially observable. We will describe the properties of these transients within a multi-messenger picture including in particular information that can be revealed from simultaneous GW detections.

  6. Modeling the X-rays from the central compact object PSR J1852+0040 in Kesteven 79: Evidence for a strongly magnetized neutron star

    SciTech Connect

    Bogdanov, Slavko

    2014-08-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star (NS), a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a 'pencil plus fan' beam emission pattern, which is characteristic of ≳ 10{sup 12} G NS atmospheres, much greater than the ∼10{sup 10} G external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields (≳ 10{sup 14} G) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied high-temperature contrast across the stellar surface. This lends further observational evidence in support of the 'hidden' strong magnetic field scenario, in which CCOs possess submerged magnetic fields that are substantially stronger than the external dipole field, presumably due to burial by fallback of supernova ejecta. I also conduct phase-resolved X-ray spectroscopy and find no evidence for prominent spin-phase-dependent absorption features that could be produced by cyclotron absorption/scattering.

  7. Probing Agn Accretion Physics With Kepler

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    identification of AGN from synoptic photometric surveys. Models validated with Kepler data will be applied to a test bed data set from SDSS to make forecasts for detection and classification of AGN from future surveys such as LSST. Results of this research will include new constraints on models of accretion physics, more powerful methods for classifying AGN by their variability, and forecasts that are useful for design of future time-domain surveys of AGN. Products of this program will include a catalog of precision light curves of AGN and a software package for time series statistical analysis. Thus, the proposed research directly addresses a key NASA goal in astrophysics in the area of Cosmic Origins (understanding the formation of black holes and their impact on galaxies). This research pursues several science themes identified by the 2010 Decadal Survey: Discovery (Opening the Time Domain); Origins (Origin of black holes); and Frontiers of Knowledge (Nature of Compact Objects). The research team combines expertise in statistical analysis of large surveys and multi- wavelength observations of AGN. This work is timely because Kepler observations now include a large set of high-cadence light curves with very high-quality photometry. We also have a complementary testbed data set of multi-color, multi-epoch photometry from SDSS (Stripe 82) and a calibration pipeline that yields 1% photometry, which is indicative of what will be possible with the next generation of synoptic surveys. It is notable that this use of Kepler was not in its original mission design; this is a novel use of the satellite's capability.

  8. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk

    NASA Technical Reports Server (NTRS)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.

    1992-01-01

    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  9. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  10. Effect of Gas Accretion Disc Profile on Orbital Parameters of the Accreted Stars

    NASA Astrophysics Data System (ADS)

    Shukirgaliyev, Bekdaulet T.; Panamarev, Taras P.; Naurzbaeva, Aisha Zh.; Kalambay, Mukhagali T.; Makukov, Maxim A.; Vilkoviskij, Emmanuil Y.; Omarov, Chingis T.; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-10-01

    The results of studies of the effect of the gas disk and its profile on the dynamics of active galactic nuclei are presented. The study was conducted with a numerical model of galactic nucleus based on phiGRAPE+GPU comprising three subsystems - a central supermassive black hole, gaseous accretion disc, and compact stellar cluster. The evolution of the compact stellar cluster is modeled with direct integration (N-body simulation), while the black hole and gaseous disc are represented phenomenologically: the black hole is introduced as an external potential (fixed in space but variable in time due to black hole mass growth), and the gaseous disc is introduced as spatial time-independent density distribution. We examined and compared with each other orbital parameters of accreting stars for model of the galactic nucleus with gas disc of constant and variable thickness, as well as without gas. It was found that in the presence of a gaseous disk almost half of the accreted particles interact strongly with the gas and are captured by the disc before accretion, while more than 85% of particles are affected to some extent by the disc prior to accretion. This suggests that interaction of the stellar cluster with the gas disk in the galactic nucleus might lead to the formation of stellar disk in the central part of the nucleus.

  11. Magnetohydrodynamic stability of stochastically driven accretion flows.

    PubMed

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  12. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  13. NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3

    SciTech Connect

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-07-20

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M{sub sun}, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M{sub sun} and 14.4 M{sub sun}. Our favored estimate, based on a 9.0 kpc distance estimate, is {approx}10 M{sub sun}, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.

  14. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  15. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  16. Very old and very young compact objects: X-ray studies of galactic globular clusters and recent core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David Aaron

    2003-09-01

    This thesis comprises the results of two distinct areas of research, namely, X-ray studies of Galactic globular clusters and X-ray studies of recent core collapse supernovae. My analyses of the Chandra X-ray Observatory observations of the globular clusters NGC 6752 and NGC 6440 revealed as many low- luminosity X-ray sources as was in the entire census of globular cluster sources with the previous best X-ray imaging instrument, Röntgensatellit. In the observation of NGC 6752, I detect 6 X-ray sources within the 10''.5 core radius and 13 more within the 115' half-mass radius down to a limiting luminosity of Lx ≈ 1030 ergs s -1 for cluster sources. Based on a reanalysis of archival data from the Hubble Space Telescope and the Australia Telescope Compact Array, I make 12 optical identifications and one radio identification. Based on X- ray and optical properties of the identifications, I find 10 likely cataclysmic variables (CVs), 1 3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, one was detected in the archival radio data, and another was found to be a millisecond pulsar. Of the remaining sources, I expect that ˜2 4 are background objects and that the rest are either CVs or millisecond pulsars whose radio emission has not been detected. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. Based upon X-ray luminosities and colors, I conclude that there are 4 5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. I compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters. Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the

  17. A nonlinear investigation of corrugation instabilities in magnetic accretion shocks

    NASA Astrophysics Data System (ADS)

    Ernst, Scott

    2011-05-01

    Accretion shock waves are present in many important astrophysical systems and have been a focus of research for decades. These investigations provide a large body of understanding as to the nature, characteristics, and evolutionary behaviors of accretion shock waves over a wide range of conditions. However, largely absent are investigations into the properties of accretion shock waves in the presence of strong magnetic fields. In such cases these strong magnetic fields can significantly alter the stability behaviors and evolution of the accretion shock wave through the production and propagation of magnetic waves as well as magnetically constrained advection. With strong magnetic fields likely found in a number of accretion shock systems, such as compact binary and protostellar systems, a better understanding of the behaviors of magnetic accretion shock waves is needed. A new magnetohydrodynamics simulation tool, IMOGEN, was developed to carry out an investigation of instabilities in strong, slow magnetic accretion shocks by modelling their long-term, nonlinear evolution. IMOGEN implements a relaxed, second-order, total variation diminishing, monotonic upwind scheme for conservation laws and incorporates a staggered-grid constrained transport scheme for magnetic advection. Through the simulated evolution of magnetic accretion shocks over a wide range of initial conditions, it has been shown, for sufficiently high magnetic field strengths, that magnetic accretion shocks are generally susceptible to corrugation instabilities, which arise in the presence of perturbations of the initial shock front. As these corrugation instabilities grow, they manifestas magnetic wave propagation in the upstream region of the accretion column, which propagate away from the accretion shock front, and as density columns, or fingers, that grow into the higher density downstream flow, defined and constrained by current loops created during the early evolution of the instability.

  18. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  19. Probing accretion on the high-magnetized polar RX J1007.5-2017

    NASA Astrophysics Data System (ADS)

    Rodrigues, C. V.; Cieslinski, D.; Ribeiro, T.; Silva, K. M. G.; Baptista, R.; Oliveira, A. S.; Costa, J. E. R.; Campbell, R.

    2014-10-01

    RX J1007.5-2017 is a polar: a compact binary system in which matter flows from a low-mass main-sequence star to a magnetized white dwarf without the formation of an accretion disk. RX J1007.5-2017 has some observational peculiarities (conspicuous optical cyclotron harmonics, a very soft X-ray spectrum, and no polarization in R and I bands), which may be related to extreme conditions at the accretion flow: a very strong white-dwarf magnetic field (around 100 MG on surface) and a low accretion rate. To study the accretion, from the mass-donor star to the white dwarf, we obtained time-resolved spectroscopy using the Goodman spectrograph at the SOAR telescope in observing runs distributed around the first semester of 2012. We found the object in different brightness states. In the low state, we gathered data with two spectral resolutions (219 km/s and 170 km/s). In a brighter state, the spectral resolution was ≍ 170 km/s. The low (high) spectral resolution data cover the spectral region from 360 to 760 nm (435 to 700 nm). The continuum varies in both states and the cyclotron humps are visible at some orbital phases. The low-state spectra show Balmer emission lines superimposed on absorption features from the mass-donor star. The bright-state spectra show strong Balmer, HeI, and HeII emission lines. The Balmer and HeII lines are not single Gaussians: in bright state the lines are broader and have three components; in low state, the lines are narrower and two components are distinguished in some phases. Doppler tomography of the low state reveals that line emission arises mainly from a region near the white dwarf. The orbital dependence of the cyclotron emission was modeled using the Cyclops code, which adopts a 3D representation of the accretion column.

  20. ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS

    SciTech Connect

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L. E-mail: zhouyifan1012@gmail.com

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214–00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10{sup –9}-10{sup –11} M {sub ☉} yr{sup –1} for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  1. Accretion onto Planetary Mass Companions of Low-mass Young Stars

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L.

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10-9-10-11 M ⊙ yr-1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  2. Accretion Onto Magnetic Degenerate Stars

    NASA Technical Reports Server (NTRS)

    Frank, Juhan

    2000-01-01

    While the original objectives of this research program included the study of radiative processes in cataclysmic variables and the evolution of neutron star magnetic fields, the scope of the reported research expanded to other related topics as this project developed. This final report therefore describes the results of our research in the following areas: 1) Irradiation-driven mass transfer cycles in cataclysmic variables and low-mass X-ray binaries; 2) Propeller effect and magnetic field decay in isolated old neutron stars; 3) Decay of surface magnetic fields in accreting neutron stars and pulsars; 4) Finite-Difference Hydrodynamic simulations of mass transfer in binary stars.

  3. Disk tides and accretion runaway

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  4. The effect of anisotropic emission from thick accretion disks on the luminosity functions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.; Marziani, P.; Calvani, M.

    1991-01-01

    High-luminosity active galactic nuclei (AGNs) powered by accretion onto a massive black hole (or other compact object) may have bolometric luminosities dominated by thermal emission from a geometrically thick accretion disk. Radiation from these disks is strongly anisotropic, which has important consequences for the observed luminosity distribution, and therefore for systematic biases in flux-limited samples. The effect of anisotropic emission from an ensemble of AGNs with random oriented thick disks radiating at or near the Eddington limit is calculated. Because of their higher luminosities, it is predicted face-on disks should constitute an increasing fraction of observed high-redshift, high-luminosity AGNs. Comparison of the results with observed quasar luminosity functions suggests a narrow mass distribution with an upper limit of about a billion solar masses for high-redshift quasars.

  5. He-accreting WDs: AM CVn stars with WD donors

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Yungelson, L. R.; Tornambé, A.

    2015-09-01

    We study the physical and evolutionary properties of the `white dwarf (WD) family' of AM CVn stars by computing realistic models of interacting double-degenerate systems. We evaluate self-consistently both the mass-transfer rate from the donor, as determined by gravitational wave emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of dot{M} after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (Mdon, Macc), is high enough, the accretors experience several He-flashes of decreasing strength and then quiescent He-burning sets in. Later on, since the mass-transfer rate in IDD is a permanently decreasing function of time, accretors experience several recurrent strong flashes. On the other hand, for intermediate and low values of dot{M} the accretors enter directly the strong flashes accretion regime. As expected, in all the considered systems the last He-flash is the strongest one, even if the physical conditions suitable for a dynamical event are never attained. When the mass accretion rate decreases below (2-3) × 10-8 M⊙ yr-1, the compressional heating of the He-shell becomes less efficient than the neutrino cooling, so that all the accretors in the considered systems evolve into massive degenerate objects. Our results suggest that SNe .Ia or Type Ia Supernovae due to Edge-Lit Detonation in the WD family of AM CVn stars should be much more rare than previously expected.

  6. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  7. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  8. Global Time Dependent Solutions of Stochastically Driven Standard Accretion Disks: Development of Hydrodynamical Code

    NASA Astrophysics Data System (ADS)

    Wani, Naveel; Maqbool, Bari; Iqbal, Naseer; Misra, Ranjeev

    2016-07-01

    X-ray binaries and AGNs are powered by accretion discs around compact objects, where the x-rays are emitted from the inner regions and uv emission arise from the relatively cooler outer parts. There has been an increasing evidence that the variability of the x-rays in different timescales is caused by stochastic fluctuations in the accretion disc at different radii. These fluctuations although arise in the outer parts of the disc but propagate inwards to give rise to x-ray variability and hence provides a natural connection between the x-ray and uv variability. There are analytical expressions to qualitatively understand the effect of these stochastic variabilities, but quantitative predictions are only possible by a detailed hydrodynamical study of the global time dependent solution of standard accretion disc. We have developed numerical efficient code (to incorporate all these effects), which considers gas pressure dominated solutions and stochastic fluctuations with the inclusion of boundary effect of the last stable orbit.

  9. A numerical investigation of wind accretion in persistent Supergiant X-ray Binaries I - Structure of the flow at the orbital scale

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2017-01-01

    Classical Supergiant X-ray Binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035 to 1037 erg· s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds which participate to the accretion process. Thanks to the parametrization we retained and the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier which drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent Supergiant X-ray Binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).

  10. Imaging of Three Possible Low-redshift Analogs to High-redshift Compact Red Galaxies

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2011-05-01

    As part of a larger program to identify and characterize possible low-redshift analogs to massive compact red galaxies found at high redshift, we have examined the morphologies of three low-redshift compact galaxies drawn from the sample of Trujillo et al. Using deeper and higher resolution images, we have found faint and relatively extensive outer structures in addition to the compact cores identified in the earlier measurements. One object appears to have a small companion that may be involved in an ongoing minor merger of the sort that could be responsible for building up the outer parts of these galaxies. The ages of the dominant stellar populations in these objects are found to be around 2-4 Gyr, in good agreement with the previous estimates. The presence of diffuse outer structures in these galaxies indicates that truly compact and massive red galaxies are exceedingly rare at low redshift. The relatively young stellar populations suggest that the accretion of the extensive outer material must occur essentially universally on relatively short timescales of a few billion years or less. These results confirm and extend previous suggestions that the driving mechanism behind the size evolution of high-redshift compact galaxies cannot be highly stochastic processes such as major mergers, which would inevitably leave a non-negligible fraction of survivors at low redshift.

  11. Hydrodynamic simulations of stellar wind disruption by a compact X-ray source

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.

    1990-01-01

    This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.

  12. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  13. Effects of Ice Accretion on Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    1998-01-01

    The primary objective of this research was to support the development of a new ice accretion model by improving our physical understanding of the ice accretion process through experimental measurements. The focus was on the effect of the initial ice roughness (smooth/rough boundary) on the accretion process. This includes understanding the boundary-layer development over the roughness and especially its effect on the heat transfer which is fundamental to the ice accretion process. The research focused on acquiring the experimental data needed to formulate a new ice accretion physical model. Research was conducted to analyze boundary-layer data taken on a NACA 0012 airfoil with roughness to simulate the smooth/rough boundary. The effect of isolated roughness on boundary-layer transition was studied experimentally to determine if the classical critical roughness Reynolds number criteria could be applied to transition in the airfoil leading-edge area. The effect of simulated smooth/rough boundary roughness on convective heat transfer was studied to complete the study. During the course of this research the effect of free-stream wind tunnel turbulence on the boundary layer was measured. Since this quantity was not well known, research to accurately measure the wind tunnel turbulence in an icing cloud was undertaken. Preliminary results were attained and the final data were acquired, reduced and presented under a subsequent grant.

  14. Generalized Similarity for Accretion/Decretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  15. Observations and Models of Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie Kathleen

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. Among the structures contained in its meager ˜10 km radial width are jets, strands, and moonlets over an azimuthally asymmetric span. The nearby moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Visual classification of the shapes of these 27 features divides the data set into three classes: Moonlet, Icicle, and Core. Two features are classified as Moonlets because each is opaque in its occultation, which makes them candidates for solid objects. A majority of features are classified as Icicles, which partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, moonlets are possible solid objects, and cores show the variety of F ring morphology. We suggest that Icicles may evolve into Moonlets, which are an order of magnitude less abundant. The locations of the Icicles and Moonlets are weakly correlated to the location of Prometheus. Motivated by the observations and previous models, I develop a more rigorous model of the evolution of aggregates in Saturn's F ring via tidally-modified accretion. For the first time, I assess the multimodal distribution resultant of collisional models and diagnose the cause. I apply the model to the F ring for constant body densities; then I assess how the system evolves when compaction is allowed. I develop an

  16. PROPERTIES OF GRAVITOTURBULENT ACCRETION DISKS

    SciTech Connect

    Rafikov, Roman R.

    2009-10-10

    We explore the properties of cold gravitoturbulent accretion disks-non-fragmenting disks hovering on the verge of gravitational instability (GI)-using a realistic prescription for the effective viscosity caused by gravitational torques. This prescription is based on a direct relationship between the angular momentum transport in a thin accretion disk and the disk cooling in a steady state. Assuming that opacity is dominated by dust we are able to self-consistently derive disk properties for a given M-dot assuming marginal gravitational stability. We also allow external irradiation of the disk and account for a non-zero background viscosity, which can be due to the magneto-rotational instability. Spatial transitions between different co-existing disk states (e.g., between irradiated and self-luminous or between gravitoturbulent and viscous) are described and the location of the boundary at which the disk must fragment is determined in a variety of situations. We demonstrate in particular that at low enough M-dot external irradiation stabilizes the gravitoturbulent disk against fragmentation to very large distances thus providing means of steady mass transport to the central object. Implications of our results for the possibility of planet formation by GI in protoplanetary disks and star formation in the Galactic center and for the problem of feeding supermassive black holes in galactic nuclei are discussed.

  17. Winds from disks in compact binaries

    SciTech Connect

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  18. Magnetospheric accretion in EX Lupi

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  19. Mapping out the origins of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Brodie, Jean P.; SAGES Collaboration

    2017-03-01

    We present a suite of extragalactic explorations of the origins and nature of globular clusters (GCs) and ultra-compact dwarfs (UCDs), and the connections between them. An example of GC metallicity bimodality is shown to reflect underlying, distinct metal-poor and metal-rich stellar halo populations. Metallicity-matching methods are used to trace the birth sites and epochs of GCs in giant E/S0s, pointing to clumpy disk galaxies at z ~ 3 for the metal-rich GCs, and to a combination of accreted and in-situ formation modes at z ~ 5-6 for the metal-poor GCs. An increasingly diverse zoo of compact stellar systems is being discovered, including objects that bridge the gaps between UCDs and faint fuzzies, and between UCDs and compact ellipticals. Many of these have properties pointing to origins as the stripped nuclei of larger galaxies, and a smoking-gun example is presented of an ω Cen-like star cluster embedded in a tidal stream.

  20. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  1. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  2. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  3. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  4. The 2009 outburst of accretion-powered millisecond pulsar IGR J17511-3057 as observed by Swift and RXTE

    NASA Astrophysics Data System (ADS)

    Ibragimov, Askar; Poutanen, Juri; Kajava, Jari

    Accretion-powered millisecond pulsars (AMPs) are very interesting astrophysical objects. Mat-ter from accretion disk is captured by star's magnetic field and falls along the field lines, creating "hotspots" near magnetic poles of the star. Typical spectrum of an AMP contains a disk emis-sion, blackbody emission of a hotspot and a powerlaw tail, produced by thermal Comptonizaion in accreting shock. Pulse profiles of these sources are modified by relativistic effects and can be used to put geometrical constraints and to understand physical processes near the compact object. IGR J17511-3057 was discovered on September 12, 2009 during the INTEGRAL Galactic Bulge monitoring program. The source has the pulse frequency of 245 Hz. In this work, we study spectral and temporal characheristics of IGR J17511-3057 during the outburst, based on Swift and RXTE data. We analyze its energy spectra in range 0.6-150 keV, phase-resolved spectra, pulse profiles, time lags and discuss physical conditions in the source.

  5. Emission of gravitational waves by precession of slim accretion disks dynamically driven by the Bardeen-Petterson effect

    NASA Astrophysics Data System (ADS)

    Alfonso, W. D.; Sánchez, L. A.; Mosquera, H. J.

    2015-11-01

    The electromagnetic radiation emitted from some astrophysical objects such as active galactic nuclei (AGN), micro-quasars (M-QSRs), and central engines of gamma-ray burst (GRBs), seems to have a similar physical origin: a powerful jet of plasma ejected from a localized system, presumably composed of an accretion disk encircling a compact object. This radiation is generally beamed in the polar directions and in some cases, it appears to have a spiral-like structure that could be explained if the central system itself precesses. In this work, we use the slim disk accretion model, presented by Popham et al. (1999), to studying the gravitational waves (GWs) emitted by the precession of the accretion disk around a solar-mass Kerr black hole (KBH). For practical purposes, this model describes the central engine of a class of GRBs when some astrophysical constrains are fulfilled. The induced precession considered here is driven by the Bardeen-Petterson effect, which results from the combination of viscous effects in such disks and the relativistic frame-dragging effect. We evaluate the feasibility of direct detection of the GWs computed for such a model and show that the precession of this kind of systems could be detected by gravitational wave observatories like DECIGO, ultimate-DECIGO, and BBO, with higher probability if such a class of sources are placed at distances less than 1 Mpc.

  6. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  7. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the

  8. Measuring the Kerr spin parameter of a non-Kerr compact object with the continuum-fitting and the iron line methods

    SciTech Connect

    Bambi, Cosimo

    2013-08-01

    Under the assumption that astrophysical black hole candidates are the Kerr black holes of general relativity, the continuum-fitting method and the analysis of the Kα iron line are today the only available techniques capable of providing a relatively reliable estimate of the spin parameter of these objects. If we relax the Kerr black hole hypothesis and we try to test the nature of black hole candidates, we find that there is a strong correlation between the measurement of the spin and possible deviations from the Kerr solution. The properties of the radiation emitted in a Kerr spacetime with spin parameter a{sub *} are indeed very similar, and practically indistinguishable, from the ones of the radiation emitted around a non-Kerr object with different spin. In this paper, I address the question whether measuring the Kerr spin with both the continuum-fitting method and the Kα iron line analysis of the same object can be used to claim the Kerr nature of the black hole candidate in the case of consistent results. In this work, I consider two non-Kerr metrics and it seems that the answer does depend on the specific background. The two techniques may either provide a very similar result (the case of the Bardeen metric) or show a discrepancy (Johannsen-Psaltis background)

  9. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  10. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  11. New developments in studies of compact X-ray binaries

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1987-01-01

    Several recent developments, both observational and theoretical, on the study of X-ray binaries and the compact objects they contain are discussed. The recent discovery of the first binary periods for the globular cluster X-ray sources has stimulated a new model for their origin. As a variant of the 'standard' tidal capture origin model, this predicts an enhanced number of neutron stars in globular clusters. Long term timing studies of X-ray binaries may be consistent with many of these systems, primarily X-ray burst sources, being in fact hierarchical triple systems. Finally, the radio studies of Cyg X-3 and other X-ray binaries suggest that nonthermal processes are as important, energetically, as accretion processes in these systems.

  12. X-ray emission from hot subdwarfs with compact companions

    NASA Astrophysics Data System (ADS)

    Mereghetti, S.; La Palombara, N.; Esposito, P.; Tiengo, A.

    2013-03-01

    We review the X-ray observations of hot subdwarf stars. While no X-ray emission has been detected yet from binaries containing B-type subdwarfs, interesting results have been obtained in the case of the two luminous O-type subdwarfs HD 49798 and BD + 37° 442. Both of them are members of binary systems in which the X-ray luminosity is powered by accretion onto a compact object: a rapidly spinning (13.2 s) and massive (1.28 M⊙) white dwarf in the case of HD 49798 and most likely a neutron star, spinning at 19.2 s, in the case of BD + 37° 442. Their study can shed light on the poorly known processes taking place during common envelope evolutionary phases and on the properties of wind mass loss from hot subdwarfs.

  13. Angular Momentum Transport and Variability in Boundary Layers of Accretion Disks Driven by Global Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2012-11-01

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  14. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  15. Partial accretion in the propeller stage of accreting millisecond X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Gungor, Can; Gogus, Ersin; Eksi, Kazim Yavuz; Guver, Tolga

    2016-07-01

    Accreting millisecond X-ray pulsars (AMXPs) are very important objects for studying the stages of disk - magnetosphere interaction as these objects may show different stages in an observable duration. A typical X-ray light curve of an outburst of AMXP has a fast rise and an exponential decay phases. Most of the outbursts have a knee where the flux goes from the slow decay stage to the rapid decay stage. This knee may be linked to the transition from accretion to propeller stage. Since, after the knee, the X-ray luminosity of the source is still higher than its quiescent level, the accretion from inner disc must be continuing in the propeller stage with a lower fraction than in the accretion stage. The X-ray does not only come from accretion onto the poles but the inner parts of the disk may also contribute to the total X-ray luminosity. To infer what fraction (f) of the inflowing matter accretes onto the star the light curve in the propeller stage, one should first separate the emission originating from the disk and obtain a light curve of X-ray emission only from the magnetic poles. We provide a new method to infer from the observational data the fraction of accreting matter onto the neutron star pole to the mass transferring from outer layers of the disc to the inner disc (f), as a function of the fastness parameter (ω_{*}), assuming the knee is due to the transition from accretion to the propeller stage. We transform X-ray luminosities to the mass fraction, f, and the time scale of outburst to fastness parameter, ω_*. It allows us to compare different types of outbursts of an AMXP in f - ω_* space which is universal for a unique system. We analysed the Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) observations of the 2000 and the 2011 outbursts and the Swift Gamma-Ray Burst Mission/X-ray Telescope (SWIFT/XRT) data of the 2013 outburst of the most known AMXP, Aql X-1 using a combination of blackbody representing hot spot, disk blackbody

  16. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    SciTech Connect

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles E-mail: lhartm@umich.edu E-mail: gammie@illinois.edu

    2013-02-20

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the {sup d}ead zone{sup )}. We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R {approx}< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  17. Stochastic events lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2010-05-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004.

  18. Stochastic events lead to accretion in Saturn’s rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2009-12-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: they can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance’ can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini’s observations of Saturn in 2004.

  19. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  20. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  1. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    PubMed

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  2. Iron K Lines from Accretion Disks: Models for Line Production and Spectroscopic Constraints

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; Palmeri, Patrick

    2004-01-01

    Measured profiles of the iron K lines provide important dynamical information about emitting matrial in compact objects. However, much of the modeling work which has been used to infer the location and origin of line observed from AGN and galactic black hole sources is based on highly simplified assumptions about the microphysics of K line emission. In particular, many of the intrinsic line energies, widths and emissivities are based on central-field atomic calculations. We present the results of new calculations of the quantities for the entire iron isonuclear sequence, and demonstrate that the intrinsic K line spectra contain considerably more complexity than has been previously considered. We also present calculations of iron K emission and absorption spectra which include the new data, including the local spectrum radiated from an X-ray illuminated accretion disk. The implications for the interpretation of observed iron K lines from black hole sources will be discussed.

  3. LAMBDA BOO ABUNDANCE PATTERNS: ACCRETION FROM ORBITING SOURCES

    SciTech Connect

    Jura, M.

    2015-12-15

    The abundance anomalies in λ Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically inferred bounds for interstellar accretion. Therefore, a λ Boo star’s thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some λ Boo stars accrete from the winds of hot Jupiters.

  4. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    SciTech Connect

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B. E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.

  5. The Compton Microscope: Using the Energy Dependence of QPO Amplitudes to Probe Their Origin in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lehr, D. E.; Wagoner, R. V.; Wilms, J.

    1999-12-01

    We report the development of a new tool to determine the origin of quasi-periodic oscillations (QPOs) in accretion disk systems. The technique uses the source energy spectrum and the energy dependence of the QPO fractional amplitude to restrict the location of the emission region of the modulated photons, which are assumed to originate in the inner accretion disk. Both Monte-Carlo and semi-analytical methods are presented. We assume the accretion disk is enshrouded by a slab atmosphere of hot electrons in which unsaturated Compton scattering produces the high-energy spectrum. Properties of the atmosphere, in particular the electron temperature, are assumed functions of radius from the central compact object. We show that our model reproduces the observed energy dependence of the fractional amplitude of the 67 Hz QPO in GRS 1915+105 if the QPO is assumed to originate at a particular region of the inner disk. This work was supported by NASA Graduate Student Researchers Program grant NGT 5-50044 to D.E.L., NASA grant NAG 5-3102 to R.V.W., and grant number Sta 173/22 of the Deutsche Forschungsgemeinschaft to J.W. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center.

  6. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  7. Bondi-Hoyle Accretion in an Isothermal Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Lee, Aaron T.; Cunningham, Andrew J.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β <~ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to {\\cal M}\\approx 45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and {\\cal M} for the parallel and perpendicular orientations. Using typical molecular cloud values of {\\cal M}\\sim 5 and β ~ 0.04 from the literature, our fits suggest that a 0.4 M ⊙ star accretes ~4 × 10-9 M ⊙ yr-1, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  8. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  9. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  10. Kepler Observations of Transiting Hot Compact Objects

    DTIC Science & Technology

    2010-04-20

    stars. The dark blue points show the first five Kepler extrasolar planets (Borucki et al. 2010a). The red diamonds indicate the Earth, Uranus , Neptune...masses and radii are shown in green. Kepler transiting planets are shown in blue. The positions of the Earth, Uranus , Neptune, Saturn, Jupiter, and the

  11. Extracting Compact Objects Using Linked Pyramids

    DTIC Science & Technology

    1982-09-01

    IEEE Transactions Systems. Han. Cybernetics 11. 1981, 597-605. 7. M. D, Levine, Region analysis using a pyramid data structure. In Structured ... Computer Vision (S. Tanimoto and A. Klinger, eds.) Academic Press, New York, 1980, 57-100. 8. D. L. Milgram, Region extraction using con- vergent

  12. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  13. X-ray reverberation of the inner accretion disc in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Uttley, Phil; Cassatella, Pablo; Wilkinson, Tony; Wilms, Joern; Pottschmidt, Katja; Hanke, Manfred; Boeck, Moritz

    Rapid fluctuations in the Comptonised emission close to accreting compact objects should lead to reverberation of the accretion disc, both through X-ray heating of the disc (to produce a variable blackbody component) and also correlated changes in the disc reflection component, including the iron K line. If they can be detected, these reverberation signatures can provide powerful constraints on the geometry of the disc and Comptonising regions. The measure-ment of the reverberation delays will provide a natural 'yardstick' to measure the inner disc radius (in km, not R/M!) and so constrain the black hole spin or the neutron star equation of state. I will present new results from XMM-Newton and RXTE observations, which confirm the presence of X-ray reverberation in X-ray binary systems and allow the first measurement of reverberation delays. These results are a pathfinder which highlights the enormous po-tential of high-throughput spectral-timing with the proposed HTRS instrument on board the International X-ray Observatory.

  14. Modeling High-resolution Spectra from X-ray Illuminated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Garcia, Javier; Kallman, T.

    2010-01-01

    This work is focused on the study of X-ray illuminated accretion disks around compact objects by modeling their structure and reprocessed spectra. Use of low-accuracy and incomplete atomic data is a key limitation in models which have been calculated so far. We remedy this situation by incorporating data for line energies, transition probabilities and photoionization cross sections taken from various sources, most notably calculations using the R-matrix suite of codes. We also implement a self-consistent approach for the radiative transfer of X-rays and the heating and ionization of the gas. These promise to lead to significant improvements in the understanding of the X-ray observations of active galactic nuclei (AGN), X-ray binaries and galactic black holes. By performing detailed radiative transfer calculations we have computed the reflected spectra from constant density slabs for different input parameters (e.g., density, strength of incident X-rays, iron abundance), including the redistribution of photons due to Compton scattering. Although broad and skewed iron emission lines observed in many accreting systems are often attributed to the Doppler effect and gravitational redshift, our results show that Comptonization can be responsible for a significant fraction of the line broadening. By analyzing simulated Suzaku observations from our models, we provide equivalent and physical widths and line centroid energies for atomic lines, absorption edges and recombination continua (among other features). These are provided in tabular and graphical form that can be used directly in the interpretation of observational data.

  15. Numerical simulation of the disk dynamics around the black hole: Bondi-Hoyle accretion

    NASA Astrophysics Data System (ADS)

    Koyuncu, Fahrettin; Dönmez, Orhan

    2014-06-01

    We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip-flop oscillation around the black holes. The flip-flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.

  16. Self-consistent evolution of accreting low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Baraffe, I.; Elbakyan, V. G.; Vorobyov, E. I.; Chabrier, G.

    2017-01-01

    We present self-consistent calculations coupling numerical hydrodynamics simulations of collapsing pre-stellar cores and stellar evolution models of accreting objects. We analyse the main impact of consistent accretion history on the evolution and lithium depletion of young low-mass stars and brown dwarfs. These consistent models confirm the generation of a luminosity spread in Herzsprung-Russell diagrams at ages 1-10 Myr. They also confirm that early accretion can produce objects with abnormal Li depletion, as found in a previous study that was based on arbitrary accretion rates. The results strengthen that objects with anomalously high level of Li depletion in young clusters should be extremely rare. We also find that early phases of burst accretion can produce coeval models of similar mass with a range of different Li surface abundances, and in particular with Li-excess compared to the predictions of non-accreting counterparts. This result is due to a subtle competition between the effect of burst accretion and its impact on the central stellar temperature, the growth of the stellar radiative core and the accretion of fresh Li from the accretion disk. Only consistent models could reveal such a subtle combination of effects. This new result could explain the recent, puzzling observations of Li-excess of fast rotators in the young cluster NGC 2264. Present self-consistent accreting models are available in electronic form.

  17. Accretion Disk Emission Around Kerr Black Holes

    NASA Astrophysics Data System (ADS)

    Campitiello, Samuele; Sbarrato, T.; Ghisellini, G.

    2016-10-01

    Measuring the spin of supermassive Black holes in Active Galactic Nuclei is a further step towards a better understanding of the evolution of their physics. We proposed a new method to estimate the Black hole spin, based on data-fitting. We consider a numerical model called KERRBB, including all relativistic effects (i.e. light-bending, gravitational redshift and Doppler beaming). We found that the same spectrum can be produced by different masses, accretion rates and spins, but that these three quantities are related. In other words, having a robust indipendent estimate on one of these three quantities fixes the other two. By using the Black hole mass, estimated by the virial method, we can pinpoint a narrow range of possible spins and accretion rates for the 32 blazars we have studied. For these objects, we found a lower limit of the spin, that must be a/M > 0.6-0.7

  18. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  19. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  20. Dynamics of core accretion

    DOE PAGES

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providing spatial resolutionmore » on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as

  1. Dynamics of core accretion

    SciTech Connect

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling

  2. Stochastic events may lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    Stochastic events may lead to accretion in Saturn's rings Larry W. Esposito LASP, University of Colorado UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption. . . just as `irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. I present a simple predator-prey model. This system's unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004. Unlike other interpretations of the peculiar events seen near Saturn Equinox, I emphasize the kinetic description of particle interactions rather than a fluid instability approach; and the dominance of stochastic events involving individual aggregates over free and/or driven modes in a flat disk.

  3. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von, Huene R.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  4. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  5. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  6. Crystalline structure of accretion disks: features of a global model.

    PubMed

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. Plasmas 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J. 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  7. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  8. Accretion of the Moon from non-canonical discs.

    PubMed

    Salmon, J; Canup, R M

    2014-09-13

    Impacts that leave the Earth-Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such 'non-canonical' impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth-Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance.

  9. Dynamics of continental accretion.

    PubMed

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon.

  10. Dynamics of continental accretion

    NASA Astrophysics Data System (ADS)

    Moresi, L.; Betts, P. G.; Miller, M. S.; Cayley, R. A.

    2014-04-01

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon.

  11. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  12. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  13. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  14. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  15. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  16. Terrestrial Planets Accreted Dry

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  17. ELECTROMAGNETIC SPINDOWN OF A TRANSIENT ACCRETING MILLISECOND PULSAR DURING QUIESCENCE

    SciTech Connect

    Melatos, A.; Mastrano, A. E-mail: alpham@unimelb.edu.au

    2016-02-10

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751–305, SAX J1808.4–3658, and Swift J1756.9–2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  18. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  19. The compact Hα emitting regions of the Herbig Ae/Be stars HD 179218 and HD 141569 from CHARA spectro-interferometry

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Mourard, D.; Muzerolle, J.

    2017-01-01

    This work presents CHARA/VEGA Hα spectro-interferometry (R ˜ 6000, and λ/2B ˜ 1 mas) of HD 179218 and HD 141569, doubling the sample of Herbig Ae/Be (HAeBe) stars for which this type of observations is available so far. The observed Hα emission is spatially unresolved, indicating that the size of the Hα emitting region is smaller than ˜0.21 and 0.12 au for HD 179218 and HD 141529 (˜15 and 16 R*, respectively). This is smaller than for the two other HAeBes previously observed with the same instrumentation. Two different scenarios have been explored in order to explain the compact line emitting regions. A hot, several thousand K, blackbody disc is consistent with the observations of HD 179218 and HD 141569. Magnetospheric accretion (MA) is able to reproduce the bulk of the Hα emission shown by HD 179218, confirming previous estimates from MA shock modelling with a mass accretion rate of 10-8 M⊙ yr-1, and an inclination to the line of sight between 30° and 50°. The Hα profile of HD 141569 cannot be fitted from MA due to the high rotational velocity of this object. Putting the CHARA sample together, a variety of scenarios is required to explain the Hα emission in HAeBe stars - compact or extended, discs, accretion, and winds - in agreement with previous Brγ spectro-interferometric observations.

  20. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  1. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  2. Giant planet formation with pebble accretion

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2014-05-01

    In the core accretion model for giant planet formation, a solid core forms by coagulation of dust grains in a protoplanetary disk and then accretes gas from the disk when the core reaches a critical mass. Both stages must be completed in a few million years before the disk gas disperses. The slowest stage of this process may be oligarchic growth in which a giant-planet core grows by sweeping up smaller, asteroid-size planetesimals. Here, we describe new numerical simulations of oligarchic growth using a particle-in-a-box model. The simulations include several processes that can effect oligarchic growth: (i) planetesimal fragmentation due to mutual collisions, (ii) the modified capture rate of planetesimals due to a core’s atmosphere, (iii) drag with the disk gas during encounters with the core (so-called “pebble accretion”), (iv) modification of particle velocities by turbulence and drift caused by gas drag, (v) the presence of a population of mm-to-m size “pebbles” that represent the transition point between disruptive collisions between larger particles, and mergers between dust grains, and (vi) radial drift of small objects due to gas drag. Collisions between planetesimals rapidly generate a population of pebbles. The rate at which a core sweeps up pebbles is controlled by pebble accretion dynamics. Metre-size pebbles lose energy during an encounter with a core due to drag, and settle towards the core, greatly increasing the capture probability during a single encounter. Millimetre-size pebbles are tightly coupled to the gas and most are swept past the core during an encounter rather than being captured. Accretion efficiency per encounter increases with pebble size in this size range. However, radial drift rates also increase with size, so metre-size objects encounter a core on many fewer occasions than mm-size pebbles before they drift out of a region. The net result is that core growth rates vary weakly with pebble size, with the optimal diameter

  3. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  4. Magnetised accretion discs in Kerr spacetimes. II. Hot spots

    NASA Astrophysics Data System (ADS)

    García, Federico; Ranea-Sandoval, Ignacio F.; Johannsen, Tim

    2016-03-01

    Context. Quasi-periodic variability has been observed in a number of X-ray binaries that harbor black hole candidates. In general relativity, black holes are uniquely described by the Kerr metric and, according to the cosmic censorship conjecture, curvature singularities always have to be clothed by an event horizon. Aims: In this paper, we study the observed light curves that arise from orbiting hotspots in thin accretion discs around Kerr black holes and naked singularities, and the effect introduced by the presence of an external magnetic field. Methods: We employ a ray-tracing algorithm to calculate the light curves and power spectra of these hot spots as seen by a distant observer for uniform and dipolar magnetic field configurations, assuming a weak coupling between the magnetic field and the disc matter. Results: We show that the presence of an external dipolar magnetic field leads to potentially observable modifications of these light curves for both Kerr black holes and naked singularities, while an external uniform magnetic field has practically no effect. In particular, we demonstrate that the emission from a hotspot, which is orbiting near the innermost stable circular orbit of a naked singularity in a dipolar magnetic field, can be significantly harder than the emission of the same hotspot in the absence of this type of magnetic field. Conclusions: The comparison of our model with observational data may allow us to study the geometry of magnetic fields around compact objects and to test the cosmic censorship conjecture in conjunction with other observables, such as thermal continuum spectra and iron line profiles.

  5. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  6. Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  7. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bidwell, C. S.

    1990-01-01

    An effort to develop a three-dimensional ice accretion modeling method is initiated. This first step toward creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flowfields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is intended as a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3D method for a MS-317 swept wing geometry are projected onto a 2D plane normal to the wing leading edge and compared to 2D results for the same geometry. These results indicate that the flowfield over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3D calculation.

  8. Eclipse Mapping of Accretion Discs

    NASA Astrophysics Data System (ADS)

    Baptista, R.

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc throughout its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  9. The origin of ultra-compact binaries

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  10. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  11. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  12. Multi-wavelength Accretion Studies of Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Coppejans, Deanne

    2016-10-01

    Recent developments in the field of Cataclysmic Variable stars (CVs) have highlighted the need for large (more unbiased) samples of CVs with known properties, as well as the need for multi- wavelength studies to determine the accretion-outflow connection. In this thesis I have presented radio observations of non-magnetic CVs, proving them to be significant radio emitters. I have also presented optical follow-up studies of CVs, and developed an algorithm that automatically classifies these objects based on photometric data from large surveys. This was applied to the Catalina Real-time Transient Survey to produce a catalogue of accretion properties for 1031 CVs.

  13. Accretion physics: It's not U, it's B

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    2017-03-01

    Black holes grow by accreting mass, but the process is messy and redistributes gas and energy into their environments. New evidence shows that magnetic processes mediate both the accretion and ejection of matter.

  14. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  15. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  16. Neutrinos from Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Torres, Diego F.; McCauley, Thomas P.; Romero, Gustavo E.; Aharonian, Felix A.

    2003-05-01

    The magnetospheres of accreting neutron stars develop electrostatic gaps with huge potential drops. Protons and ions, accelerated in these gaps along the dipolar magnetic field lines to energies greater than 100 TeV, can impact onto the surrounding accretion disk. A proton-induced cascade develops, and charged pion decays produce ν emission. With extensive disk shower simulations using DPMJET and GEANT4, we have calculated the resulting ν spectrum. We show that the spectrum produced out of the proton beam is a power law. We use this result to propose accretion-powered X-ray binaries (with highly magnetized neutron stars) as a new population of pointlike ν sources for kilometer-scale detectors such as ICECUBE. As a particular example, we discuss the case of A0535+26. We show that ICECUBE should find A0535+26 to be a periodic ν source, one for which the formation and loss of its accretion disk can be fully detected. Finally, we comment briefly on the possibility that smaller telescopes such as AMANDA could also detect A0535+26 by folding observations with the orbital period.

  17. Numerical and experimental study of magnetized accretion phenomena in young stars

    NASA Astrophysics Data System (ADS)

    Khiar, Benjamin; Ciardi, Andrea; Revet, Guilhem; Vinci, Tommaso; Fuchs, Julien; Orlando, Salvatore; Inaf Team; Luli Team; Lerma Team

    2016-10-01

    Newly formed stars accrete mass from the circumstellar disc via magnetized accretion funnels that connect the inner disc regions to the star. The ensuing impact of this free-falling plasma onto the stellar surface generates a strong shock, whose emission is used as a proxy to determine the accretion rates. Observations show that the X-ray luminosity arising from the shock heated plasma at the base of accretion columns is largelybelow the value expected on the basis of optical/UV observations. As a result, current 2D numerical simulations matching X-ray accretion rates cannot reproduce optical accretion rates. To understand the impact of accretion flows on the stellar surface in the presence of a strong magnetic field we have developed laboratory experiments reproducing crucial aspects of the accretion dynamics in Young Stellar Objects. As a model of accretion columns, we use laser-produced super-Alfvenic magnetically confined jets to collide them on solid targets. Here we present results from these experiments and from multi-dimensional MHD simulations. The authors acknowledge the support from the Ile-de-France DIM ACAV, from the LABEX Plas@par and from the ANR Grant SILAMPA.

  18. The formation of stars by gravitational collapse rather than competitive accretion.

    PubMed

    Krumholz, Mark R; McKee, Christopher F; Klein, Richard I

    2005-11-17

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (M(o)), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (approximately 0.5M(o)), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  19. Volatile loss from accreting icy protoplanets

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    1993-03-01

    A large self-gravitating body does not easily lose significant mass because the escape velocity is much larger than the sound speed of atmosphere-forming species under ambient thermal conditions. The most significant exceptions to this are giant impacts or impact jetting by fast-moving projectiles. A very small object (e.g. a comet) also does not easily lose significant volatile mass upon formation because the energy release associated with its accretion is so small. (It can however lose a great deal of mass if it is subsequently moved closer to the Sun.) I argue that there is an intermediate mass range (corresponding to bodies with radii of approximately 300-800 km) for which the ambient steady-state mass loss is a maximum. By ambient, I mean those conditions pertaining to the formation region of the body. By steady state, I mean to exclude infrequent traumas (giant impacts). The existence of a preferred intermediate mass arises through the competition of growing gravitational containment and growing energy release by accretion; it corresponds typically to GM/(Rcs2) approximately equals 2 to 4, where M is the protoplanet mass of radius R, and cs is the sound speed. Several factors determine the amount of volatile loss is this vulnerable zone during accretion but in general the loss is a substantial fraction of the volatiles, sometimes approaching 100 percent. The principal implication is that bodies larger than a few hundred kilometers in radius will not have a 'primitive' (i.e. cometary) composition. This is relevant for understanding Triton, Pluto, Charon, and perhaps Chiron.

  20. Strongly Magnetized Accretion Disks Around Black Holes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2017-01-01

    Recent observations are suggestive of strongly magnetized accretion disks around black holes. Performing local (shearing box) simulations of accretion disks, we investigate how a strong magnetization state can develop and persist. We demonstrate that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion disks. We also show that black hole spin measurements can become unconstrained if magnetic fields provide a significant contribution to the vertical pressure support of the accretion disk atmosphere.

  1. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  2. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  3. The Importance of Rotational Time-scales in Accretion Variability

    NASA Astrophysics Data System (ADS)

    Costigan, Gráinne; Vink, Joirck; Scholz, Aleks; Testi, Leonardo; Ray, Tom

    2013-07-01

    For the first few million years, one of the dominant sources of emission from a low mass young stellar object is from accretion. This process regulates the flow of material and angular moments from the surroundings to the central object, and is thought to play an important role in the definition of the long term stellar properties. Variability is a well documented attribute of accretion, and has been observed on time-scales of from days to years. However, where these variations come from is not clear. Th current model for accretion is magnetospheric accretion, where the stellar magnetic field truncates the disc, allowing the matter to flow from the disc onto the surface of the star. This model allows for variations in the accretion rate to come from many different sources, such as the magnetic field, the circumstellar disc and the interaction of the different parts of the system. We have been studying unbiased samples of accretors in order to identify the dominant time-scales and typical magnitudes of variations. In this way different sources of variations can be excluded and any missing physics in these systems identified. Through our previous work with the Long-term Accretion Monitoring Program (LAMP), we found 10 accretors in the ChaI region, whose variability is dominated by short term variations of 2 weeks. This was the shortest time period between spectroscopic observations which spanned 15 months, and rules out large scale processes in the disk as origins of this variability. On the basis of this study we have gone further to study the accretion signature H-alpha, over the time-scales of minutes and days in a set of Herbig Ae and T Tauri stars. Using the same methods as we used in LAMP we found the dominant time-scales of variations to be days. These samples both point towards rotation period of these objects as being an important time-scale for accretion variations. This allows us to indicate which are the most likely sources of these variations.

  4. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  5. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of

  6. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  7. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  8. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  9. Mysterious object He2-90

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them.

  10. Hybrid Numerical Simulations Of Planetesimal Accretion

    NASA Astrophysics Data System (ADS)

    Marzari, Francesco; Weidenschilling, S. J.

    2006-09-01

    The multi-zone simulation code modelling the accretion of planetesimals into planets (Spaute et al. 1991, Icarus 92, 147; Weidenschilling et al. 1997, ICARUS 128, 429) includes a statistical continuum of small bodies in logarithmic mass bins, while large bodies are discrete objects with individual masses and orbits. Formerly, gravitational interactions between large planetary embryos were treated by statistical scattering. The code has now been updated to properly handle the orbits of protoplanets in a deterministic way. The trajectories of the larger bodies are numerically computed with the symplectic integrator SyYMBA. The additional forces acting on the protoplanets due to collisions with smaller planetesimals and their gravitational perturbations, including dynamical friction, as well as gas drag and tidal interaction with the solar nebula, are incorporated in the N-body algorithm by applying a further step in the leap-frog structure of the SyMBA integrator. The changes in the orbital elements of the large bodies, computed in the stochastic part of the code with a Monte Carlo approach, are applied for half a timestep before and after the N-body Hamiltonian propagation as suggested in Lee & Peale (ApJ 567, 596, 2002). With this code we intend to study the effect of dynamical friction on terrestrial planet formation and the accretion of planetary cores in the outer solar system. We will present preliminary results of simulations performed with the updated code.

  11. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  12. X-RAY OBSERVATIONAL SIGNATURE OF A BLACK HOLE ACCRETION DISK IN AN ACTIVE GALACTIC NUCLEUS RX J1633+4718

    SciTech Connect

    Yuan, W.; Liu, B. F.; Zhou, H.; Wang, T. G.

    2010-11-01

    We report the discovery of a luminous ultra-soft X-ray excess in a radio-loud narrow-line Seyfert 1 galaxy, RX J1633+4718, from archival ROSAT observations. The thermal temperature of this emission, when fitted with a blackbody, is as low as 32.5{sup +8.0}{sub -6.0} eV. This is in remarkable contrast to the canonical temperatures of {approx}0.1-0.2 keV found hitherto for the soft X-ray excess in active galactic nuclei (AGNs) and is interestingly close to the maximum temperature predicted for a postulated accretion disk in this object. If this emission is indeed blackbody in nature, the derived luminosity (3.5{sup +3.3}{sub -1.5} x 10{sup 44} erg s{sup -1}) infers a compact emitting area with a size ({approx}5 x 10{sup 12} cm or 0.33 AU in radius) that is comparable to several times the Schwarzschild radius of a black hole (BH) at the mass estimated for this AGN ({approx}3 x 10{sup 6} M{sub sun}). In fact, this ultra-steep X-ray emission can be well fitted as the (Compton scattered) Wien tail of the multi-temperature blackbody emission from an optically thick accretion disk, whose inferred parameters (BH mass and accretion rate) are in good agreement with independent estimates using the optical emission-line spectrum. We thus consider this feature as a signature of the long-sought X-ray radiation directly from a disk around a supermassive BH, presenting observational evidence for a BH accretion disk in the AGN. Future observations with better data quality, together with improved independent measurements of the BH mass, may constrain the spin of the BH.

  13. An irradiated brown-dwarf companion to an accreting white dwarf.

    PubMed

    Santisteban, Juan V Hernández; Knigge, Christian; Littlefair, Stuart P; Breton, Rene P; Dhillon, Vikram S; Gänsicke, Boris T; Marsh, Thomas R; Pretorius, Magaretha L; Southworth, John; Hauschildt, Peter H

    2016-05-19

    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor). The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are

  14. Accretion of the Moon from non-canonical discs

    PubMed Central

    Salmon, J.; Canup, R. M

    2014-01-01

    Impacts that leave the Earth–Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such ‘non-canonical’ impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth–Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance. PMID:25114307

  15. Planetary accretion in circumstellar disks

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Stewart, Glen R.

    1993-01-01

    The formation of terrestrial planets and the cores of Jovian planets is reviewed in the framework of the planetesimal hypothesis, wherein planets are assumed to grow via the pairwise accumulation of small solid bodies. Emphasis is placed on the dynamics of solid body accretion from kilometer size planetesimals to terrestrial type planets. This stage of planetary growth is least dependent on the characteristics of the evolutionary state of the central star. It is concluded that the evolution of the planetesimal size distribution is determined by the gravitationally enhanced collision cross-section, which favors collisions between planetesimals with smaller velocities. Runaway growth of the largest planetesimal in each accretion zone appears to be a likely outcome. The subsequent accumulation of the resulting protoplanets leads to a large degree of radial mixing in the terrestrial planet region, and giant impacts are probable.

  16. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  17. Hydrodynamic Viscosity in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Duschl, Wolfgang J.; Strittmatter, Peter A.; Biermann, Peter L.

    We propose a generalized accretion disk viscosity prescription based on hydrodynamically driven turbulence at the critical effective Reynolds number. This approach is consistent with recent re-analysis by Richard & Zahn (1999) of experimental results on turbulent Couette-Taylor flows. This new β-viscosity formulation applies to both selfgravitating and non-selfgravitating disks and is shown to yield the standard α-disk prescription in the case of shock dissipation limited, non-selfgravitating disks.

  18. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Huang, Ying-Ke; Cheng, Cheng; Qiu, Jie; Li, Yan-Rong; Zhang, Yang-Wei; Fan, Xu-Liang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Kaspi, Shai; Ho, Luis C.; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2015-06-01

    We have completed two years of photometric and spectroscopic monitoring of a large number of active galactic nuclei (AGNs) with very high accretion rates. In this paper, we report on the result of the second phase of the campaign, during 2013-2014, and the measurements of five new Hβ time lags out of eight monitored AGNs. All five objects were identified as super-Eddington accreting massive black holes (SEAMBHs). The highest measured accretion rates for the objects in this campaign are \\mathscr{\\dot{M}} {\\mkern 1mu} ≳ 200, where \\mathscr{\\dot{M}} {\\mkern 1mu} ={{\\dot{M}}\\bullet }/{{L}Edd}{{c}-2}, {{\\dot{M}}\\bullet } is the mass accretion rates, {{L}Edd} is the Eddington luminosity and c is the speed of light. We find that the Hβ time lags in SEAMBHs are significantly shorter than those measured in sub-Eddington AGNs, and the deviations increase with increasing accretion rates. Thus, the relationship between broad-line region size ({{R}_{Hβ }}) and optical luminosity at 5100 Å, {{R}_{Hβ }}-{{L}5100}, requires accretion rate as an additional parameter. We propose that much of the effect may be due to the strong anisotropy of the emitted slim-disk radiation. Scaling {{R}_{Hβ }} by the gravitational radius of the black hole (BH), we define a new radius-mass parameter (Y) and show that it saturates at a critical accretion rate of \\mathscr{\\dot{M}} {\\mkern 1mu} {{}c}=6˜ 30, indicating a transition from thin to slim accretion disk and a saturated luminosity of the slim disks. The parameter Y is a very useful probe for understanding the various types of accretion onto massive BHs. We briefly comment on implications to the general population of super-Eddington AGNs in the universe and applications to cosmology.

  19. Durability of the accretion disk of millisecond pulsars.

    PubMed

    Michel, F C; Dessler, A J

    1985-05-24

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk.

  20. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  1. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  2. Monitoring the Galactic Centre with the Australia Telescope Compact Array

    NASA Astrophysics Data System (ADS)

    Borkar, A.; Eckart, A.; Straubmeier, C.; Kunneriath, D.; Jalali, B.; Sabha, N.; Shahzamanian, B.; García-Marín, M.; Valencia-S, M.; Sjouwerman, L.; Britzen, S.; Karas, V.; Dovčiak, M.; Donea, A.; Zensus, A.

    2016-05-01

    The supermassive black hole, Sagittarius A* (Sgr A*), at the centre of the Milky Way undergoes regular flaring activity, which is thought to arise from the innermost region of the accretion flow. Between 2010 and 2014, we performed monitoring observations of the Galactic Centre to study the flux-density variations at 3 mm using the Australia Telescope Compact Array (ATCA). We obtain light curves of Sgr A* by subtracting the contributions from the extended emission around it, and the elevation and time-dependent gains of the telescope. We perform structure function analysis and the Bayesian blocks representation to detect flare events. The observations detect six instances of significant variability in the flux density of Sgr A* in three observations, with variations between 0.5 and 1.0 Jy, which last for 1.5-3 h. We use the adiabatically expanding plasmon model to explain the short time-scale variations in the flux density. We derive the physical quantities of the modelled flare emission, such as the source expansion speed vexp, source sizes, spectral indices and the turnover frequency. These parameters imply that the expanding source components are either confined to the immediate vicinity of Sgr A* by contributing to the corona or the disc, or have a bulk motion greater than vexp. No exceptional flux-density variation on short flare time-scales was observed during the approach and the flyby of the dusty S-cluster object (DSO/G2). This is consistent with its compactness and the absence of a large bow shock.

  3. Structure and Evolution of Kuiper Belt Objects: The Case for Compositional Classes

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Prialnik, D.; Stern, S. A.

    2007-10-01

    Kuiper belt objects (KBOs) accreted from a mélange of ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of radiogenic heating, with both short-term and long-term contributions being potentially important. Depending on rock content and porous conductivity, KBO interiors may have reached relatively high temperatures. Models suggest that KBOs likely lost very volatile ices during early evolution, whereas less volatile ices should be retained in cold, less altered subsurface layers; initially amorphous ice may have crystallized in the interior as well, releasing trapped volatiles. Generally, KBOs should be stratified in terms of composition and porosity, albeit subject to impact disruption and collisional stripping. KBOs are thus unlikely to be "the most pristine objects in the Solar System.” Large (dwarf planet) KBOs may be fully differentiated. KBO surface color and compositional classes are usually discussed in terms of "nature vs. nurture,” i.e., a generic primordial composition vs. surface processing, but the true nature of KBOs also depends on how they have evolved. The broad range of albedos now found in the Kuiper belt, deep water-ice absorptions on some objects, evidence for differentiation of Pluto and 2003 EL61, and a range of densities incompatible with a single, primordial composition and variable porosity strongly imply significant, intrinsic compositional differences among KBOs. The interplay of formation zone (accretion rate), body size, and dynamical (collisional) history may yield KBO compositional classes (and their spectral correlates) that recall the different classes of asteroids in the inner Solar System, but whose members are

  4. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  5. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  6. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  7. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  8. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  9. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  10. X-ray Fe-lines from Relativistic Accretion Disks Around Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Stella, Luigi

    2013-01-01

    The Gas Scintillation Proportional Counter (GSPC) on board the European X-ray Satellite EXOSAT (1983-1986) provided detections of Fe K-alpha emission features around 6-7 keV in the X-ray spectra of accreting neutron star and black hole candidates in X-ray binaries. Surprisingly the width of these lines was found to be broader than the GSPC resolution 10% at 6 keV): it could not be explained by thermal broadening, nor blending of (unresolved) lines from different ionization stages of Fe; very large Doppler shifts and, perhaps, thermal Comptonisation provided more promising interpretations. In 1989 Nick White and I developed the first general relativistic model for the Fe-line profile that is produced by matter orbiting in an accretion disk. By fitting the GSPC Fe-line of the black hole candidate Cyg X-1 with our model we inferred an emitting line region extending to a few tens Schwarzschild radii from the black hole, where matter orbits at ~0.1-0.2 the speed of light and effects such as relativistic Doppler shifts and boosting, as well as gravitational and transverse redshifts are conspicuous. We joined forces with Andy Fabian and Martin Rees, who were working on the same interpretation, and published the results in a MNRAS paper. The relativistic disk interpretation of the broad Fe-lines gave rise to much interest on the possibility of measuring black hole mass and spin and probing the innermost regions of accretion flows and the very strong gravitational fields close to compact objects. Very broad and sometimes highly redshifted Fe-lines have been studied by now in tens of X-ray binaries and bright Active Galactic Nuclei with the CCD detectors of the Chandra and XMM/Newton X-ray telescopes; in some cases the line profile implies the presence of a fast spinning black hole. The potential of the Fe-line diagnostics remains to be largely exploited. Moreover some alternative interpretations are not yet ruled out. An X-ray instrument with a broad energy response

  11. Accretion Flow in the inner Accretion Discs of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Balman, Solen; Revnivtsev, Mikhail

    2012-07-01

    We study nature of time variability of brightness of non-magnetic cataclysmic variables. We show that lightcurtves of all analyzed DN systems in UV and X-ray energy bands demonstrate band limited noise, which can be adequately described in the framework of the model of propagating fluctuations. The frequency of the break indicates the inner disc truncation with a range of radii (10-3)e+9 cm. We analyse the RXTE and optical (RTT150) data of SS Cyg in outburst and quiescence which show that during the outburst the inner disk radius moves towards the white dwarf and receeds as the outburst declines to quiescence. Cross-correlations between the simultaneous UV and X-ray light curves find time lags in the X-rays of 90-180 sec consistent with travel time of matter from a truncated inner disc to the white dwarf surface. This suggests that DN and other plausible nonmagnetic systems have truncated accretion discs indicating that the accretion may occur through coronal flows in the disc. We compare and contrast magnetic and nonmagnetic systems in terms of their aperiodic noise characteristics and the model of propagating fluctuations. The comparison of the X-ray/UV time lag observed by us in the case of non-magnetic CVs with those, detected for magnetic CVs allows us to make an rough estimate of the viscosity parameter. Multi band simultaneous observations of coming observattories like ASTROSAT will give us the opportunity to study time variability of brightness variations of accretion disks in cataclysmic variables in quiescence and outburst using LAXPC and UVIT/OPT instruments. We will elaborate on the nature and possible outcomes of such research.

  12. Angular momentum transport in thin accretion disks and intermittent accretion.

    PubMed

    Coppi, B; Coppi, P S

    2001-07-30

    The plasma modes, transporting angular momentum in accretion disks, under minimally restrictive conditions when the magnetic energy density is significant relative to the thermal energy density, are shown to be singular if the ideal MHD approximation is adopted. A similarity with the modes producing magnetic reconnection in current carrying plasmas is established. The combined effects of finite plasma temperature, of plasma compressibility, of the gradient of the rotation frequency, and of appropriate transport processes (outside ideal MHD) are involved in the onset of these nonaxisymmetric and locally corotating modes.

  13. Sleuthing the Isolated Compact Stars

    NASA Astrophysics Data System (ADS)

    Drake, J. J.

    2004-08-01

    In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.

  14. Information about accretion flows from X-ray timing of pulsating sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Pines, D.; Shaham, J.

    1976-01-01

    The response was studied of a rotating neutron star to fluctuating torques and it was found that the observed variations in the pulsation periods of the compact X-ray sources Cen X-3 and Her X-1 could be caused by short time scale fluctuations in the accretion torques acting on the neutron stars. The sizes and rates of the required fluctuations are consistent with current accretion models. Such fluctuations can cause period variations either (a) directly, by causing a random walk of the star's angular velocity or (b) indirectly, by exciting a long-period mode of the neutron star, such as the Tkachenko mode of the rotating neutron superfluid. Phenomena in compact X-ray sources and cataclysmic variables which may be caused by fluctuating mass flow rates are also discussed.

  15. Chondrule Accretion with a Growing Protoplanet

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yuji; Oshino, Shoichi; Hasegawa, Yasuhiro; Wakita, Shigeru

    2017-03-01

    Chondrules are primitive materials in the solar system. They were formed in about the first 3 Myr of the solar system’s history. This timescale is longer than that of Mars formation, and it is conceivable that protoplanets, planetesimals, and chondrules might have existed simultaneously in the solar nebula. Due to protoplanets’ perturbation on the planetesimal dynamics and chondrule accretion on them, all the formed chondrules are unlikely to be accreted by the planetesimals. We investigate the amount of chondrules accreted by planetesimals in such a condition. We assume that a protoplanet is in oligarchic growth, and we perform analytical calculations of chondrule accretion by both a protoplanet and planetesimals. Through the oligarchic growth stage, planetesimals accrete about half of the formed chondrules. The smallest planetesimals get the largest amount of chondrules, compared with the amount accreted by more massive planetesimals. We perform a parameter study and find that this fraction is not greatly changed for a wide range of parameter sets.

  16. Radio upper limits for the accreting millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Miller-Jones, J. C. A.; Russell, D. M.; Migliari, S.

    2009-10-01

    We report on recent radio observations of the newly-detected accreting millisecond X-ray pulsar, IGR J17511-3057 (ATels #2196, #2197, #2198, #2199, #2215, #2216, #2220, #2221). We used the Very Large Array (VLA) to observe the source under observing program AM971. The array was in its relatively compact 'C' and 'DNC' configurations, and the observations were made at 8.46 GHz. In no case was the source significantly detected.

  17. UV variability and accretion dynamics in the young open cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Irwin, J.; Stauffer, J. R.; Hillenbrand, L. A.; Rebull, L. M.; Cody, A. M.; Alencar, S. H. P.; Micela, G.; Flaccomio, E.; Peres, G.

    2015-09-01

    Context. Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. Aims: We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3 Myr). Methods: We performed simultaneous monitoring of u- and r-band variability for the cluster population with CFHT/MegaCam. The survey extended over two full weeks, with several flux measurements per observing night. A sample of about 750 young stars is probed in our study, homogeneously calibrated and reduced, with internally consistently derived stellar parameters. Objects span the mass range 0.1-2 M⊙; about 40% of them show evidence for active accretion based on various diagnostics (Hα, UV, and IR excesses). Results: Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, in the optical and especially in the UV. The amount of u-band variability is found to correlate statistically with the median amount of UV excess in disk-bearing objects, which suggests that mass accretion and star-disk interaction are the main sources of variability in the u band. Spot models are applied to account for the amplitudes of variability of accreting and non-accreting members, which yields different results for each group. Cool magnetic spots, several hundred degrees colder than the stellar photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots with a temperature a few thousand degrees higher than the photospheric temperature and that extend over a few percent of the stellar surface best reproduce the variability of accreting objects

  18. Assessing Magnetospheric Accretion in Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia; Monnier, John D.

    2017-01-01

    Recent large spectropolarimetric surveys have found low magnetic field detection rates in Herbig Ae/Be stars. Efforts to measure and map young stars' magnetic fields have also noted that field structure and strength dramatically change with increasing stellar mass. These results are highly suggestive that the mechanisms for accretion and outflow in Herbig Ae/Be star+disk systems may differ from the magnetospheric accretion paradigm as envisaged for T Tauri star+disk systems. We have performed a high resolution optical spectroscopic campaign of ~60 Herbig AeBe stars including some multi-epoch observations; the timescales sampled range from high cadence (~minutes) to observations taken years spart, covering a wide range of kinematic processes. We find that the strength of variability increases with the cadence of the observations, and over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines. We see no inverse P-Cygni signatures as are often seen in lower mass T Tauri stars and generally thought to be diagnostic of infall in accretion streams along the line of sight. We discuss the implications of these results in context of recent spectropolarimetric surveys for our understanding of how accretion is occurring in these objects, as well as ongoing radiative transfer modeling.

  19. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  20. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  1. Theory of protostellar accretion disks

    NASA Technical Reports Server (NTRS)

    Ruden, S.

    1994-01-01

    I will present an overview of the current paradigm for the theory of gaseous accretion disks around young stars. Protostellar disks form from the collapse of rotating molecular cloud cores. The disks evolve via outward angular momentum transport provided by several mechanisms: gravitational instabilities, thermal convective turbulence, and magnetic stresses. I will review the conditions under which these mechanisms are efficient and consistent with the observed disk evolutionary timescales of several million years. Time permitting, I will discuss outbursts in protostellar disks (FU Orionis variables), the effect of planet formation on disk structure, and the dispersal of remnant gas.

  2. Object Oriented Learning Objects

    ERIC Educational Resources Information Center

    Morris, Ed

    2005-01-01

    We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…

  3. Local Axisymmetric Simulations of Magnetorotational Instability in Radiation-dominated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Turner, N. J.; Stone, J. M.; Sano, T.

    2002-02-01

    We perform numerical simulations of magnetorotational instability in a local patch of accretion disk in which radiation pressure exceeds gas pressure. Such conditions may occur in the central regions of disks surrounding compact objects in active galactic nuclei and Galactic X-ray sources. We assume axisymmetry and neglect vertical stratification. The growth rates of the instability on initially uniform magnetic fields are consistent with the linear analysis of Blaes & Socrates (2001). As is the case when radiation effects are neglected, the nonlinear development of the instability leads to transitory turbulence when the initial magnetic field has no net vertical flux. During the turbulent phase, angular momentum is transported outward. The Maxwell stress is a few times the Reynolds stress, and their sum is about 4 times the mean pressure in the vertical component of the magnetic field. For magnetic pressure exceeding gas pressure, turbulent fluctuations in the field produce density contrasts about equal to the ratio of magnetic to gas pressure. These are many times larger than in the corresponding gas pressure-dominated situation and may have profound implications for the steady state vertical structure of radiation-dominated disks. Diffusion of radiation from compressed regions damps turbulent motions, converting kinetic energy into photon energy.

  4. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10-20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  5. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.

  6. Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan

    2015-01-01

    This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.

  7. Stokes Imaging: Mapping the Accretion Region(s) in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Potter, Stephen B.

    Stokes imaging is the first objective and analytical technique that robustly models the cyclotron emission and maps the accretion zones in magnetic Cataclysmic Variables (mCVs) (Potter et al., MNRAS 297:1261, 1998). I discuss polarisation modelling followed by a summary of the Stokes imaging technique and its application to a real data set. In the final sections I discuss two ongoing developments to Stokes imaging, namely: using a more realistic "stratified" accretion shock model in order to calculate cyclotron spectra, and using Stokes imaging in conjunction with other tomographic techniques in order to gain better insights into magnetic accretion.

  8. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  9. Marginally compact hyperbranched polymer trees.

    PubMed

    Dolgushev, M; Wittmer, J P; Johner, A; Benzerara, O; Meyer, H; Baschnagel, J

    2017-03-29

    Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)(5/3) rather than the usual square power law for linear chains.

  10. AGN Variability: Probing Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  11. Propagation of tidal disturbance in gaseous accretion disks

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Papaloizou, J. C. B.; Savonije, G. J.

    1990-01-01

    Linear wave propagation is studied in geometrically thin accretion disks where the equilibrium variables, such as density and temperature, are stratified in the direction normal to the plane of the disk; i.e., the vertical direction. It is shown, due to refraction effects, that waves excited by tidal disturbances induced by a satellite or a companion of the central object are not expected to reach the interior regions of the disk with a significant amplitude.

  12. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  13. Nonlinear variations in axisymmetric accretion

    NASA Astrophysics Data System (ADS)

    Bose, Soumyajit; Sengupta, Anindya; Ray, Arnab K.

    2014-05-01

    We subject the stationary solutions of inviscid and axially symmetric rotational accretion to a time-dependent radial perturbation, which includes nonlinearity to any arbitrary order. Regardless of the order of nonlinearity, the equation of the perturbation bears a form that is similar to the metric equation of an analogue acoustic black hole. We bring out the time dependence of the perturbation in the form of a Liénard system by requiring the perturbation to be a standing wave under the second order of nonlinearity. We perform a dynamical systems analysis of the Liénard system to reveal a saddle point in real time, whose implication is that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. We also model the perturbation as a high-frequency traveling wave and carry out a Wentzel-Kramers-Brillouin analysis, treating nonlinearity iteratively as a very feeble effect. Under this approach, both the amplitude and the energy flux of the perturbation exhibit growth, with the acoustic horizon segregating the regions of stability and instability.

  14. EVIDENCE FOR ACCRETION IN A NEARBY, YOUNG BROWN DWARF

    SciTech Connect

    Reiners, Ansgar

    2009-09-10

    We report on the discovery of the young, nearby, brown dwarf 2MASS J0041353-562112. The object has a spectral type of M7.5; it shows Li absorption and signatures of accretion, which implies that it still has a disk and suggests an age below 10 Myr. The space motion vector and position on the sky indicate that the brown dwarf is probably a member of the {approx}20 Myr old Tuc-Hor association, or that it may be an ejected member of the {approx}12 Myr old {beta} Pic association; both would imply that 2MASS J0041353-562112 may in fact be older than 10 Myr. No accreting star or brown dwarf was previously known in these associations. Assuming an age of 10 Myr, the brown dwarf has a mass of about 30 M{sub Jup} and is located at 35 pc distance. The newly discovered object is the closest accreting brown dwarf known. Its membership to an association older than 10 Myr implies that either disks in brown dwarfs can survive as long as in more massive stars, perhaps even longer, or that star formation in Tuc-Hor or {beta} Pic occurred more recently than previously thought. The history and evolution of this object can provide new fundamental insight into the formation process of stars, brown dwarfs, and planets.

  15. Short-term Variability of X-Rays from Accreting Neutron Star Vela X-1. I. Suzaku Observations

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Khangulyan, Dmitry; Tanaka, Yasuyuki T.; Watanabe, Shin; Takahashi, Tadayuki; Makishima, Kazuo

    2013-04-01

    We have analyzed the time variability of the wide-band X-ray spectrum of Vela X-1, the brightest wind-fed accreting neutron star, on a short timescale of 2 ks by using Suzaku observations with an exposure of 100 ks. During the observation, the object showed strong variability, including several flares and so-called "low states," in which the X-ray luminosity decreases by an order of magnitude. Although the spectral hardness increases with the X-ray luminosity, the majority of the recorded flares do not show any significant changes in circumstellar absorption. However, a sign of heavy absorption was registered immediately before one short flare that showed a significant spectral hardening. In the low states, the flux level is modulated with the pulsar spin period, indicating that even at this state the accretion flow reaches the close proximity of the neutron star. Phenomenologically, the broadband X-ray spectra, which are integrated over the entire spin phase, are well represented by the "NPEX" function (a combination of negative and positive power laws with an exponential cutoff by a common folding energy) with a cyclotron resonance scattering feature at 50 keV. Fitting of the data allowed us to infer a correlation between the photon index and X-ray luminosity. Finally, the circumstellar absorption shows a gradual increase in the orbital phase interval 0.25-0.3, which can be interpreted as an impact of a bow shock imposed by the motion of the compact object in the supersonic stellar wind.

  16. SHORT-TERM VARIABILITY OF X-RAYS FROM ACCRETING NEUTRON STAR VELA X-1. I. SUZAKU OBSERVATIONS

    SciTech Connect

    Odaka, Hirokazu; Khangulyan, Dmitry; Watanabe, Shin; Takahashi, Tadayuki; Tanaka, Yasuyuki T.; Makishima, Kazuo

    2013-04-10

    We have analyzed the time variability of the wide-band X-ray spectrum of Vela X-1, the brightest wind-fed accreting neutron star, on a short timescale of 2 ks by using Suzaku observations with an exposure of 100 ks. During the observation, the object showed strong variability, including several flares and so-called 'low states', in which the X-ray luminosity decreases by an order of magnitude. Although the spectral hardness increases with the X-ray luminosity, the majority of the recorded flares do not show any significant changes in circumstellar absorption. However, a sign of heavy absorption was registered immediately before one short flare that showed a significant spectral hardening. In the low states, the flux level is modulated with the pulsar spin period, indicating that even at this state the accretion flow reaches the close proximity of the neutron star. Phenomenologically, the broadband X-ray spectra, which are integrated over the entire spin phase, are well represented by the 'NPEX' function (a combination of negative and positive power laws with an exponential cutoff by a common folding energy) with a cyclotron resonance scattering feature at 50 keV. Fitting of the data allowed us to infer a correlation between the photon index and X-ray luminosity. Finally, the circumstellar absorption shows a gradual increase in the orbital phase interval 0.25-0.3, which can be interpreted as an impact of a bow shock imposed by the motion of the compact object in the supersonic stellar wind.

  17. PROBING STELLAR ACCRETION WITH MID-INFRARED HYDROGEN LINES

    SciTech Connect

    Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D.; Duchene, G.; Edwards, S.; Ardila, D. R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Najita, J. R.; Carpenter, J.; Furlan, E.; Gorti, U.; Meijerink, R.; Meyer, M. R. E-mail: elisabetta.rigliaco@phys.ethz.ch

    2015-03-01

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  18. Nucleosynthesis in the accretion disks of Type II collapsars

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-09-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an outward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly advection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (dot M) is, the higher the density and temperature are in the disks. We deal with accretion disks with relatively low accretion rates: 0.001 Msolar s-1 ≲ dot M ≲ 0.01 Msolar s-1 and hence these disks are predominantly advection dominated. We use He-rich and Sirich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they

  19. A Study of Ice Accretion Physics to Improve the Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    2001-01-01

    This three-year grant began on November 7, 1996 and was no-cost extended to end on October 30, 2000. The objectives of the grant were: (1) To examine the effect of wind tunnel turbulence on ice accretion; (2) To determine the relationship between ice accretion geometry and airfoil performance; and (3) To determine if the wake-survey method was an appropriate experimental technique for iced-airfoil drag measurement. As specified in the grant the primary deliverables for this research were annual reports in the form of AIAA papers presented at national meetings each year. Masters theses and annual oral reports to be given at NASA Lewis (now Glenn) were also deliverables. Six AIAA papers documented the research findings from this study, Mr. Chad Henze's Masters thesis describes the wind tunnel turbulence work in detail, and a summary of the icing wind tunnel turbulence work was published in the archival AIAA Journal of Aircraft. A brief summary of the findings is given. Please refer to the reports for the details of the studies and findings.

  20. Quiescent accretion disks in black hole X-ray novae

    NASA Technical Reports Server (NTRS)

    Orosz, Jerome A.; Bailyn, Charles D.; Remillard, Ronald A.; Mcclintock, Jeffrey E.; Foltz, Craig B.

    1994-01-01

    We present detailed time-resolved spectroscopy of the Balmer emission lines from two black hole binary systems in quiescence, A0620-00 and Nova Muscae 1991. We find extraordinary similarities between the two systems. There are 30-40 km/s velocity variations of the emission lines over the orbital period, the phases of which are not aligned with the expected phase of the motion of the compact primary. Detailed modeling of both systems is complicated by variable hot spot components, regions of optical thickness, and intermittent excess emission in the blue line wings of the H-alpha lines. Both sources also display low velocities at the outer edge of the accretion disk, implying a large primary Roche lobe and extreme mass ratios. These complications suggest that although simple optically thin, Keplerian alpha-disk models provide a useful parameterization of emission lines from these systems, the straightforward physical models they imply should be treated with great caution.

  1. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  2. Accretion Disks in Algols: Progenitors and Evolution

    NASA Astrophysics Data System (ADS)

    van Rensbergen, W.; de Greve, J. P.

    2017-02-01

    There are only a few Algols with derived accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems. With a modified binary evolution code, series of close binary evolution were calculated. For six Algols with accretion disks we found initial systems that evolve closely into the presently observed system parameters and disk characteristics.

  3. Pulsed accretion in a variable protostar

    NASA Astrophysics Data System (ADS)

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-01

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 105 years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

  4. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  5. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

  6. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  7. Forced Oscillations In Relativistic Accretion Discs And QPOs

    NASA Astrophysics Data System (ADS)

    Petri, J. A.

    2006-08-01

    Quasi-periodic oscillations (QPOs) have been observed in accretion disks around compact stars with frequencies ranging from a few 0.1 Hz up to 1300 Hz. A correlation between their low- and high-frequency components was discovered and fitted with a single law, irrespective of the nature of the accreting star. That such a relation holds over 6~orders of magnitude strongly supports the idea that the physical mechanism responsible for these oscillations should be the same in all binary systems. We propose a new model for these QPOs based on forced oscillations induced in a relativistic accretion disk due to an asymmetric component in the stellar gravitational or magnetic field. It is shown that the disk experiences three kinds of resonances: corotation, Lindblad, and parametric resonance. 2D numerical simulations are in agreement with the aforementioned linear analysis. They are performed for the Newtonian gravitational potential, as well as for a pseudo-general relativistic potential. Density perturbations are only significant in the region near the innermost stable circular orbit (ISCO) where the perturbation is maximal. It is argued that the nearly periodic motion induced in the disk will produce high quality factor QPOs. Moreover, this model also explains the segregation between slow and fast rotating neutron stars. Indeed, the strongest resonance occurs when the frequency difference of the two highest modes equals either the spin frequency (for ``slow rotators'') or half of it (for ``fast rotators''). This discrimination is interpreted as a direct manifestation of the presence of an ISCO. Nevertheless, strong gravity is not needed to excite the modes.

  8. A search for the lasts gasps of disk accretion in Orion T Tauri stars

    NASA Astrophysics Data System (ADS)

    Clark, Catherine; Briceno, Cesar; Calvet, Nuria; Hernandez, Jesus

    2017-01-01

    Using the echelle mode of the Michigan/Magellan Fiber System (M2FS) on the Magellan/Clay telescope at Las Campanas Observatory, we obtained high resolution spectra (R~35000) of a sample of ~4 - 10 Myr old T Tauri stars distributed in ten 0.5 deg diameter fields in the Orion OB1 association.We present here a search for accretion signatures among a sample of weak-line T Tauri stars (WTTS). These are young stars that on the basis of their classification in low-resolution spectra, are assumed to lack a primordial disk and therefore should not be actively accreting. We look for signatures of disk accretion at modest or low levels by measuring the width at 10% height of the H-alpha profile, and looking for a redshifted absorption feature. In parallel, we determine which WTTS among the M2FS sample have infrared excesses indicating a circumstellar disk, to see which disk-bearing WTTS also show indications of accretion. We propose that such WTTS accreting at low levels are T Tauri stars at or nearing the end of their accretion phase. Our goal is to build a large sample of these objects so that we can place statistical contraints on how long the accretion phase lasts in solar-like and low-mass stars.

  9. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  10. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  11. Accreting Binary Populations in the Earlier Universe

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  12. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1986-05-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time 0(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguishes between flexible components (wires) and rigid components (modules). The algorithm first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer. An efficient single-layer router is already known; it is able to minimize the length of every wire, though not the number of jogs. As given, the compaction algorithm applies only to a VLSI model that requires wires to run a rectilinear grid. This restriction is needed only because the theory of planar routing (and single-layer routers) has not yet been extended to other models.

  13. Chondrule formation during planetesimal accretion

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Jutzi, Martin; Movshovitz, Naor

    2011-08-01

    We explore the idea that most chondrules formed as a consequence of inefficient pairwise accretion, when molten or partly molten planetesimals ~ 30-100 km diameter, similar in size, collided at velocities comparable to their two-body escape velocity ~ 100 m/s. Although too slow to produce shocks or disrupt targets, these collisions were messy, especially after ~ 1 Ma of dynamical excitation. In SPH simulations we find that the innermost portion of the projectile decelerates into the target, while the rest continues downrange in massive sheets. Unloading from pre-collision hydrostatic pressure P0 ~ 1-100 bar into the nebula, the melt achieves equilibrium with the surface energy of chondrule-sized droplets. Cooling is regulated post collision by the expansion of the optically thick sheets. on a timescale of hours-days. Much of the sheet rains back down onto the target to be reprocessed; the rest is dispersed.

  14. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  15. Do triaxial supramassive compact stars exist?

    NASA Astrophysics Data System (ADS)

    Uryū, Kōji; Tsokaros, Antonios; Baiotti, Luca; Galeazzi, Filippo; Sugiyama, Noriyuki; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-11-01

    We study quasiequilibrium solutions of triaxially deformed rotating compact stars—a generalization of Jacobi ellipsoids under relativistic gravity and compressible equations of state (EOSs). For relatively stiff (piecewise) polytropic EOSs, we find supramassive triaxial solutions whose masses exceed the maximum mass of the spherical solution, but are always lower than those of axisymmetric equilibriums. The difference in the maximum masses of triaxial and axisymmetric solutions depends sensitively on the EOSs. If the difference turns out to be only about 10%, it will be strong evidence that the EOS of high density matter becomes substantially softer in the core of neutron stars. This finding opens a novel way to probe phase transitions of high density nuclear matter using detections of gravitational waves from new born neutron stars or magnetars under fallback accretion.

  16. An Active Black Hole in a Compact Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto

  17. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.

    1997-01-01

    Simultaneous measurements of vertical accretion from artificial soil marker horizons and soil elevation change from sedimentation-erosion table (SET) plots were used to evaluate the processes related to soil building in range, basin, and overwash mangrove forests located in a low-energy lagoon which recieves minor inputs of terregenous sediments. Vertical accretion measures reflect the contribution of surficial sedimentation (sediment deposition and surface root growth). Measures of elevation change reflect not only the contributions of vertical accretion but also those of subsurface processes such as compaction, decomposition and shrink-swell. The two measures were used to calculate amounts of shallow subsidence (accretion minus elevation change) in each mangrove forest. The three forest types represent different accretionary envrionments. The basin forest was located behind a natural berm. Hydroperiod here was controlled primarily by rainfall rather than tidal exchange, although the basin flooded during extreme tidal events. Soil accretion here occurred primarily by autochthonous organic matter inputs, and elevation was controlled by accretion and shrink-swell of the substrate apparently related to cycles of flooding-drying and/or root growth-decomposition. This hydrologically-restricted forest did not experience an accretion or elevation deficit relative to sea-level rise. The tidally dominated fringe and overwash island forests accreted through mineral sediment inputs bound in place by plant roots. Filamentous turf algae played an important role in stabilizing loose muds in the fringe forest where erosion was prevalent. Elevation in these high-energy environments was controlled not only by accretion but also by erosion and/or shallow subsidence. The rate of shallow subsidence was consistently 3-4 mm y-1 in the fringe and overwash island forests but was negligible in the basin forest. Hence, the vertical development of mangrove soils was influenced by both

  18. Face-on accretion onto a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2016-10-01

    ) accretion of material with no azimuthal angular momentum. Our study, as well as previous work, suggests that the former, dominant process is mainly caused by numerical, rather than physical effects, while the latter is not. The latter process, as expected theoretically, causes the disc to become more compact and increases the surface density profile considerably at smaller radii. Conclusions: The disc size is determined in the first place by the ram pressure exerted by the flow when it first hits the disc. Further evolution is governed by the decrease in the specific angular momentum of the disc as it accretes material with no azimuthal angular momentum. Even taking into account the uncertainties in our simulations and the result that the loading rate is within a factor two of a simple geometric estimate, the size and lifetime of the disc are probably not sufficient to accrete the amount of mass required in the early disc accretion scenario. An animation of the simulation is available at http://www.aanda.org

  19. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  20. Ice Accretion Prediction on Wind Turbines and Consequent Power Losses

    NASA Astrophysics Data System (ADS)

    Yirtici, Ozcan; Tuncer, Ismail H.; Ozgen, Serkan

    2016-09-01

    Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the energy production for iced and clean blades. The predicted ice shapes of the various airfoil profiles are validated with the experimental data and it is shown that the tool developed is promising to be used in the prediction of power production losses of wind turbines.

  1. Plasma (Accretion) Disks with High Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2006-04-01

    ``Corrugated'' plasma disks can form in the dominant gravity of a central object when the peak plasma pressure in the disk is of the same order as that of the pressure of the ``external'' magnetic field, while the magnetic field resulting from internal plasma currents is of the same order as the external field. The corrugation refers to a periodic variation of the plasma density in a region around the equatorial plane. The considered structure represents a transition between a ``classical'' accretion disk and a ``rings sequence'' configuration^2. The common feature of the ``corrugated'' and the ``rings sequence'' configurations is the ``crystal'' structure of the magnetic surfaces that consist of a sequence of pairs of oppositely directed toroidal current density filaments. The connection between the characteristics of these configurations and those of the marginally stable ballooning modes that can be found in a model accretion disk is pointed out and analyzed.

  2. Accretion disc viscosity: a limit on the anisotropy

    NASA Astrophysics Data System (ADS)

    Nixon, Chris

    2015-07-01

    Observations of warped discs can give insight into the nature of angular momentum transport in accretion discs. Only a few objects are known to show strong periodicity on long time-scales, but when such periodicity is present it is often attributed to precession of the accretion disc. The X-ray binary Hercules X-1/HZ Herculis (Her X-1) is one of the best examples of such periodicity and has been linked to disc precession since it was first observed. By using the current best-fitting models to Her X-1, which invoke precession driven by radiation warping, I place a constraint on the effective viscosities that act in a warped disc. These effective viscosities almost certainly arise due to turbulence induced by the magnetorotational instability. The constraints derived here are in agreement with analytical and numerical investigations into the nature of magnetohydrodynamic disc turbulence, but at odds with some recent global simulations.

  3. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  4. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    SciTech Connect

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun; Zhao Bo

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  5. Black-Hole Accretion Disks --- Towards a New Paradigm ---

    NASA Astrophysics Data System (ADS)

    Kato, S.; Fukue, J.; Mineshige, S.

    2008-03-01

    Part I: Concepts of Accretion Disks: Chap. 1: Introduction, 1.1 Accretion Energy - Historical Origin, { Accretion-Disk Paradigm - Active Universe, 1.3 Accretion-Powered Objects - Observational Reviews, 1.4 X-Ray Binaries and Ultra-Luminous X-Ray Sources, 1.5 Active Galactic Nuclei, 1.6 Present Paradigm, Chap. 2: Physical Processes Related to Accretion, 2.1 Eddington Luminosity, 2.2 Bondi Accretion, 2.3 Viscous Process, 2.4 Magnetic Instabilities, 2.5 Relativistic Effects Part II: Classical Picture: Chap. 3: Classical Models, 3.1 Viscous Accretion Disks, 3.2 Standard Disks, 3.3 Optically Thin Disks, 3.4 Accretion Disk Coronae, 3.5 Relativistic Standard Disks, 3.6 Relativistic Tori Chap. 4: Secular and Thermal Instabilities, 4.1 Secular Instability, 4.2 Thermal Instability, 4.3 Stability Examination on dot{M}-Σ and T-Σ Planes, 4.4 Mathematical Derivation of the Stability Criterion, Chap. 5: Dwarf-Nova Type Instability, 5.1 Thermal-Ionization Instability, 5.2 Time Evolution of Disks in X-Ray Novae Chap. 6: Observability of Relativistic Effects, 6.1 Ray Tracing, 6.2 Imaging - Black Hole Silhouette, 6.3 Spectroscopy - Continuum and Line, 6.4 Photometry - Light Curve Diagnosis, 6.5 Other Effects - Lensing and Jets, Part III: Modern Picture: Chap. 7: Equations to Construct Generalized Models, 7.1 Basic Equations and Importance of Advection, 7.2 One-Temperature Disks, 7.3 Two-Temperature Disks, 7.4 Time-Dependent Equations Chap. 8: Transonic Nature of Accretion Flows, 8.1 Topology of Black-Hole Accretion, 8.2 Regularity Condition at a Critical Radius, 8.3 Topology around the Critical Radius in Isothermal Disks, 8.4 Numerical Examples of Transonic Flows, 8.5 Transonic Flows with Standing Shocks Chap. 9: Radiatively Inefficient Accretion Flows, 9.1 Advection-Dominated Accretion Flow, 9.2 Radial Structure of Advection-Dominated Flow, 9.3 Radiation Spectra of Advection-Dominated Flow, 9.4 Stability of Advection-Dominated Flow, 9.5 Multi-Dimensional Effects, Chap. 10: Slim

  6. Effects of ice accretions on aircraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Lynch, Frank T.; Khodadoust, Abdollah

    2001-11-01

    This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not

  7. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  8. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  9. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  10. The Behavior of Accretion Disks in Low Mass X-ray Binaries: Disk Winds and Alpha Model

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.

    2010-01-01

    This dissertation presents research on two low mass X-ray binaries. The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy with the ACS/SBC on the Hubble Space Telescope and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s as determined from the Doppler width of the C IV emission line. The broad and shallow eclipse indicates that the disk has a vertically-extended, optically-thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to 50% of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of the disk wind. V1408 Aql (=4U 1957+115) is a low mass X-ray binary which continues to be a black hole candidate. We have new photometric data of this system from the Otto Struve 2.1-m telescope's high speed CCD photometer at McDonald Observatory. The light curve is largely sinusoidal which we model with two components: a constant light source from the disk and a sinusoidal modulation at the orbital period from the irradiated face of the companion star. This is a radical re-interpretation of the orbital light curve. We do not require a large or asymmetric disk rim to account for the modulation in the light curve. Thus, the orbital inclination is unconstrained in our new model, removing the foundation for any claims of the compact object being a black hole.

  11. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  12. Glancing through the accretion column of EXO 2030+375

    NASA Astrophysics Data System (ADS)

    Ferrigno, Carlo; Pjanka, Patryk; Bozzo, Enrico; Klochkov, Dmitry; Ducci, Lorenzo; Zdziarski, Andrzej A.

    2016-09-01

    Context. The current generation of X-ray instruments progressively reveals more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion-powered pulsars. Aims: We took advantage of the large collecting area and good timing capabilities of the EPIC cameras onboard XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high-mass X-ray binary EXO 2030+375 during the rise of a source type I outburst in 2014. Methods: We carried out a timing and spectral analysis of the XMM-Newton observation as a function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering the source fully, one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. Results: The XMM-Newton data caught the source at an X-ray luminosity of 2 × 1036 erg s-1 and revealed a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. Based on the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (≳2 × 1037 erg s-1). Conclusions: This discovery allowed us to derive additional constraints on the physical properties of the accretion flow in this object at relatively small distances from the neutron star surface. The narrow dip-like feature in the

  13. Hunting the Huntsmen: Compact Pulsar Binaries with Giant Companions

    NASA Astrophysics Data System (ADS)

    Swihart, Samuel; Strader, Jay; Chomiuk, Laura; Sand, David J.; Cheung, Chi C.; Johnson, Tyrel J.

    2017-01-01

    Our group has been pursuing follow-up observations of unassociated Fermi-LAT γ-ray sources in an effort to identify new Milky Way compact binaries. Some of our recent observations include the preliminary discovery of a long-period (~8.1d), γ-ray bright binary with a heavy (~1.9 M) neutron star (NS) primary and giant secondary (~0.5 M) that shows some unusual variability characteristics in multiple wavelengths. Evolutionary models of compact binaries indicate that this system is likely in the late phases of typical millisecond pulsar (MSP) binary formation in the Galactic field, phases which up until now have been unobserved. This system also appears remarkably similar to the recently discovered NS binary 1FGL J1417.7-4407 (Strader et al. 2015), which showed optical, X-ray, and γ-ray signatures consistent with transitional MSPs in their disk state. Despite this evidence, 1FGL J1417.7-4407 was simultaneously found to host a radio MSP, implying accreting material is not reaching the pulsar surface and further bringing into question how and when these systems switch on or off as radio MSPs. The confirmation of a second long-period γ-ray bright binary system with a massive NS primary and giant secondary would show that the rich phenomenology that can be observed when an accretion disk is present remains unclear, and facilitates a discussion on whether such systems constitute a distinct class of compact binaries.

  14. A Continuum of Accretion Burst Behavior in Young Stars Observed by K2

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Hillenbrand, Lynne A.; David, Trevor J.; Carpenter, John M.; Everett, Mark E.; Howell, Steve B.

    2017-02-01

    We present 29 likely members of the young ρ Oph or Upper Sco regions of recent star formation that exhibit “accretion burst” type light curves in K2 time series photometry. The bursters were identified by visual examination of their ∼80-day light curves, though all satisfy the M< -0.25 flux asymmetry criterion for burst behavior defined by Cody et al. The burst sources represent ≈9% of cluster members with strong infrared excess indicative of circumstellar material. Higher amplitude burster behavior is correlated with larger inner disk infrared excesses, as inferred from WISE W1-W2 color. The burst sources are also outliers in their large Hα emission equivalent widths. No distinction between bursters and non-bursters is seen in stellar properties such as multiplicity or spectral type. The frequency of bursters is similar between the younger, more compact ρ Oph region, and the older, more dispersed Upper Sco region. The bursts exhibit a range of shapes, amplitudes (∼10%–700%), durations (∼1–10 days), repeat timescales (∼3–80 days), and duty cycles (∼10%–100%). Our results provide important input to models of magnetospheric accretion, in particular, by elucidating the properties of accretion-related variability in the low state between major longer duration events such as EX Lup and FU Ori type accretion outbursts. We demonstrate the broad continuum of accretion burst behavior in young stars—extending the phenomenon to lower amplitudes and shorter timescales than traditionally considered in the theory of pre-main sequence accretion history.

  15. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  16. The beaming of subhalo accretion

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.

    2016-10-01

    We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.

  17. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  18. Accretion-ejection models for AGN jets

    NASA Astrophysics Data System (ADS)

    Zanni, C.

    2008-10-01

    It is likely that jets from Active Galactic Nuclei derive their energy from accretion onto the central black hole. It is actually possible to fuel the jets by extracting energy and angular momentum from the accretion disk and/or the rotating black hole via the action of large-scale magnetic fields. In this talk I will first present results of analytical and numerical models of the launching process of jets from magnetized accretion disks: I will show that, although a sizeable fraction of the accretion power goes into the jets, these outflows are presumably only mildly relativistic. In the second place, I will therefore suggest that the strongly relativistic components observed at the VLBI scales are accelerated in the innermost parts of the AGNs by Blandford-Znajek and/or Compton-rocket processes. Nonetheless, the non-relativistic disk-wind is needed to collimate the relativistic component and to reproduce the total power of extragalactic jets.

  19. Planetary science: Iron fog of accretion

    DOE PAGES

    Anderson, William W.

    2015-03-02

    Here, pinpointing when Earth's core formed depends on the extent of metal–silicate equilibration in the mantle. Vaporization and recondensation of impacting planetesimal cores during accretion may reconcile disparate lines of evidence.

  20. Ice accretion modeling for wind turbine rotor blades

    SciTech Connect

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A.

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  1. Accretion, Early Thermal State and Differentiation of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Tobie, G.; Choblet, G.; Le Feuvre, M.

    2011-10-01

    For a better understanding of the thermal evolution of a growing icy satellite and of the conditions under which melting may occur, we developed a three-dimensional numerical model based on the Oedipus code, initially developed to solve the equations of thermal convection in a spherical geometry [11]. This numerical model characterizes the thermal evolution of an icy satellite during its accretion from a variety of plausible impactor population. For each impact, we consider the thermal effects due to the dissipation of the impactor's kinetic energy: After an impact, temperature locally increases deep in the impacted growing object and within the shallow ejecta blanket. As the icy moon grows, gravitational forces increase and impacts become more and more energetic. As the temperature increases below the impact site is proportional to the impact velocity, melting events areexpected tooccur at the end of the accretion once the icy moon reaches a critical size. In order to constrain this critical size, we simulate the growth and thermal evolution of icy bodies from a kilometer-size initial undifferentiated body to a size of order 2500 km from various populations of undifferentiated icy impactors and by assuming different orbital configurations for the growing body and different accretion rates. Preliminary results will be presented.

  2. Structure and Evolution of Kuiper Belt Objects and Dwarf Planets

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Prialnik, D.; Stern, S. A.; Coradini, A.

    Kuiper belt objects (KBOs) accreted from a mélange of volatile ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of heating due to radioactive decay, the most important potential source being 26Al, whereas long-term evolution of large bodies is controlled by the decay of U, Th, and 40K. Several studies are reviewed dealing with the evolution of KBO models, calculated by means of one-dimensional numerical codes that solve the heat and mass balance equations. It is shown that, depending on parameters (principally rock content and porous conductivity), KBO interiors may have reached relatively high temperatures. The models suggest that KBOs likely lost ices of very volatile species during early evolution, whereas ices of less-volatile species should be retained in cold, less-altered subsurface layers. Initially amorphous ice may have crystallized in KBO interiors, releasing volatiles trapped in the amorphous ice, and some objects may have lost part of these volatiles as well. Generally, the outer layers are far less affected by internal evolution than the inner part, which in the absence of other effects (such as collisions) predicts a stratified composition and altered porosity distribution. Kuiper belt objects are thus unlikely to be "the most pristine objects in the solar system," but they do contain key information as to how the early solar system accreted and dynamically evolved. For large (dwarf planet) KBOs, long-term radiogenic heating alone may lead to differentiated structures -- rock cores, ice mantles, volatile-ice-rich "crusts," and even oceans. Persistence of oceans and (potential) volcanism to the present day depends strongly on body size and

  3. To Cool is to Accrete: Analytic Scalings for Nebular Accretion of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2015-09-01

    Planets acquire atmospheres from their parent circumstellar disks. We derive a general analytic expression for how the atmospheric mass grows with time t as a function of the underlying core mass {M}{core} and nebular conditions, including the gas metallicity Z. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. Dusty atmospheres behave differently from atmospheres made dust-free by grain growth and sedimentation. The gas-to-core mass ratio (GCR) of a dusty atmosphere scales as GCR \\propto {t}0.4{M}{core}1.7{Z}-0.4{μ }{rcb}3.4, where {μ }{rcb}\\propto 1/(1-Z) (for Z not too close to 1) is the mean molecular weight at the innermost radiative-convective boundary. This scaling applies across all orbital distances and nebular conditions for dusty atmospheres; their radiative-convective boundaries, which regulate cooling, are not set by the external environment, but rather by the internal microphysics of dust sublimation, H2 dissociation, and the formation of H-. By contrast, dust-free atmospheres have their radiative boundaries at temperatures {T}{rcb} close to nebular temperatures {T}{out}, and grow faster at larger orbital distances where cooler temperatures, and by extension lower opacities, prevail. At 0.1 AU in a gas-poor nebula, GCR \\propto {t}0.4{T}{rcb}-1.9{M}{core}1.6{Z}-0.4{μ }{rcb}3.3, while beyond 1 AU in a gas-rich nebula, GCR \\propto {t}0.4{T}{rcb}-1.5{M}{core}1{Z}-0.4{μ }{rcb}2.2. We confirm our analytic scalings against detailed numerical models for objects ranging in mass from Mars (0.1{M}\\oplus ) to the most extreme super-Earths (10-20{M}\\oplus ), and explain why heating from planetesimal accretion cannot prevent the latter from undergoing runaway gas accretion.

  4. 43 CFR 3110.5-4 - Accreted lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Accreted lands. 3110.5-4 Section 3110.5-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Accreted lands. Where an offer includes any accreted lands, the accreted lands shall be described by...

  5. 43 CFR 3110.5-4 - Accreted lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Accreted lands. 3110.5-4 Section 3110.5-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Accreted lands. Where an offer includes any accreted lands, the accreted lands shall be described by...

  6. 43 CFR 3110.5-4 - Accreted lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Accreted lands. 3110.5-4 Section 3110.5-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Accreted lands. Where an offer includes any accreted lands, the accreted lands shall be described by...

  7. 43 CFR 3110.5-4 - Accreted lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Accreted lands. 3110.5-4 Section 3110.5-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Accreted lands. Where an offer includes any accreted lands, the accreted lands shall be described by...

  8. Gas dynamics for accretion disk simulations

    NASA Technical Reports Server (NTRS)

    Whitehurst, R.

    1994-01-01

    The behavior of accretion disks can largely be understood in terms of the basic physical processes of mass, energy, and momentum conservation. Despite this, detailed modeling of these systems using modern computational techniques is challenging and controversial. Disturbing differences exist between methods used widely in astrophysics, namely Eulerian finite-difference techniques and particle codes such as SPH. Therefore neither technique is fully satisfactory for accretion disk simulations. This paper describes a new fully Lagrangian method designed to resolve these difficulties.

  9. Transonic disk accretion onto black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1980-01-01

    The solution for the radial drift velocity of thin disk accretion onto black holes must be transonic, and is analogous to the critical solution in spherical Bondi accretion, except for the presence of angular momentum. The transonic requirement yields a correct treatment of the inner region of the disk not found in the conventional Keplerian models and may lead to significantly different overall disk structures. Possible observational consequences, relevant to the black hole hypothesis for Cyg X-1 and other candidates, are discussed.

  10. Soil compaction across the old rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  11. Diagnosing the Black Hole Accretion Physics of Sgr A*

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  12. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  13. Promises and Problems of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2013-10-01

    Despite the large number of exoplanets indicating that giant planets are a common outcome of the star formation process, theoretical models still struggle to explain how ~10 Earth mass rocky/icy embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of ``pebbles,'' particles ranging from millimeters to decimeters in size, has been suggested as a potential solution to this long-standing problem. Local simulations, simulations which look at the detailed behavior of these pebbles in the vicinity of a planetary embryo, have shown that the potential planetary growth rates can be surprisingly fast. If one assumes that most of the mass in a protoplanetary disk resides in these pebble-sized particles, a Mars mass core could grow to 10 Earth masses in only a few thousand years. However, these local studies cannot investigate how this accretion process behaves in the more complicated, multi-planet environment. We have incorporated the local accretion physics into LIPAD, a Lagrangian code which can follow the collisional / accretional / dynamical evolution of a planetary system, to investigate the how this pebble accretion will manifest itself in the larger planet formation picture. We present how these more comprehensive models raise challenges to using pebble accretion to form observed planetary systems.

  14. Problems and Promises of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2013-05-01

    Abstract (2,250 Maximum Characters): Despite the large number of exoplanets indicating that planets are a common outcome of the star formation process, theoretical models still struggle to explain how ~10 Earth mass rocky/icy embryos can form within the lifetimes of gaseous circumstellar disks. Recently, aerodynamic-aided accretion of ``pebbles,'' particles ranging from millimeters to decimeters in size, has been suggested as a potential solution to this long-standing problem. Local simulations, simulations which look at the detailed behavior of these pebbles in the vicinity of a planetary embryo, have shown that the potential planetary growth rates can be surprisingly fast. If one assumes that most of the mass in a protoplanetary disk resides in these pebble-sized particles, a Mars mass core could grow to 10 Earth masses in only a few thousand years. However, these local studies cannot investigate how this accretion process behaves in the more complicated, multi-planet environment. We have incorporated a prescription of this pebble accretion into LIPAD, a Lagrangian code which can follow the collisional/accretional/dynamical evolution of a planetary system, to investigate the how this pebble accretion will manifest itself in the larger planet formation picture. We discuss how these more comprehensive models present challenges for using pebble accretion to form observed planetary systems.

  15. Giant planet formation via pebble accretion

    NASA Astrophysics Data System (ADS)

    Guilera, O. M.

    2016-08-01

    In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than ) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in the giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.

  16. CLUMPY ACCRETION ONTO BLACK HOLES. I. CLUMPY-ADVECTION-DOMINATED ACCRETION FLOW STRUCTURE AND RADIATION

    SciTech Connect

    Wang Jianmin; Cheng Cheng; Li Yanrong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  17. Planetesimal Growth through the Accretion of Small Solids: Hydrodynamics Simulations with Gas-Particle Coupling

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2016-10-01

    The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.

  18. Understanding Intermediate-luminosity X- ray Objects and their Environments

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew

    2002-07-01

    X-ray observations of normal galaxies with ROSAT, ASCA and Chandra have revealed that off-nuclear, compact, Intermediate- luminosity {L_X sim10^39-40 erg/s} X-ray Objects {IXOs} are quite common. On average, we find that 1 in every 5 galaxies contains one of these intriguing objects, based on our ROSAT HRI catalog, which is the most complete IXO catalog yet known. IXOs have received wide attention as putative intermediate- mass black holes with masses 10^2-10^5 M_odot, which would be quite interesting and puzzling. It is also possible that IXOs are ``ordinary'' X-ray binaries with stellar-mass black holes, and their X-ray emission is mildly beamed. Otherwise, little is known about the geometrical and physical properties of this exciting new class of astrophysical objects. X-ray observations of IXOs alone have not been able to provide good diagnostics. Deep, high spatial resolution optical imaging observations can provide important clues to their nature by examining the environment around the accreting black hole. We request funding to analyze 267 HST archival images for 38 IXOs from our catalog in order to search for individual stellar companions and star clusters that may be associated with IXOs, and to generally identify the nature of the regions harboring IXOs. This AR proposal is a companion to a SNAP proposal by PI Colbert, which proposes to image IXOs for which no HST imaging exists yet.

  19. Accretion Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    D'Alessio, Paola

    1996-04-01

    A method to calculate the structure and brightness distribution of accretion disks surrounding low and intermediate mass young stars is introduced and discussed. The method includes a realistic treatment of the energy transport mechanisms and disk heating by radiation from external sources. The disk is assumed steady, geometrically thin and in vertical hydrostatic equilibrium. The turbulent viscosity coefficient is expressed using the α prescription and the α parameter and the mass accretion rate are assumed to be constant through the disk. Energy is transported in the vertical direction by: (a) a turbulent flux, computed self-consistently with the viscosity coefficient used to describe the viscous energy dissipation, (b) radiation, using the first moments of the transfer equation, the Eddington approximation, and the Rosseland and Planck Mean Opacities, and (c) convection, taking into account that the convective elements, not necessarily optically thick, lose energy by radiation and turbulent flux. This treatment of the energy transport mechanisms differs from previous work in this field, allowing one to extend, with confidence, the calculation of the disk structure to optically thin regimes. The heating mechanisms considered, which affect the disk's structure and emission, are stellar radiation and a circumstellar envelope which reprocesses and scatters radiation from the star and from the disk itself. In addition to a detailed numerical calculation, an analytical self-consistent formulation of the irradiation of the disk is given. This analytical formulation allows one to understand and extend the numerical results. To evaluate the potential of the method presented in this thesis, a set of models of viscous non-irradiated and irradiated disks are computed. Their predictions are compared with observations of young stellar sources likely to have disks. Given the disk structure and specifying its orientation with respect to the line of sight, the specific

  20. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  1. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  2. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  3. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  4. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  5. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  6. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  7. Compact Information Representations

    DTIC Science & Technology

    2016-08-02

    proposal aims at developing mathematically rigorous and general- purpose statistical methods based on stable random projections, to achieve compact...faced with very large, inherently high-dimensional, or naturally streaming datasets. This pro- posal aims at developing mathematically rigorous and

  8. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    NASA Astrophysics Data System (ADS)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  9. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion

  10. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  11. The growth of supermassive black holes fed by accretion disks

    NASA Astrophysics Data System (ADS)

    Montesinos Armijo, M. A.; de Freitas Pacheco, J. A.

    2011-02-01

    Context. Supermassive black holes are probably present in the centre of the majority of the galaxies. There is consensus that these exotic objects are formed by the growth of seeds either by mass accretion from a circumnuclear disk and/or by coalescences during merger episodes. Aims: The mass fraction of the disk captured by the central object and the related timescale are still open questions, as is how these quantities depend on parameters, such as the initial mass of the disk or the seed, or on the angular momentum transport mechanism. This paper addresses these particular aspects of the accretion disk evolution and the growth of seeds. Methods: The time-dependent hydrodynamic equations were solved numerically for an axisymmetric disk in which the gravitational potential includes contributions from both the central object and the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. Results: The present simulations indicate that seeds capture about a half of the initial disk mass, a result weakly dependent on model parameters. The timescales required for accreting 50% of the disk mass are in the range 130-540 Myr, depending on the adopted parameters. These timescales can explain the presence of bright quasars at z ~ 6.5. Moreover, at the end of the disk evolution, a "torus-like" geometry develops, offering a natural explanation for the presence of these structures in the central regions of AGNs, representing an additional support to the unified model.

  12. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  13. Accretion onto Fast X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Rappaport, S. A.; Fregeau, J. M.; Spruit, H.

    2004-01-01

    The recent emergence of a new class of accretion-powered, transient, millisecond X-ray pulsars presents some difficulties for the conventional picture of accretion onto rapidly rotating magnetized neutron stars and their spin behavior during outbursts. In particular, it is not clear that the standard paradigm can accommodate the wide range in M(i.e., approx. greater than a factor of 50) over which these systems manage to accrete and the high rate of spindown that the neutron stars exhibit in at least a number of cases. When the accretion rate drops sufficiently, the X-ray pulsar is said to become a "fast rotator," and in the conventional view, this is accompanied by a transition from accretion to "propellering," in which accretion ceases and the matter is ejected from the system. On the theoretical side, we note that this scenario for the onset of propellering cannot be entirely correct because it is not energetically self-consistent. We show that, instead, the transition is likely to take place through disks that combine accretion with spindown and terminate at the corotation radius. We demonstrate the existence of such disk solutions by modifying the Shakura-Sunyaev equations with a simple magnetic torque prescription. The solutions are completely analytic and have the same dependence on M and a (the viscosity parameter) as the original Shakura-Sunyaev solutions, but the radial profiles can be considerably modified, depending on the degree of fastness. We apply these results to compute the torques expected during the outbursts of the transient millisecond pulsars and find that we can explain the large spin-down rates that are observed for quite plausible surface magnetic fields of approx. 10(exp 90 G.

  14. Accretion onto Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Herczeg, Gregory; Calvet, Nuria

    2016-09-01

    Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2-3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ˜3 Myr is modest in terms of stellar evolution, but is comparable to total disk reservoirs as estimated from millimeter-wave dust emission (˜10-2 M⊙). Pre-main-sequence accretion is not steady, encompassing timescales ranging from approximately hours to a century, with longer-timescale variations tending to be the largest. Accretion during the protostellar phase—while the protostellar envelope is still falling onto the disk—is much less well understood, mostly because the properties of the central obscured protostar are difficult to estimate. Kinematic measurements of protostellar masses with new interfometric facilities should improve estimates of accretion rates during the earliest phases of star formation.

  15. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  16. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, E. M.

    1986-11-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time O(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguished between flexible components (wires) and rigid components (modules). The algorithms first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer.

  17. Comparison of Obturation Quality in Modified Continuous Wave Compaction, Continuous Wave Compaction, Lateral Compaction and Warm Vertical Compaction Techniques

    PubMed Central

    Aminsobhani, Mohsen; Ghorbanzadeh, Abdollah; Sharifian, Mohammad Reza; Namjou, Sara; Kharazifard, Mohamad Javad

    2015-01-01

    Objectives: The aim of this study was to introduce modified continuous wave compaction (MCWC) technique and compare its obturation quality with that of lateral compaction (LC), warm vertical compaction (WVC) and continuous wave compaction techniques (CWC). The obturation time was also compared among the four techniques. Materials and Methods: Sixty-four single-rooted teeth with 0–5° root canal curve and 64 artificially created root canals with 15° curves in acrylic blocks were evaluated. The teeth and acrylic specimens were each divided into four subgroups of 16 for testing the obturation quality of four techniques namely LC, WVC, CWC and MCWC. Canals were prepared using the Mtwo rotary system and filled with respect to their group allocation. Obturation time was recorded. On digital radiographs, the ratio of area of voids to the total area of filled canals was calculated using the Image J software. Adaptation of the filling materials to the canal walls was assessed at three cross-sections under a stereomicroscope (X30). Data were statistically analyzed using ANOVA, Tukey’s post hoc HSD test, the Kruskal Wallis test and t-test. Results: No significant difference existed in adaptation of filling materials to canal walls among the four subgroups in teeth samples (P ≥ 0.139); but, in artificially created canals in acrylic blocks, the frequency of areas not adapted to the canal walls was significantly higher in LC technique compared to MCWC (P ≤ 0.02). The void areas were significantly more in the LC technique than in other techniques in teeth (P < 0.001). The longest obturation time belonged to WVC technique followed by LC, CW and MCWC techniques (P<0.05). The difference between the artificially created canals in blocks and teeth regarding the obturation time was not significant (P = 0.41). Conclusion: Within the limitations of this in vitro study, MCWC technique resulted in better adaptation of gutta-percha to canal walls than LC at all cross-sections with

  18. Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, Chris

    2004-01-01

    A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.

  19. Challenges in forming the solar system's giant planet cores via pebble accretion

    SciTech Connect

    Kretke, K. A.; Levison, H. F.

    2014-12-01

    Though ∼10 M {sub ⊕} mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  20. Challenges in Forming the Solar System's Giant Planet Cores via Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, K. A.; Levison, H. F.

    2014-12-01

    Though ~10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of "pebbles," objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an "oligarchic" type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  1. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  2. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  3. The effects of high density on the X-ray spectrum reflected from accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    García, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Michael L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jörn

    2016-10-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter ξ, which is the ratio of the incident flux to the gas density. The density is typically fixed at ne = 1015 cm-3. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for ne ≳ 1017 cm-3 that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies ≲ 2 keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  4. The Final Fates of Accreting Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Umeda, Hideyuki; Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki

    2016-10-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have a less concentrated structure than a fully convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit ≳105 M ⊙ derived for the fully convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with \\dot{M}≲ 0.1 {M}⊙ {{{yr}}}-1. With \\dot{M}≃ 0.3{--}1 {M}⊙ {{{yr}}}-1, the star becomes GR unstable during the helium-burning stage at M ≃ 2-3.5 × 105 M ⊙. In an extreme case with 10 {M}⊙ {{{yr}}}-1, the star does not collapse until the mass reaches ≃8.0 × 105 M ⊙, where it is still in the hydrogen-burning stage. We expect that BHs with roughly the same mass will be left behind after the collapse in all the cases.

  5. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  6. The Burst Mode of Protostellar Accretion

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.; Basu, Shantanu

    2006-10-01

    We present new numerical simulations in the thin disk approximation that characterize the burst mode of protostellar accretion. The burst mode begins upon the formation of a centrifugally balanced disk around a newly formed protostar. It comprises prolonged quiescent periods of low accretion rate (typically <~10-7 Msolar yr-1) that are punctuated by intense bursts of accretion (typically >~10-4 Msolar yr-1, with duration <~100 yr) during which most of the protostellar mass is accumulated. The accretion bursts are associated with the formation of dense protostellar/protoplanetary embryos, which are later driven onto the protostar by the gravitational torques that develop in the disk. Gravitational instability in the disk, driven by continuing infall from the envelope, is shown to be an effective means of transporting angular momentum outward and mass inward to the protostar. We show that the disk mass always remains significantly less than the central protostar's mass throughout this process. The burst phenomenon is robust enough to occur for a variety of initial values of rotation rate and frozen-in (supercritical) magnetic field and a variety of density-temperature relations. Even in cases where the bursts are nearly entirely suppressed, a moderate increase in cloud size or rotation rate can lead to vigorous burst activity. We conclude that most (if not all) protostars undergo a burst mode of evolution during their early accretion history, as inferred empirically from observations of FU Orionis variables.

  7. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  8. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  9. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  10. Super-Eddington accretion disks in Ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Vinokurov, A.; Atapin, K.; Sholukhova, O.

    2016-06-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy hundreds and thousands times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate the presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS433, the only known supercritical accretor in our Galaxy. The spectra are apparently of WNL type (late nitrogen Wolf-Rayet stars) or LBV (luminous blue variables) in their hot state, which are very scarce stellar objects. We find that the spectra do not originate from WNL/LBV type donors but from very hot winds from the accretion disks, whose physical conditions are similar to those in stellar winds from these stars. The results suggest that bona-fide ULXs must constitute a homogeneous class of objects, which most likely have supercritical accretion disks.

  11. Compact optical isolator.

    PubMed

    Sansalone, F J

    1971-10-01

    This paper describes a compact Faraday rotation isolator using terbium aluminum garnet (TAG) as the Faraday rotation material and small high field permanent magnets made of copper-rare earth alloys. The nominal isolation is 26 dB with a 0.4-dB forward loss. The present isolator can be adjusted to provide effective isolation from 4880 A to 5145 A. Details of the design, fabrication, and performance of the isolator are presented.

  12. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  13. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  14. Revealing the accretion disc corona in Mrk 335 with multi-epoch X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Keek, L.; Ballantyne, D. R.

    2016-03-01

    Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe Kα emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-epoch spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ˜10 per cent of the Eddington limit, the compact and optically thick corona is located close to the inner disc, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disc surface. Furthermore, we find a soft excess that consists of two components. In addition to a contribution from reflection in low ionization states, a second component is present that traces the overall flux.

  15. A Brown Dwarf Companion for the Accreting Millisecond Pulsar SAX J1808.4-3658

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars; Chakrabarty, Deepto

    2001-08-01

    The BeppoSAX Wide Field Cameras have revealed a population of faint neutron star X-ray transients in the Galactic bulge. King conjectured that these neutron stars are accreting from brown dwarfs with a time-averaged mass transfer rate ~10-11 Msolar yr-1 that is low enough for accretion disk instabilities. We show that the measured orbital parameters of the 401 Hz accreting millisecond pulsar SAX J1808.4-3658 support this hypothesis. A main-sequence mass donor requires a nearly face-on inclination and a higher than observed, and can thus be excluded. However, the range of allowed inclinations is substantially relaxed, and the predicted is consistent with that observed if a hot 0.05 Msolar dwarf is the donor. The remaining puzzle is explaining the brown dwarf radius required (0.13 Rsolar) to fill the Roche lobe. Recent observational and theoretical work has shown that all transiently accreting neutron stars have a minimum luminosity in quiescence set by the time-averaged mass transfer rate onto the neutron star. We show here that the constant heating of the brown dwarf by this quiescent neutron star emission appears adequate to maintain the higher entropy implied by a 0.13 Rsolar radius. All of our considerations very strongly bolster the case that SAX J1808.4-3658 is a progenitor to compact millisecond radio pulsar binaries (e.g., like those found by Camilo and collaborators in 47 Tuc). The very low of SAX J1808.4-3658 implies that the progenitors to these radio pulsars are long-lived (~Gyr) transient systems, rather than short-lived (~Myr) Eddington-limited accretors. Hence, the accreting progenitor population to millisecond radio pulsars in 47 Tuc could still be present and found in quiescence with Chandra.

  16. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  17. Ice Accretions on Modern Airfoils Investigated

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    The Icing Branch at the NASA Glenn Research Center at Lewis Field initiated and conducted the Modern Airfoils Ice Accretions project to identify ice shapes and determine their effects on the aerodynamic performance of aircraft, particularly on lift and drag. Previous aircraft ice shape and performance documentation focused on a few, older airfoils. This permitted more basic studies of the ice accretion process to be undertaken. However, having established both a working data base of ice shapes and the capability to predict these shapes for basic airfoils, questions arose about how ice might accrete differently on airfoils more representative of those being designed and flown on various aircraft today. Similarly, information about how these ice shapes would affect aerodynamic performance was needed.

  18. Reverberation Mapping of AGN Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  19. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  20. Accretion disks in Algols: Progenitors and evolution

    NASA Astrophysics Data System (ADS)

    Van Rensbergen, W.; De Greve, J. P.

    2016-08-01

    Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. Aims: We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. Methods: With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Results: Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. Conclusions: When Roche lobe overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  1. A relativistic two-fluid model of compact stars

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Rahaman, Farook; Mallick, Arkopriya

    2017-03-01

    We propose a relativistic model of compact star admitting conformal symmetry. Quark matter and baryonic matter which are considered as two different fluids, constitute the star. We define interaction equations between the normal baryonic matter and the quark matter and study the physical situations for repulsive, attractive and zero interaction between the constituent matters. The measured value of the Bag constant is used to explore the spacetime geometry inside the star. From the observed values of the masses of some compact objects, we have obtained theoretical values of the radii. Theoretical values of the radii match well with the previous predictions for such compact objects.

  2. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  3. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability