Science.gov

Sample records for accreting compact object

  1. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  2. Probing the Environment of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since

  3. Super-spinning compact objects generated by thick accretion disks

    SciTech Connect

    Li, Zilong; Bambi, Cosimo E-mail: bambi@fudan.edu.cn

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  4. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  5. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  6. Neutron and antineutron production in accretion onto compact objects

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Ramaty, Reuven

    1986-01-01

    Nuclear reactions in the hot accretion plasma surrounding a collapsed star are a source of neutrons, primarily through spallation and pion-producing reactions, and antineutrons, principally through the reaction p+p yields p+p+n+anti-n. We calculate spectra of neutrons and antineutrons produced by a variety of nonthermal energetic particle distributions in which the target particles are either at rest or in motion. If only neutral particles are free to escape the interaction site, a component of the proton and antiproton fluxes in the cosmic radiation results from the neutrons and antineutrons which leave the accretion plasma and subsequently decay in the interstellar medium. This additional antiproton component could account for the enhanced flux of antiprotons in the cosmic radiation, compared to values expected from the standard leaky-box model of cosmic-ray propagation and confinement. Moreover, the low-energy antiproton flux measured by Buffington et al. (1981) could result from target-particle motion in the accretion plasma. This model for the origin of antiprotons predicts a narrow 2.223 MeV line which could be observable.

  7. Numerical simulations of axisymmetric Bondi-Hoyle accretion onto a compact object

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2015-12-01

    Compact bodies which are not at rest compare to an homogeneous ambient environment are believed to undergo Bondi-Hoyle axisymmetric accretion as soon as their relative velocity reaches supersonic levels. Contrary to its spherical counterpart, B-H accretion presents flow structures difficult to analytically derive, hence the need for numerical investigations. The broad dynamics at stake when a tiny compact object engulfs surrounding material at a much larger scale has made numerical consistency a polemical issue as it has prevented both scales to be grasped for reasonable wind velocities. We designed a numerical setup which reconciliates the requirement for finite size accretor with steady states properties of the Bondi-Hoyle flow independent of the size of the inner boundary. The robustness of this setup is evaluated accordingly to predictions concerning the mass accretion rate evolution with the Mach number at infinity and the topology of the sonic surface as determined by te{Foglizzo1996}. It provides an estimation of the mass accretion rates and thus, of the expected X-ray luminosity for an idealized B-H configuration which might not be too far off for isolated compact objects like runaway neutron stars or hyper-luminous X-ray sources.

  8. Numerical simulations of axisymmetric hydrodynamical Bondi-Hoyle accretion on to a compact object

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2015-12-01

    Bondi-Hoyle accretion configurations occur as soon as a gravitating body is immersed in an ambient medium with a supersonic relative velocity. From wind-accreting X-ray binaries to runaway neutron stars, such a regime has been witnessed many times and is believed to account for shock formation, the properties of which can be only marginally derived analytically. In this paper, we present the first results of the numerical characterization of the stationary flow structure of Bondi-Hoyle accretion on to a compact object, from the large-scale accretion radius down to the vicinity of the compact body. For different Mach numbers, we study the associated bow shock. It turns out that those simulations confirm the analytical prediction by Foglizzo & Ruffert concerning the topology of the inner sonic surface with an adiabatic index of 5/3. They also enable us to derive the related mass accretion rates, the position and the temperature of the bow shock, as function of the flow parameters, along with the transverse density and temperature profiles in the wake.

  9. Accretion-caused deceleration of a gravitationally powerful compact stellar object moving within a dense Fermi gas

    NASA Astrophysics Data System (ADS)

    Tito, E. P.; Pavlov, V. I.

    2016-07-01

    We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.

  10. Time evolution of accreting magnetofluid around a compact object-Newtonian analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Fahimeh; Shaghaghian, Mahboobeh; Pazhouhesh, Reza

    2015-07-01

    Time evolution of a thick disc with finite conductivity around a nonrotating compact object is presented. Along with the Maxwell equations and the Ohm's law, the Newtonian limit of the relativistic fluid equations governing the motion of a finitely conducting plasma is derived. The magnetofluid is considered to possess only the poloidal components of the electromagnetic field. Moreover, the shear viscous stress is neglected, as well as the self-gravity of the disc. In order to solve the equations, we have used a self-similar solution. The main features of this solution are as follows. The azimuthal velocity is somewhat increased from the Keplerian value in the equator plane to the super-Keplerian values at the surface of disc. Moreover, the radial velocity is obtained proportional to the meridional velocity. Magnetofluid does not have any nonzero component of the current density. Subsequently, the electromagnetic force is vanished and does not play any role in the force balance. While the pressure gradient maintains the disc structure in latitudinal direction, magnetofluid has no accretion on the central compact object. Analogously to the parameter α in the standard model, our calculations contain one parameter η0 which specifies the size of the electrical resistivity.

  11. Lightman-Eardley instabilities and accretion disk thickening. [for compact astronomical objects

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.

    1979-01-01

    After reviewing the role of Compton scattering in accretion disks around black holes, it is discussed whether Lightman-Eardley (LE) secular instabilities can trigger and maintain Pringle-Rees (PR) thermal instabilities. The radiative-transfer-equation and equation-of-state criteria for LE stability in alpha-viscosity-law disk models and dynamic viscosity criteria for more general situations is derived. On the basis of these considerations the LE instability is insufficient for inducing PR instabilities and hot thick inner regions important in accretion-disk models of compact hard X-ray sources. The density thinning due to radial velocity gradients in the accretion flow is suggested as a more likely and satisfactory mechanism.

  12. Accretion onto Compact Objects Viewed as a Flow in Converging-Diverging Ducts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, K.; Majumdar, M. M.; Chakrabarti, Sandip K.

    Black hole accretion is necessarily transonic and the number of physical sonic points depends on the angular momentum of the flow. We study the properties of such a flow by recasting this idea into an engineering problem in which a flow has a subsonic to supersonic transition when it passes through a de Laval nozzle, i.e. a converging and diverging duct in a flat geometry in the presence of sufficient end pressure difference. Particularly interesting is the case of the centrifugal pressure supported standing shock formation inside an accretion flow, because the flow passes through at least two saddle type sonic points, one before and one after the shock. In this case, the duct itself has two minima and a maximum. We study the properties of such a duct as a function of the inflow parameters and classify all possible types of the flow through this composite nozzle.

  13. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. II; Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Maisack, Michael; Begelman, Mitchell C.

    1997-01-01

    We apply our self-consistent accretion disk corona (ADC) model, with two different geometries, to the broadband X-ray spectrum of the black hole candidate Cygnus X-1. As shown in a companion paper, models in which the Comptonizing medium is a slab surrounding the cold accretion disk cannot have a temperature higher than about 140 keV for optical depths greater than 0.2, resulting in spectra that are much softer than the observed 10-30 keV spectrum of Cyg X-1. In addition, the slab-geometry models predict a substantial "soft excess" at low energies, a feature not observed for Cyg X-1, and Fe K-alpha fluorescence lines that are stronger than observed. Previous Comptonization models in the literature have invoked a slab geometry with optical depth tau(sub T) approx. greater than 0.3 and coronal temperature T(sub c) approx. 150 keV, but they are not self-consistent. Therefore, ADC models with a slab geometry are not appropriate for explaining the X-ray spectrum of Cyg X-1. Models with a spherical corona and an exterior disk, however, predict much higher self-consistent coronal temperatures than the slab-geometry models. The higher coronal temperatures are due to the lower amount of reprocessing of coronal radiation in the accretion disk, giving rise to a lower Compton cooling rate. Therefore, for the sphere-plus-disk geometry, the predicted spectrum can be hard enough to describe the observed X-ray continuum of Cyg X-1 while predicting Fe fluorescence lines having an equivalent width of approx. 40 eV. Our best-fit parameter values for the sphere-plus-disk geometry are tau(sub T) approx. equal to 1.5 and T(sub c) approx. equal to 90 keV.

  14. Accretion-powered Compact Binaries

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  15. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  16. Compact stars and accretion disks: Workshop summary

    NASA Astrophysics Data System (ADS)

    Li, J.

    1998-07-01

    A workshop on `Compact Stars and Accretion Disks' was held on 11-12 August 1997 at the Australian National University. The workshop was opened by Professor Jeremy Mould, the Director of Mount Stromlo Observatory. The workshop was organised to coincide with visits to the ANU Astrophysical Theory Centre by Professor Ron Webbink from the University of Illinois, Professor Rainer Wehrse from the University of Heidelberg and Dr Chris Tout from the University of Cambridge. The workshop attracted over 25 participants nationwide. Participants included members of the Special Research Centre for Theoretical Astrophysics, University of Sydney, led by Professor Don Melrose, Professor Dick Manchester from the ATNF, Professor Ravi Sood from ADFA, Dr John Greenhill from the University of Tasmania and Dr Rosemary Mardling from Monash University. Dr Helen Johnston from AAO and Dr Kurt Liffman from AFDL also attended the workshop. The abstracts of twelve of the workshop papers are presented in this summary.

  17. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  18. Accretion disks in luminous young stellar objects

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; de Wit, W. J.

    2016-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  19. An accurate geometric distance to the compact binary SS Cygni vindicates accretion disc theory.

    PubMed

    Miller-Jones, J C A; Sivakoff, G R; Knigge, C; Körding, E G; Templeton, M; Waagen, E O

    2013-05-24

    Dwarf novae are white dwarfs accreting matter from a nearby red dwarf companion. Their regular outbursts are explained by a thermal-viscous instability in the accretion disc, described by the disc instability model that has since been successfully extended to other accreting systems. However, the prototypical dwarf nova, SS Cygni, presents a major challenge to our understanding of accretion disc theory. At the distance of 159 ± 12 parsecs measured by the Hubble Space Telescope, it is too luminous to be undergoing the observed regular outbursts. Using very long baseline interferometric radio observations, we report an accurate, model-independent distance to SS Cygni that places the source substantially closer at 114 ± 2 parsecs. This reconciles the source behavior with our understanding of accretion disc theory in accreting compact objects. PMID:23704566

  20. Compact objects in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  1. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  2. Time-dependent spherically symmetric accretion onto compact X-ray sources

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Ostriker, J. P.; Stark, A. A.

    1978-01-01

    Analytical arguments and a numerical hydrodynamic code are used to investigate spherically symmetric accretion onto a compact object, in an attempt to provide some insight into gas flows heated by an outgoing X-ray flux. It is shown that preheating of spherically symmetric accretion flows by energetic radiation from an X-ray source results in time-dependent behavior for a much wider range of source parameters than was determined previously and that there are two distinct types of instability. The results are compared with observations of X-ray bursters and transients as well as with theories on quasars and active galactic nuclei that involve quasi-spherically symmetric accretion onto massive black holes. Models based on spherically symmetric accretion are found to be inconsistent with observations of bursters and transients.

  3. Can vertical compaction within wedges promote accretion by backthrusts?

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Cooke, M. L.; Herbert, J. W.; Madden, E. H.

    2014-12-01

    In natural subduction zones, frontal accretion dominantly occurs via the propagation of forethrusts, whereas accretion via backthrusts has been observed in only a few active subduction zones, including the Cascadia margin. Similarly, in most analog experiments of accretionary wedges deformation is accommodated by forethrusts or backthrust/forethrust pairs, except for some experiments with a layer of silicone below sand, which can produce accretionary backthrusts. Vertical deflection of the detachment caused by the lateral flow of the silicone layer could promote the propagation of backthrusts in these analog experiments. Alternatively, the high Holocene sediment input in parts of the Cascadia margin could produce vertical compaction deep within the wedge that promotes backthrusting. To explore the effect of vertical compaction and deflection of the detachment on fault development in accretionary prisms we use the Boundary Element Method modeling tool Growth by Optimization of Work (GROW) to predict the vergence of faults in a deforming wedge. GROW predicts fault growth by propagating faults in the direction that maximizes the efficiency of the system, or minimizes the external work of the system. We simulate vertical compaction with compliant elements and observe that the addition of these elements deep in the wedge or along the detachment promotes backthrusting rather than forethrusts. Similarly, local downward deflection of the detachment promotes backthrust development over that of forethrusts. These numerical model results suggest that vertical compaction or local deflection of the megathrust may account for backthrust development in parts of the Cascadia margin.

  4. How Gas Flows from Star to Compact Star-What Recent Hubble Observations Say about Accretion

    NASA Astrophysics Data System (ADS)

    Boroson, Bram

    2002-12-01

    How does gas flow from a normal star to a neutron star (NS) or black hole? Shouldn't this question have been solved a long time ago? Far enough from the compact object this should be a problem in classical hydrodynamics. In many cases even the boundary conditions should be known (from pulse delay timing and eclipses). Shakura and Sunyaev in fact provided a detailed model of disks 12, while Lubow and Shu described the gas stream feeding the disk from the companion star 9. If the compact object accretes from a stellar wind, the analysis of the capture radius by Bondi and Hoyle applies 2...

  5. Studies of compact objects with Einstein - Review and prospects

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1990-01-01

    X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.

  6. Gravitational effects of condensate dark matter on compact stellar objects

    SciTech Connect

    Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com

    2012-10-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.

  7. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Urry, C. Megan; Wandel, Amri

    1990-01-01

    The accretion disk is an attractive model for BL Lac objects because of its preferred axis and high efficiency. While the smooth continuum spectra of BL Lacs do not show large UV bumps, in marked contrast to quasars, high quality simultaneous data do reveal deviations from smoothness. Using detailed calculations of cool accretion disk spectra, the best measured ultraviolet and soft x ray spectra of the BL Lac object PKS 2155-304 are fitted. The mass and accretion rate required are determined. A hot disk or corona could comptonize soft photons from the cool disk and produce the observed power law spectrum in the 1 to 10 keV range. The dynamic time scales in the disk regions that contribute most of the observed ultraviolet and soft x ray photons are consistent with the respective time scales for intensity variations. The mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard x ray variability.

  8. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Urry, C. Megan

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability.

  9. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  10. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  11. Thermal Evolution of Ceres: Coupled Modelling of Accretion and Compaction by Creep

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2015-08-01

    Ceres with a radius of ~475 km and a mean density of ~2.1 g cm3 likely experienced a complex thermal evolution influenced by the heating of radioactive elements, accretion, and compaction. Short-lived radionuclides can substantially heat a body due to radioactive decay depending on the formation time and the porosity structure of the body. The higher the porosity the smaller is the thermal conductivity and the weaker the cooling (and vice versa). Assuming an initially porous structure, compaction is thus an important process that influenced the temperature but also structure of planetesimals, since it causes a radius decrease. It has been shown that porosity loss by hot pressing is the most efficient compaction process in planetesimals and can be described by the thermally activated creep flow. Furthermore, the size of a body (i.e. the volume to surface ratio) plays an important role in the temperature evolution, therefore accretion (radius increase), its duration and the porosity of the accreting material need to be considered.Here, we investigate the coupled effects of accretion and compaction on the thermal evolution of Ceres. We trace the development of the porosity and density both during and after the accretion that occurs in a late runaway regime to answer following questions. 1. How and at which temperatures does compaction proceed? Is Ceres expected to be partially porous? Is a differentiated interior compatible with a porous outer shell? 2. How does the combination of accretion and compaction influence the temperature? Can accretion reduce the time scale of compaction and differentiation or even prevent them? Can prolonged accretion be approximated adequately by instantaneous formation?We will show that while the temperature evolution varies strongly with the duration of accretion, the final porosity profiles are rather similar due to the heating by the long-lived radiogenic nuclides. Compared to models neglecting porosity, insulating properties of a low

  12. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  13. Double compact objects. II. Cosmological merger rates

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2013-12-10

    The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the 'local' universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.

  14. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  15. The dynamic ejecta of compact object mergers and eccentric collisions.

    PubMed

    Rosswog, Stephan

    2013-06-13

    Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium. PMID:23630377

  16. The lack of large compact symmetric objects

    NASA Astrophysics Data System (ADS)

    Augusto, P.

    2009-02-01

    In recent years, `baby' (< 103 yr) and `young' (103-105 yr) radio galaxies have been found and classified, although their numbers are still small (tens). Also, they have many different names, depending on the type of survey and scientific context in which they were found: compact steep spectrum sources (CSS), giga-Hertz peaked spectrum sources (GPS) and compact-medium symmetric objects (C-MSO). The latter have the radio galaxy structure more obvious and correspond to the `babies' (CSOs; < 1 kpc) and `young' (MSOs; 1-15 kpc) radio galaxies. The log-size distribution of CSOs shows a sharp drop at 0.3 kpc. This trend continues through flat-spectrum MSOs (over the full 1-15 kpc size range). In order to find out if this lack of large CSOs and flat-spectrum MSOs is due to poor sampling (lack of surveys that probe efficiently the 0.3-15 kpc size range) and/or has physical meaning (e.g. if the lobes of CSOs expand as they grow and age, they might become CSSs, `disappearing' from the flat-spectrum MSO statistics), we have built a sample of 157 flat-spectrum radio sources with structure on ˜0.3-15 kpc scales. We are using new, archived and published data to produce and inspect hundreds of multi-frequency multi-instrument maps and models. We have already found 13 new secure CSO/MSOs. We expect to uncover ˜30-40 new CSOs and MSOs, most on the 0.3-15 kpc size range, when our project is complete.

  17. Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.

    1978-01-01

    Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.

  18. Hans A. Bethe Prize: Mergers of Binary Compact Objects

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki

    2016-03-01

    The inspiral and eventual merger of two compact objects in binary systems are important in astrophysics across the electromagnetic spectrum and as potential gravitational-wave sources. In this talk I will select a few topics of current interest to highlight compact-object mergers, including in the context of multi-messenger astrophysics.

  19. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments

    USGS Publications Warehouse

    Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.

    2000-01-01

    High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.

  20. Radiatively driven plasma jets around compact objects

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Chakrabarti, Sandip K.

    2002-06-01

    Matter accreting on to black holes may develop shocks due to the centrifugal barrier. Some of the inflowing matter in the post-shock flow is deflected along the axis in the form of jets. Post-shock flow which behaves like a Compton cloud has `hot' electrons emitting high-energy photons. We study the effect of these `hot' photons on the outflowing matter. Radiation from this region could accelerate the outflowing matter, but radiation pressure should also slow it down. We show that the radiation drag restricts the flow from attaining a very high velocity. We introduce the concept of an `equilibrium velocity' (veq~0.5c), which sets the upper limit of the terminal velocity achieved by a cold plasma due to radiation deposition force in the absence of gravity. If the injection energy is Ein, then we find that the terminal velocity v∞ satisfies a relation v2<~veq2+2Ein.

  1. On the formation of compact planetary systems via concurrent core accretion and migration

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-04-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion on to planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low-mass multiplanet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since the mobility of these bodies is required to overcome the local isolation masses for growing embryos. The existence of short-period super-Earths around low-metallicity stars provides strong evidence that small, mobile bodies (planetesimals, boulders or pebbles) played a central role in the formation of the observed planets.

  2. Does accretion flow variability drives internal shocks in the compact jet of the black hole binary GX 339-4?

    NASA Astrophysics Data System (ADS)

    Drappeau, Samia

    Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with the compact jet. We assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are then very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. In this talk, I present an internal shock jet model where the PSD of the jet Lorentz factor fluctuations are taken identical to the observed X-ray PSD of GX 339-4. This model successfully reproduces the radio to infrared SED of the source at the time of the observation as well as the strong mid-infrared spectral variability. Our study confirms previous findings and contributes additional evidence that suggests jet physics and properties of the accretion flow in the vicinity of a compact object are deeply connected.

  3. Spectral calculation through outflows around compact objects and its hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro; Ohsuga, Ken; Nakagawa, Yujin; Nomura, Mariko

    Compact objects such as black holes and neutron starts are shining by converting the gravitational energy via mass accretion. Recent theoretical studies predict that outflows tend to accompany the mass accretion process and affect X-ray spectra. In fact, ``blue-shifted'' metal absorption lines have been observed from active galactic nuclei and X-ray binaries, indicating that the absorbers are moving toward us, namely the outflows do exist. In order to constrain physical conditions and geometries around the compact objects, we need to compare the observed X-ray spectra and theoretically expected signatures caused by the outflows. For the observational side, we will use the micro calorimeter with the unprecedented spectral resolution of E/DeltaE˜1000 on-board Astro-H (in 2015 launch), which is the ONLY detector that can observe the detailed line profiles containing information of the outflows. The radiation-hydrodynamic simulation is needed to interpret the Astro-H spectra. We construct the spectral model by the following two theoretical steps: We first determine the density and velocity profiles of the outflows around the compact object by a hydrodynamic simulation. We then calculate X-ray spectra through such outflows, by using the spectral synthesis code ``Cloudy''. We present the results of the simulated profiles and the calculated spectra.

  4. Cold dark matter as compact composite objects

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2006-08-01

    Dark matter (DM) being the vital ingredient in the cosmos, still remains a mystery. The standard assumption is that the collisionless cold dark matter (CCDM) particles are represented by some weakly interacting fundamental fields which cannot be associated with any standard quarks or leptons. However, recent analyses of structure on galactic and subgalactic scales have suggested discrepancies and stimulated numerous alternative proposals including, e.g. self-interacting dark matter, self-annihilating dark matter, decaying dark matter, to name just a few. We propose the alternative to the standard assumption about the nature of DM particles (which are typically assumed to be weakly interacting fundamental pointlike particles, yet to be discovered). Our proposal is based on the idea that DM particles are strongly interacting composite macroscopically large objects which made of well-known light quarks (or even antiquarks). The required weakness of the DM particle interactions is guaranteed by a small geometrical factor γ˜(area)/(volume)˜B-1/3≪1 of the composite objects with a large baryon charge B≫1, rather than by a weak coupling constant of a new field. We argue that the interaction between hadronic matter and composite dark objects does not spoil the desired properties of the latter as cold matter. We also argue that such a scenario does not contradict to the current observational data. Rather, it has natural explanations of many observed data, such as ΩDM/ΩB˜1 or 511 KeV line from the bulge of our galaxy. We also suggest that composite dark matter may modify the dynamics of structure formation in the central overdense regions of galaxies. We also present a number of other cosmological/astrophysical observations which indirectly support the novel concept of DM nature.

  5. KEPLER OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS

    SciTech Connect

    Rowe, Jason F.; Borucki, William J.; Koch, David; Lissauer, Jack J.; Howell, Steve B.; Basri, Gibor; Marcy, Geoff; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; Jenkins, Jon; Cochran, William D.; Dunham, Edward; Dupree, Andrea K.; Latham, David W.; Sasselov, Dimitar; Fortney, Jonathan J.; Gautier, Thomas N.; Monet, David G.

    2010-04-20

    Kepler photometry has revealed two unusual transiting companions: one orbiting an early A-star and the other orbiting a late B-star. In both cases, the occultation of the companion is deeper than the transit. The occultation and transit with follow-up optical spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a companion in a 5.2 day orbit with a radius of 0.08 R {sub sun} and a 10,000 K late B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a radius of 0.2 R {sub sun}. We infer a temperature of 12,250 K for KOI-74b and 13,500 K for KOI-81b. We present 43 days of high duty cycle, 30 minute cadence photometry, with models demonstrating the intriguing properties of these objects, and speculate on their nature.

  6. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  7. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  8. High-ionization accretion signatures in compact binary candidates from SOAR Telescope observations

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Rodrigues, C. V.; Cieslinski, D.; Jablonski, F.; Silva, K. M. G.; Almeida, L. A.

    2014-10-01

    The increasing number of synoptic surveys made by small robotic telescopes, like the photometric Catalina Real-Time Transient Survey (CRTS - Drake et al., 2009, ApJ, 696, 870), represents a unique opportunity for the discovery of new variable objects and also to improve the samples of many classes of variables. Our goal in this work was the discovery of new polars, a subclass of magnetic Cataclysmic Variables (mCVs) with no accretion disk, and Close Binary Supersoft X-ray Sources (CBSS), strong candidates to Type Ia Supernova progenitors. Both are rare objects and probe interesting accretion scenarios. Finding spectral features associated to high-ionization mass accretion constrains the CBSS or magnetic CV nature for the candidates, expanding the hitherto small samples of these classes (specially CBSS) and allowing for detailed observational follow-up. We used the Goodman Spectrograph on SOAR 4.1 m Telescope to search for signatures of high-ionization mass accretion, as He II 468,6 nm emission line and inverted Balmer decrement, on 39 variable objects selected mostly from CRTS. In this sample we found 14 strong candidates to mCVs, 1 Nova in the final stages of eruption, 14 candidates to Dwarf Novae, 5 extragalactic sources (AGN), 1 object previously identified as a Black Hole Nova, 3 objects with pure absorption spectral features and 1 unidentified object with low S/N ratio. The mCVs candidates found in this work will be studied using time-resolved spectroscopic, polarimetric, and photometric observations in a follow-up project.

  9. Evolution of binaries with compact objects in globular clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia

    2016-02-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries with neutron stars, and how mass-transferring binaries with a black hole and a white dwarf can be formed. We discuss as well one old unsolved puzzle and two new puzzles posed by recent observations: what descendants do ultra-compact X-ray binaries produce, how are very compact triples formed, and how can black hole low-mass X-ray binaries acquire non-degenerate companions?

  10. What Are the Compact Central Objects in Supernova Remnants?

    NASA Astrophysics Data System (ADS)

    Graber, James

    2002-04-01

    Recent Chandra observations of the compact central objects in supernova remnants have shown puzzling results that do not seem to be consistent with either black holes or neutron stars. (See e.g. Pavlov, Sanwal, Garmire and Zavlin, astro-ph-0112322.) In particular, the inferred effective emitting surface is too small to be the entire surface of a neutron star, but too bright to be a black hole. We discuss the possibility that these compact objects might be red holes instead of black holes or neutron stars. Red holes, which occur in alternate theories of gravity, naturally predict both the greater brightness of the emissions and the smaller effective size of the emitting surface from a collapsed object of the appropriate mass.

  11. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  12. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  13. A search for pulsations from the compact object of GRB 060218

    NASA Astrophysics Data System (ADS)

    Mirabal, N.; Gotthelf, E. V.

    2010-02-01

    Aims: A fraction of massive stars are expected to collapse into compact objects (accreting black holes or rapidly rotating neutron stars) that successfully produce gamma-ray bursts (GRBs). We examine the possibility of directly observing these gamma-ray burst compact objects (GCOs) using post-explosion observations of past and future GRB sites. Methods: We present a search for early pulsations from the nearby (z=0.0335) gamma-ray burst GRB 060218, which exhibited features possibly consistent with a rapidly spinning neutron star as its underlying GCO. We also consider alternative techniques that could potentially achieve a detection of GCOs either in the Local Volume or near the plane of our own Galaxy. Results: We report the non-detection of pulsations from the GCO of GRB 060218. In particular, fast fourier transform analysis applied to the light curve shows no significant power over the range of frequencies 0.78 mHz < f < 227 Hz with an upper limit on the pulsed fraction of ~2%. In addition, we present detection limits of current high-resolution archival X-ray images of galaxies within the Local Volume. The existing data could be harnessed to rule out the presence of any background contaminants at the GRB position of future nearby events. Conclusions: The null detection of pulsations from the GCO of GRB 060218 is most likely explained by the fact that the afterglow emission occurs near the head of the jet and should be far removed from the compact object. We also find that the comparison of pre- and post-explosion explosion images of future GRBs within the Local Volume, as well as the firm identification of a GCO within an ancient GRB remnant near the Galactic plane are extremely challenging with current GeV/TeV capabilities. Finally, we conclude that only under some very exceptional circumstances will it be possible to directly detect the compact object responsible for gamma-ray bursts.

  14. Holographic equations of state and astrophysical compact objects

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Lee, Chang-Hwan; Shin, Ik Jae; Wan, Mew-Bing

    2011-10-01

    We solve the Tolman-Oppenheimer-Volkoff equation using an equation of state (EoS) calculated in holographic QCD. The aim is to use compact astrophysical objects like neutron stars as an indicator to test holographic equations of state. We first try an EoS from a dense D4/D8/D8 model. In this case, however, we could not find a stable compact star, a star satisfying pressure-zero condition with a radius R, p( R) = 0, within a reasonable value of the radius. This means that the EoS from the D4/D8/D8 model may not support any stable compact stars or may support one whose radius is very large. This might be due to a deficit of attractive force from a scalar field or two-pion exchange in the D4/D8/D8 model. Then, we consider D4/D6 type models with different number of quark flavors, N f = 1 , 2 , 3. Though the mass and radius of a holographic star is larger than those of normal neutron stars, the D4/D6 type EoS renders a stable compact star.

  15. Detection, classification, and tracking of compact objects in video imagery

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.; Nebrich, Mark A.

    2012-06-01

    A video data conditioner (VDC) for automated full-­motion video (FMV) detection, classification, and tracking is described. VDC extends our multi-­stage image data conditioner (IDC) to video. Key features include robust detection of compact objects in motion imagery, coarse classification of all detections, and tracking of fixed and moving objects. An implementation of the detection and tracking components of the VDC on an Apple iPhone is discussed. Preliminary tracking results of naval ships captured during the Phoenix Express 2009 Photo Exercise are presented.

  16. Compact objects from gravitational collapse: an analytical toy model

    NASA Astrophysics Data System (ADS)

    Malafarina, Daniele; Joshi, Pankaj S.

    2015-12-01

    We develop here a procedure to obtain regular static configurations resulting from dynamical gravitational collapse of a massive matter cloud in general relativity. Under certain general physical assumptions for the collapsing cloud, we find the class of dynamical models that lead to an equilibrium configuration. To illustrate this, we provide a class of perfect fluid collapse models that lead to a static constant density object as limit. We suggest that similar models might possibly constitute the basis for the description of formation of compact objects in nature.

  17. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa; Hernández, Jesus; Briceno, Cesar; Espaillat, Catherine E-mail: ncalvet@umich.edu

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  18. Are BL Lac-type objects nearby black holes. [gas accretion model

    NASA Technical Reports Server (NTRS)

    Shapiro, S. L.; Elliot, J. L.

    1974-01-01

    It is pointed out that isolated black holes accreting interstellar gas can account for the characteristic properties of the Lacertids. Emission spectra for various interstellar gas densities and black hole masses are compared with the data plotted by Strittmatter et al. (1972) for the BL Lac-type objects. Rough estimates indicate that there may indeed be a finite number of stellar-mass black holes close to the earth as required by the theory. If it is determined that the BL Lac-type objects lie outside of the galactic disk a black hole accretion model may still apply if certain conditions are satisfied.

  19. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    SciTech Connect

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.; García-Alvarez, D.; Kraemer, K. E.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. In this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.

  20. A Central Compact Object in Kes 79: The hypercritical regime and neutrino expectation

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Fraija, N.

    2016-08-01

    We present magnetohydrodynamical simulations of a strong accretion onto magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the center of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called Central Compact Objects, which exhibits no evidence for a surrounding pulsar wind nebula. In this work we show that the submergence of the magnetic field during the hypercritical phase can explain such behavior for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733±364. In addition, we compute the flavor ratio on Earth for a progenitor model.

  1. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.

    2014-01-01

    We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and in turn the accretion rate (Ṁacc), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (Lline) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ~330 nm to 2500 nm. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring Lacc and Ṁacc yield significantly different results: Hα line profile modelling may underestimate Ṁacc by 0.6 to 0.8 dex with respect to Ṁacc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships between Ṁacc and other YSOs properties reported in the literature. We derived Ṁacc in the range 2 × 10-12-4 × 10-8 M⊙ yr-1 and conclude that Ṁacc ∝ M⋆1.8(±0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Ṁacc, confirming previous suggestions that the geometry of the accretion flow

  2. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  3. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea

    2014-11-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.

  4. Compact real-time image processor for moving object tracking

    NASA Astrophysics Data System (ADS)

    Kinoshita, Noboru

    1996-03-01

    Latency time and hardware compactness are two important problems of real-time image processors for moving object tracking. We have developed a compact self-contained real-time image processor that is implemented on a single double-height VME board. The processor can execute major processing steps for moving object tacking during a single video field time. These steps are preprocessing, binarizing, labeling, feature extraction, and feature evaluation. We can obtain sorted feature vectors simultaneously when image data is read out from a sensor. Here a feature vector represents areas, centroid, and maximum intensity of each connected region in a binarized image. Some conventional image processors can execute the above steps individually in real-time and thread some steps in a pixel pipeline manner. However it is difficult to integrate feature extraction and feature evaluation in a pixel pipeline path. For real-time execution of all steps we focused on new architecture particularly for the latter three steps. To minimize the hardware we have developed three ASICs: labeler, feature accumulator, and sorter. To make our processor self-contained and scalable, it has an on- board micro processor, a digital video bus interface, and an RS232C port, and it is VME compatible in bus interface and mechanical dimension.

  5. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  6. Modelling the internal structure of Ceres: Coupling of accretion with compaction by creep and implications for the water-rock differentiation

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2015-12-01

    Aims: We model the compaction of a Ceres-like body that accretes from the protoplanetary dust as a porous aggregate. To do this, we use a comprehensive numerical model in which the accretion starts with a km-size seed and the final radius reaches ≈500 km. Our goal is to investigate the interplay of accretion and loss of porosity by hot pressing. We draw conclusions for the evolution of the porosity profile and the present-day porosity distribution on Ceres. In particular, we test the hypothesis that Ceres' low density can be explained by a porous interior instead of by the presence of ice, and whether compaction occurs due to creep or due to dehydration of hydrated minerals. Methods: We extended our thermal evolution model from previous studies to model compaction of an accreting asteroid that is initially porous. We considered two different compositions of Ceres suggested by other workers. The porosity change was calculated according to the thermally activated creep flow. Depending on the composition, parameters relevant for compaction were changed self-consistently with the mineral phases. Results: We find that compaction of initially porous Ceres is dominated by creep and only slightly perturbed by the dehydration. In particular, dehydration alone cannot lead to compaction because creep can occur before the dehydration. Depending on the accretion duration, timing of the compaction varies from between a few million years and more than one billion years. Thereby, late accretion cannot prevent compaction to an average porosity of <2.5%. We provide the evolution as well as the present-day porosity and temperature profiles for Ceres. The temperature allows for the existence of liquid water in the interior of Ceres at a depths of ≥5-33 km. Depending on the composition, either iron melt is produced regardless of the accretion timing or only for an accretion within the first 4 Ma relative to calcium-aluminium-rich inclusions. This argues for a small metallic core.

  7. The physics of the accretion process in the formation and evolution of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Manara, C. F.

    2014-07-01

    The formation of planets is thought to happen in protoplanetary disks surrounding young stars during the first few Myrs of their pre-main-sequence evolution. In order to understand planet formation a detailed knowledge of the disk evolution process is needed. By studying the interaction of the disk with the central star, which includes accretion of matter due to viscous processes in the disk, we can constrain the physical conditions of the inner gaseous disk in which planet formation takes place. With the recent advent of the X-Shooter spectrograph, a second generation instrument of the ESO/VLT, the excess emission due to accretion in the ultraviolet can be studied simultaneously with the accretion signatures in the visible and in the near-infrared, finally giving a complete view of this phenomenon. In this Thesis I have studied various X-Shooter datasets of young stars to determine the intensity and the properties of the accretion process at various phases of disk evolution and as a function of the central star mass and age. To fully exploit the potential of the X-Shooter spectra, I have developed an innovative method of analysis to derive accretion and stellar parameters with an automatic algorithm. This is based on a set of models, composed of a set of photospheric templates of young stars that I gathered and characterized, a set of slab models, that I have coded, to reproduce the emission due to the accretion shock, and a reddening law to take into account extinction effects. This method allows to accurately determine for the first time the stellar and accretion parameters of the targets self-consistently and with no prior assumptions, a significant improvement with respect to previous studies. I have applied this methodology to determine the correct stellar parameters of two objects in the Orion Nebula Cluster that were reported in the literature to have an anomalous old age. My analysis has shown why previous investigations could not resolve the degeneracy

  8. On the accretion properties of young stellar objects in the L1615/L1616 cometary cloud

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Alcalá, J. M.; Frasca, A.; Zusi, M.; Getman, F.; Covino, E.; Gandolfi, D.

    2014-12-01

    We present the results of FLAMES/UVES and FLAMES/GIRAFFE spectroscopic observations of 23 low-mass stars in the L1615/L1616 cometary cloud, complemented with FORS2 and VIMOS spectroscopy of 31 additional stars in the same cloud. L1615/L1616 is a cometary cloud in which the star formation was triggered by the impact of massive stars in the Orion OB association. From the measurements of the lithium abundance and radial velocity, we confirm the membership of our sample to the cloud. We use the equivalent widths of the Hα, Hβ, and the He i λ5876, λ6678, λ7065 Å emission lines to calculate the accretion luminosities, Lacc, and the mass accretion rates, Ṁacc. We find in L1615/L1616 a fraction of accreting objects (~30%), which is consistent with the typical fraction of accretors in T associations of similar age (~3 Myr). The mass accretion rate for these stars shows a trend with the mass of the central object similar to that found for other star-forming regions, with a spread at a given mass that depends on the evolutionary model used to derive the stellar mass. Moreover, the behavior of the 2MASS/WISE colors with Ṁacc indicates that strong accretors with log Ṁacc ≳ -8.5 dex show large excesses in the JHKs bands, as in previous studies. We also conclude that the accretion properties of the L1615/L1616 members are similar to those of young stellar objects in T associations, like Lupus. Based on FLAMES (UVES+GIRAFFE) observations collected at the Very Large Telescope (VLT; Paranal, Chile). Program 076.C-0385(A).Tables 3-6 and Appendices are available in electronic form at http://www.aanda.org

  9. YOUNG STELLAR OBJECTS IN LYNDS 1641: DISKS, ACCRETION, AND STAR FORMATION HISTORY

    SciTech Connect

    Fang Min; Kim, Jinyoung Serena; Flaherty, Kevin; Van Boekel, Roy; Henning, Thomas; Sicilia-Aguilar, Aurora

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering {approx}1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of {approx}50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M{sub *}/M{sub Sun }) Almost-Equal-To -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  10. Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Kaplan, David L. A.

    2013-01-01

    Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.

  11. Evidence for a binary origin of a central compact object

    NASA Astrophysics Data System (ADS)

    Doroshenko, Victor; Pühlhofer, Gerd; Kavanagh, Patrick; Santangelo, Andrea; Suleimanov, Valery; Klochkov, Dmitry

    2016-05-01

    Central compact objects (CCOs) are thought to be young thermally emitting isolated neutron stars that were born during the preceding core-collapse supernova explosion. Here, we present evidence that at least in one case the CCO could have been formed within a binary system. We show that the highly reddened optical source IRAS 17287-3443, located 25 arcsec away from the CCO candidate XMMUJ173203.3-344518 and classified previously as a post asymptotic giant branch star, is indeed surrounded by a dust shell. This shell is heated by the central star to temperatures of ˜90 K and observed as extended infrared emission in 8-160 μm band. The dust temperature also increases in the vicinity of the CCO which implies that it likely resides within the shell. We estimate the total dust mass to be ˜0.4-1.5 M⊙ which significantly exceeds expected dust yields by normal stars and thus likely condensed from supernova ejecta. Taking into account that both the age of the supernova remnant and the duration of active mass-loss phase by the optical star are much shorter than the total lifetime of either object, the supernova and the onset of the active mass-loss phase of the companion have likely occurred approximately simultaneously. This is most easily explained if the evolution of both objects is interconnected. We conclude, therefore, that both stars were likely members of the same binary system disrupted by a supernova.

  12. A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. I. QUASI-KERR BLACK HOLES

    SciTech Connect

    Psaltis, Dimitrios; Johannsen, Tim

    2012-01-20

    We describe a new numerical algorithm for ray tracing in the external spacetimes of spinning compact objects characterized by arbitrary quadrupole moments. Such spacetimes describe non-Kerr vacuum solutions that can be used to test the no-hair theorem in conjunction with observations of accreting black holes. They are also appropriate for neutron stars with spin frequencies in the {approx_equal} 300-600 Hz range, which are typical of the bursting sources in low-mass X-ray binaries. We use our algorithm to show that allowing for the quadrupole moment of the spacetime to take arbitrary values leads to observable effects in the profiles of relativistic broadened fluorescent iron lines from geometrically thin accretion disks.

  13. Accretion, jets and winds: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2011-06-01

    This article summarizes the processes of high-energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high-resolution X-ray and UV spectroscopy and modeling. Three mechanisms contribute to the high-energy emission from CTTS: 1) CTTS have active coronae similar to main-sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X-ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X-ray observations of accreting CTTS. Specifically, the model explains the peculiar line-ratios in the He-like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X-ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s-1 are required to explain the observed spectrum. Doctoral Thesis Award Lecture 2010

  14. Internal shocks driven by accretion flow variability in the compact jet of the black hole binary GX 339-4

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Belmont, R.; Gandhi, P.; Corbel, S.

    2015-03-01

    In recent years, compact jets have been playing a growing role in the understanding of accreting black hole engines. In the case of X-ray binary systems, compact jets are usually associated with the hard state phase of a source outburst. Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with its compact jet. In the model used in this study, we assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. Taking the PSD of the jet Lorentz factor fluctuations to be identical to the observed X-ray PSD, our study finds that the internal shock model successfully reproduces the radio to infrared SED of the source at the time of the observations as well as the reported strong mid-infrared spectral variability.

  15. Recent developments in the tidal deformability of spinning compact objects

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2016-04-01

    We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.

  16. DOUBLE COMPACT OBJECTS AS LOW-FREQUENCY GRAVITATIONAL WAVE SOURCES

    SciTech Connect

    Belczynski, Krzysztof; Bulik, Tomasz; Benacquista, Matthew

    2010-12-10

    We study the Galactic field population of double compact objects (DCOs; NS-NS, BH-NS, BH-BH binaries) to investigate the number (if any) of these systems that can potentially be detected with the Laser Interferometer Space Antenna (LISA) at low gravitational wave frequencies. We calculate the Galactic numbers and physical properties of these binaries and show their relative contributions from the disk, bulge, and halo. Although the Galaxy hosts {approx}10{sup 5} DCO binaries emitting low-frequency gravitational waves, only a handful of these objects in the disk will be detectable with LISA, but none from the halo or bulge. This is because the bulk of these binaries are NS-NS systems with high eccentricities and long orbital periods (weeks/months) causing inefficient signal accumulation (a small number of signal bursts at periastron passage in one year of LISA observations) and rendering them undetectable in the majority of these cases. We adopt two evolutionary models that differ in their treatment of the common envelope (CE) phase that is a major (and still mostly unknown) process in the formation of close DCOs. Depending on the evolutionary model adopted, our calculations indicate the likely detection of about four NS-NS binaries and two BH-BH systems (model A; likely survival of progenitors through CE) or only a couple of NS-NS binaries (model B; suppression of the DCO formation due to CE mergers).

  17. Spreading Layers in Accreting Objects: Role of Acoustic Waves for Angular Momentum Transport, Mixing, and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M.

    2016-01-01

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  18. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  19. Electromagnetic Powers Of Merging And Collapsing Compact Objects

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2011-09-01

    Understanding possible EM signatures of the merging and collapsing compact object is important for identifying possible sources of LIGO & LISA signals. We estimate the electromagnetic powers that can be produced as a precursor to the merger, as a prompt emission during the collapse of a NS and at the spin-down stage of the resulting Kerr BH. In particular, we find exact non-linear time-dependent structure of magnetospheres of spinning and collapsing NSs in Schwarzschild geometry. Based on this solution, we argue that the collapse of a NS into the BH happens smoothly, without natural formation of current sheets or other dissipative structures on the open field lines and, thus, does not allow the magnetic field to become disconnected from the star and escape to infinity. Thus, as long as an isolated Kerr BH can produce plasma and currents, it does not lose its open magnetic field lines, its magnetospheric structure evolved towards a split monopole and the BH spins down electromagnetically (the closed field lines get absorbed by the hole). The "no hair theorem", which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the BH. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the BH engine forever.

  20. VizieR Online Data Catalog: D-burning in core accretion objects (Molliere+, 2012)

    NASA Astrophysics Data System (ADS)

    Molliere, P.; Mordasini, C.

    2012-09-01

    The files contain the numerical data of the formation and subsequent evolution of cold and hot start objects (using the fiducial model) presented in our paper. The filenames denote the final mass and whether the object has formed hot or cold. Example: "cold10mj.dat" stands for a cold start object with a final mass of 10 jovian masses. Please note the following: As the surface conditions are given by the disk nebula in the attached phase and as the runaway accretion luminosity does not contribute to the internal luminosity for a cold start object, it does not hold that the total luminosity equals the luminosity deduced from the Stefan-Boltzmann law all the time. For the calculations the fiducial model was used as given in the paper. The albedo of the object is 0.343. (35 data files).

  1. A hot compact dust disk around a massive young stellar object.

    PubMed

    Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo

    2010-07-15

    Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system. PMID:20631793

  2. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  3. UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. III. THE CASE OF CYGNUS X-1

    SciTech Connect

    Wong, Tsing-Wai; Valsecchi, Francesca; Kalogera, Vassiliki; Fragos, Tassos E-mail: francesca@u.northwestern.edu E-mail: tfragos@cfa.harvard.edu

    2012-03-10

    In recent years, accurate observational constraints have become available for an increasing number of Galactic X-ray binaries (XRBs). Together with proper-motion measurements, we could reconstruct the full evolutionary history of XRBs back to the time of compact object formation. In this paper, we present the first study of the persistent X-ray source Cygnus X-1 that takes into account all available observational constraints. Our analysis accounts for three evolutionary phases: orbital evolution and motion through the Galactic potential after the formation of a black hole (BH), and binary orbital dynamics at the time of core collapse. We find that the mass of the BH immediate progenitor is 15.0-20.0 M{sub Sun }, and at the time of core collapse, the BH has potentially received a small kick velocity of {<=}77 km s{sup -1} at 95% confidence. If the BH progenitor mass is less than {approx}17 M{sub Sun }, a non-zero natal kick velocity is required to explain the currently observed properties of Cygnus X-1. Since the BH has only accreted mass from its companion's stellar wind, the negligible amount of accreted mass does not explain the observationally inferred BH spin of a{sub *} > 0.95, and the origin of this extreme BH spin must be connected to the BH formation itself. Right after the BH formation, we find that the BH companion is a 19.8-22.6 M{sub Sun} main-sequence star, orbiting the BH at a period of 4.7-5.2 days. Furthermore, recent observations show that the BH companion is currently super-synchronized. This super-synchronism indicates that the strength of tides exerted on the BH companion should be weaker by a factor of at least two compared to the usually adopted strength.

  4. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets - a survey

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2016-03-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  5. WHAT IS ON TAP? THE ROLE OF SPIN IN COMPACT OBJECTS AND RELATIVISTIC JETS

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gueltekin, Kayhan; Walton, Dominic J.; Fabian, Andrew C.; Reynolds, Christopher S.; Nandra, Kirpaul

    2013-07-10

    We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes 3 different Seyfert samples with a total of 37 unique Seyferts, as well as 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with simple Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with more relativistically blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3{sigma} confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3{sigma} confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4{sigma} and 4.1{sigma} confidence level, respectively) between radio luminosity per bolometric luminosity and spin, as well as radio luminosity corrected for the fundamental plane (i.e., log ({nu}L{sub R}/L{sub Bol}{sup 0.67}/M{sub BH}{sup 0.78})) and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e., bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the

  6. AN ULTRA-LOW-MASS AND SMALL-RADIUS COMPACT OBJECT IN 4U 1746-37?

    SciTech Connect

    Li, Zhaosheng; Qu, Zhijie; Guo, Yanjun; Xu, Renxin; Chen, Li; Qu, Jinlu

    2015-01-01

    Photospheric radius expansion (PRE) bursts have already been used to constrain the masses and radii of neutron stars. RXTE observed three PRE bursts in 4U 1746-37, all with low touchdown fluxes. We discuss here the possibility of a low-mass neutron star in 4U 1746-37 because the Eddington luminosity depends on stellar mass. With typical values of hydrogen mass fraction and color correction factor, a Monte Carlo simulation was applied to constrain the mass and radius of a neutron star in 4U 1746-37. 4U 1746-37 has a high inclination angle. Two geometric effects, the reflection of the far-side accretion disk and the obscuration of the near-side accretion disk, have also been included in the mass and radius constraints of 4U 1746-37. If the reflection of the far-side accretion disk is accounted for, a low-mass compact object (mass of 0.41 ± 0.14 M {sub ☉} and radius of 8.73 ± 1.54 km at 68% confidence) exists in 4U 1746-37. If another effect operated, 4U 1746-37 may contain an ultra-low-mass and small-radius object (M = 0.21 ± 0.06 M {sub ☉}, R = 6.26 ± 0.99 km at 68% confidence). Combining all possibilities, the mass of 4U 1746-37 is 0.41{sub −0.30}{sup +0.70} M{sub ⊙} at 99.7% confidence. For such low-mass neutron stars, it could be reproduced by a self-bound compact star, i.e., a quark star or quark-cluster star.

  7. BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES

    SciTech Connect

    O'Shaughnessy, R.; Kalogera, V.; Belczynski, Krzysztof E-mail: vicky@northwestern.ed

    2010-06-10

    In this paper, we estimate binary compact object merger detection rates for LIGO, including the potentially significant contribution from binaries that are produced in elliptical galaxies near the epoch of peak star formation. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4 x 10{sup -3} Mpc{sup -3} Myr{sup -1} for binary black holes (BHs), 3 x 10{sup -2} Mpc{sup -3} Myr{sup -1} for binary neutron stars (NSs), and 10{sup -2} Mpc{sup -3} Myr{sup -1} for BH-NS binaries. We find that mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are likely dominated by the contribution from spiral galaxies. Limiting attention to elliptical-galaxy plus only those spiral-galaxy models that reproduce current observations of Galactic NS-NS, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (in practice as part of a network, to reduce its noise), corresponding to radii D {sub bns} of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M {sub sun} NSs of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9 x 10{sup -2}-0.46 and 25-400 yr{sup -1} (at 90% confidence level), respectively. We also find that the probability P {sub detect} of detecting one or more mergers with this single detector can be approximated by (1) P {sub detect} {approx_equal} 0.4 + 0.5 log(T/0.01 yr), assuming D {sub bns} = 197 Mpc and it operates for T yr, for T between 2 days and 0.1 yr, or by (2) P {sub detect} {approx_equal} 0.5 + 1.5 log(D {sub bns}/32 Mpc), for 1 yr of operation and for D {sub bns

  8. Electromagnetic power of merging and collapsing compact objects

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2011-06-01

    Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever

  9. Compact objects at the heart of outflows in large and small systems

    NASA Astrophysics Data System (ADS)

    Sell, Paul Harrison

    2013-12-01

    This thesis focuses on studying and assessing high-energy feedback generated by both stellar mass and supermassive compact objects. From these two perspectives, I help bridge the gap in understanding how jets and winds can transform their much larger environments in thousands to millions of years, astronomically short timescales. I have acquired X-ray and optical data that aim to elucidate the role these objects play in powering parsec-scale shockwaves in the ISM and in driving kiloparsec-scale outflows in galaxies. I present Chandra X-ray imaging, Hubble Space Telescope imaging, and WIYN Hydra multi-object optical spectroscopic observations. The data reveal the morphologies of the systems and constrain on a range of interesting parameters: power, outflow velocity, density, accretion efficiency, and timescale. My analysis provides perspective on the importance of black holes, both large and small, and neutron stars for driving outflows into the interstellar and intergalactic medium. On kiloparsec scales, I explore the nature of what appear to be merging or recently merging post-starburst galaxies with very high-velocity winds. This work is part of a multiwavelength effort to characterize the niche these galaxies fill in the larger scheme of galaxy evolution. My focus is on the accretion activity of the coalescing supermassive black holes in their cores. This work leads us to compare the relative importance of a massive starburst to the supermassive black holes in the cores of the galaxies. On parsec scales, I present case studies of two prominent microquasars, Galactic X-ray binaries with jets, Circinus X-1 and Cygnus X-1. In the case of Circinus X-1, I present very deep follow-up observations of parsec-scale shock plumes driven by a powerful, bipolar jet. In the case of Cygnus X-1, I present follow-up observations to probe a recently discovered outflow near the binary. I calculate robust, physically motivated limits on the total power needed to drive the outflows

  10. Evolution of photon and particle spectra in compact, luminous objects

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.; Caroff, Lawrence J.; Noerdlinger, Peter D.

    1988-01-01

    The physics of high energy photons and particles (especially electrons and positrons) in the compact, high-energy-density of galactic nuclei and quasars was investigated. A numerical code was developed which follows the nonlinear spectral evolution of a pair/photon plasma, due to two-body scattering and interaction process, in an unmagnetized system. The code was applied both to static plasmas and to relativistic expanding winds.

  11. Accreting neutron stars in highly compact binary systems and the nature of 3U 1626-67

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Avni, Y.; Rappaport, S.

    1978-01-01

    We discuss the existence of pulsing X-ray sources that consist of neutron stars in highly compact binary systems (orbital periods not more than Od3), undergoing accretion from low-mass late-type dwarf or degenerate-dwarf companions. An appropriate mass transfer rate can be driven by the decay of the orbit due to gravitational radiation, a self-excited wind, and/or the evolution of the companion. Such a system may result from the evolution of a cataclysmic variable, wherein a degenerate dwarf collapses to form a neutron star after accreting sufficient mass to exceed the Chandrasekhar limit. We apply this model to the 7s7 X-ray pulsar 3U 1626-67, and demonstrate that it can explain the apparent lack of Doppler shifts in the X-ray pulsations from this source. The model may also account for other observed properties of the source, including (1) the apparent faintness and large ultraviolet excess of the optical counterpart, (2) the lack of X-ray eclipses, and (3) an approximately 1000 s quasi-periodic oscillation in the source intensity that was recently observed with the SAS 3 satellite.

  12. The accretion/ejection paradigm in young stellar objects: from HST and Herschel to JWST

    NASA Astrophysics Data System (ADS)

    Podio, Linda

    2012-07-01

    Stellar jets and molecular outflows are observed in association with young accreting stars and are believed to play a key role in the star formation process. In this talk I will show how current and future space missions are of crucial importance to investigate the origin of stellar jets and their link to the accretion process. Thanks to its high angular (˜0.1") resolution, HST has been the first telescope allowing us to investigate the jet physics at optical/UV wavelengths down to the heart of the launching mechanism. We recently analysed a datacube of the jet emitted by the T Tauri star DG Tau obtaining spatio-kinematical maps of the hot atomic gas in the jet and of its physical conditions (Maurri et al., submitted). These data confirm the predictions of theoretical models including the fact that jets may extract the excess angular momentum from the system. In the last two years Herschel has further improved our comprehension of the ejection process observing the far infrared counterpart of fast and collimated atomic jets. PACS and HIFI observations, acquired within the GASPS (GAS in Protoplanetary Systems) Open Time Key Project (PI: B. Dent), show that T Tauri stars driving optical jets are also associated with a warm gas component emitting not only atomic ([OI], [CII]) but also molecular (high-J CO, H_2O, OH) lines. The comparison with Class 0 outflows highlights a clear evolutionary trend: the emission associated with evolved Class I/II sources is fainter and more compact and the estimated mass loss rates and lines cooling are one to two orders of magnitudes lower (Podio et al., to be submitted). The arrival of JWST will fill-in the gap between HST and Herschel opening a new window in the near and mid-infrared range at unprecedented angular resolution (down to 0.03"). This will allow resolving the emission in both atomic (e.g., [FeII]) and molecular (e.g., H_2) lines and understanding if the molecular gas is entrained by the atomic jet or launched with it

  13. Deuterium burning in objects forming via the core accretion scenario. Brown dwarfs or planets?

    NASA Astrophysics Data System (ADS)

    Mollière, P.; Mordasini, C.

    2012-11-01

    Aims: Our aim is to study deuterium burning in objects forming according to the core accretion scenario in the hot and cold start assumption and what minimum deuterium burning mass limit is found for these objects. We also study how the burning process influences the structure and luminosity of the objects. Furthermore we want to test and verify our results by comparing them to already existing hot start simulations which did not consider, however, the formation process. Methods: We present a new method to calculate deuterium burning of objects in a self-consistently coupled model of planet formation and evolution. We discuss which theory is used to describe the process of deuterium burning and how it was implemented. Results: We find that the objects forming according to a hot start scenario behave approximately in the same way as found in previous works of evolutionary calculations, which did not consider the formation. However, for cold start objects one finds that the objects expand during deuterium burning instead of being partially stabilized against contraction. In both cases, hot and cold start, the mass of the solid core has an influence on the minimum mass limit of deuterium burning. The general position of the mass limit, 13 MJ, stays however approximately the same. None of the investigated parameters was able to change this mass limit by more than 0.8 MJ. Due to deuterium burning, the luminosity of hot and cold start objects becomes comparable after ~200 Myr. Numerical data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A105

  14. Magnetar-like Activity from the Central Compact Object in the SNR RCW103

    NASA Astrophysics Data System (ADS)

    Rea, N.; Borghese, A.; Esposito, P.; Coti Zelati, F.; Bachetti, M.; Israel, G. L.; De Luca, A.

    2016-09-01

    The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the “anti-magnetar” scenario for other CCOs.

  15. Strange Stars : An interesting member of the compact object family

    SciTech Connect

    Bagchi, Manjari; Ray, Subharthi; Dey, Jishnu; Dey, Mira

    2008-01-10

    We have studied strange star properties both at zero temperature and at finite temperatures and searched signatures of strange stars in gamma-ray, x-ray and radio astronomy. We have a set of Equations of State (EoS) for strange quark matter (SQM) and solving the TOV equations, we get the structure of strange stars. The maximum mass for a strange star decreases with the increase of temperature, because at high temperatures, the EoS become softer. One important aspect of strange star is that, surface tension depends on the size and structure of the star and is significantly larger than the conventional values. Moment of inertia is another important parameter for compact stars as by comparing theoretical values with observed estimate, it is possible to constrain the dense matter Equation of State. We hope that this approach will help us to decide whether the members of the double pulsar system PSR J0737-3039 are neutron stars or strange stars.

  16. Tidal torque induced by orbital decay in compact object binaries

    NASA Astrophysics Data System (ADS)

    Dall'Osso, Simone; Rossi, Elena M.

    2013-01-01

    As we observe in the moon-earth system, tidal interactions in binary systems can lead to angular momentum exchange. The presence of viscosity is generally regarded as the condition for such transfer to happen. In this paper, we show how the orbital evolution can cause a persistent torque between the binary components, even for inviscid bodies. This preferentially occurs at the final stage of coalescence of compact binaries, when the orbit shrinks successively by gravitational waves and plunging on a time-scale shorter than the viscous time-scale. The total orbital energy transferred to the secondary by this torque is ˜10-2 of its binding energy. We further show that this persistent torque induces a differentially rotating quadrupolar perturbation. Specializing to the case of a secondary neutron star, we find that this non-equilibrium state has an associated free energy of 1047-1048 erg, just prior to coalescence. This energy is likely stored in internal fluid motions, with a sizeable amount of differential rotation. By tapping this free energy reservoir, a pre-existing weak magnetic field could be amplified up to a strength of ≈1015 G. Such a dynamically driven tidal torque can thus recycle an old neutron star into a magnetar, with possible observational consequences at merger.

  17. The Fate of Fallback Matter around Newly Born Compact Objects

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Duffell, Paul; Cantiello, Matteo; MacFadyen, Andrew I.

    2014-02-01

    The presence of fallback disks around young neutron stars (NSs) has been invoked over the years to explain a large variety of phenomena. Here we perform a numerical investigation of the formation of such disks during a supernova (SN) explosion, considering both NS and black hole (BH) remnants. Using the public code MESA, we compute the angular momentum distribution of the pre-SN material, for stars with initial masses M in the range 13-40 M ⊙, initial surface rotational velocities v surf between 25% and 75% of the critical velocity, and for metallicities Z of 1%, 10%, and 100% of the solar value. These pre-SN models are exploded with energies E varying between 1050-3 × 1052 erg, and the amount of fallback material is computed. We find that, if magnetic torques play an important role in angular momentum transport, then fallback disks around NSs, even for low-metallicity main-sequence stars, are not an outcome of SN explosions. Formation of such disks around young NSs can only happen under the condition of negligible magnetic torques and a fine-tuned explosion energy. For those stars that leave behind BH remnants, disk formation is ubiquitous if magnetic fields do not play a strong role; however, unlike the NS case, even with strong magnetic coupling in the interior, a disk can form in a large region of the Z, M, v surf, E parameter space. Together with the compact, hyperaccreting fallback disks widely discussed in the literature, we identify regions in the above parameter space that lead to extended, long-lived disks around BHs. We find that the physical conditions in these disks may be conducive to planet formation, hence leading to the possible existence of planets orbiting BHs.

  18. Modeling and detecting gravitational waves from compact stellar objects

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele

    In the next few years, the first detections of gravity- wave signals using Earth-based interferometric detectors will begin to provide precious new information about the structure, dynamics, and evolution of compact bodies, such as neutron stars and black holes, both isolated and in binary systems. The intrinsic weakness of gravity-wave signals requires a proactive approach to modeling the prospective sources and anticipating the shape of the signals that we seek to detect. Full-blown 3-D numerical simulations of the sources are playing and will play an important role in planning the gravity-wave data-analysis effort. This thesis explores the interplay between numerical source modeling and data analysis, looking closely at three case studies. (1)I evaluate the prospects for extracting equation-of-state information from neutron-star tidal disruption in neutron-star-black- hole binaries with LIGO-II, and I estimate that the observation of disrupting systems at distances that yield about one event per year should allow the determination of the neutron-star radius to about 15%, which compares favorably to the currently available electromagnetic determinations. (2)In collaboration with Lee Lindblom and Joel Tohline, I perform numerical simulations of the nonlinear dynamics of the r-mode instability in young, rapidly spinning neutron stars, and I find evidence that nonlinear couplings to other modes will not pose a significant limitation to the growth of the r-mode amplitude. (3)In collaboration with Alessandra Buonanno and Yanbei Chen, I study the problem of detecting gravity waves from solar-mass black-hole - black-hole binaries with LIGO-I, and I construct two families of detection templates that address the inadequacy of standard post-Newtonian theory to predict reliable waveforms for these systems.

  19. On the Nature of Compact Object in SS~433. An Observational Evidence of Black Hole Mass in SS 433

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev

    We present an analysis of X-ray spectral properties observed from black hole candidate (BHC) binary SS 433. We analyze RXTE data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 demonstrates a X-ray spectral transition from low hard state to intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptoniza-tion (BMC)" component and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature of "blackbody-like (BB)" bump which color temperature is in the range of 4-5 keV in 24 IS spectra during radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to support the presence of gravitationally redshifted annihila-tion lines in this source. We also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, greater than 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of BH mass in SS 433 is consistent with the recent BH mass measurement by Hillwig Gies who find that BH mass about 4.3 solar masses. It is the smallest BH mass up to now found among all BHC sources where BH masses have been estimated so far. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BHCs, is the strongest observational evidence of the presence of BH in SS 433.

  20. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  1. Extremely red compact radio sources - The empty field objects

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Neugebauer, G.; Soifer, B. T.; Matthews, K.; Wootten, H. A.; Pravdo, S. H.

    1981-01-01

    Radiation of 10 microns has been detected from 1413+135, one of the very red objects discovered by Rieke, Lebofsky, and Kinman (1979) at near-infrared wavelengths. The spectrum of this object flattens at wavelengths longer than 2.2 microns. Upper limits are also given for the 10-micron emission from 2255+14, 0026+34, and 0406+121. Photometry between 1.25 and 2.2 microns confirms the variability of 1413+135, 2255+41, and 0406+121. Five percent resolution spectra of 1413+135 and 0406+121 between 1.5 and 2.4 microns show no emission or absorption lines. The spectral data rule out the possibility that 1413+135 is a quasar with normal line strengths and a redshift less than 1.3 and greater than 4. The lack of features of the 1.5-2.4-micron spectra, the rapid variability, and the overall shape of the radio, infrared, and X-ray energy distributions are consistent with a BL Lac nature for these objects.

  2. Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zensus, J. A.

    2016-02-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.

  3. Radio continuum emission and HI gas accretion in the NGC 5903/5898 compact group of galaxies

    NASA Astrophysics Data System (ADS)

    Wiita, Paul; Gopal-Krishna; Mhaskey, Mukul

    2012-03-01

    We investigate the nature of the multi-component radio continuum and HI emission associated with the nearby galaxy group comprised of two dominant ellipticals, NGC 5898 and NGC 5903 and a dwarf lenticular ESO514-G003. Striking new details of radio emission come from the ongoing TIFR.GMRT.SKY.SURVEY (TGSS) which provides images with a resolution of ˜24^'' x18^'' and rms noise of 5 mJy at 150 MHz. Previous observations of this compact triplet include images at higher frequencies of the radio continuum as well as huge HI trails originating from the vicinity of NGC 5903. The TGSS 150 MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf SO galaxy ESO514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum (α˜-1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the HI trails. Both its radio loud members are also the only galaxies that are seen to be connected to an HI filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.

  4. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  5. DIRECT IMAGING OF A COMPACT MOLECULAR OUTFLOW FROM A VERY LOW LUMINOSITY OBJECT: L1521F-IRS

    SciTech Connect

    Takahashi, Satoko; Ohashi, Nagayoshi; Bourke, Tyler L.

    2013-09-01

    Studying the physical conditions of very low luminosity objects (VeLLOs; L{sub bol} < 0.1 L{sub Sun }) is important for understanding the earliest evolutionary stage of protostars and brown dwarfs. We report interferometric observations of the VeLLO L1521F-IRS, in {sup 12}CO (2-1) line emission and the 1.3 mm continuum emission, using the Submillimeter Array. With the {sup 12}CO (2-1) high-resolution observations, we have spatially resolved a compact but poorly collimated molecular outflow associated with L1521F-IRS for the first time. The blueshifted and redshifted lobes are aligned along the east and west side of L1521F-IRS with a lobe size of Almost-Equal-To 1000 AU. The estimated outflow mass, maximum outflow velocity, and outflow force are (9.0-80) Multiplication-Sign 10{sup -4} M{sub Sun }, 7.2 km s{sup -1}, and (7.4-66) Multiplication-Sign 10{sup -7} M{sub Sun} km s{sup -1} yr{sup -1}, respectively. The estimated outflow parameters such as size, mass, and momentum rate are similar to values derived for other VeLLOs, and are located at the lower end of values compared to previously studied outflows associated with low- to high-mass star-forming regions. Low-velocity less collimated (1.5 km s{sup -1}/1200 AU) and higher-velocity compact (4.0 km s{sup -1}/920 AU) outflow components are suggested by the data. These velocity structures are not consistent with those expected in the jet-driven or wind-driven outflow models, perhaps suggesting a remnant outflow from the first hydrostatic core as well as an undeveloped outflow from the protostar. Detection of an infrared source and compact millimeter continuum emission suggests the presence of the protostar, while its low bolometric luminosity (0.034-0.07 L{sub Sun }) and small outflow suggests that L1521F is in the earliest protostellar stage (<10{sup 4} yr) and contains a substellar mass object. The bolometric (or internal) luminosity of L1521F-IRS suggests that the current mass accretion rate is an order of

  6. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxaccretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  7. Maria Goeppert-Mayer Award Talk: Formation and Evolution of Compact Objects in Binary Systems

    NASA Astrophysics Data System (ADS)

    Kalogera, Vicky

    2008-04-01

    Ever since their discovery, first as X-ray sources and later as radio pulsars, binary stellar systems harboring neutron stars or black holes have been pivotal in our efforts to understand the formation and evolution of these most compact objects and the implications for gravitational wave searches. I will review some recent surprising results linking the formation of neutron stars and black holes. I will also discuss how studies of double compact objects can help uncover the origin of short gamma-ray bursts and assess the prospects for gravitational wave detections in the near future.

  8. Micro-tidal Disruption Events by Stellar Compact Objects and the Production of Ultra-long GRBs

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.; Li, Zhuo; Lombardi, James C., Jr.; Milcarek, Stephen R., Jr.

    2016-06-01

    We explore full/partial tidal disruption events (TDEs) of stars/planets by stellar compact objects (black holes (BHs) or neutron stars (NSs)), which we term micro-TDEs. Disruption of a star/planet with mass M ⋆ may lead to the formation of a debris disk around the BH/NS. Efficient accretion of a fraction ({f}{acc}=0.1 of the debris may then give rise to bright, energetic, long (103–104 s), X-ray/gamma-ray flares, with total energies of up to ({f}{acc}/0.1)× {10}52 ({M}\\star /0.6 {M}ȯ ) erg, possibly resembling ultra-long gamma-ray bursts (GRBs)/X-ray flashes (XRFs). The energy of such flares depends on the poorly constrained accretion processes. Significantly fainter flares might be produced if most of the disk mass is blown away through strong outflows. We suggest three dynamical origins for such disruptions. In the first, a star/planet is tidally disrupted following a close random encounter with a BH/NS in a dense cluster. We estimate the BH (NS) micro-TDE rates from this scenario to be a few × {10}-6 (a few × {10}-7) {{{yr}}}-1 per Milky Way galaxy. Another scenario involves the interaction of wide companions due to perturbations by stars in the field, likely producing comparable but lower rates. Finally, a third scenario involves a BH/NS that gains a natal velocity kick at birth, leading to a close encounter with a binary companion and the tidal disruption of that companion. Such events could be associated with a supernova, or even with a preceding GRB/XRF event, and would likely occur hours to days after the prompt explosion; the rates of such events could be larger than those obtained from the other scenarios, depending on the preceding complex binary stellar evolution.

  9. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  10. On the Nature of the Compact Object in SS 433: Observational Evidence of X-ray Photon Index Saturation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Titarchuk, Lev

    2010-10-01

    We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a "blackbody-like (BB)" component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high-temperature BB" bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent & Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M_{{bh}}≳ 2 solar masses, using the scaling method using BHC GX 339 - 4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig & Gies, who find that Mx = (4.3 ± 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433.

  11. ON THE NATURE OF THE COMPACT OBJECT IN SS 433: OBSERVATIONAL EVIDENCE OF X-RAY PHOTON INDEX SATURATION

    SciTech Connect

    Seifina, Elena

    2010-10-10

    We present an analysis of the X-ray spectral properties observed from the black hole candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Timing Explorer data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes an X-ray spectral transition from the low hard state to the intermediate state (IS). We show that the X-ray broadband energy spectra during all spectral states are well fitted by a sum of the so-called bulk motion Comptonization (BMC) component and by two (broad and narrow) Gaussians for the continuum and line emissions, respectively. In addition to these spectral model components, we also find a strong feature that we identify as a 'blackbody-like (BB)' component in which the color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the 'high-temperature BB' bump lead us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact, this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index versus mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of the black hole (BH) mass of the compact object in SS 433, M{sub bh{approx}}>2 solar masses, using the scaling method using BHC GX 339 - 4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with the recent BH mass measurement using the radial velocity measurements of the binary system by Hillwig and Gies, who find that M{sub x} = (4.3 {+-} 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, as in a number of other BH candidates, is strong observational evidence for the presence of a BH in SS 433.

  12. On the Nature of the Compact Object in SS 433. Observational Evidence of X-Ray Photon Index Saturation

    NASA Technical Reports Server (NTRS)

    Seifina, Elena; Titarchuk, Lev

    2010-01-01

    We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.

  13. Bidirectional motion observed in the compact symmetric object 1946+708.

    PubMed Central

    Taylor, G B; Vermeulen, R C; Pearson, T J

    1995-01-01

    We present the first direct measurements of bidirectional motions in an extragalactic radio jet. The radio source 1946+708 is a compact symmetric object with striking S-symmetry identified with a galaxy at a redshift of 0.101. From observations 2 years apart we have determined the velocities of four compact components in the jet, the fastest of which has an apparent velocity of 1.09 h-1c. By pairing up the components, assuming they were simultaneously ejected in opposite directions, we derive a 1 lower limit on the Hubble constant, H0 > 42 km.s-1.Mpc-1. PMID:11607603

  14. NuSTAR and XMM-Newton Observations of 1E1743.1-2843: Indications of a Neutron Star LMXB Nature of the Compact Object

    NASA Astrophysics Data System (ADS)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; Krivonos, Roman A.; Rahoui, Farid; Stern, Daniel; Tomsick, John A.; Zhang, Shuo; Zhang, William W.

    2016-05-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with {kT}∼ 1.8 {keV} emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with {{kT}}e∼ 4.6 {keV}. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 mHz–49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a {K}α line from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density ({N}{{H}}∼ 1.6× {10}23 {{cm}}-2).

  15. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  16. Casimir potential of a compact object enclosed by a spherical cavity

    SciTech Connect

    Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.

    2010-11-15

    We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic spheres both outside and within one another.

  17. Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.

    2015-05-01

    We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.

  18. Exploring the Physics of Compact Objects with Gravitational-Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    2016-03-01

    The Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) has recently completed its first observing run. Future observations of gravitational waves by LIGO will open a new field in astronomy. The gravitational waves radiated by binaries containing neutron stars and/or black holes contain information about strong field gravity and the properties of dense matter. In this talk I will discuss the nuclear and gravitational physics that can be learned from the observation of compact-object mergers

  19. SUBARU AND GEMINI OBSERVATIONS OF SS 433: NEW CONSTRAINT ON THE MASS OF THE COMPACT OBJECT

    SciTech Connect

    Kubota, K.; Ueda, Y.; Fabrika, S.; Barsukova, E. A.; Sholukhova, O.; Medvedev, A.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 A. This region is selected to avoid 'strong' absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig and Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 +- 3.8 km s{sup -1} with a systemic velocity of 59.2 +- 2.5 km s{sup -1}. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M{sub O} = 12.4 +- 1.9 M{sub sun} and M{sub X} = 4.3 +- 0.6 M{sub sun}, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 +- 5 km s{sup -1} in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M{sub O} = 10.4{sup +2.3}{sub -1.9} M{sub sun} and M{sub X} = 2.5{sup +0.7}{sub -0.6} M{sub sun}. Our final constraint, 1.9 M{sub sun} <=M{sub X}<= 4.9 M{sub sun}, indicates that the compact object in SS 433 is most likely a

  20. X-ray diagnostics of chemical composition of the accretion disc and donor star in ultra-compact X-ray binaries

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Gilfanov, Marat; Bildsten, Lars

    2013-06-01

    Non-solar composition of the donor star in ultra-compact X-ray binaries (UCXBs) may have a pronounced effect on the fluorescent lines appearing in their spectra due to reprocessing of primary radiation by the accretion disc and the white dwarf surface. We show that the most dramatic and easily observable consequence of the anomalous C/O abundance is the significant, by more than an order of magnitude, attenuation of the Kα line of iron. It is caused by screening of the presence of iron by oxygen - in the C/O-dominated material the main interaction process for an E ≈ 7 keV photon is absorption by oxygen rather than by iron, contrary to the solar composition case. Ionization of oxygen at high mass accretion rates adds a luminosity dependence to this behaviour - the iron line is significantly suppressed only at low luminosity, log (LX) ≲ 37-37.5, and should recover its nominal strength at higher luminosity. The increase of the equivalent width of the Kα lines of carbon and oxygen, on the other hand, saturates at rather moderate values. Screening by He is less important, due to its low ionization threshold and because in the accretion disc it is mostly ionized. Consequently, in the case of the He-rich donor, the iron line strength remains close to its nominal value, determined by the iron abundance in the accretion disc. This opens the possibility of constraining the nature of donor stars in UCXBs by means of X-ray spectroscopy with moderate energy resolution.

  1. Persistent Patterns in Accretion Disks

    SciTech Connect

    Amin, Mustafa A.; Frolov, Andrei V.; /KIPAC, Menlo Park

    2006-04-03

    We present a set of new characteristic frequencies associated with accretion disks around compact objects. These frequencies arise from persistent rotating patterns in the disk that are finite in radial extent and driven purely by the gravity of the central body. Their existence depends on general relativistic corrections to orbital motion and, if observed, could be used to probe the strong gravity region around a black hole. We also discuss a possible connection to the puzzle of quasi-periodic oscillations.

  2. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  3. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    SciTech Connect

    Pokrovsky, Yu. E.

    2015-12-15

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  4. First spectroscopy of a short-hard GRB: the environment of a compact object merger

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, Antonio; Thöne, Christina C.; Rowllinson, Antonia; Benito, Rubén García; Levan, Andrew J.; Gorosabel, Javier; Goldoni, Paolo; Schulze, Steve

    2015-03-01

    Short gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigo et al. (2014).

  5. TRANSITION FROM REGULAR TO CHAOTIC CIRCULATION IN MAGNETIZED CORONAE NEAR COMPACT OBJECTS

    SciTech Connect

    Kopacek, O.; Karas, V.; Kovar, J.; StuchlIk, Z.

    2010-10-20

    Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field. We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness. To characterize the motion, we construct the recurrence plots (RPs) and we compare them with Poincare surfaces of section. We describe the RPs in terms of the recurrence quantification analysis, which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently and provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black hole spin in setting the chaos is more complicated than initially thought.

  6. Subaru And Gemini Observations Of SS 433: New Constraint On The Mass Of The Compact Object

    NASA Astrophysics Data System (ADS)

    Kubota, K.; Ueda, Y.; Fabrika, S.; Medvedev, A.; Barsukova, E. A.; Sholukhova, O.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Å. This region is selected to avoid "strong" absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig & Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 ± 3.8 km s-1 with a systemic velocity of 59.2 ± 2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M O = 12.4 ± 1.9 M sun and M X = 4.3 ± 0.6 M sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 ± 5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M O = 10.4+2.3 -1.9 M sun and M X = 2.5+0.7 -0.6 M sun. Our final constraint, 1.9 M sun <=M X<= 4.9 M sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly

  7. Gravitational-wave radiation from double compact objects with eLISA in the Galaxy

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhong; Zhang, Yu

    2014-03-01

    The phase of inspiral of double compact objects (DCOs: NS + WD, NS + NS, BH + NS, and BH + BH binaries) in the disk field population of the Galaxy provides a potential source in the frequency range from 10-4 to 0.1 Hz, which can be detected by the European New Gravitational Observatory (NGO: eLISA is derived from the previous LISA proposal) project. In this frequency range, much stronger gravitational wave (GW) radiation can be obtained from DCO sources because they possess more mass than other compact binaries (e.g., close double white dwarfs). In this study, we aim to calculate the gravitational wave signals from the resolvable DCO sources in the Galaxy using a binary population synthesis approach, and determine physical properties of these binaries using Monte Carlo simulations. Combining the sensitivity curve of the eLISA detector and a confusion-limited noise floor of close double white dwarfs, we find that only a handful of DCO sources can be detected by the eLISA detector. The detectable number of DCO sources reaches 160; in the context of low-frequency eLISA observations we find that the number of NS + WD, NS + NS, BH + NS, and BH + BH objects are 132, 16, 3, and 6, respectively.

  8. Insights into stellar and binary evolution from gravitational-wave observations of merging compact objects

    NASA Astrophysics Data System (ADS)

    Stevenson, Simon

    2016-07-01

    Advanced LIGO finished its first observing run (O1) at the begining of 2016, at a sensitivity ~3 times that of the initial LIGO detectors. This increased sensitivity makes the possibility of detecting gravitational-waves a realistic prospect over the next few years. One of the most promising sources for advanced gravitational-wave detectors is the merger of two compact objects; neutron stars or black holes. These objects are formed as the end point of the evolution of massive stars in close binaries. There remain many poorly understood processes in the lives of massive stars and the evolution of close binary systems. These processes include the distribution of kicks received by black holes at birth, the amount of angular momentum lost from a system during a mass transfer episode, and the common envelope event. One way of attempting to understand these processes is to attempt to constrain them observationally using eventual gravitational-wave observations of compact binary mergers. Here we present recent work on this front.

  9. Universal charge-radius relation for subatomic and astrophysical compact objects.

    PubMed

    Madsen, Jes

    2008-04-18

    Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature. PMID:18518093

  10. MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES

    SciTech Connect

    Mediavilla, E.; Guerras, E.; Canovas, H.; Oscoz, A.; Falco, E.; Motta, V.; Jean, C.; Mosquera, A. M.

    2009-12-01

    We estimate the fraction of mass that is composed of compact objects in gravitational lens galaxies. This study is based on microlensing measurements (obtained from the literature) of a sample of 29 quasar image pairs seen through 20 lens galaxies. We determine the baseline for no microlensing magnification between two images from the ratios of emission line fluxes. Relative to this baseline, the ratio between the continua of the two images gives the difference in microlensing magnification. The histogram of observed microlensing events peaks close to no magnification and is concentrated below 0.6 mag, although two events of high magnification, DELTAm approx 1.5, are also present. We study the likelihood of the microlensing measurements using frequency distributions obtained from simulated microlensing magnification maps for different values of the fraction of mass in compact objects, alpha. The concentration of microlensing measurements close to DELTAm approx 0 can be explained only by simulations corresponding to very low values of alpha (10% or less). A maximum likelihood test yields alpha = 0.05{sup +0.09}{sub -0.03} (90% confidence interval) for a quasar continuum source of intrinsic size r{sub s{sub 0}}approx2.6x10{sup 15} cm. This estimate is valid in the 0.1-10 M {sub sun} range of microlens masses. We study the dependence of the estimate of alpha with r{sub s{sub 0}}, and find that alpha approx< 0.1 for r{sub s{sub 0}}approx<1.3x10{sup 16} cm. High values of alpha are possible only for source sizes much larger than commonly expected (r{sub s{sub 0}}>>2.6x10{sup 16} cm). Regarding the current controversy about Milky Way/LMC and M31 microlensing studies, our work supports the hypothesis of a very low content in MACHOS (Massive Compact Halo Objects). In fact, according to our study, quasar microlensing probably arises from the normal star populations of lens galaxies and there is no statistical evidence for MACHOS in the dark halos.

  11. A ceramic/slag interface as an analog for accretion of hot refractory objects and rim formation

    NASA Technical Reports Server (NTRS)

    Paque, J. M.; Bunch, T. E.

    1994-01-01

    Refractory inclusions or Ca-Al-rich inclusions (CAI's) from carbonaceous chondrites span a wide range of bulk compositions that cannot be explained either by segregation from a gas of solar composition at different points in the condensation sequence or by fractional crystallization from a parent liquid. CAI's are commonly rimmed by Wark-Lovering (W-L) rims, a series of nearly monomineralic layers that have been a source of controversy since the variety of rim sequences occurring on different types of CAI's from Allende were described. The origin of these distinctive features has not yet been resolved, with proponents of accretion, condensation, flash heating, ablation, evaporation, etc. Rims have generated considerable interest because they potentially contain clues to conditions experienced by CAI's after the formation of the inclusion and prior to incorporation into the parent body. Ceramic bricks in contact with hot steel slag may produce reaction products in rimlike fashion similar to those found in CAI's. The similarity between the mineralogy of blast furnace slags and CAI's has long been recognized, with both containing unusual phases not found in terrestrial materials. We provide here a comparison between a ceramic brick/slag multiple-layered interface and a multiple-layered interface between a melilite-perovskite object and a melilite-spinel object in the Allende inclusion USNM 4691-1. These results have implications in interpreting the origin of rims and the textures and compositions of CAI's.

  12. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  13. Compact symmetric objects and supermassive binary black holes in the VLBA Imaging and Polarimetry Survey

    NASA Astrophysics Data System (ADS)

    Tremblay, S. E.; Taylor, G. B.; Ortiz, A. A.; Tremblay, C. D.; Helmboldt, J. F.; Romani, R. W.

    2016-06-01

    We present multifrequency Very Long Baseline Array (VLBA) follow-up observations of VLBA Imaging and Polarimetry Survey sources identified as likely compact symmetric objects (CSOs) or supermassive binary black holes (SBBHs). We also present new spectroscopic redshifts for 11 sources observed with the Hobby-Eberly Telescope. While no new SBBHs can be confirmed from these observations, we have identified 24 CSOs in the sample, 15 of which are newly designated, and refuted 52 candidates leaving 33 unconfirmed candidates. This is the first large uniform sample of CSOs which can be used to elicit some of the general properties of these sources, including morphological evolution and environmental interaction. We have detected polarized emission from two of these CSOs the properties of which are consistent with active galactic nuclei unification schemes.

  14. Exploring the Environs of Compact Symmetric Objects in the Nuclei of Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Taylor, G. B.; Xu, W.; Readhead, A. C. S.; Pearson, T. J.

    1994-12-01

    Two large Caltech--Jodrell Bank VLBI surveys at 5 GHz have recently been completed (CJ1 -- Xu et al. 1994, ApJS, submitted; CJ2 -- Taylor et al. 1994, ApJS, in press; Henstock et al. 1994, ApJS, submitted). Together with the Pearson--Readhead survey (1988, ApJ, 328, 114) these provide ~ 1 mas resolution images for a flux limited sample of 321 sources. One of the most interesting findings of these surveys was the discovery of three confirmed compact symmetric objects (CSOs) and forty additional candidate CSOs. These are compact (size ~ 100 pc) sources with emission on both sides of the central engine that is thought to be free of beaming effects. To account for their small sizes the CSOs must be either young or severely confined by a dense neutral medium. If these objects are young (ages ~ 3000 yrs) and growing at rates typical of equally luminous, but 1000 times larger, radio galaxies like Cygnus A then they must be a common phase in the evolution of galaxies, or perhaps a recurrent one. Alternatively, if the CSOs are strongly confined and longer lived then the large amount of material required for their confinement should have several observational consequences -- large amounts of neutral and molecular gas, high induced Faraday rotations, and possibly severe reddening and distortions of the starlight from the host galaxy. In an effort to discriminate between the above models we have performed deep infrared imaging of a number of CSOs and CSO candidates. We also report on high-dynamic range imaging with the VLA to look for large Faraday rotation measures, or for extended components that might be the result of a previous active phase. We have also observed one nearby CSO candidate in CO 1-0 with the Owens Valley millimeter array to search for molecular gas.

  15. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    SciTech Connect

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets of ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)

  16. Hawaii 167: A compact absorption-line object at z = 2.35

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Songaila, A.; Hu, E. M.; Egami, E.; Huang, J.-S.; Pickles, A. J.; Ridgway, S. E.; Wainscoat, R. J.; Weymann, R. J.

    1994-01-01

    During the course of the Hawaii K-band (2.1 micrometer) survey we have detected a compact object, Hawaii 167, lying at a redshift of 2.33, in which are seen both low- and high-ionization absorption lines. In the near-infrared we see broad H alpha emission at a redshift of 2.35 but do not detect the other Balmer lines, (O II) lambda 3727, or (O III) lambda 5007. The absence of strong Mg II or C IV emission in the rest ultraviolet suggests that, at these wavelengths, we may be seeing a poststarburst galaxy rather than a quasar. Indeed, this class of object may be common enough to represent a major episode of galaxy formation, possibly the formation of the spheroids. However, Q0059-2735, the most extreme member of the class of Mg II absorbing broad absorption line quasars, is very similar to the present object, and there may be an evolutionary sequence or some other close connection between Hawaii 167 and the broad absorption line quasars.

  17. New code for equilibriums and quasiequilibrium initial data of compact objects. III. Axisymmetric and triaxial rotating stars

    NASA Astrophysics Data System (ADS)

    Uryū, Kōji; Tsokaros, Antonios; Galeazzi, Filippo; Hotta, Hideya; Sugimura, Misa; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-02-01

    We introduce new code for stationary and axisymmetric equilibriums, as well as for triaxial quasiequilibrium initial data, of single rotating relativistic stars. The new code is developed as a part of our versatile initial data code for compact objects, Compact Object CALculator (cocal). In computing strong gravitational fields, the waveless formulation is incorporated into the cocal code on top of the previously developed Isenberg-Wilson-Mathews formulation (conformally flat thin-sandwich formulation). Also introduced is a new differential rotation law that contains two parameters to control an angular velocity profile and a transition from uniform to differential rotation. We present convergence tests and solution sequences for both uniformly and differentially rotating equilibriums of stationary axisymmetric compact stars, as well as for quasiequilibrium initial data of uniformly rotating triaxial (nonaxisymmetric) compact stars. We also show comparisons of uniformly rotating axisymmetric solutions computed with three different codes: cocal, lorene, and the RNS code.

  18. Difficulties in explaining the cosmic photon excess with compact composite object dark matter

    NASA Astrophysics Data System (ADS)

    Cumberbatch, Daniel T.; Starkman, Glenn D.; Silk, Joseph

    2008-03-01

    It has been suggested that dark matter particles are strongly interacting, composite, macroscopically large objects made of well known light quarks (or antiquarks). In doing so it is argued that these compact composite objects (CCOs) provide natural explanations of observed data, such as the 511 keV line from the bulge of our galaxy observed by INTEGRAL, and the excess of diffuse gamma rays in the 1 20 MeV band observed by COMPTEL. Here we argue that the atmospheres of positrons that surround CCOs composed of di-antiquark pairs in the favored color-flavor-locked superconducting state are sufficiently dense as to place stringent limits on the penetration depth of interstellar electrons incident upon them, resulting in an extreme suppression of previously estimated rates of positronium formation, and hence in the flux of 511 keV photons resulting from their subsequent decays. The associated rate of direct electron-positron annihilations, which yield the MeV photons postulated to explain the 1 20 MeV photon excess, is also suppressed. We also discuss how even if a fraction of positrons somehow penetrated the surface of the CCOs, the extremely strong electric fields generated from the bulk antiquark matter would result in the destruction of positronium atoms long before they decay.

  19. Asymmetric Accretion Flows within a Common Envelope

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  20. Radio continuum emission and H I gas accretion in the NGC 5903/5898 compact group of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Mhaskey, Mukul

    Striking new details of radio emission are unveiled from the 2nd Data Release of the ongoing TIFR.GMRT.SKY.SURVEY (TGSS) which provides images with a resolution of 24'' × 18'' and a typical rms noise of 5 mJy at 150 MHz. Previous radio observations of this compact triplet of galaxies include images at higher frequencies of the radio continuum as well as H I emission, the latter showing huge H I trails originating from the vicinity of NGC 5903 where H I is in a kinematically disturbed state. The TGSS 150 MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf SO galaxy ESO514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum (alpha -1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the H I trails. Another noteworthy aspect of this triplet of early-type galaxies highlighted by the present study is that both its radio loud members, namely NGC 5903 and ESO514-G003, are also the only galaxies that are seen to be connected to an H I filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.

  1. Von Zeipel's theorem for a magnetized circular flow around a compact object

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Pugliese, D.

    2015-04-01

    We analyze a class of physical properties, forming the content of the so-called von Zeipel theorem, which characterizes stationary, axisymmetric, non-selfgravitating perfect fluids in circular motion in the gravitational field of a compact object. We consider the extension of the theorem to the magnetohydrodynamic regime, under the assumption of an infinitely conductive fluid, both in the Newtonian and in the relativistic framework. When the magnetic field is toroidal, the conditions required by the theorem are equivalent to integrability conditions, as it is the case for purely hydrodynamic flows. When the magnetic field is poloidal, the analysis for the relativistic regime is substantially different with respect to the Newtonian case and additional constraints, in the form of PDEs, must be imposed on the magnetic field in order to guarantee that the angular velocity depends only on the specific angular momentum . In order to deduce such physical constraints, it is crucial to adopt special coordinates, which are adapted to the surfaces. The physical significance of these results is briefly discussed.

  2. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit

    SciTech Connect

    Han Wenbiao

    2010-10-15

    The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.

  3. HARD X-RAY FLUX UPPER LIMITS OF CENTRAL COMPACT OBJECTS IN SUPERNOVA REMNANTS

    SciTech Connect

    Erdeve, I.; Kalemci, E.; Alpar, M. A.

    2009-05-10

    We searched for hard X-ray (20-300 keV) emission from nine central compact objects (CCOs) 1E 1207.4-5209, 1WGA J1713-3949, J082157.5-430017, J085201.4-461753, J160103.1-513353, J1613483-5055, J181852.0-150213, J185238.6+004020, and J232327.9+584843 with the International Gamma-Ray Astrophysics Laboratory observatory. We applied spectral imaging analysis and did not detect any of the sources with luminosity upper limits in the range of 10{sup 33}-10{sup 34} erg s{sup -1} in the 20-75 keV band. For nearby CCOs (less than 4 kpc), the upper-limit luminosities are an order of magnitude lower than the measured persistent hard X-ray luminosities of anomalous X-ray pulsars. This may indicate that the CCOs are low magnetic field systems with fallback disks around them.

  4. VLBA OBSERVATIONS OF H I IN THE ARCHETYPE COMPACT SYMMETRIC OBJECT B2352+495

    SciTech Connect

    Araya, E. D.; Rodriguez, C.; Pihlstroem, Y.; Taylor, G. B.; Tremblay, S.; Vermeulen, R. C.

    2010-01-15

    B2352+495 is a prototypical example of a compact symmetric object. It has a double radio lobe symmetrically located with respect to a central flat-spectrum radio core (the location of the active galactic nucleus) and has a physical extent of less than 200 pc. In this work, we report Very Long Baseline Array observation of 21 cm H I absorption toward B2352+495 to investigate the properties of this remarkable radio source, in particular, to explore whether the radio emission can be confined by circumnuclear material (frustration scenario) or whether the source is likely to be young. We confirmed the two H I absorption features previously detected toward B2352+495-a broad line nearly centered at the systemic velocity of the galaxy and a narrow redshifted component. The atomic gas from the broad absorption component is likely associated with circumnuclear material, consistent with the current paradigm of clumpy H I distribution in toroidal structures around supermassive black holes.

  5. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    SciTech Connect

    Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.

    2014-09-10

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.

  6. Magnetically Driven Jets from Accretion Disks. I. Steady Solutions and Application to Jets/Winds in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro; Shibata, Kazunari

    1997-01-01

    We solve one-dimensional steady and axisymmetric magnetohydrodynamic (MHD) equations to study basic properties of astrophysical jets from accretion disks. Assuming the configuration of the poloidal magnetic field, we solve for a wide range of parameters of the poloidal magnetic field strength in the disk. We include a thermal energy in the solution, although the jet is mainly accelerated by the magnetic force, so that we are able to obtain the mass flux of the jet and physical quantities, such as temperature, in the disk. We find that the mass flux (Ṁ) depends on the poloidal magnetic field strength of the disk (Bp0) when the toroidal component of the magnetic field (Bφ0) is dominant near the disk surface, although it is independent of the magnetic field when the poloidal component is dominant there:Ṁ~const,if |Bφ/Bp|0<<1,Bp0,if |Bφ/Bp|0>>1. Since Michel's minimum energy solution [v∞~(B2p0/Ṁ)1/3] is almost satisfied in the magnetically driven jets, the terminal velocity (v∞) depends on Bp0 as v∞~B1/3p0 when | Bφ/Bp |0 >> 1, and as v∞~B2/3p0 when | Bφ/Bp |0 << 1. When the toroidal component of the magnetic field is dominant near the disk surface (| Bφ/Bp |0 >> 1), the acceleration mainly takes place after the flow speed exceeds the Alfvén speed. This means that the magnetic pressure largely contributes to the acceleration of these jets. We also study the dependence of mass flux on the other parameters, such as inclination angle of the poloidal field, the rotational velocity of the disk, and the r-dependence of the poloidal magnetic field strength along the field line, where r is the distance from the axis. We discuss the application of these models, i.e., the MHD jets from accretion disks, to jets/winds observed in young stellar objects (such as optical jets, T Tauri winds, and fast neutral winds). The mass-loss rates observed in these jets/winds will constrain the physical quantities in the disks. When the mass-loss rate is Ṁ~10-8 M⊙ yr-1

  7. DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Mandel, Ilya; O'Shaughnessy, Richard

    2012-11-01

    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{sup )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.

  8. New constraints on the cooling of the central compact object in CAS A

    SciTech Connect

    Posselt, B.; Pavlov, G. G.; Suleimanov, V.; Kargaltsev, O.

    2013-12-20

    To examine the previously claimed fast cooling of the Central Compact Object (CCO) in the Cas A supernova remnant (SNR), we analyzed two Chandra observations of this CCO, taken in a setup minimizing instrumental spectral distortions. We fit the two CCO X-ray spectra from 2006 and 2012 with hydrogen and carbon neutron star atmosphere models. The temperature and flux changes in the 5.5 yr between the two epochs depend on the adopted constraints on the fitting parameters and the uncertainties of the effective area calibrations. If we allow a change of the equivalent emitting region size, R {sub Em}, the effective temperature remains essentially the same. If R {sub Em} is held constant, the best-fit temperature change is negative, but its statistical significance ranges from 0.8σ to 2.5σ, depending on the model. If we assume that the optical depth of the ACIS filter contaminant in 2012 was ±10% different from its default calibration value, the significance of the temperature drop becomes 0.8σ-3.1σ, for the carbon atmospheres with constant R {sub Em}. Thus, we do not see a statistically significant temperature drop in our data, but the involved uncertainties are too large to firmly exclude the previously reported fast cooling. Our analysis indicate a decrease of 4%-6% (1.9σ-2.9σ significance) for the absorbed flux in the energy range 0.6-6 keV between 2006 and 2012, most prominent in the ≈1.4-1.8 keV energy range. It could be caused by unaccounted changes of the detector response or contributions from unresolved SNR material along the line of sight to the CCO.

  9. MHD of accretion-disk flows

    NASA Astrophysics Data System (ADS)

    Yankova, Krasimira

    2015-01-01

    Accretion is one of the most important problems of astrophysics concerning the transfer of matter and the transformation of energy into space. Process represents a falling of the substance on a cosmic object from the surrounding area and is a powerful gravitational mechanism for the production of radiation. Accretion disc effectively converts the mass of the substance by viscous friction and released potential energy transformed into radiation by particle collisions. Accretion onto compact object shows high energy efficiency and temporal variability in a broad class of observational data in all ranges. In the disks of these objects are developed a series instabilities and structures that govern the distribution of the energy. They are expressed in many variety non-stationary phenomena that we observe. That is why we propose generalized model of magnetized accretion disk with advection, which preserves the nonlinearity of the problem. We study interaction of the plasmas flow with the magnetic field, and how this affects the self-organizing disk. The aim of the work is to describe the accretion flow in detail, in his quality of the open astrophysical system, to investigate the evolution and to reveal the mechanisms of the structuring the disk-corona system for to interpret correctly the high energy behavior of such sources.

  10. Radio continuum emission and H I gas accretion in the NGC 5903/5898 compact group of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gopal-Krishna; Mhaskey, Mukul; Wiita, Paul J.; Sirothia, S. K.; Kantharia, N. G.; Ishwara-Chandra, C. H.

    2012-06-01

    We discuss the nature of the multicomponent radio continuum and H I emission associated with the nearby galaxy group comprised of two dominant ellipticals, NGC 5898 and NGC 5903, and a dwarf lenticular ESO 514-G003. Striking new details of radio emission are unveiled from the second Data Release of the ongoing TIFR GMRT Sky Survey (TGSS) which provides images with a resolution of ˜24 × 18 arcsec2 and a typical rms noise of 5 mJy at 150 MHz. Previous radio observations of this compact triplet of galaxies include images at higher frequencies of the radio continuum as well as H I emission, the latter showing huge H I trails originating from the vicinity of NGC 5903 where H I is in a kinematically disturbed state. The TGSS 150-MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf S0 galaxy ESO 514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum (α˜-1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the H I trails. Another noteworthy aspect of this triplet of early-type galaxies highlighted by the present study is that both its radio-loud members, namely NGC 5903 and ESO 514-G003, are also the only galaxies that are seen to be connected to an H I filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.

  11. HST observations of the nebula around the central compact object in the Vela Jr. supernova remnant

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; de Luca, A.; Pellizzoni, A.

    2009-12-01

    Context: A handful of young (a few thousand years) supernova remnants (SNRs) host point-like X-ray sources, dubbed central compact objects (CCOs), which are thought to be radio-silent isolated neutron stars formed by the supernova explosion. So far, no CCO has been firmly detected at other wavelengths. However, ground-based observation in the Hα band detected a nebula around CXO J085201.4-461753, the CCO in the Vela Jr. SNR. The nebula has also been detected in deep R-band observations performed with the Very Large Telescope (VLT). Interestingly, both its extension and its flux in the R band are consistent with those measured in Hα, suggesting that the nebula spectrum is dominated by line emission, possibly produced by a velocity-driven bow-shock in the interstellar medium (ISM) or by its photo-ionisation from the neutron star. Aims: The aim of this work is to resolve the morphology of the Hα nebula around the CCO to verify the proposed interpretations. Methods: We performed high-resolution imaging observations of the nebula with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST) through the 656N filter, almost exactly centred on the rest wavelength of the Hα line. Results: Surprisingly enough, we did not detect the nebula in our WFPC2 image down to a 3 σ flux limit of ~3 × 10-15 erg cm-2 s-1. This limit is a factor of 10 fainter than the nebula flux measured in the discovery ground-based observations which were, however, performed with redder and broader Hα filters. Conclusions: The non-detection of the nebula in the narrower and bluer WFPC2 656N filter suggests that the peak of the emission might actually be at longer wavelengths. One possibility, compatible with the bow-shock scenario only, is that the Hα line is red-shifted by ~10-60 Å due to the neutron star motion with a radial velocity 450 ⪉ Vr ⪉ 2700 km s-1. The other possibility is that the nebula is a knot of [NII] emission (λ = 6583.6 Å) unrelated to CXO J085201

  12. The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions

    NASA Astrophysics Data System (ADS)

    Rosswog, S.; Piran, T.; Nakar, E.

    2013-04-01

    We explore the multimessenger signatures of encounters between two neutron stars (ns2) and between a neutron star and a stellar mass black hole (nsbh). We focus on the differences between gravitational-wave-driven binary mergers and dynamical collisions that occur, for example, in globular clusters. Our discussion is based on Newtonian hydrodynamics simulations that incorporate a nuclear equation of state and a multiflavour neutrino treatment. For both types of encounters we compare the gravitational wave and neutrino emission properties. We also calculate the rates at which nearly unbound mass is delivered back to the central remnant in a ballistic-fallback-plus-viscous-disc model and we analyse the properties of the dynamically ejected matter. Last but not least we address the electromagnetic transients that accompany each type of encounter. We find that dynamical collisions are at least as promising as binary mergers for producing (short) gamma-ray bursts, but they also share the same possible caveats in terms of baryonic pollution. All encounter remnants produce peak neutrino luminosities of at least ˜1053 erg s-1, some of the collision cases exceed this value by more than an order of magnitude. The canonical ns2 merger case ejects more than 1 per cent of a solar mass of extremely neutron-rich (Ye ˜ 0.03) material, an amount that is consistent with double neutron star mergers being a major source of r-process in the galaxy. nsbh collisions eject very large amounts of matter (˜0.15 M⊙) which seriously constrains their admissible occurrence rates. The compact object collision rate (sum of ns2 and nsbh) must therefore be less, likely much less, than 10 per cent of the ns2 merger rate. The radioactively decaying ejecta produce optical-ultraviolet `macronova' which, for the canonical merger case, peak after ˜0.4 d with a luminosity of ˜5 × 1041 erg s-1. ns2 (nsbh) collisions reach up to two (four) times larger peak luminosities. The dynamic ejecta deposit a

  13. A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Kalogera, Vassiliki; Bulik, Tomasz

    2002-06-01

    A new generation of ground-based interferometric detectors for gravitational waves is currently under construction or has entered the commissioning phase (Laser Interferometer Gravitational-wave Observatory [LIGO], VIRGO, GEO600, TAMA300). The purpose of these detectors is to observe gravitational waves from astrophysical sources and help improve our understanding of the source origin and physical properties. In this paper we study the most promising candidate sources for these detectors: inspiraling double compact objects. We use population synthesis methods to calculate the properties and coalescence rates of compact object binaries: double neutron stars, black hole-neutron star systems, and double black holes. We also examine the formation channels available to double compact object binaries. We explicitly account for the evolution of low-mass helium stars and investigate the possibility of common-envelope evolution involving helium stars as well as two evolved stars. As a result we identify a significant number of new formation channels for double neutron stars, in particular, leading to populations with very distinct properties. We discuss the theoretical and observational implications of such populations, but we also note the need for hydrodynamical calculations to settle the question of whether such common-envelope evolution is possible. We also present and discuss the physical properties of compact object binaries and identify a number of robust, qualitative features as well as their origin. Using the calculated coalescence rates we compare our results to earlier studies and derive expected detection rates for LIGO. We find that our most optimistic estimate for the first LIGO detectors reach a couple of events per year and our most pessimistic estimate for advanced LIGO detectors exceed ~=10 events per year.

  14. Anti-magnetars: Revealing the Pulsar Properties of Central Compact Objects in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric

    This proposal is to fund the analysis of large data sets that we were awarded in XMM- Newton AO9 to search for the pulsation periods and measure the spin-down rates of Central Compact Objects (CCOs) in supernova remnants (SNRs). These observations include a Large Program (350 ks) to search for the pulsar in Cas A, and a multi-epoch timing program (200 ks total) to measure the spin-down rate and dipole magnetic field strength of the newly discovered 0.112 s PSR J0821-4300 in Puppis A. These observations are motivated by growing evidence that the class of CCOs, which are detected only in X-rays and are the least conspicuous of young neutron stars, are characterized by weak dipole magnetic fields and relatively long initial spin periods. As such, they may comprise a large fraction of neutron star births. From upper limits that we established on their spin-down rates, as well as one measurement of P-dot in a CCO, we developed the "anti-magnetar" model, which describes CCOs as pulsars with even weaker magnetic fields (B_s = 1.e10-1.e11 G) than ordinary young pulsars. The approved observations will provide strong confirmation of this model if the expected slow spin-down rate of PSR J0821-4300 is measured, and if similar spin properties are discovered from the Cas A CCO. The remaining mystery of CCOs is what maintains their small, hot regions of surface thermal X-ray emission. Spin-down power is insufficient; otherwise, only the effects of strong (B_s > 1.e13 G) magnetic fields are thought able to enforce nonuniform surface temperature, in apparent contradiction to the anti-magnetar hypothesis. We will apply a detailed ray-tracing code to model the energy-dependent light curves and phase-resolved spectra of PSR J0821-430 and other CCOs in order to determine the geometry of their surface hot spots with respect to the rotation axis and viewing direction. Evidence for cyclotron resonance lines in the spectra will also be modeled as a function of rotation phase, which will

  15. Parameter Estimation Using Markov Chain Monte Carlo Methods for Gravitational Waves from Spinning Inspirals of Compact Objects

    NASA Astrophysics Data System (ADS)

    Raymond, Vivien

    2012-05-01

    Gravitational waves are on the verge of opening a brand new window on the Universe. However, gravitational wave astronomy comes with very unique challenges in data analysis and signal processing in order to lead to new discoveries in astrophysics. Among the sources of gravitational waves, inspiraling binary systems of compact objects, neutron stars and/or black holes in the mass range 1Msun--100Msun stand out as likely to be detected and relatively easy to model. The detection of a gravitational wave event is challenging and will be a rewarding achievement by itself. After such a detection, measurement of source properties holds major promise for improving our astrophysical understanding and requires reliable methods for parameter estimation and model selection. This is a complicated problem, because of the large number of parameters (15 for spinning compact objects in a quasi-circular orbit) and the degeneracies between them, the significant amount of structure in the parameter space, and the particularities of the detector noise. This work presents the development of a parameter-estimation and model-selection algorithm, based on Bayesian statistical theory and using Markov chain Monte Carlo methods for ground-based gravitational-wave detectors (LIGO and Virgo). This method started from existing non-spinning and single spin stand-alone analysis codes and was developed into a method able to tackle the complexity of fully spinning systems, and infer all spinning parameters of a compact binary. Not only are spinning parameters believed to be astrophysically significant, but this work has shown that not including them in the analysis can lead to biases in parameter recovery. This work made it possible to answer several scientific questions involving parameter estimation of inspiraling spinning compact objects, which are addressed in the chapters of this dissertation.

  16. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  17. Compton heated winds and coronae above accretion disks. I Dynamics

    NASA Technical Reports Server (NTRS)

    Begelman, M. C.; Mckee, C. F.; Shields, G. A.

    1983-01-01

    X rays emitted in the inner part of an accretion disk system can heat the surface of the disk farther out, producing a corona and possibly driving off a strong wind. The dynamics of Compton-heated coronae and winds are analyzed using an approximate two-dimensional technique to estimate the mass loss rate as a function of distance from the source of X rays. The findings have important dynamical implications for accretion disks in quasars, active galactic nuclei, X ray binaries, and cataclysmic variables. These include: mass loss from the disk possibly comparable with or exceeding the net accretion rate onto the central compact object, which may lead to unstable accretion; sufficient angular momentum loss in some cases to truncate the disk in a semidetached binary at a smaller radius than that predicted by tidal truncation theories; and combined static plus ram pressure in the wind adequate to confine line-emitting clouds in quasars and Seyfert galaxies.

  18. Real-time imaging of moving living objects using a compact terahertz scanner

    NASA Astrophysics Data System (ADS)

    Han, Sang-Pil; Kim, Namje; Lee, Won-Hui; Lee, Eui Su; Ko, Hyunsung; Lee, Il-Min; Moon, Kiwon; Lee, Dong Hun; Park, Kyung Hyun

    2016-02-01

    In this study, we design a compact terahertz (THz) reflection scanner with a scan rate of 20 frames/s. This scanner is based on a benzocyclobutene-embedded InGaAs Schottky barrier diode detector having a maximum responsivity of 300 V/W at 250 GHz and a minimum noise equivalent power of 38 pW/\\sqrt{\\text{Hz}} . With this scanner, details such as sharp head and tail and wrinkled segments in a moving caterpillar are observed. The thin and thick parts of the moving caterpillar that are presented in light gray and dark gray, respectively, on the gray scale are also well distinguished.

  19. On the mass of the compact object in the black hole binary A0620-00

    NASA Technical Reports Server (NTRS)

    Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.

    1993-01-01

    Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.

  20. Gravitational waves from core-collapse supernovae and their related compact objects

    NASA Astrophysics Data System (ADS)

    Kotake, K.; Suwa, Y.; Yasutake, N.

    Core-collapse supernovae have been supposed to be one of the most plausible sources of gravitational waves. Based on a series of our magnetohydrodynamic core-collapse simulations, we find that the gravitational amplitudes at core bounce can be within the detection limits for the currently running laser-interferometers for a galactic supernova if the central core rotates sufficiently rapidly. This is regardless of the difference of the realistic equations of state and the possible occurrence of the QCD phase transition near core bounce. Even if the core rotates slowly, we point out that the gravitational waves generated from anisotropic neutrino radiation in the postbounce phase due to the standing accretion shock instability (SASI) could be within the detection limits of the detectors in the next generation such as LCGT and the advanced LIGO for the galactic source. Since the waveforms significantly depend on the exploding scenarios, our results suggest that we can obtain the information about the long-veiled explosion mechanism from the gravitational wave signals. Furthermore we discuss the gravitational wave background (GWB) from the explosions of Pop III stars and show that the GWB from Pop III, depending on their formation rates, can be large enough to be within the detection limits of future planned interferometers such as DECIGO and BBO in the frequency interval of ~0.1-1 Hz. This means that the detections of GW background from Pop III stars can be an important tool to supply the information about the star formation history in the early universe.

  1. Spectroscopy of the short-hard GRB 130603B. The host galaxy and environment of a compact object merger

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Thöne, C. C.; Rowlinson, A.; García-Benito, R.; Levan, A. J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sánchez-Ramírez, R.; Melandri, A.; D'Avanzo, P.; Oates, S.; D'Elia, V.; De Pasquale, M.; Krühler, T.; van der Horst, A. J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S. D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J. P. U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O. E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Vestergaard, M.; Wijers, R. A. M. J.

    2014-03-01

    Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-likesignature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims: Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods: Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results: From these spectra we determine the redshift of the burst to be z = 0.3565 ± 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of AV = 0.86 ± 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), NHX/AV is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions: The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary. Appendices are available in electronic form at http://www.aanda.org

  2. COMPACT OBJECT COALESCENCE RATE ESTIMATION FROM SHORT GAMMA-RAY BURST OBSERVATIONS

    SciTech Connect

    Petrillo, Carlo Enrico; Dietz, Alexander; Cavaglia, Marco

    2013-04-20

    Recent observational and theoretical results suggest that short-duration gamma-ray bursts (SGRBs) originate from the merger of compact binary systems of two neutron stars or a neutron star and a black hole. The observation of SGRBs with known redshifts allows astronomers to infer the merger rate of these systems in the local universe. We use data from the SWIFT satellite to estimate this rate to be in the range {approx}500-1500 Gpc{sup -3} yr{sup -1}. This result is consistent with earlier published results which were obtained through alternative approaches. We estimate the number of coincident observations of gravitational-wave signals with SGRBs in the advanced gravitational-wave detector era. By assuming that all SGRBs are created by neutron star-neutron star (neutron star-black hole) mergers, we estimate the expected rate of coincident observations to be in the range {approx_equal} 0.2-1 ({approx_equal} 1-3) yr{sup -1}.

  3. Optical, X-ray and gamma-ray observations of compact objects in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1993-01-01

    In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and Hubble Space Telescope (HST) as well as our balloon-borne hard x-ray telescope EXITE (Energetic X-ray Imaging Telescope Experiment) and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H-alpha images of two clusters with HST and found CV candiates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two 'dim source' fields in omega-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and low mass X-ray binaries (LMXBs) and the origin of hot gas in globulars.

  4. Constraints on r-process nucleosynthesis in accretion disks

    NASA Technical Reports Server (NTRS)

    Jin, Liping

    1991-01-01

    Systems in which accretion drives an outflow from a region near a compact object may enrich the interstellar medium in r-process elements. A detailed assessment of the efficacy of this mechanism for the r-process is presented here, taking into account the constraints imposed by typical accretion-disk conditions. It is concluded that r-process elements are unlikely to have been made in this way, largely because the total production is too low, by a factor of about 100,000, to explain the observed abundances.

  5. Circinus X-1: a Laboratory for Studying the Accretion Phenomenon in Compact Binary X-Ray Sources. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Robinson-Saba, J. L.

    1983-01-01

    Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.

  6. Stable Levitation and Alignment of Compact Objects by Casimir Spring Forces

    SciTech Connect

    Rahi, Sahand Jamal; Zaheer, Saad

    2010-02-19

    We investigate a stable Casimir force configuration consisting of an object contained inside a spherical or spheroidal cavity filled with a dielectric medium. The spring constant for displacements from the center of the cavity and the dependence of the energy on the relative orientations of the inner object and the cavity walls are computed. We find that the stability of the force equilibrium--unlike the direction of the torque--can be predicted based on the sign of the force between two slabs of the same material.

  7. Segmentation, modeling and classification of the compact objects in a pile

    NASA Technical Reports Server (NTRS)

    Gupta, Alok; Funka-Lea, Gareth; Wohn, Kwangyoen

    1990-01-01

    The problem of interpreting dense range images obtained from the scene of a heap of man-made objects is discussed. A range image interpretation system consisting of segmentation, modeling, verification, and classification procedures is described. First, the range image is segmented into regions and reasoning is done about the physical support of these regions. Second, for each region several possible three-dimensional interpretations are made based on various scenarios of the objects physical support. Finally each interpretation is tested against the data for its consistency. The superquadric model is selected as the three-dimensional shape descriptor, plus tapering deformations along the major axis. Experimental results obtained from some complex range images of mail pieces are reported to demonstrate the soundness and the robustness of our approach.

  8. Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    NASA Astrophysics Data System (ADS)

    Collins, Nathan A.; Hughes, Scott A.

    2004-06-01

    Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured

  9. The neutron star in HESS J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.

    2015-01-01

    Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is

  10. Discovery of new objects in the Orion nebula on HST images - Shocks, compact sources, and protoplanetary disks

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.; Wen, Zheng; Hu, Xihai

    1993-01-01

    We have reduced and analyzed a set of narrow-band HST images of a portion of M42 south of the Trapezium. Many new emission-line sources were found, some quite long but so narrow that they are not seen on ground-based images. These include thin shells which are high-ionization shocks. The structure around Orion HH 3 is resolved into multiple components. Slit spectroscopy data establish the high expansion velocities of all these regions. The other objects seen are compact sources. Although some had been detected in VLA surveys and several had been seen from the ground optically, the new images show previously undetected structure and clearly establish that most are protoplanetary disks, which are neutral disks surrounding low-mass pre-main-sequence stars and are ionized from the outside by Theta sup 1 C and Theta sup 2 A Ori.

  11. Magnetised accretion discs in Kerr spacetimes

    NASA Astrophysics Data System (ADS)

    Ranea-Sandoval, Ignacio F.; García, Federico

    2015-01-01

    Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1-5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims: We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods: We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results: We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black

  12. TRANSITS AND LENSING BY COMPACT OBJECTS IN THE KEPLER FIELD: DISRUPTED STARS ORBITING BLUE STRAGGLERS

    SciTech Connect

    Di Stefano, R.

    2011-05-15

    Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover {approx}1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of 'anti-transits' - i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.

  13. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  14. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  15. Properties of optically thick coronae around accreting black holes

    NASA Astrophysics Data System (ADS)

    Belmont, R.; Różańska, A.; Malzac, J.; Czerny, B.; Petrucci, P.-O.

    2015-12-01

    Accreting black holes are complex sources exhibiting several spectral components (disc, jet, hot corona etc). The exact nature and the interplay between these components is still uncertain, and constraining the accretion flow in the vicinity of the compact object has become a key problem to understand the general physics of accretion and ejection. In the past years, the X-ray spectra of several X-ray binaries and AGN have suggested the existence of a new type of coronae in the inner part of their accretion disk. These coronae are warm (about 1 keV) and have Thomson optical depths of about τ ≈ 10, much larger than the standard comptonizing medium inferred in black hole systems. However, simple radiative models based on the diffusion approximation are unable to sustain a large temperature over such high optical depths, therefore questioning existence of these thick coronae. Here we investigate the radiative and hydrostatic properties of slabs, thick coronae covering a standard accretion disc. A precise modelling of the radiation transfer shows that the observed temperature inversion can be reproduced, provided that most of the accretion power is dissipated in this upper layer and that the medium is strongly magnetised.

  16. Identification of 23 accreting binaries in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Torres, M. A. P.; Jonker, P. G.; Britt, C. T.; Johnson, C. B.; Hynes, R. I.; Greiss, S.; Steeghs, D.; Maccarone, T. J.; Özel, F.; Bassa, C.; Nelemans, G.

    2014-05-01

    We present the identification of optical counterparts to 23 GBS X-ray sources. All sources are classified as accreting binaries according to the emission-line characteristics inferred from medium-resolution spectroscopy. To distinguish accreting binaries from chromospherically active objects, we develop criteria based on Hα and He I λλ5786, 6678 emission-line properties available in the literature. The spectroscopic properties and photometric variability of each object is discussed and a classification is given where possible. At least 12 of the 23 systems show an accretion-dominated optical spectrum and another 6 show stellar absorption features in addition to emission lines indicating that they are probably accreting binaries in quiescence or in a low accretion rate state. Two sources are confirmed to be eclipsing: CX207 and CX794. CX207 is likely a magnetic cataclysmic variable (CV), while CX794 is a nova-like CV in the period gap. Finally, the large broadening (2100 km s-1 FWHM) of the Hα emission lines in CX446 and CX1004 suggests that they are also high-inclination or even eclipsing systems. Whether the compact object is a white dwarf in an eclipsing CV, a neutron star or a black hole in a high-inclination low-mass X-ray binary remains to be established.

  17. Particle acceleration from an inner accretion disc into compact corona and further out: case of an organised magnetic field near a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Kopacek, Ondrej; Kunneriath, Devaky; Kovar, Jiri; Slany, Petr

    2016-04-01

    Upcoming observational techniques in X-rays and millimeter spectral bands will allow to probe the inner corona of accretion discs near supermassive black holes. Size of this region only a few gravitational radii has been inferred from various circumstantial evidence. To populate ithe region with particles, pair-creation in ergosphere and transport of particles via accretion have been invoked.Electromagnetic fields are a likely agent of acceleration in strong gravity of a rotating black hole. We put forward a scenario with an organised component of the magnetic field near a supermassive black hole. An emergent flow of particles may be induced in a preferentially bi-polar direction. Our mechanism does not seem to be capable of producing ultra-high energy cosmic rays but it does expel particles along unbound trajectories.The mentioned concept is relevant also from a purely theoretical viewpoint of dynamical properties of particle motion in General Relativity, namely, the onset of chaos near a black hole. We conclude that the role of black-hole spin in setting the chaos is more complicated than initially thought (based on http://arxiv.org/abs/1408.2452).

  18. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  19. Three-dimensional spectroscopy of local luminous compact blue galaxies: kinematic maps of a sample of 22 objects

    NASA Astrophysics Data System (ADS)

    Pérez-Gallego, J.; Guzmán, R.; Castillo-Morales, A.; Gallego, J.; Castander, F. J.; Garland, C. A.; Gruel, N.; Pisano, D. J.; Zamorano, J.

    2011-12-01

    We use three-dimensional optical spectroscopy observations of a sample of 22 local luminous compact blue galaxies (LCBGs) to create kinematic maps. By means of these, we classify the kinematics of these galaxies into three different classes: rotating disc (RD), perturbed rotation (PR) and complex kinematics (CK). We find 48 per cent are RDs, 28 per cent are PRs and 24 per cent are CKs. RDs show rotational velocities that range between ˜50 and ˜200 km s-1, and dynamical masses that range between ˜1 × 109 and ˜3 × 1010 M⊙. We also address the following two fundamental questions through the study of the kinematic maps: (i) What processes are triggering the current starburst in LCBGs? We search our maps of the galaxy velocity fields for signatures of recent interactions and close companions that may be responsible for the enhanced star formation in our sample. We find that 5 per cent of objects show evidence of a recent major merger, 10 per cent of a minor merger and 45 per cent of a companion. This argues in favour of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. (ii) What processes may eventually quench the current starbust in LCBGs? Velocity and velocity width maps, together with emission line ratio maps, can reveal signatures of active galactic nuclei (AGNs) activity or supernova (SN)-driven galactic winds that could halt the current burst. We find only 5 per cent of objects with clear evidence of AGN activity and 27 per cent with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. Finally, from our analysis, we find that the velocity widths of RDs, rather than accounting exclusively for the rotational nature of these objects, may account as well for other kinematic components and may not be good tracers of their dynamical masses.

  20. Comparisons and connections between mean field dynamo theory and accretion disc theory

    NASA Astrophysics Data System (ADS)

    Blackman, E. G.

    2010-01-01

    The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.

  1. Non-thermal Radiation from Collisions of Compact Objects with Intermediate-scale Jets in Active Galaxies

    NASA Astrophysics Data System (ADS)

    Bednarek, W.; Banasiński, P.

    2015-07-01

    Massive black holes in active galaxies are immersed in huge concentrations of late-type stars in the galactic bulges and also early-type massive stars in the nuclear stellar clusters, which are additionally surrounded by quasi-spherical halos on a scale of several kpc that contain from a few hundred up to several thousand globular clusters (GCs). It is expected that significant numbers of red giant stars, massive stars, and also GCs can move through the jet expelled from the central engine of the active galaxy. We consider collisions of stars from the galactic bulge, nuclear cluster, and GCs with the jet plasma. As a result of such collisions, multiple shocks are expected to appear in the jet around these compact objects. Therefore, the plasma in the kpc-scale jet can be significantly disturbed. We show that particles can be accelerated on these shocks up to multi-TeV energies. TeV leptons emit synchrotron radiation, extending up to X-ray energies, and also comptonize radiation produced in a stellar cluster and also the microwave background radiation to TeV γ-ray energies. We show that such non-thermal radiation is likely to be detectable from the intermediate-scale jets of nearby active galaxies for a reasonable number of stars and GCs immersed within the jet. As an example, we calculate the expected non-thermal emission in X-ray and gamma-ray energies from the nearby radio galaxy Cen A, from which steady gamma-ray emission with a complex spectrum has recently been reported by Fermi and the HESS Observatories.

  2. EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS

    SciTech Connect

    Barnes, Jennifer; Kasen, Daniel

    2013-09-20

    The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses {approx}10{sup -3}-10{sup -1} M{sub Sun} and velocities {approx}0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T {approx} 2500 K). We further consider the case in which a second mass outflow, composed of {sup 56}Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to {sup 56}Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

  3. Kronos: A Multiwavelength Observatory for Mapping Accretion-Driven Sources

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Polidan, Ronald S.; Robinson, Edward L.

    2002-01-01

    Kronos is a multiwavelength observatory proposed as a NASA Medium Explorer. Kronos is designed to make use of the natural variability of accreting sources to create microarcsecond-resolution maps of the environments of supermassive black holes in active galaxies and stella-size black holes in binary systems and to characterize accretion processes in Galactic compact binaries. Kronos will obtain broad energy range spectroscopic data with co-aligned X-ray, ultraviolet, and optical spectrometers. The high-Earth orbit of Kronos enables well-sampled, high time-resolution observations, critical for the innovative and sophisticated methods that are used to understand the accretion flows, mass outflows, jets, and other phenomena found in accreting sources. By utilizing reverberation mapping analysis techniques, Kronos produces advanced high-resolution maps of unprecedented resolution of the extreme environment in the inner cores of active galaxies. Similarly, Doppler tomography and eclipse mapping techniques characterize and map Galactic binary systems, revealing the details of the physics of accretion processes in black hole, neutron star, and white dwarf binary systems. The Kronos instrument complement, sensitivity, and orbital environment make it suitable to aggressively address time variable phenomena in a wide range of astronomical objects from nearby flare stars to distant galaxies.

  4. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    SciTech Connect

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  5. Mass Outflows from Dissipative Shocks in Hot Accretion Flows

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes

    2007-11-01

    We consider stationary, axisymmetric hydrodynamic accretion flows in Kerr geometry. As a plausible means of efficiently separating a small population of nonthermal particles from the bulk accretion flows, we investigate the formation of standing dissipative shocks, i.e., shocks at which fraction of the energy, angular momentum, and mass fluxes do not participate in the shock transition of the flow that accretes onto the compact object but are lost into collimated (jets) or uncollimated (winds) outflows. The mass-loss fraction (at a shock front) is found to vary over a wide range (0%-95%), depending on flow's angular momentum and energy. On the other hand, the associated energy-loss fraction appears to be relatively low (<~1%) for a flow onto a nonrotating black hole case, whereas the fraction could be an order of magnitude higher (<~10%) for a flow onto a rapidly rotating black hole. By estimating the escape velocity of the outflowing particles with a mass-accretion rate relevant for typical active galactic nuclei, we find that nearly 10% of the accreting mass could escape to form an outflow in a disk around a nonrotating black hole, while as much as 50% of the matter may contribute to outflows in a disk around a rapidly rotating black hole. In the context of disk-jet paradigm, our model suggests that shock-driven outflows from accretion can occur in regions not too far from a central engine. Our results imply that a shock front under some conditions could serve as a plausible site where (nonthermal) seed particles of the outflows (jets/winds) are efficiently decoupled from bulk accretion.

  6. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  7. Conditions for jet formation in accreting neutron stars: the magnetic field decay

    NASA Astrophysics Data System (ADS)

    García, Federico; Aguilera, Deborah N.; Romero, Gustavo E.

    2011-02-01

    Accreting neutron stars can produce jets only if they are weakly magnetized (B ~ 108 G). On the other hand, neutron stars are compact objects born with strong surface magnetic fields (B ~ 1012 G). In this work we study the conditions for jet formation in a binary system formed by a neutron star and a massive donor star once the magnetic field has decayed due to accretion. We solve the induction equation for the magnetic field diffusion in a realistic neutron star crust and discuss the possibility of jet launching in systems like the recently detected Supergiant Fast X-ray Transients.

  8. Coalescing binary systems of compact objects to (post) sup 5/2 -Newtonian order: Late-time evolution and gravitational radiation emission

    SciTech Connect

    Lincoln, C.W.

    1990-01-01

    The late-time evolution of binary systems of compact objects (neutron stars or black holes) is studied using the Damour-Derueele (post){sup 5/2}-Newtonian equations of motion with relativistic corrections of all orders up to and including radiation reaction. Using the method of close orbital elements from celestial mechanics, the author evolves the orbits to separations of r {approx} 2 m, where m is the total mass, at which point the (post){sup 5/2}-Newtonian approximation breaks down. With the orbits as input, he calculates the gravitational waveform and luminosity using a post-Newtonian formalism of Wagoner and Will. Results are obtained for systems containing various combinations of compact objects, for various values of the mass ratio m{sub 1}/m{sub 2}, and forg various initial values of the orbital eccentricity.

  9. Stellar X-ray accretion signatures

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Guenther, M.

    2016-06-01

    Accretion is observed in a wide range objects with partially overlapping properties. In this contribution, we study accretion in young stars, where we can directly observe the accretion shock on the stellar surface in the X-ray regime. High-resolution grating spectroscopy allows us to infer the properties of the accretion streams. I will present results from our recent 250 ks XMM-Newton/Chandra program targeting the prototypical T Tau system such as strong X-ray variability despite constant mass accretion, abundances typical for accreting stars, but line ratios typically not found in accreting stars. Finally, I will compare these results with other systems focusing on potentially different accretion modes.

  10. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  11. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  12. mJIVE-20: A survey for compact mJy radio objects with the very long baseline array

    SciTech Connect

    Deller, A. T.; Middelberg, E.

    2014-01-01

    We present the description and early results of the mJy Imaging VLBA Exploration at 20 cm (mJIVE-20). mJIVE-20 is a large project on the Very Long Baseline Array which is systematically inspecting a large sample of mJy radio sources, pre-selected from the Faint Images of the Radio Sky at Twenty cm (FIRST) survey made with the Very Large Array, to identify any compact emission that may be present. The survey is being undertaken using filler time on the VLBA, which utilizes short segments scheduled in bad weather and/or with a reduced number of antennas, during which no highly rated science projects can be scheduled. The newly available multifield capability of the VLBA makes it possible for us to inspect of the order of 100 sources per hour of observing time with a 6.75σ detection sensitivity of approximately 1 mJy beam{sup –1}. The results of the mJIVE-20 survey are made publicly available as soon as the data are calibrated. After 18 months of observing, over 20,000 FIRST sources have been inspected, with 4336 very long baseline interferometry detections. These initial results suggest that within the range 1-200 mJy, fainter sources are somewhat more likely to be dominated by a very compact component than brighter sources. Over half of all arcsecond-scale mJy radio sources contain a compact component, although the fraction of sources that are dominated by milliarcsecond scale structure (where the majority of the arcsecond scale flux is recovered in the mJIVE-20 image) is smaller at around 30%-35%, increasing toward lower flux densities. Significant differences are seen depending on the optical classification of the source. Radio sources with a stellar/point-like counterpart in the Sloan Digital Sky Survey (SDSS) are more likely to be detected overall, but this detection likelihood appears to be independent of the arcsecond-scale radio flux density. The trend toward higher radio compactness for fainter sources is confined to sources that are not detected in SDSS

  13. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  14. Ultra-Compact Dwarfs Forming in Stellar Streams

    NASA Astrophysics Data System (ADS)

    Jennings, Zachary G.; Brodie, Jean P.; Romanowsky, Aaron J.; Sages Collaboration

    2015-01-01

    Ultra-Compact Dwarfs (UCDs), objects with half-light radii between 10-100 pc and luminosities greater than ~106 L⊚, represent a middle ground in size and luminosity between globular clusters and typical compact elliptical galaxies. Since their discovery a decade and a half ago, their origin has been the subject of considerable discussion in the literature. In short, the issue can be distilled down to a simple question: are UCDs the largest star clusters, or are they the smallest compact galaxies? UCDs in formation have not been identified to this point, so previous studies have relied on indirect inferences using observable UCD properties to address this issue. We identify several objects with the size and luminosity of UCDs embedded in stellar streams around various nearby galaxies, and we argue that these objects are in the process of being stripped during accretion onto more massive galaxies. Using the luminosity of the stellar stream as a lower limit on the stellar mass of the accreted galaxy, we able to both identify UCDs in formation as the stripped nuclei of accreted systems and directly link the properties of the UCD to the properties of the parent galaxy.

  15. Accretion of the Moon from non-canonical impacts

    NASA Astrophysics Data System (ADS)

    Salmon, Julien; Canup, R. M.

    2013-10-01

    The generally accepted scenario for the formation of the Moon involves the impact of a Mars-size object into the proto-Earth, resulting in the formation of a disk from which the Moon accretes (Cameron and Ward 1976). In a first paper (Salmon & Canup 2012), we showed that the disks resulting from these “canonical” impacts can lead to the accretion of a 1 lunar mass object on a timescale of order 10^2 yr. Recent works have focused on alternative impact configurations: bigger impactors (Canup 2012) or higher speed impacts into a fast spinning Earth (Cuk & Stewart 2012). These impacts leave the Earth-Moon system with an angular momentum about twice that in the current system. This quantity can be made consistent with its current value if the newly formed Moon is captured for a prolonged period in the evection resonance with the Sun (Cuk & Stewart 2012). The protolunar disks that are formed from these “non-canonical” impacts are generally more massive and more compact, containing a much greater fraction of their total disk mass in the Roche-interior portion of the disk, compared to canonical impacts. We have investigated the dynamics of the accretion of the Moon from such disks. While the overall accretion process is similar to that found from disks typical of canonical impacts, the more massive, compact disks typically produce a final moon with a much larger initial eccentricity, i.e. > 0.1 vs. 10^-3 to 10^-2 in canonical disks. Such high initial eccentricities may substantially reduce the probability of capture of the Moon into the evection resonance (e.g., Touma & Wisdom 1998), which is required to lower the angular momentum of the system in the non-canonical impacts. We will discuss which disk configurations can lead to the successful formation of the Moon, and how the Moon’s initial orbital properties vary for different impact scenarios.

  16. On the diversity of compact objects within supernova remnants - I. A parametric model for magnetic field evolution

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2016-04-01

    A wealth of X-ray and radio observations has revealed in the past decade a growing diversity of neutron stars (NSs) with properties spanning orders of magnitude in magnetic field strength and ages, and with emission processes explained by a range of mechanisms dictating their radiation properties. However, serious difficulties exist with the magneto-dipole model of isolated NS fields and their inferred ages, such as a large range of observed braking indices (n, with values often <3) and a mismatch between the NS and associated supernova remnant (SNR) ages. This problem arises primarily from the assumptions of a constant magnetic field with n = 3, and an initial spin period that is much smaller than the observed current period. It has been suggested that a solution to this problem involves magnetic field evolution, with some NSs having magnetic fields buried within the crust by accretion of fall-back supernova material following their birth. In this work, we explore a parametric phenomenological model for magnetic field growth that generalizes previous suggested field evolution functions, and apply it to a variety of NSs with both secure SNR associations and known ages. We explore the flexibility of the model by recovering the results of previous work on buried magnetic fields in young NSs. Our model fits suggest that apparently disparate classes of NSs may be related to one another through the time evolution of the magnetic field.

  17. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    SciTech Connect

    Takahashi, Ryuichi; Asada, Hideki

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  18. Dark matter mini-halo around the compact objects: the formation, evolution and possible contribution to the cosmic ray electrons/positrons

    SciTech Connect

    Yang, Rui-Zhi; Fan, Yi-Zhong; Chang, Jin; Waldman, Roni E-mail: yzfan@pmo.ac.cn E-mail: chang@pmo.ac.cn

    2012-01-01

    Dark matter particles may be captured by a star and then thermalized in the star's core. At the end of its life a massive star collapses suddenly and a compact object is formed. The dark matter particles redistribute accordingly. In the inelastic dark matter model, an extended dense dark matter mini-halo surrounding the neutron star may be formed. Such mini-halos may be common in the Galaxy. The electron/positron flux resulting in the annihilation of dark matter particles, however, is unable to give rise to observable signal unless a nascent mini-halo is within a distance ∼ a few 0.1 pc from the Earth.

  19. The Physics of Wind-Fed Accretion

    SciTech Connect

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka

    2008-09-30

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  20. Bulk Comptonization by turbulence in accretion discs

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  1. The Physics of Wind-Fed Accretion

    SciTech Connect

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-05-27

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-1. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  2. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-04-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  3. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  4. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  5. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value

    NASA Astrophysics Data System (ADS)

    Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.

    1999-11-01

    The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.

  6. Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D-4 compact dimensions

    NASA Astrophysics Data System (ADS)

    Sahabandu, C.; Suranyi, P.; Vaz, C.; Wijewardhana, L. C.

    2006-02-01

    We investigate the thermodynamics of static black objects such as black holes, black strings and their generalizations to D dimensions (“black branes”) in a gravitational theory containing the four-dimensional Gauss-Bonnet term in the action, with D-4 dimensions compactified torus. The entropies of black holes and black branes are compared to obtain information on the stability of these objects and to find their phase diagrams. We demonstrate the existence of a critical mass, which depends on the scale of the compactified dimensions, below which the black hole entropy dominates over the entropy of the black membrane.

  7. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  8. First Detection in Gamma-Rays of a Young Radio Galaxy: Fermi-LAT Observations of the Compact Symmetric Object PKS 1718-649

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Sobolewska, M.; Loh, A.; Corbel, S.; Ostorero, L.; Stawarz, Ł.

    2016-04-01

    We report the γ-ray detection of a young radio galaxy, PKS 1718-649, belonging to the class of compact symmetric objects (CSOs), with the Large Area Telescope (LAT) on board the Fermi satellite. The third Fermi Gamma-ray LAT catalog (3FGL) includes an unassociated γ-ray source, 3FGL J1728.0-6446, located close to PKS 1718-649. Using the latest Pass 8 calibration, we confirm that the best-fit 1σ position of the γ-ray source is compatible with the radio location of PKS 1718-649. Cross-matching of the γ-ray source position with the positions of blazar sources from several catalogs yields negative results. Thus, we conclude that PKS 1718-649 is the most likely counterpart to the unassociated LAT source. We obtain a detection test statistics TS ˜ 36 (>5σ) with a best-fit photon spectral index Γ = 2.9 ± 0.3 and a 0.1-100 GeV photon flux density F 0.1-100 GeV = (11.5 ± 0.3) × 10-9 ph cm-2 s-1. We argue that the linear size (˜2 pc), the kinematic age (˜100 years), and the source distance (z = 0.014) make PKS 1718-649 an ideal candidate for γ-ray detection in the framework of the model proposing that the most compact and the youngest CSOs can efficiently produce GeV radiation via inverse-Compton scattering of the ambient photon fields by the radio lobe non-thermal electrons. Thus, our detection of the source in γ-rays establishes young radio galaxies as a distinct class of extragalactic high-energy emitters and yields a unique insight on the physical conditions in compact radio lobes interacting with the interstellar medium of the host galaxy.

  9. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  10. CONSTRAINTS ON THE COMPACT OBJECT MASS IN THE ECLIPSING HIGH-MASS X-RAY BINARY XMMU J013236.7+303228 IN M 33

    SciTech Connect

    Bhalerao, Varun B.; Harrison, Fiona A.; Van Kerkwijk, Marten H.

    2012-09-20

    We present optical spectroscopic measurements of the eclipsing high-mass X-ray binary (HMXB) XMMU J013236.7+303228 in M 33. Based on spectra taken at multiple epochs of the 1.73 day binary orbital period we determine physical as well as orbital parameters for the donor star. We find the donor to be a B1.5IV subgiant with effective temperature T = 22, 000-23, 000 K. From the luminosity, temperature, and known distance to M 33 we derive a radius of R 8.9 {+-} 0.5 R{sub Sun }. From the radial-velocity measurements, we determine a velocity semi-amplitude of K{sub opt} = 63 {+-} 12 km s{sup -1}. Using the physical properties of the B star determined from the optical spectrum, we estimate the star's mass to be M{sub opt} = 11 {+-} 1 M{sub Sun }. Based on the X-ray spectrum, the compact companion is likely a neutron star, although no pulsations have yet been detected. Using the spectroscopically derived B star mass we find the neutron star companion mass to be M{sub X} = 2.0 {+-} 0.4 M{sub Sun }, consistent with the neutron star mass in the HMXB Vela X-1, but heavier than the canonical value of 1.4 M{sub Sun} found for many millisecond pulsars. We attempt to use as an additional constraint that the B star radius inferred from temperature, flux, and distance should equate to the Roche radius, since the system accretes by Roche lobe overflow. This leads to substantially larger masses, but by trying to apply the technique to known systems, we find that the masses are consistently overestimated. Attempting to account for that in our uncertainties, we derive M{sub X} = 2.2{sup +0.8}{sub -0.6} M{sub Sun} and M{sub opt} = 13 {+-} 4 M{sub Sun }. We conclude that precise constraints require detailed modeling of the shape of the Roche surface.

  11. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780

  12. Implosive accretion and outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.; Newman, W. I.

    1994-01-01

    A model and simulation code have been developed for time-dependent axisymmetric disk accretion onto a compact object including for the first time the influence of an ordered magnetic field. The accretion rate and radiative luminosity of the disk are naturally coupled to the rate of outflow of energy and angular momentum in magnetically driven (+/- z) winds. The magnetic field of the wind is treated in a phenomenological way suggested by self-consistent wind solutions. The radial accretion speed u(r, t) of the disk matter is shown to be the sum of the usual viscous contribution and a magnetic contribution proportional to r(exp 3/2)(B(sub p exp 2))/sigma, where B(sub p)(r,t) is the poloidal field threading the disk and sigma(r,t) is the disk's surface mass density. An enhancement or variation in B(sub p) at a large radial distance leads to the formation of a soliton-like structure in the disk density, temperature, and B-field which propagates implosively inward. The implosion gives a burst in the power output in winds or jets and a simultaneous burst in the disk radiation. The model is pertinent to the formation of discrete fast-moving components in jets observed by very long baseline interferometry. These components appear to originate at times of optical outbursts of the active galactic nucleus.

  13. Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Di Salvo, T.; Bozzo, E.; Sanna, A.; Burderi, L.; D'Aì, A.; Riggio, A.; Scarano, F.; Iaria, R.

    2015-06-01

    Broad emission features of abundant chemical elements, such as iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low-mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable Comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc, where Doppler and relativistic effects are important. We used self-consistent reflection models to fit the spectra of the 2010 XMM-Newton observation and the stacking of the whole data sets of 2010 INTEGRAL observations. We conclude that the spectra are consistent with reflection produced at ˜10 gravitational radii by an accretion disc with an ionization parameter of ξ ˜ 600 erg cm s-1 and viewed under an inclination angle of the system of ˜35°. Furthermore, we detected for the first time for GX 3+1, the presence of a power-law component dominant at energies higher than 20 keV, possibly associated with an optically thin component of non-thermal electrons.

  14. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  15. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  16. Anisotropic generalization of Matese & Whitman solution for compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Dayanandan, Baiju; Maurya, S. K.; Gupta, Y. K.; Smitha, T. T.

    2016-05-01

    We present a detailed investigation of the stability of anisotropic compact star models by introducing Matese and Whitman (Phys. Rev. D 11:1270, 1980) solution in general relativity. We have particularly looked into the detailed investigation of the measurements of basic physical parameters such as radial pressure, tangential pressure, energy density, red shift, sound velocity, masses and radii are affected by unknown effects such as loss, accretion and diffusion of mass. Those give insight into the characteristics of the compact astrophysical object with anisotropic matter distribution as well as the physical reality. The results obtained for the physical feature of compact stars such as, Her. X-1, RXJ 1856-37, SAX J1808.4-3658(SS2) and SAX J1808.4-3658(SS1) are compared to the recently observed massive compact object.

  17. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  18. Recognition of compact astrophysical objects

    NASA Technical Reports Server (NTRS)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  19. Spectral shifts near compact objects

    NASA Astrophysics Data System (ADS)

    Lake, K.; Myra, E.

    1981-10-01

    It is shown that radiation emitted from material freely falling toward a black hole or neutron star cannot be blue shifted as recently claimed by Cohen and Struble (1980). The relativistic corrections to the classical apparent limb angle are given explicitly for spherical sources in collapse.

  20. Supernova Light Curves Powered by Fallback Accretion

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  1. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect

    Dexter, Jason; Kasen, Daniel

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  2. Modeling the X-rays from the central compact object PSR J1852+0040 in Kesteven 79: Evidence for a strongly magnetized neutron star

    SciTech Connect

    Bogdanov, Slavko

    2014-08-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star (NS), a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a 'pencil plus fan' beam emission pattern, which is characteristic of ≳ 10{sup 12} G NS atmospheres, much greater than the ∼10{sup 10} G external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields (≳ 10{sup 14} G) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied high-temperature contrast across the stellar surface. This lends further observational evidence in support of the 'hidden' strong magnetic field scenario, in which CCOs possess submerged magnetic fields that are substantially stronger than the external dipole field, presumably due to burial by fallback of supernova ejecta. I also conduct phase-resolved X-ray spectroscopy and find no evidence for prominent spin-phase-dependent absorption features that could be produced by cyclotron absorption/scattering.

  3. Limits on the spin up of stellar-mass black holes through a spiral stationary accretion shock instability

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique; Cantiello, Matteo

    2016-04-01

    The spin of a number of black holes (BHs) in binary systems has been measured. In the case of BHs found in low-mass X-ray binaries (LMXBs) the observed values are in agreement with some theoretical predictions based on binary stellar evolution. However, using the same evolutionary models, the calculated spins of BHs in high-mass X-ray binaries (HMXBs) fall short compared to the observations. A possible solution to this conundrum is the accretion of high-specific-angular-momentum material after the formation of the BH, although this requires accretion above the Eddington limit. Another suggestion is that the observed high values of the BHs spin could be the result of an asymmetry during Core Collapse (CC). The only available energy to spin up the compact object during CC is its binding energy. A way to convert it to rotational kinetic energy is by using a Standing Accretion Shock Instability (SASI), which can develop during CC and push angular momentum into the central compact object through a spiral mode (m = 1). Here we study the CC-SASI scenario and discuss, in the case of LMXBs and HMXBs, the limits for the spin of a stellar-mass BHs. Our results predict a strong dichotomy in the maximum spin of low-mass compact objects and massive BHs found in HMXBs. The maximum spin value (|a⋆|) for a compact object near the mass boundary between BHs and NSs is found to be somewhere between 0.27 and 0.38, depending on whether secular or dynamical instabilities limit the efficiency of the spin up process. For more massive BHs, such as those found in HMXBs, the natal spin is substantially smaller and for MBH > 8M⊙ spin is limited to values |a⋆| ≲ 0.05. Therefore we conclude that the observed high spins of BHs in HMXBs cannot be the result of a CC-SASI spin up.

  4. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk

    NASA Technical Reports Server (NTRS)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.

    1992-01-01

    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  5. Simulations of flux variability of oscillating accretion fluid tori around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Bakala, Pavel; Goluchová, Kateřina; Šrámková, Eva; Kotrlová, Andrea; Török, Gabriel; Vincent, Frederic H.; Abramowicz, Marek A.

    2015-03-01

    High frequency quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra (PDS) of several microquasars and low mass X-ray binaries. Many proposed QPO models are based on oscillations of accretion toroidal fluid structures orbiting in the vicinity of a compact object. We study oscillating accretion tori orbiting in the vicinity of a Kerr black hole. We demonstrate that significant variation of the observed flux can be caused by the combination of radial and vertical oscillation modes of a slender, polytropic, perfect fluid, non-self-graviting torus with constant specific angular momentum. We investigate two combinations of the oscillating modes corresponding to the direct resonance QPO model and the modified relativistic precession QPO model.

  6. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  7. ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR 'PROMPT' TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA

    SciTech Connect

    Thompson, Todd A.

    2011-11-10

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t{sub H}), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t{sub merge} < t{sub H}. In principle, Chandrasekhar-mass binaries with P {approx} 300 days can merge in {approx}< t{sub H} if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t{sub merge} {approx}< t{sub H} is yet larger. In contrast, P {approx}< 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  8. THE MASS-LOSS-INDUCED ECCENTRIC KOZAI MECHANISM: A NEW CHANNEL FOR THE PRODUCTION OF CLOSE COMPACT OBJECT-STELLAR BINARIES

    SciTech Connect

    Shappee, Benjamin J.; Thompson, Todd A. E-mail: thompson@astronomy.ohio-state.edu

    2013-03-20

    Over a broad range of initial inclinations and eccentricities, an appreciable fraction of hierarchical triple star systems with similar masses are essentially unaffected by the Kozai-Lidov mechanism (KM) until the primary in the central binary evolves into a compact object. Once it does, it may be much less massive than the other components in the ternary, enabling the 'eccentric Kozai mechanism (EKM)': the mutual inclination between the inner and outer binaries can flip signs driving the inner binary to very high eccentricity, leading to a close binary or collision. We demonstrate this 'mass-loss-induced eccentric Kozai' (MIEK) mechanism by considering an example system and defining an ad hoc minimal separation between the inner two members at which tidal effects become important. For fixed initial masses and semimajor axes, but uniform distributions of eccentricity and cosine of the mutual inclination, {approx}10% of systems interact tidally or collide while the primary is on the main sequence (MS) due to the KM or EKM. Those affected by the EKM are not captured by earlier quadrupole-order secular calculations. We show that fully {approx}30% of systems interact tidally or collide for the first time as the primary swells to AU scales, mostly as a result of the KM. Finally, {approx}2% of systems interact tidally or collide for the first time after the primary sheds most of its mass and becomes a white dwarf (WD), mostly as a result of the MIEK mechanism. These findings motivate a more detailed study of mass loss in triple systems and the formation of close neutron star (NS)/WD-MS and NS/WD-NS/WD binaries without an initial common envelope phase.

  9. Accelerating Compact Object Mergers in Triple Systems with the Kozai Resonance: A Mechanism for "Prompt" Type Ia Supernovae, Gamma-Ray Bursts, and Other Exotica

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.

    2011-11-01

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge < t H. In principle, Chandrasekhar-mass binaries with P ~ 300 days can merge in <~ t H if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge <~ t H is yet larger. In contrast, P <~ 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  10. NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3

    SciTech Connect

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-07-20

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M{sub sun}, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M{sub sun} and 14.4 M{sub sun}. Our favored estimate, based on a 9.0 kpc distance estimate, is {approx}10 M{sub sun}, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.

  11. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  12. Kinetic axisymmetric gravitational equilibria in collisionless accretion disk plasmas

    SciTech Connect

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2010-07-15

    A theoretical treatment is presented of kinetic equilibria in accretion disks (AD) around compact objects, for cases where the plasma can be considered as collisionless. The plasma is assumed to be axisymmetric and to be acted on by gravitational and electromagnetic fields; in this paper, the particular case is considered where the magnetic field admits a family of toroidal magnetic surfaces, which are locally mutually nested and closed. It is pointed out that there exist asymptotic kinetic equilibria represented by generalized bi-Maxwellian distribution functions and characterized by primarily toroidal differential rotation and temperature anisotropy. It is conjectured that kinetic equilibria of this type can exist which are able to sustain both toroidal and poloidal electric current densities, the latter being produced via finite Larmor-radius effects associated with the temperature anisotropy. This leads to the possibility of existence of a new kinetic effect - referred to here as a 'kinetic dynamo effect - resulting in the self-generation of toroidal magnetic field even by a stationary plasma, without any net radial accretion flow being required. The conditions for these equilibria to occur, their basic theoretical features, and their physical properties are all discussed in detail.

  13. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  14. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  15. Theory of wind accretion

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2014-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  16. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  17. Exploring the disk accretion in DI Cep

    NASA Astrophysics Data System (ADS)

    Parihar, Padmakar Singh; Shantikumar, N. S.

    The low mass young stellar objects of class-II, popularly known as classical T Tauri stars (CTTS) supposed to be surrounded by thick flared disk and accretes disk material through strong stellar dipolar magnetic field. The disk accretion rate and its variation with time is poorly know. DI Cep is an interesting object, found to have unexpected hump around 5300 Å in the continuum excess emission spectrum, which cannot be explained by current models of YSOs. Over the last six years this object is being spectroscopically as well as photometrically monitored using HCT. The data have been analyzed and modeled using a simple modeling technique developed by us. In this paper, we report for the first time our results related to the disk accretion phenomena in DI Cep.

  18. A nonlinear investigation of corrugation instabilities in magnetic accretion shocks

    NASA Astrophysics Data System (ADS)

    Ernst, Scott

    2011-05-01

    Accretion shock waves are present in many important astrophysical systems and have been a focus of research for decades. These investigations provide a large body of understanding as to the nature, characteristics, and evolutionary behaviors of accretion shock waves over a wide range of conditions. However, largely absent are investigations into the properties of accretion shock waves in the presence of strong magnetic fields. In such cases these strong magnetic fields can significantly alter the stability behaviors and evolution of the accretion shock wave through the production and propagation of magnetic waves as well as magnetically constrained advection. With strong magnetic fields likely found in a number of accretion shock systems, such as compact binary and protostellar systems, a better understanding of the behaviors of magnetic accretion shock waves is needed. A new magnetohydrodynamics simulation tool, IMOGEN, was developed to carry out an investigation of instabilities in strong, slow magnetic accretion shocks by modelling their long-term, nonlinear evolution. IMOGEN implements a relaxed, second-order, total variation diminishing, monotonic upwind scheme for conservation laws and incorporates a staggered-grid constrained transport scheme for magnetic advection. Through the simulated evolution of magnetic accretion shocks over a wide range of initial conditions, it has been shown, for sufficiently high magnetic field strengths, that magnetic accretion shocks are generally susceptible to corrugation instabilities, which arise in the presence of perturbations of the initial shock front. As these corrugation instabilities grow, they manifestas magnetic wave propagation in the upstream region of the accretion column, which propagate away from the accretion shock front, and as density columns, or fingers, that grow into the higher density downstream flow, defined and constrained by current loops created during the early evolution of the instability.

  19. Probing accretion on the high-magnetized polar RX J1007.5-2017

    NASA Astrophysics Data System (ADS)

    Rodrigues, C. V.; Cieslinski, D.; Ribeiro, T.; Silva, K. M. G.; Baptista, R.; Oliveira, A. S.; Costa, J. E. R.; Campbell, R.

    2014-10-01

    RX J1007.5-2017 is a polar: a compact binary system in which matter flows from a low-mass main-sequence star to a magnetized white dwarf without the formation of an accretion disk. RX J1007.5-2017 has some observational peculiarities (conspicuous optical cyclotron harmonics, a very soft X-ray spectrum, and no polarization in R and I bands), which may be related to extreme conditions at the accretion flow: a very strong white-dwarf magnetic field (around 100 MG on surface) and a low accretion rate. To study the accretion, from the mass-donor star to the white dwarf, we obtained time-resolved spectroscopy using the Goodman spectrograph at the SOAR telescope in observing runs distributed around the first semester of 2012. We found the object in different brightness states. In the low state, we gathered data with two spectral resolutions (219 km/s and 170 km/s). In a brighter state, the spectral resolution was ≍ 170 km/s. The low (high) spectral resolution data cover the spectral region from 360 to 760 nm (435 to 700 nm). The continuum varies in both states and the cyclotron humps are visible at some orbital phases. The low-state spectra show Balmer emission lines superimposed on absorption features from the mass-donor star. The bright-state spectra show strong Balmer, HeI, and HeII emission lines. The Balmer and HeII lines are not single Gaussians: in bright state the lines are broader and have three components; in low state, the lines are narrower and two components are distinguished in some phases. Doppler tomography of the low state reveals that line emission arises mainly from a region near the white dwarf. The orbital dependence of the cyclotron emission was modeled using the Cyclops code, which adopts a 3D representation of the accretion column.

  20. Accretion onto Planetary Mass Companions of Low-mass Young Stars

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L.

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10-9-10-11 M ⊙ yr-1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  1. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  2. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  3. The missing compact star of SN1987A: a solid quark star?

    NASA Astrophysics Data System (ADS)

    Liu, X. W.; Liang, J. D.; Xu, R. X.; Han, J. L.; Qiao, G. J.

    2013-03-01

    To investigate the missing compact star of Supernova 1987A, we analyzed the cooling and heating processes of a possible compact star based on the upper limit of observational X-ray luminosity. From the cooling process, we found that a solid quark-cluster star (SQS), having a stiffer equation of state than that of a conventional liquid quark star, has a heat capacity much smaller than a neutron star. The SQS can cool down quickly, naturally explaining the non-detection of a point source in X-ray wavelengths. On the other hand, we considered the heating processes due to magnetospheric activity and possible accretion and obtained some constraints on the parameters of a possible pulsar. Therefore, we concluded that a SQS can explain the observational limit in a confident parameter space. As a possible central compact object, the pulsar parameter constraints can be tested for SN1987A with advanced, future facilities.

  4. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .

  5. Accretion Disk Dynamics in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Ji, Li; Nowak, M.; Canizares, C. R.; Kallman, T.

    2009-09-01

    The last decade of X-ray observations was an era of true discovery in the study of accretion phenomena in X-ray binaries. With the launch of high resolution X-ray spectrometers on board the Chandra X-ray Observatory and XMM Newton we gained novel insights in feedback processes in accretion disks. At the forefront are dynamics in winds and outflows. Recent observations now also not only reveal properties of accretion disk coronal phenomena but point us to highly variable activity in their appearance. Amongst others these include heating along the spectral branches in the Z-source Cyg X-2, short and longterm variations in the photo-ionized emissions in Cir X-1, highly variable and dynamic Ne edges in the ultra-compact binary 4U 0614+091. This presentation summarizes these recent developments and provides an outlook towards more dynamical accretion disk coronal models and perspectives for future missions.

  6. He-accreting WDs: AM CVn stars with WD donors

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Yungelson, L. R.; Tornambé, A.

    2015-09-01

    We study the physical and evolutionary properties of the `white dwarf (WD) family' of AM CVn stars by computing realistic models of interacting double-degenerate systems. We evaluate self-consistently both the mass-transfer rate from the donor, as determined by gravitational wave emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of dot{M} after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (Mdon, Macc), is high enough, the accretors experience several He-flashes of decreasing strength and then quiescent He-burning sets in. Later on, since the mass-transfer rate in IDD is a permanently decreasing function of time, accretors experience several recurrent strong flashes. On the other hand, for intermediate and low values of dot{M} the accretors enter directly the strong flashes accretion regime. As expected, in all the considered systems the last He-flash is the strongest one, even if the physical conditions suitable for a dynamical event are never attained. When the mass accretion rate decreases below (2-3) × 10-8 M⊙ yr-1, the compressional heating of the He-shell becomes less efficient than the neutrino cooling, so that all the accretors in the considered systems evolve into massive degenerate objects. Our results suggest that SNe .Ia or Type Ia Supernovae due to Edge-Lit Detonation in the WD family of AM CVn stars should be much more rare than previously expected.

  7. The rms-flux relation in accreting white dwarfs: another nova-like variable and the first dwarf nova

    NASA Astrophysics Data System (ADS)

    Van de Sande, M.; Scaringi, S.; Knigge, C.

    2015-04-01

    We report on the detection of the linear rms-flux relation in two accreting white dwarf binary systems: V1504 Cyg and KIC 8751494. The rms-flux relation relates the absolute root-mean-square (rms) variability of the light curve to its mean flux. The light curves analysed were obtained with the Kepler satellite at a 58.8 s cadence. The rms-flux relation was previously detected in only one other cataclysmic variable (CV), MV Lyr. This result reinforces the ubiquity of the linear rms-flux relation as a characteristic property of accretion-induced variability, since it has been observed in several black hole binaries, neutron star binaries and active galactic nuclei. Moreover, its detection in V1504 Cyg is the first time the rms-flux relation has been detected in a dwarf nova-type CV during quiescence. This result, together with previous studies, hence points towards a common physical origin of accretion-induced variability, independent of the size, mass or type of the central accreting compact object.

  8. Accretion in brown dwarfs: An infrared view

    NASA Astrophysics Data System (ADS)

    Natta, A.; Testi, L.; Muzerolle, J.; Randich, S.; Comerón, F.; Persi, P.

    2004-09-01

    This paper presents a study of the accretion properties of 19 very low mass objects (M*˜ 0.01-0.1 M⊙) in the regions Chamaeleon I and ρ Oph. For 8 objects we obtained high resolution Hα profiles and determined mass accretion rate \\dot Mac and accretion luminosity Lac. Pa\\beta is detected in emission in 7 of the 10 ρ Oph objects, but only in one in Cha I. Using objects for which we have both a determination of Lac from Hα and a Paβ detection,} we show that the correlation between the Paβ luminosity and luminosity Lac, found by Muzerolle et al. (\\cite{Mea98}) for T Tauri stars in Taurus, extends to objects with mass ˜0.03 M⊙; L(Paβ) can be used to measure Lac also in the substellar regime. The results were less conclusive for Brγ, which was detected only in 2 objects, neither of which had an Hα estimate of \\dot Mac. Using the relation between L(Pa\\beta) and Lac we determined the accretion rate for all the objects in our sample (including those with no Hα spectrum), } more than doubling the number of substellar objects with known \\dot Mac. When plotted as a function of the mass of the central object together with data from the literature, our results confirm the trend of lower \\dot Mac for lower M*, although with a large spread. Some of the spread is probably due to an age effect; our very young objects in ρ Oph have on average an accretion rate at least one order of magnitude higher than objects of similar mass in older regions. As a side product, we found that the width of Hα measured at 10% peak intensity is not only a qualitative indicator of the accreting nature of very low mass objects, but can be used to obtain a quantitative, although not very accurate, estimate of \\dot Mac over a large mass range, from T Tauri stars to brown dwarfs. Finally, we found that some of our objects show evidence of mass-loss in their optical spectra. Based on observations collected at the European Southern Observatory, Chile. Table 2 is only available in

  9. Global Time Dependent Solutions of Stochastically Driven Standard Accretion Disks: Development of Hydrodynamical Code

    NASA Astrophysics Data System (ADS)

    Wani, Naveel; Maqbool, Bari; Iqbal, Naseer; Misra, Ranjeev

    2016-07-01

    X-ray binaries and AGNs are powered by accretion discs around compact objects, where the x-rays are emitted from the inner regions and uv emission arise from the relatively cooler outer parts. There has been an increasing evidence that the variability of the x-rays in different timescales is caused by stochastic fluctuations in the accretion disc at different radii. These fluctuations although arise in the outer parts of the disc but propagate inwards to give rise to x-ray variability and hence provides a natural connection between the x-ray and uv variability. There are analytical expressions to qualitatively understand the effect of these stochastic variabilities, but quantitative predictions are only possible by a detailed hydrodynamical study of the global time dependent solution of standard accretion disc. We have developed numerical efficient code (to incorporate all these effects), which considers gas pressure dominated solutions and stochastic fluctuations with the inclusion of boundary effect of the last stable orbit.

  10. Infrared accretion disc mapping of the dwarf nova V2051 Ophiuchi in outburst and in quiescence

    NASA Astrophysics Data System (ADS)

    Wojcikiewicz, E.; Baptista, R.

    2014-10-01

    Dwarf novae are compact binaries where a late-type star (the secondary) fills its Roche lobe and transfers matter to a companion white dwarf (the primary) via an accretion disc. They show outbursts which recur on timescales of weeks to years, where the accretion disc brightens by factors 20 to 100 either due to a thermal-viscous instability in the disc (DI model) or to a burst of enhanced mass-transfer from the secondary (MTI model). We report time-series of fast photometry of the dwarf nova V2051 Oph in the J and H bands, obtained with the CAMIV at the 1.6 m telescope of Observatório Pico dos Dias/Brazil, during the decline of an outburst in 2005 June, and in 2008 when the object was in quiescence. We modeled the ellipsoidal variations caused by the secondary to infer its contribution to the J and H fluxes, and fitted stellar atmosphere models to find a photometric parallatic distance of d = (111± 14)pc. Front-back brightness asymmetries in J and H-band eclipse maps along the decline from the 2005 outburst suggest that the accretion disc had a non-negligible opening angle which decreased as the disc cooled down. The time evolution of the disc radial temperature distribution along the outburst decline shows a cooling wave which accelerates as is travels inwards - in contradiction to a basic prediction from the DI model.

  11. STOCHASTIC ACCRETION AND THE VARIABILITY OF SUPERGIANT FAST X-RAY TRANSIENTS

    SciTech Connect

    Pizzolato, Fabio; Sidoli, Lara E-mail: sidoli@iasf-milano.inaf.it

    2013-01-10

    In this paper, we consider the variability of the luminosity of a compact object (CO) powered by the accretion of an extremely inhomogeneous (clumpy) stream of matter. The accretion of a single clump results in an X-ray flare; we adopt a simple model for the response of the CO to its arrival, and derive a stochastic differential equation (SDE) for the accretion-powered luminosity L(t). We set the SDE in the equivalent form of an equation for the flare luminosity distribution (FLD) and discuss its solution in the stationary case. We apply our formalism to the analysis of the FLDs of supergiant fast X-ray transients (SFXTs), a peculiar sub-class of high-mass X-ray binary (HMXB) systems. We compare our theoretical FLDs to the distributions observed in the SFXTs IGR J16479-4514, IGR J17544-2619, and XTE J1739-302. Despite its simplicity, our model agrees well with the observed distributions and allows us to predict some properties of the stellar wind. Finally, we discuss how our model may explain the difference between the broad FLDs of SFXTs and the much narrower FLDs of persistent HMXBs.

  12. Accretion-outflow connection in the outliers of the ``universal'' radio/X-ray correlation

    NASA Astrophysics Data System (ADS)

    Coriat, M.; Corbel, S.; Prat, L.; Miller-Jones, J. C. A.; Cseh, D.; Tzioumis, A. K.; Brocksopp, C.; Rodriguez, J.; Fender, R. P.; Sivakoff, G. R.

    2011-02-01

    In recent years, numerous efforts have been devoted to unravel the connection between accretion flow and jets in accreting compact objects. Here we report new constraints on these issues, through the long term study of the radio and X-ray behaviour of the black hole candidate H 1743-322. This source is known to be one of the ``outliers'' of the universal radio/X-ray correlation, i.e. a group of stellar mass accreting black holes displaying fainter radio emission for a given X-ray luminosity, than expected from the correlation. In this work we find, at high X-ray luminosity in the hard state, a tight radio/X-ray correlation with an unusual steep slope of b = 1.38 +/- 0.03. This correlation then breaks below ~5 × 10-3 LEdd (M/10Msolar)-1 in X-rays and becomes shallower. When compared with radio/X-ray data from other black hole X-ray binaries, we see that the deviant points of H 1743-322 join the universal correlation and seem to follow it at low luminosity. Based on these results, we investigate several hypotheses that could explain both the b ~ 1.4 slope and the transition toward the universal correlation.

  13. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  14. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  15. Ringed Accretion Disks: Instabilities

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  16. Accretion Disks in Two-dimensional Hoyle-Lyttleton Flow

    NASA Astrophysics Data System (ADS)

    Blondin, John M.

    2013-04-01

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  17. Effects of Ice Accretion on Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    1998-01-01

    The primary objective of this research was to support the development of a new ice accretion model by improving our physical understanding of the ice accretion process through experimental measurements. The focus was on the effect of the initial ice roughness (smooth/rough boundary) on the accretion process. This includes understanding the boundary-layer development over the roughness and especially its effect on the heat transfer which is fundamental to the ice accretion process. The research focused on acquiring the experimental data needed to formulate a new ice accretion physical model. Research was conducted to analyze boundary-layer data taken on a NACA 0012 airfoil with roughness to simulate the smooth/rough boundary. The effect of isolated roughness on boundary-layer transition was studied experimentally to determine if the classical critical roughness Reynolds number criteria could be applied to transition in the airfoil leading-edge area. The effect of simulated smooth/rough boundary roughness on convective heat transfer was studied to complete the study. During the course of this research the effect of free-stream wind tunnel turbulence on the boundary layer was measured. Since this quantity was not well known, research to accurately measure the wind tunnel turbulence in an icing cloud was undertaken. Preliminary results were attained and the final data were acquired, reduced and presented under a subsequent grant.

  18. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  19. The Stability of Hoyle-Lyttleton Accretion in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Raymer, E.

    2011-05-01

    The gravitational accretion of gas onto a compact star moving supersonically through a uniform ambient medium is dynamically unstable in the restricted case of two-dimensional planar geometry (a cylindrical star). Numerical simulations in 3D (e.g., the series of papers by Ruffert) show some hint of instability, but not the dramatic flip-flop seen in 2D planar simulations. We extend the recent 2D numerical simulations of Blondin and Pope (2009) to 3D using the overset spherical grid approach developed by Kageyama and Sato (2004). Using this grid geometry on current supercomputers allows us to simulate the smallest accretors studied in previous 3D work, but with an order of magnitude higher spatial resolution. For an ideal gas with a ratio of specific heats of 5/3, we find relatively minor time variability in the subsonic flow between the head of the accretion bow shock and the accreting star. Overall the bow shock and mass accretion rate remain nearly constant in time, with negligible angular momentum accreted onto the compact star.

  20. Tidal-Force-Induced Precessions of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Inoue, Hajime

    2012-04-01

    The preccession of an accretion disk around a compact star in a close binary has been studied. When the accretion disk tilts, the tidal force from the companion star induces a torque on it, which causes a preccession of the disk. We firstly consider the properties of a preccessing motion of a ring, which is circularly rotating around a compact star, and is preccessing with a slightly tilting angle under the influence of a tidal force from a companion star. We next compare the predicted behaviors of the preccessing ring with observations, and find that several observational facts from Her X-1, SS 433, and some other X-ray binaries can be explained by a tidal-force-induced precession scheme quite reasonably. We further examine the energetics of the preccessing ring as a function of the tilting angle. It is shown that the kinetic and potential energies of the orbiting motions of the ring matter around the compact star increases as the tilting angle increases, while the thermal and effective potential energies for hydro-static balance in the meridian cross section of the ring decreases through adiabatic expansion. Quantitative estimations have shown that when the ring has sufficient thermal energy, the decrease of the energy for the hydro-static balance can be larger than the increase of the energy for circular motion around the compact star until the tilting angle reaches a certain value. It is strongly suggested that preccessions of accretion disks are often realized in close binaries.

  1. Magnetospheric accretion in EX Lupi

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  2. Emission of gravitational waves by precession of slim accretion disks dynamically driven by the Bardeen-Petterson effect

    NASA Astrophysics Data System (ADS)

    Alfonso, W. D.; Sánchez, L. A.; Mosquera, H. J.

    2015-11-01

    The electromagnetic radiation emitted from some astrophysical objects such as active galactic nuclei (AGN), micro-quasars (M-QSRs), and central engines of gamma-ray burst (GRBs), seems to have a similar physical origin: a powerful jet of plasma ejected from a localized system, presumably composed of an accretion disk encircling a compact object. This radiation is generally beamed in the polar directions and in some cases, it appears to have a spiral-like structure that could be explained if the central system itself precesses. In this work, we use the slim disk accretion model, presented by Popham et al. (1999), to studying the gravitational waves (GWs) emitted by the precession of the accretion disk around a solar-mass Kerr black hole (KBH). For practical purposes, this model describes the central engine of a class of GRBs when some astrophysical constrains are fulfilled. The induced precession considered here is driven by the Bardeen-Petterson effect, which results from the combination of viscous effects in such disks and the relativistic frame-dragging effect. We evaluate the feasibility of direct detection of the GWs computed for such a model and show that the precession of this kind of systems could be detected by gravitational wave observatories like DECIGO, ultimate-DECIGO, and BBO, with higher probability if such a class of sources are placed at distances less than 1 Mpc.

  3. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Long, G. B.; Ou, J. W.; Zheng, Y. G.

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  4. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  5. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  6. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  7. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  8. Measuring the Kerr spin parameter of a non-Kerr compact object with the continuum-fitting and the iron line methods

    SciTech Connect

    Bambi, Cosimo

    2013-08-01

    Under the assumption that astrophysical black hole candidates are the Kerr black holes of general relativity, the continuum-fitting method and the analysis of the Kα iron line are today the only available techniques capable of providing a relatively reliable estimate of the spin parameter of these objects. If we relax the Kerr black hole hypothesis and we try to test the nature of black hole candidates, we find that there is a strong correlation between the measurement of the spin and possible deviations from the Kerr solution. The properties of the radiation emitted in a Kerr spacetime with spin parameter a{sub *} are indeed very similar, and practically indistinguishable, from the ones of the radiation emitted around a non-Kerr object with different spin. In this paper, I address the question whether measuring the Kerr spin with both the continuum-fitting method and the Kα iron line analysis of the same object can be used to claim the Kerr nature of the black hole candidate in the case of consistent results. In this work, I consider two non-Kerr metrics and it seems that the answer does depend on the specific background. The two techniques may either provide a very similar result (the case of the Bardeen metric) or show a discrepancy (Johannsen-Psaltis background)

  9. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  10. Winds from disks in compact binaries

    SciTech Connect

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  11. Spherical Accretion in a Uniformly Expanding Universe

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    fallback of initally outflowing gas onto the compact remnant in the core of a Type II supernova. The results have important implications for determining whether the remnant in SN 1987A is a neutron star or a black hole. We demonstrate that the outcome of fallback depends sensitively on initial conditions, principally on the sound speed of the material at the onset of infall. If the sound speed is small initially, Cs ≤ 300-400 km s-1, then the mass accretion rate remains super-Eddington for many years after the explosion, and the total mass accreted is substantial, perhaps enough to drive collapse of the neutron star to a black hole for a sufficiently soft equation of state. On the other hand, if the sound speed is considerably larger at the onset of infall, Cs ˜ 104 km s-1 or so, both the mass accretion rate and the total mass accreted may be small enough that a neutron star could lie at the core of SN 1987A.

  12. Tilted Accretion Disk Models of Sgr A* Flares

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Fragile, P. C.

    2013-01-01

    Sagittarius A* (Sgr A*), the Galactic center massive black hole candidate, is an unparalleled laboratory for low-luminosity accretion theory. First discovered as a compact radio source, Sgr A* has since been observed to undergo rapid, large amplitude NIR/X-ray flares. The many proposed phenomenological models cannot simultaneously explain both the flaring emission and the peak of the SED in the submillimeter. I will describe flares seen in numerical simulations of black hole accretion flows where the disk angular momentum is misaligned from that of the black hole. Eccentric fluid orbits driven by gravitational torques converge and form strong shocks, which can lead to significant particle heating. The resulting NIR emission can reproduce the observations, and is completely unrelated to the submillimeter emission, which is included in these models and is also in excellent agreement with observations. I will describe the prospects for testing accretion theory and constraining the properties of Sgr A* with exciting ongoing multi-wavelength observations.

  13. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  14. Stochastic events lead to accretion in Saturn’s rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2009-12-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: they can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance’ can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini’s observations of Saturn in 2004.

  15. Stochastic events lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2010-05-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004.

  16. Partial accretion in the propeller stage of accreting millisecond X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Gungor, Can; Gogus, Ersin; Eksi, Kazim Yavuz; Guver, Tolga

    2016-07-01

    Accreting millisecond X-ray pulsars (AMXPs) are very important objects for studying the stages of disk - magnetosphere interaction as these objects may show different stages in an observable duration. A typical X-ray light curve of an outburst of AMXP has a fast rise and an exponential decay phases. Most of the outbursts have a knee where the flux goes from the slow decay stage to the rapid decay stage. This knee may be linked to the transition from accretion to propeller stage. Since, after the knee, the X-ray luminosity of the source is still higher than its quiescent level, the accretion from inner disc must be continuing in the propeller stage with a lower fraction than in the accretion stage. The X-ray does not only come from accretion onto the poles but the inner parts of the disk may also contribute to the total X-ray luminosity. To infer what fraction (f) of the inflowing matter accretes onto the star the light curve in the propeller stage, one should first separate the emission originating from the disk and obtain a light curve of X-ray emission only from the magnetic poles. We provide a new method to infer from the observational data the fraction of accreting matter onto the neutron star pole to the mass transferring from outer layers of the disc to the inner disc (f), as a function of the fastness parameter (ω_{*}), assuming the knee is due to the transition from accretion to the propeller stage. We transform X-ray luminosities to the mass fraction, f, and the time scale of outburst to fastness parameter, ω_*. It allows us to compare different types of outbursts of an AMXP in f - ω_* space which is universal for a unique system. We analysed the Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) observations of the 2000 and the 2011 outbursts and the Swift Gamma-Ray Burst Mission/X-ray Telescope (SWIFT/XRT) data of the 2013 outburst of the most known AMXP, Aql X-1 using a combination of blackbody representing hot spot, disk blackbody

  17. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    SciTech Connect

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles E-mail: lhartm@umich.edu E-mail: gammie@illinois.edu

    2013-02-20

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the {sup d}ead zone{sup )}. We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R {approx}< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  18. Variable Accretion Outbursts in Protostellar Evolution

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles

    2013-02-01

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the "dead zone"). We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R <~ 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  19. Tearing up a misaligned accretion disc with a binary companion

    NASA Astrophysics Data System (ADS)

    Doğan, Suzan; Nixon, Chris; King, Andrew; Price, Daniel J.

    2015-05-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.

  20. Lambda Boo Abundance Patterns: Accretion from Orbiting Sources

    NASA Astrophysics Data System (ADS)

    Jura, M.

    2015-12-01

    The abundance anomalies in λ Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically inferred bounds for interstellar accretion. Therefore, a λ Boo star’s thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some λ Boo stars accrete from the winds of hot Jupiters.

  1. Pouring 'Cold Water' on Hot Accretion

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1995-09-01

    stage S4 [23] containing partly melted metal grains and opaque veins; heterogeneities in metallic Fe-Ni grains are due to post-metamorphic shock. Misshapen chondrules. A small proportion of chondrules in Tieschitz are non-spherical and seem to have molded themselves around one another while they were at least partly molten, possibly on the surface of a hot asteroid [24]. However, it is now clear that these conjoined objects are adhering or enveloping compound chondrules that fused in the nebula [25]; most are probably siblings that collided shortly after forming in the same heating event. Objects adjacent to the compound chondrules are separated by intervening matrix material; because matrix material is fine grained, porous, highly disequilibrated and unmelted [26,27], any complementarity in shape between adjacent objects and compound chondrules is either due to coincidence or jostling during chondrite compaction. Natural remanent magnetization (NRM). The orientations of the stable NRM in OC were found to be random at scales of ~1 mm3 [28]. Because metamorphic heating would erase the random magnetization, these authors opted for hot accretion. However, most OC appear to be fragmental breccias that contain scattered metal and silicate grains of aberrant compositions that were incorporated into their hosts after metamorphic equilibration [29,30]; by analogy to some CM chondrites which contain mm-size clasts that experienced different degrees of aqueous alteration [31], it is plausible that OC are also brecciated on mm-size scales. Such fine-scale brecciation could account for the random orientations of the stable NRM. References: [1] Dodd R. T. (1969) GCA, 33, 161-203. [2] McSween H. Y. et al. (1988) in Meteorites and the Early Solar System, 102-113, Univ. of Arizona, Tucson. [3] Haack H. et al. (1992) GRL, 19, 2235-2238. [4] Hutchison R. et al. (1980) Nature, 287, 787-790. [5] Keil K. and Fredriksson K. (1964) JGR, 69, 3487-3515. [6] Heyse J. V. (1978) EPSL, 40, 365

  2. Accreting X-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    This presentation describes the behavior of matter in environments with extreme magnetic and gravitational fields, explains the instability/stability of accretion disks in certain systems, and discusses how emergent radiation affects accretion flow. Magnetic field measurements are obtained by measuring the lowest cyclotron absorption line energy, observing the cutoff of accretion due to centrifugal inhibition and measuring the spin-up rate at high luminosity.

  3. The Chaotic Light Curves of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  4. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    PubMed

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects. PMID:26764835

  5. Beltrami state in black-hole accretion disk: A magnetofluid approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J.; Mahajan, S. M.

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  6. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  7. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    SciTech Connect

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B. E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.

  8. Simulations of accretion disks in pseudo-complex General Relativity

    NASA Astrophysics Data System (ADS)

    Hess, P. O.; Algalán B., M.; Schönenbach, T.; Greiner, W.

    2015-11-01

    After a summary on pseudo-complex General Relativity (pc-GR), circular orbits and stable orbits in general are discussed, including predictions compared to observations. Using a modified version of a model for accretions disks, presented by Page and Thorne in 1974, we apply the raytracing technique in order to simulate the appearance of an accretion disk as it should be observed in a detector. In pc-GR we predict a dark ring near a very massive, rapidly rotating object.

  9. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  10. Does livestock grazing affect sediment deposition and accretion rates in salt marshes?

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Müller, Frauke; Schuerch, Mark; Wanner, Antonia; Esselink, Peter; Bakker, Jan P.; Jensen, Kai

    2013-12-01

    Accretion rates, defined as the vertical growth of salt marshes measured in mm per year, may be influenced by grazing livestock in two ways: directly, by increasing soil compaction through trampling, and indirectly, by reducing aboveground biomass and thus decreasing sediment deposition rates measured in g/m² per year. Although accretion rates and the resulting surface elevation change largely determine the resilience of salt marshes to sea-level rise (SLR), the effect of livestock grazing on accretion rates has been little studied. Therefore, this study aimed to investigate the effect of livestock grazing on salt-marsh accretion rates. We hypothesise that accretion will be lower in grazed compared to ungrazed salt marshes. In four study sites along the mainland coast of the Wadden Sea (in the south-eastern North Sea), accretion rates, sediment deposition rates, and soil compaction of grazed and ungrazed marshes were analysed using the 137Cs radionuclide dating method. Accretion rates were on average 11.6 mm yr-1 during recent decades and thus higher than current and projected rates of SLR. Neither accretion nor sediment deposition rates were significantly different between grazing treatments. Meanwhile, soil compaction was clearly affected by grazing with significantly higher dry bulk density on grazed compared to ungrazed parts. Based on these results, we conclude that other factors influence whether grazing has an effect on accretion and sediment deposition rates and that the effect of grazing on marsh growth does not follow a direct causal chain. It may have a great importance when interacting with other biotic and abiotic processes on the marsh.

  11. Spiral shocks in a solar-size accretion disc

    NASA Astrophysics Data System (ADS)

    Harlaftis, E. T.; Steeghs, D.

    Accretion discs are fundamental in understanding astrophysical phenomena such as AGNs, novae outbursts and star formation. In interacting binaries, a compact star accretes matter from a donor star through an accretion disc. The outburst origin (disc or secondary star) and the mechanism for the angular momentum transport of the disc material (`viscosity') are still controversial subjects. The rarely-observed rise to outburst may hold the key to a better understanding. Imaging of the Balmer and He{I} emission lines of the dwarf nova IP Peg, during such a rise to outburst, shows a two-arm spiral pattern on the accretion disc around the white dwarf and provides the first convincing observational evidence for spiral waves in a stellar accretion disc (Steeghs, Harlaftis, Horne, 1997, Nature, submitted). Recent observations during the recent November 1996 outburst (Harlaftis, Steeghs, Horne, Martin, ApJ, 1997, in preparation) also demonstrate spiral arms in high-ionization lines such as HeII and the Bowen fluorescence lines which suggests that the spiral pattern may provide an efficient mechanism for trasport of angular momentum out of the disc through spiral shocks. We discuss the origin and location of the spiral arms. The tidal interaction of the secondary star with the enlarged (0.6 Rodot) outburst disc can raise such spiral waves in the outer disc. Comparison and implications for theories of spiral galaxies and planet formation is briefly outlined.

  12. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  13. AGN flickering and chaotic accretion

    NASA Astrophysics Data System (ADS)

    King, Andrew; Nixon, Chris

    2015-10-01

    Observational arguments suggest that the growth phases of the supermassive black holes in active galactic nuclei have a characteristic time-scale ˜105 yr. We show that this is the time-scale expected in the chaotic accretion picture of black hole feeding, because of the effect of self-gravity in limiting the mass of any accretion-disc feeding event.

  14. Unveiling Accretion Disks - Physical Parameter Eclipse Mapping of Accretion Disks in Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Vrielmann, S.

    1997-06-01

    This work presents a new tomography algorithm, the Physical Parameter Eclipse Mapping method. It has been designed to reconstruct the structure of accretion disks in cataclysmic variables in terms of the basic physical parameters. Cataclysmic variables are close interacting binaries, in which mass transfer from one of the stars, typically a main sequence star, to the other star, a white dwarf, proceeds via an accretion disk around the white dwarf. Accretion disks are of general importance in astrophysics, since they occur in a number of objects with mass accretion, like active galactic nuclei and young stellar objects. The eclipsing cataclysmic variables are ideal systems to study such accretion process, since with the varying orbital phase different parts of the accretion disk can be viewed. The tomography method is based on the classical Eclipse Mapping algorithm which yields intensity distributions in the accretion disk by fitting the observed eclipse light curve. In order to avoid ambiguities this back-projection is using a maximum entropy algorithm, with selects the smoothest solution still compatible with the data. In my new method the intensity distributions are replaced by distributions of physical parameters, using a specific theoretical model spectrum to fit a set of eclipse light curves at various wavelengths. The spectrum is chosen according to the type of cataclysmic variable under investigation and its state at the time of observation. This work shows through application to synthetic data that with such an approach given distributions in physical parameters can be reproduced, as long as the parameters assume values in the parameter space outside of regions where ambiguities arise. Versions with two simple models are tested, but in principle this method can cope with any given model spectrum. The Physical Parameter Eclipse Mapping method is applied to two sets of real data of the dwarf nova IP Pegasi on decline from outburst and HT Cassiopeiae in

  15. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  16. Morphodynamics of Accreting Beaches

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Gelfenbaum, G.; Sherwood, C. R.; Kaminsky, G. M.

    2002-12-01

    Beaches along the Pacific Northwest coast of the US have been shown to have large seasonal variability in shoreline position with several 10's of meters of recession occurring during the winter (high-energy waves) and typically similar scales of beach recovery during the summer (low-energy waves). However, many beaches along the Columbia River littoral cell (northwest Oregon and southwest Washington) have exhibited net residual progradation of several meters per year over decades, resulting in significant shoreline realignment. This historical shoreline advance has been primarily due to the dispersal of sand from the flanks of the ebb-tidal deltas following jetty construction at the entrances to the Columbia River and Grays Harbor. The installation of jetties removed the shallow shoals from the influence of tidal currents, resulting in a shoreface profile that was too shallow for the inherent wave energy. Onshore transport of large quantities of sand occurred over the next several decades, decreasing through time. While much of the original source material is now exhausted, many beaches today are still rapidly accreting on inter-annual time scales. Gradients in alongshore sediment transport, net onshore directed cross-shore sediment transport within the surf zone, and cross-shore feeding from a shoreface out of equilibrium with forcing conditions may each be partially responsible for this continued accretion. The primary morphodynamic mechanism for sub-aerial beach growth, and shoreline progradation on a seasonal scale, is hypothesized to be the development, onshore migration, and welding of inter-tidal (swash) bars to the upper beach face. To investigate the processes and morphodynamics associated with accreting beaches we have completed two field experiments and are applying computational models that link measured sediment transport to wave and current forcing. Experiments completed in Spring 2001 and Summer 2002 combined process measurements with observations of

  17. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  18. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  19. Collisionless kinetic regimes for quasi-stationary axisymmetric accretion disc plasmas

    SciTech Connect

    Cremaschini, C.; Tessarotto, M.

    2012-08-15

    This paper is concerned with the kinetic treatment of quasi-stationary axisymmetric collisionless accretion disc plasmas. The conditions of validity of the kinetic description for non-relativistic magnetized and gravitationally bound plasmas of this type are discussed. A classification of the possible collisionless plasma regimes which can arise in these systems is proposed, which can apply to accretion discs around both stellar-mass compact objects and galactic-center black holes. Two different classifications are determined, which are referred to, respectively, as energy-based and magnetic field-based classifications. Different regimes are pointed out for each plasma species, depending both on the relative magnitudes of kinetic and potential energies and the magnitude of the magnetic field. It is shown that in all cases, there can be quasi-stationary Maxwellian-like solutions of the Vlasov equation. The perturbative approach outlined here permits unique analytical determination of the functional form for the distribution function consistent, in each kinetic regime, with the explicit inclusion of finite Larmor radius-diamagnetic and/or energy-correction effects.

  20. Numerical simulation of the disk dynamics around the black hole: Bondi-Hoyle accretion

    NASA Astrophysics Data System (ADS)

    Koyuncu, Fahrettin; Dönmez, Orhan

    2014-06-01

    We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip-flop oscillation around the black holes. The flip-flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.

  1. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  2. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  3. Accretion disk radiation dynamics and the cosmic battery

    SciTech Connect

    Koutsantoniou, Leela E.; Contopoulos, Ioannis E-mail: icontop@academyofathens.gr

    2014-10-10

    We investigate the dynamics of radiation in the surface layers of an optically thick astrophysical accretion disk around a Kerr black hole. The source of the radiation is the surface of the accretion disk itself, and not a central object as in previous studies of the Poynting-Robertson effect. We generate numerical sky maps from photon trajectories that originate on the surface of the disk as seen from the inner edge of the disk at the position of the innermost stable circular orbit. We investigate several accretion disk morphologies with a Shakura-Sunyaev surface temperature distribution. Finally, we calculate the electromotive source of the Cosmic Battery mechanism around the inner edge of the accretion disk and obtain characteristic timescales for the generation of astrophysical magnetic fields.

  4. Accretion disc mapping of the shortest period eclipsing binary SDSS J0926+36

    NASA Astrophysics Data System (ADS)

    Schlindwein, W.; Baptista, R.

    2014-10-01

    AM CVn stars are ultracompact binaries (P_{orb}< 65 min) where a hydrogen-deficient low-mass, degenerate donor star overfills its Roche lobe and transfers matter to a companion white dwarf via an accretion disc. SDSS J0926+36 is currently the only eclipsing AM CVn star and also the shortest period eclipsing binary known. Its light curve displays deep (˜ 2 mag) eclipses every 28.3 min, which last for ˜ 2 min, as well as ˜ 2 mag amplitude outbursts every ˜ 100-200 d. Superhumps were seen in its quiescent light curve in some occasions, probably as a reminiscence of a (in some cases undetected) previous outburst. Its eclipsing nature allows a unique opportunity to disentangle the emission from several different light sources, and to map the surface brightness distribution of its hydrogen-deficient accretion disc with the aid of maximum entropy eclipse mapping techniques. Here we report the eclipse mapping analysis of optical light curves of SDSS J0926+36, collected with the 2.4 m Liverpool Robotic Telescope, covering 20 orbits of the binary over 5 nights of observations between 2012 February and March. The object was in quiescence at all runs. Our data show no evidence of superhumps nor of orbital modulation due to anisotropic emission from a bright spot at disc rim. Accordingly, the average out-of-eclipse flux level is consistent with that of the superhump-subtracted previous light curves. We combined all runs to obtain an orbital light curve of improved S/N. The corresponding eclipse map shows a compact source at disc centre (T_{b}simeq 17000 K), a faint, cool accretion disc (˜ 4000 K) plus enhanced emission along the gas stream (˜ 6000 K) beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow at that epoch.

  5. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  6. Stochastic events may lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    Stochastic events may lead to accretion in Saturn's rings Larry W. Esposito LASP, University of Colorado UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption. . . just as `irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. I present a simple predator-prey model. This system's unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004. Unlike other interpretations of the peculiar events seen near Saturn Equinox, I emphasize the kinetic description of particle interactions rather than a fluid instability approach; and the dominance of stochastic events involving individual aggregates over free and/or driven modes in a flat disk.

  7. Relativistic simulation of flip-flop instabilities of Bondi-Hoyle accretion and quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Dönmez, O.

    2012-10-01

    It is known from recent numerical calculations that Bondi-Hoyle accretion creates a shock cone behind compact objects. This type of accretion leads to instabilities, which can explain certain astrophysical phenomena. In this paper, our main goal is to find the flip-flop behaviour of the shock cone in the relativistic region. In order to do so we have modelled the dynamics of a shock cone around non-rotating and rotating black holes at the equatorial plane in 2D. The effects of the various parameters on the shock cones and instabilities, such as the asymptotic velocity, sound speed, Mach number and adiabatic index, are studied. We have determined the mass accretion rate, shock opening angle, shock cone oscillation, quasi-periodic oscillations (QPOs), and growth rate of instabilities to reveal the disc properties and its radiation. We have discovered, for the first time, flip-flop instabilities around a black hole in the relativistic region by solving the general relativistic hydrodynamical equations. The flip-flop instabilities are found for sound speeds Cs, ∞ < 0.2 with moderate Mach numbers (˜M=3 and M=4 for Cs, ∞ = 0.1 or M=7 and M=8 for Cs, ∞ = 0.05). Our calculation clearly confirms that the shock cone should be detached from the black hole in the Bondi-Hoyle accretion flow with Γ ≥ 2 for non-rotating and rotating black holes. Results reveal that the flip-flopping shock cone not only creates a torque effect on the black hole but also produces continuous X-ray flares with a certain frequency. Furthermore, QPOs originate inside the shock cone and are stronger in regions that have a radius of a few gravitational radii away from the centre owing to the flip-flop oscillation. Finally, our results are compared with the results of numerical and theoretical calculations in Newtonian hydrodynamics, and it is found that they are in good agreement.

  8. Properties of accretion disk coronae

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Staubert, R.; Begelman, M. C.

    1997-01-01

    The properties of accretion disk corona in a parameter regime suitable for Galactic black hole candidates are considered and the results of an analysis of these properties using a self-consistent Monte Carlo code are presented. Examples of the coronal temperature structure, the shape and angular dependency of the spectrum and the maximum temperature allowed for each optical depth of the corona are presented. It is shown that the observed spectrum of the Galactic black hole candidate Cygnus X-1 cannot be explained by accreting disk corona models with a slab geometry, where the accretion disk is sandwiched by the comptonizing medium.

  9. Wind accretion: Theory and observations

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  10. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von, Huene R.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  11. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  12. He-accreting white dwarfs: accretion regimes and final outcomes

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Tornambé, A.; Yungelson, L. R.

    2014-12-01

    The behaviour of carbon-oxygen (CO) white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyse the thermal response of an accreting WD to mass deposition at different timescales. The analysis has been performed for initial WD masses and accretion rates in the range 0.60-1.02 M⊙ and 10-9-10-5 M⊙ yr-1, respectively. Thermal regimes in the parameter space MWD-dot{M}_He leading to formation of red-giant-like structures, steady burning of He, and mild, strong and dynamical flashes have been identified and the transition between these regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building up of a He-rich layer via H burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomial fits to the obtained results are provided for use in binary population synthesis computations. Several applications for close binary systems with He-rich donors and CO WD accretors are considered and the relevance of the results for interpreting He novae is discussed.

  13. The missing compact star of SN1987A: a solid quark star?

    NASA Astrophysics Data System (ADS)

    Liu, X. W.; Liang, J. D.; Xu, R. X.; Han, J. L.; Qiao, G. J.

    2012-08-01

    To investigate the missing compact star of Supernova 1987A (SN1987A), we analysed the cooling and heating processes of a possible compact star based on the upper limit of observational X-ray luminosity. From the cooling process, we found that a solid quark-cluster star (SQS), having a stiffer equation of state than that of a conventional liquid quark star, has a heat capacity much smaller than a neutron star. The SQS can cool down quickly, naturally explaining the non-detection of a point source in X-ray wavelengths. On the other hand, we considered the heating processes due to magnetospheric activity and possible accretion, and obtained some constraints on the parameters of a possible pulsar. Therefore, we concluded that an SQS can explain the observational limit in a confident parameter space. With a short period and a strong magnetic field (or with a long period and weak field), a pulsar would have a luminosity higher than the observational limit if the optical depth is not large enough to hide the compact star. As possible central compact objects, the parameters constrained for a pulsar can be tested for SN1987A with advanced facilities in the future.

  14. Dynamics of continental accretion.

    PubMed

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon. PMID:24670638

  15. Galactic Fountains and Gas Accretion

    NASA Astrophysics Data System (ADS)

    Marinacci, F.; Binney, J.; Fraternali, F.; Nipoti, C.; Ciotti, L.; Londrillo, P.

    2010-06-01

    Star-forming disc galaxies such as the Milky Way need to accrete >~1 Msolar of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from these clouds and the stripped gas causes coronal gas to condense in the cloud's wake. For likely parameters of the Galactic corona and of typical fountain clouds we obtain a global accretion rate of the order of that required to feed the star formation.

  16. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  17. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  18. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  19. Driving of Accretion Disk Variability by the Disk Dynamo

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-01-01

    Variability is a univeral feature of emission from accreting objects, but many questions remain as to how the variability is driven and how it relates to the underlying accretion physics. We use a long, semi-global MHD simulation of a thin accretion disk around a black hole to perform a detailed study of the fluctuations in the internal disk stress and the affect these fluctuations have on the accretion flow. In this poster, we show that low frequency fluctuations in the effective α-parameter in the disk are due to oscillations of the disk dynamo. Additionally, we show that fluctuations in the effective α-parameter drive "propagating fluctuations" in mass accretion rate through the disk that qualitatively resemble the variability from astrophysical black hole systems. In particular, we show that several of the ubiquitous phenomenological properties of black hole variability, including log-normal flux distributions, RMS-flux relationships, and radial coherence are present in the mass accretion rate fluctuations of our simulation.

  20. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  1. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716

  2. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  3. Transient accretion disc-like envelope in the symbiotic binary BF Cygni during its 2006-2015 optical outburst

    NASA Astrophysics Data System (ADS)

    Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.

    2015-09-01

    The optical light of the symbiotic binary BF Cyg during its last eruption after 2006 shows orbital variations because of an eclipse of the outbursting compact object. The first orbital minimum is deeper than the following ones. Moreover, the Balmer profiles of this system acquired additional satellite components indicating a bipolar collimated outflow at one time between the first and second orbital minima. This behaviour is interpreted in the framework of the model of a collimated stellar wind from the outbursting object. It is supposed that one extended disc-like envelope covering the accretion disc of the compact object and collimating its stellar wind forms in the period between the first and second minima. The uneclipsed part of this envelope is responsible for the decrease of the depth of the orbital minimum. The calculated U BVR_{ C}I_{ C} fluxes of this uneclipsed part are in agreement with the observed residual of the depths of the first and second orbital minima. The parameters of the envelope require that it is the main emitting region of the line Hα but the Hα profile is less determined from its rotation and mostly from other mechanisms. It is concluded that the envelope is a transient nebular region and its destruction determines the increase of the depth of the orbital minimum with fading of the optical light.

  4. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  5. Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  6. Magnetised accretion discs in Kerr spacetimes. II. Hot spots

    NASA Astrophysics Data System (ADS)

    García, Federico; Ranea-Sandoval, Ignacio F.; Johannsen, Tim

    2016-03-01

    Context. Quasi-periodic variability has been observed in a number of X-ray binaries that harbor black hole candidates. In general relativity, black holes are uniquely described by the Kerr metric and, according to the cosmic censorship conjecture, curvature singularities always have to be clothed by an event horizon. Aims: In this paper, we study the observed light curves that arise from orbiting hotspots in thin accretion discs around Kerr black holes and naked singularities, and the effect introduced by the presence of an external magnetic field. Methods: We employ a ray-tracing algorithm to calculate the light curves and power spectra of these hot spots as seen by a distant observer for uniform and dipolar magnetic field configurations, assuming a weak coupling between the magnetic field and the disc matter. Results: We show that the presence of an external dipolar magnetic field leads to potentially observable modifications of these light curves for both Kerr black holes and naked singularities, while an external uniform magnetic field has practically no effect. In particular, we demonstrate that the emission from a hotspot, which is orbiting near the innermost stable circular orbit of a naked singularity in a dipolar magnetic field, can be significantly harder than the emission of the same hotspot in the absence of this type of magnetic field. Conclusions: The comparison of our model with observational data may allow us to study the geometry of magnetic fields around compact objects and to test the cosmic censorship conjecture in conjunction with other observables, such as thermal continuum spectra and iron line profiles.

  7. The relativistic equation of state in accretion and wind flows

    NASA Astrophysics Data System (ADS)

    Basu, Prasad; Mondal, Soumen

    2014-01-01

    In the present study we derive a 4-velocity distribution function for the relativistic ideal gas following the original approach of Maxwell-Boltzmann (MB). Using this distribution function, the relativistic equation of state (EOS): ρ-ρ0=(p, is expressed in the parametric form: ρ=ρ0f(λ), and p=ρ0g(λ), where λ is a parameter related to the kinetic energy, and hence, to the temperature of the gas. In the nonrelativistic limit, this distribution function perfectly reduces to original MB distribution and the EOS reduces to ρ-ρ0=3/2 p, whereas in the extreme ultra-relativistic limit, the EOS becomes ρ=3p correctly. Using these parametric equations the adiabatic index γ=cp/cv and the sound speed as are calculated as a function of λ. They also satisfy the inequalities: 4/3 ⩽γ⩽ 5/3 and as⩽ 1/√{3} perfectly. The computed distribution function, adiabatic index γ, and the sound speed as are compared with the results obtained from the canonical ensemble theory which nicely match with the standard results (Synge, 1957 and Chandrasekhar, 1939). The main advantage in using the EOS is that the probability distribution function can be factorized and therefore, may be helpful to solve complex dynamics of the astrophysical system. Interestingly, in one of the astrophysical application revels that shocks in accretion flows become unlikely and except for the region very nearby the compact object, the EOS remains non-relativistic (Mondal and Basu, 2011). We therefore, conclude that the new form of EOS will be helpful to verify many conventional ideas in many astrophysical problems.

  8. Compact multiframe blind deconvolution.

    PubMed

    Hope, Douglas A; Jefferies, Stuart M

    2011-03-15

    We describe a multiframe blind deconvolution (MFBD) algorithm that uses spectral ratios (the ratio of the Fourier spectra of two data frames) to model the inherent temporal signatures encoded by the observed images. In addition, by focusing on the separation of the object spectrum and system transfer functions only at spatial frequencies where the measured signal is above the noise level, we significantly reduce the number of unknowns to be determined. This "compact" MFBD yields high-quality restorations in a much shorter time than is achieved with MFBD algorithms that do not model the temporal signatures; it may also provide higher-fidelity solutions. PMID:21403711

  9. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  10. METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING-ROBERTSON DRAG ON THEIR DEBRIS DISKS

    SciTech Connect

    Rafikov, Roman R.

    2011-05-01

    Recent discoveries of compact (sizes {approx}accretion of high-Z material from the disk. But the mechanism responsible for efficient transfer of mass from a particulate disk to the WD atmosphere has not yet been identified. Here we demonstrate that radiation of the WD can effectively drive accretion of matter through the disk toward the sublimation radius (located at several tens of WD radii), where particles evaporate, feeding a disk of metal gas accreting onto the WD. We show that, contrary to some previous claims, Poynting-Robertson (PR) drag on the debris disk is effective at providing metal accretion rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1} and higher, scaling quadratically with WD effective temperature. We compare our results with observations and show that, as expected, no WD hosting a particulate debris disk shows evidence of metal accretion rate below that produced by the PR drag. Existence of WDs accreting metals at rates significantly higher than M-dot{sub PR} suggests that another mechanism in addition to the PR drag drives accretion of high-Z elements in these systems.

  11. ACCRETION IN PROTOPLANETARY DISKS BY COLLISIONAL FUSION

    SciTech Connect

    Wettlaufer, J. S.

    2010-08-10

    The formation of a solar system such as ours is believed to have followed a multi-stage process around a protostar and its associated accretion disk. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag, and Cuzzi and colleagues have shown that when midplane particle mass densities approach or exceed those of the gas, solid-solid interactions dominate the drag effect. The size dependence of the drag creates a 'bottleneck' at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Independent of whether the origin of the drag is angular momentum exchange with gas or solids in the disk, successful planetary accretion requires rapid planetesimal growth to kilometer scales. A commonly accepted picture is that for collisional velocities V{sub c} above a certain threshold value, V {sub th{approx}} 0.1-10 cm s{sup -1}, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all ranges of interparticle collision speeds the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter-phase diagrams, amorphs, and polymorphs-has been neglected. Here, it is demonstrated for compact bodies that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting/amorphization/polymorphization and subsequent fusion/annealing to extend the collisional velocity range of primary accretion to {Delta}V{sub c} {approx} 1-100 m s{sup -1} >> V {sub th}, which encompasses both typical turbulent rms speeds and the velocity differences between boulder-sized and small grains {approx}1-50 m s{sup -1}. Therefore, as inspiraling meter-sized bodies collide

  12. Accretion in Protoplanetary Disks by Collisional Fusion

    NASA Astrophysics Data System (ADS)

    Wettlaufer, J. S.

    2010-08-01

    The formation of a solar system such as ours is believed to have followed a multi-stage process around a protostar and its associated accretion disk. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag, and Cuzzi and colleagues have shown that when midplane particle mass densities approach or exceed those of the gas, solid-solid interactions dominate the drag effect. The size dependence of the drag creates a "bottleneck" at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Independent of whether the origin of the drag is angular momentum exchange with gas or solids in the disk, successful planetary accretion requires rapid planetesimal growth to kilometer scales. A commonly accepted picture is that for collisional velocities Vc above a certain threshold value, V th~ 0.1-10 cm s-1, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all ranges of interparticle collision speeds the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter-phase diagrams, amorphs, and polymorphs—has been neglected. Here, it is demonstrated for compact bodies that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting/amorphization/polymorphization and subsequent fusion/annealing to extend the collisional velocity range of primary accretion to ΔVc ~ 1-100 m s-1 Gt V th, which encompasses both typical turbulent rms speeds and the velocity differences between boulder-sized and small grains ~1-50 m s-1. Therefore, as inspiraling meter-sized bodies collide with smaller particles in this high velocity collisional fusion

  13. Black hole accretion disc impacts

    NASA Astrophysics Data System (ADS)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  14. An analytical model of accretion onto white dwarfs

    NASA Astrophysics Data System (ADS)

    Ospina, N.; Hernanz, M.

    2013-05-01

    The analytical model of Frank et al. (2002) has been used to investigate the structure of the accretion stream onto white dwarfs (WD). In particular, the post-shock region (temperature, density and gas velocity distributions) and X-ray spectrum emitted by this region. We have obtained the temperature, density and gas velocity distributions of the emission region for different masses of white dwarfs and at different positions in the shock coordinate. Also, we calculated the emitted spectrum for different WD masses and at different positions of the shock with the principal objective of study the accretion at different points of the emission region.

  15. Mysterious object He2-90

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them.

  16. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  17. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  18. Volatile loss from accreting icy protoplanets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1993-01-01

    A large self-gravitating body does not easily lose significant mass because the escape velocity is much larger than the sound speed of atmosphere-forming species under ambient thermal conditions. The most significant exceptions to this are giant impacts or impact jetting by fast-moving projectiles. A very small object (e.g. a comet) also does not easily lose significant volatile mass upon formation because the energy release associated with its accretion is so small. (It can however lose a great deal of mass if it is subsequently moved closer to the Sun.) I argue that there is an intermediate mass range (corresponding to bodies with radii of approximately 300-800 km) for which the ambient steady-state mass loss is a maximum. By ambient, I mean those conditions pertaining to the formation region of the body. By steady state, I mean to exclude infrequent traumas (giant impacts). The existence of a preferred intermediate mass arises through the competition of growing gravitational containment and growing energy release by accretion; it corresponds typically to GM/(Rc(sub s)(exp 2)) approximately equals 2 to 4, where M is the protoplanet mass of radius R, and c(sub s) is the sound speed. Several factors determine the amount of volatile loss is this vulnerable zone during accretion but in general the loss is a substantial fraction of the volatiles, sometimes approaching 100 percent. The principal implication is that bodies larger than a few hundred kilometers in radius will not have a 'primitive' (i.e. cometary) composition. This is relevant for understanding Triton, Pluto, Charon, and perhaps Chiron.

  19. Viscosity in spherically symmetric accretion

    NASA Astrophysics Data System (ADS)

    Ray, Arnab K.

    2003-10-01

    The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.

  20. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  1. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  2. Emission lines from X-ray-heated accretion disks in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Kallman, Timothy R.

    1994-01-01

    We investigate the structure of accretion disks illuminated by X-rays from a central compact object in a binary system. X-rays can photoionize the upper atmosphere of the disk and form an accretion disk corona (ADC) where emission lines can form. We construct a model to calculate the vertical structure and the emission spectrum of the ADC with parameters appropriate to low-mass X-ray binaries. These models are made by nonlocal thermodynamic equilibrium calculations of ion and level populations and include a large number of atomic processes for 10 cosmically abundant elements. Transfer of radiation is treated by using the escape probability formalism. The vertical temperature profile of the ADC consists of a Compton-heated region and a mid-T zone where the temperature is approximately 10(exp 6) K. A thermal instability occurs close to the disk photosphere and causes the temperature of the ADC to drop abruptly from 10(exp 6) K to several times 10(exp 4) K. The emission spectrum in the optical, ultraviolet, extreme ultraviolet, and X-ray range is discussed and compared with the observations.

  3. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  4. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  5. The origin of ultra-compact binaries

    NASA Technical Reports Server (NTRS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    1987-01-01

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  6. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects. PMID:25297433

  7. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  8. High-resolution x-ray imaging of a globular cluster core: compact binaries in 47Tuc.

    PubMed

    Grindlay, J E; Heinke, C; Edmonds, P D; Murray, S S

    2001-06-22

    We have obtained high-resolution (approximately 1") deep x-ray images of the globular cluster 47Tucanae (NGC 104) with the Chandra X-ray Observatory to study the population of compact binaries in the high stellar density core. A 70-kilosecond exposure of the cluster reveals a centrally concentrated population of faint (Lx approximately 10(30-33) ergs per second) x-ray sources, with at least 108 located within the central 2' x 2.5' and greater, similar half with Lx approximately 10(30.5) ergs per second. All 15 millisecond pulsars (MSPs) recently located precisely by radio observations are identified, though 2 are unresolved by Chandra. The x-ray spectral and temporal characteristics, as well as initial optical identifications with the Hubble Space Telescope, suggest that greater, similar50 percent are MSPs, about 30 percent are accreting white dwarfs, about 15 percent are main-sequence binaries in flare outbursts, and only two to three are quiescent low-mass x-ray binaries containing neutron stars, the conventional progenitors of MSPs. An upper limit of about 470 times the mass of the sun is derived for the mass of an accreting central black hole in the cluster. These observations provide the first x-ray "color-magnitude" diagram for a globular cluster and census of its compact object and binary population. PMID:11358997

  9. Structure and Evolution of Kuiper Belt Objects: The Case for Compositional Classes

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Prialnik, D.; Stern, S. A.

    2007-10-01

    Kuiper belt objects (KBOs) accreted from a mélange of ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of radiogenic heating, with both short-term and long-term contributions being potentially important. Depending on rock content and porous conductivity, KBO interiors may have reached relatively high temperatures. Models suggest that KBOs likely lost very volatile ices during early evolution, whereas less volatile ices should be retained in cold, less altered subsurface layers; initially amorphous ice may have crystallized in the interior as well, releasing trapped volatiles. Generally, KBOs should be stratified in terms of composition and porosity, albeit subject to impact disruption and collisional stripping. KBOs are thus unlikely to be "the most pristine objects in the Solar System.” Large (dwarf planet) KBOs may be fully differentiated. KBO surface color and compositional classes are usually discussed in terms of "nature vs. nurture,” i.e., a generic primordial composition vs. surface processing, but the true nature of KBOs also depends on how they have evolved. The broad range of albedos now found in the Kuiper belt, deep water-ice absorptions on some objects, evidence for differentiation of Pluto and 2003 EL61, and a range of densities incompatible with a single, primordial composition and variable porosity strongly imply significant, intrinsic compositional differences among KBOs. The interplay of formation zone (accretion rate), body size, and dynamical (collisional) history may yield KBO compositional classes (and their spectral correlates) that recall the different classes of asteroids in the inner Solar System, but whose members are

  10. X-RAY OBSERVATIONAL SIGNATURE OF A BLACK HOLE ACCRETION DISK IN AN ACTIVE GALACTIC NUCLEUS RX J1633+4718

    SciTech Connect

    Yuan, W.; Liu, B. F.; Zhou, H.; Wang, T. G.

    2010-11-01

    We report the discovery of a luminous ultra-soft X-ray excess in a radio-loud narrow-line Seyfert 1 galaxy, RX J1633+4718, from archival ROSAT observations. The thermal temperature of this emission, when fitted with a blackbody, is as low as 32.5{sup +8.0}{sub -6.0} eV. This is in remarkable contrast to the canonical temperatures of {approx}0.1-0.2 keV found hitherto for the soft X-ray excess in active galactic nuclei (AGNs) and is interestingly close to the maximum temperature predicted for a postulated accretion disk in this object. If this emission is indeed blackbody in nature, the derived luminosity (3.5{sup +3.3}{sub -1.5} x 10{sup 44} erg s{sup -1}) infers a compact emitting area with a size ({approx}5 x 10{sup 12} cm or 0.33 AU in radius) that is comparable to several times the Schwarzschild radius of a black hole (BH) at the mass estimated for this AGN ({approx}3 x 10{sup 6} M{sub sun}). In fact, this ultra-steep X-ray emission can be well fitted as the (Compton scattered) Wien tail of the multi-temperature blackbody emission from an optically thick accretion disk, whose inferred parameters (BH mass and accretion rate) are in good agreement with independent estimates using the optical emission-line spectrum. We thus consider this feature as a signature of the long-sought X-ray radiation directly from a disk around a supermassive BH, presenting observational evidence for a BH accretion disk in the AGN. Future observations with better data quality, together with improved independent measurements of the BH mass, may constrain the spin of the BH.

  11. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  12. Object Oriented Learning Objects

    ERIC Educational Resources Information Center

    Morris, Ed

    2005-01-01

    We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…

  13. An irradiated brown-dwarf companion to an accreting white dwarf

    NASA Astrophysics Data System (ADS)

    Hernández Santisteban, Juan V.; Knigge, Christian; Littlefair, Stuart P.; Breton, Rene P.; Dhillon, Vikram S.; Gänsicke, Boris T.; Marsh, Thomas R.; Pretorius, Magaretha L.; Southworth, John; Hauschildt, Peter H.

    2016-05-01

    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor). The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are

  14. An irradiated brown-dwarf companion to an accreting white dwarf.

    PubMed

    Santisteban, Juan V Hernández; Knigge, Christian; Littlefair, Stuart P; Breton, Rene P; Dhillon, Vikram S; Gänsicke, Boris T; Marsh, Thomas R; Pretorius, Magaretha L; Southworth, John; Hauschildt, Peter H

    2016-05-19

    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor). The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are

  15. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  16. Accretion of the Moon from non-canonical discs.

    PubMed

    Salmon, J; Canup, R M

    2014-09-13

    Impacts that leave the Earth-Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such 'non-canonical' impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth-Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance. PMID:25114307

  17. Accretion of the Moon from non-canonical discs

    PubMed Central

    Salmon, J.; Canup, R. M

    2014-01-01

    Impacts that leave the Earth–Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such ‘non-canonical’ impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth–Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance. PMID:25114307

  18. Some problems pertaining to the mechanics of accreted planetary bodies

    NASA Astrophysics Data System (ADS)

    Kadish, Jonathan Maxwell

    This dissertation addresses problems pertaining to the mechanics of accreted planetary bodies. Roughly 4.6 billion years ago, all mass was in form of dust and gas that orbited the sun in a large cloud called the solar nebula. The growth of kilometer-sized objects from sub-micron sized dust grains occurred by the collisional and/or gravitational evolution of a swarm of particles. Growth in this manner, or growth by the continual deposition of material onto an object's surface, is known as a process of accretion. An explicit, closed form solution for the stress field of an accreted, triaxial ellipsoid is derived using the linear, small deformation theory of elasticity. It is found that that this stress field is qualitatively different from the typical elastic solution, which is equivalent to building the body to its final dimensions arid then endowing it with mass and angular momenturn. On a related topic, a discrete element method is used to simulate growth as the head-on collision between a particle and a pack of particles that are all spherical, smooth, and rigid. It is found that energy can be dissipated amongst these constitutively simple particles by a rise of the system's granular temperature, which allows growth to occur even when the accreting particle's velocity is larger than its escape velocity. This phenomena may have played an important role during growth in the early solar system.

  19. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  20. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  1. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  2. Spiral Waves in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Harlaftis, Emilios

    A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.

  3. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  4. Magnetically Torqued Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kluźniak, W.; Rappaport, S.

    2007-12-01

    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ``transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.

  5. Revisiting the "Flip-Flop" Instability of Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Pope, T. Chris

    2009-07-01

    We revisit the flip-flop instability of two-dimensional planar accretion using high-fidelity numerical simulations. By starting from an initially steady-state axisymmetric solution, we are able to follow the growth of this overstability from small amplitudes. In the small-amplitude limit, before any transient accretion disk is formed, the oscillation period of the accretion shock is comparable to the Keplerian period at the Hoyle-Lyttleton accretion radius (Ra ), independent of the size of the accreting object. The growth rate of the overstability increases dramatically with decreasing size of the accretor, but is relatively insensitive to the upstream Mach number of the flow. We confirm that the flip-flop does not require any gradient in the upstream flow. Indeed, a small density gradient as used in the discovery simulations has virtually no influence on the growth rate of the overstability. The ratio of specific heats does influence the overstability, with smaller γ leading to faster growth of the instability. For a relatively large accretor (a radius of 0.037 Ra ) planar accretion is unstable for γ = 4/3, but stable for γ >= 1.6. Planar accretion is unstable even for γ = 5/3 provided the accretor has a radius of < 0.0025 Ra . We also confirm that when the accretor is sufficiently small, the secular evolution is described by sudden jumps between states with counter-rotating quasi-Keplerian accretion disks.

  6. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  7. Controls on the Geometry of Accretion Reflectors

    NASA Astrophysics Data System (ADS)

    Wolovick, M.; Bell, R. E.; Buck, W. R.; Creyts, T. T.

    2012-12-01

    Basal accretion occurs when meltwater refreezes onto the base of an ice sheet. Thick packages (900-1100m) of accretion ice are identified in radio-echo sounding data as plume-shaped reflectors above the basal reflector and below isochronous layers of meteoric ice. Accretion reflectors have been imaged in both Antarctica and Greenland rising to a height of 1/3-1/2 of the ice sheet thickness and extending in the flow direction as far as 100 km. Here we use a two-dimensional thermomechanical higher order flowline model coupled to a basal hydrology model to investigate the freezing rates and energy budgets of basal accretion processes. Simple order-of-magnitude estimates for the freezing rate based on the observed height of the reflectors and the assumption that all ice under the observed reflector consists of accretion ice indicate very large freezing rates, on the order of 10-100 cm/yr. We test two end-member possibilities for the formation of the basal accretion bodies: high accretion rates and complex basal deformation. The first possibility is that the freezing rates are very large. The second possibility is that the ice under the observed reflector is a mixture of accreted and meteoric ice. If the ice below the accretion reflector is a mixture, the freezing rates can be much smaller than the simple estimates. If the freezing rates are small, then complex basal deformation must be invoked to cause accretion ice to override meteoric ice to a height of 1/3-1/2 the ice thickness. In the basal deformation case, low freezing rates predict a maximum thickness of 100-200m of accretion ice. The remaining ice beneath the reflector will be deformed meteoric ice. Both cases make testable predictions. If the accretion rates are very high and supercooling is the dominant process, accretion cannot use up all of the subglacial water. In this high rate scenario there will be water at the melting point exiting the accretion site. Alternatively if the accretion is part of a complex

  8. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  9. Monitoring the Galactic Centre with the Australia Telescope Compact Array

    NASA Astrophysics Data System (ADS)

    Borkar, A.; Eckart, A.; Straubmeier, C.; Kunneriath, D.; Jalali, B.; Sabha, N.; Shahzamanian, B.; García-Marín, M.; Valencia-S, M.; Sjouwerman, L.; Britzen, S.; Karas, V.; Dovčiak, M.; Donea, A.; Zensus, A.

    2016-05-01

    The supermassive black hole, Sagittarius A* (Sgr A*), at the centre of the Milky Way undergoes regular flaring activity, which is thought to arise from the innermost region of the accretion flow. Between 2010 and 2014, we performed monitoring observations of the Galactic Centre to study the flux-density variations at 3 mm using the Australia Telescope Compact Array (ATCA). We obtain light curves of Sgr A* by subtracting the contributions from the extended emission around it, and the elevation and time-dependent gains of the telescope. We perform structure function analysis and the Bayesian blocks representation to detect flare events. The observations detect six instances of significant variability in the flux density of Sgr A* in three observations, with variations between 0.5 and 1.0 Jy, which last for 1.5-3 h. We use the adiabatically expanding plasmon model to explain the short time-scale variations in the flux density. We derive the physical quantities of the modelled flare emission, such as the source expansion speed vexp, source sizes, spectral indices and the turnover frequency. These parameters imply that the expanding source components are either confined to the immediate vicinity of Sgr A* by contributing to the corona or the disc, or have a bulk motion greater than vexp. No exceptional flux-density variation on short flare time-scales was observed during the approach and the flyby of the dusty S-cluster object (DSO/G2). This is consistent with its compactness and the absence of a large bow shock.

  10. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  11. UV variability and accretion dynamics in the young open cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Irwin, J.; Stauffer, J. R.; Hillenbrand, L. A.; Rebull, L. M.; Cody, A. M.; Alencar, S. H. P.; Micela, G.; Flaccomio, E.; Peres, G.

    2015-09-01

    Context. Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. Aims: We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3 Myr). Methods: We performed simultaneous monitoring of u- and r-band variability for the cluster population with CFHT/MegaCam. The survey extended over two full weeks, with several flux measurements per observing night. A sample of about 750 young stars is probed in our study, homogeneously calibrated and reduced, with internally consistently derived stellar parameters. Objects span the mass range 0.1-2 M⊙; about 40% of them show evidence for active accretion based on various diagnostics (Hα, UV, and IR excesses). Results: Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, in the optical and especially in the UV. The amount of u-band variability is found to correlate statistically with the median amount of UV excess in disk-bearing objects, which suggests that mass accretion and star-disk interaction are the main sources of variability in the u band. Spot models are applied to account for the amplitudes of variability of accreting and non-accreting members, which yields different results for each group. Cool magnetic spots, several hundred degrees colder than the stellar photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots with a temperature a few thousand degrees higher than the photospheric temperature and that extend over a few percent of the stellar surface best reproduce the variability of accreting objects

  12. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  13. Information about accretion flows from X-ray timing of pulsating sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Pines, D.; Shaham, J.

    1976-01-01

    The response was studied of a rotating neutron star to fluctuating torques and it was found that the observed variations in the pulsation periods of the compact X-ray sources Cen X-3 and Her X-1 could be caused by short time scale fluctuations in the accretion torques acting on the neutron stars. The sizes and rates of the required fluctuations are consistent with current accretion models. Such fluctuations can cause period variations either (a) directly, by causing a random walk of the star's angular velocity or (b) indirectly, by exciting a long-period mode of the neutron star, such as the Tkachenko mode of the rotating neutron superfluid. Phenomena in compact X-ray sources and cataclysmic variables which may be caused by fluctuating mass flow rates are also discussed.

  14. Materietransport in Akkretionsscheiben %t Transport of matter in accretion discs

    NASA Astrophysics Data System (ADS)

    Keller, Christof Martin

    2003-07-01

    Time-scales that need to be considered in time-dependent computations of accretion discs are many orders of magnitude larger than stable time-step sizes of common numerical codes. Therefore, theoretical investigation of these objects is severely limited by present-day computational resources, unless more efficient algorithms are found. Due to large differences in the underlying physics of cosmic accretion discs, algorithms need to be adjusted to the particular problem. During the course of this thesis, several algorithms have been implemented and tested. One of the implemented splitting-methods could efficiently be employed to 1D-simulations of supersonic accretion flows onto black holes. Another splitting method and a pressure correction scheme were applied to simulate two-dimensional protostellar accretion flows, which have been investigated more elaborately in this thesis. With these methods, performance in simulating protostellar discs could be improved in at least some cases. Numerical simulations of flow-structures in protostellar discs could thus be conducted and compared to higher order analytical approximations. Disc models using an α-description of the viscosity produced meridional flow-structures that have already been observed by several authors. Unlike flow-structures resulting from stationary one-zone-approximations, meridional flows exhibit outward directed velocities in the midplane of the disc. Test cases showed, that meridional flows can play an important role in the mixing processes of protostellar disc material that is reflected in the composition of cometary and meteorite material.

  15. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  16. Accretion disks and particle emission from black holes

    NASA Astrophysics Data System (ADS)

    Saifullah, Khalid

    2014-07-01

    Black holes are among the most interesting predictions of the general theory of relativity. The Thirty Meter Telescope will extend our ability to measure the masses of central black holes more accurately and to study the orbits of stars in the vicinity of these supermassive dark objects and warping of spacetime around them. Thus they will provide further evidence in favour of general relativity. This will help us resolve the accretion disks for these black holes also. The study of interaction of these accretion disks and the production and emission of particles from black holes is significant from the point of view of investigating the environment surrounding the dark objects hosted in the centre of many galaxies. The emission probabilities of particles including scalars and Dirac particles from black holes are calculated.

  17. Testing accretion disk instabilities in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bagińska, Patrycja; Różańska, Agata; Janiuk, Agnieszka; Czerny, Bożena

    2014-12-01

    We study disk instabilities in black hole binaries in which X-ray novae outbursts were observed. Typically, one outburst occurs in each light curve, with total duration from 30 up to 400 days. The shape of an outburst can be very regular fast rise exponential decay (FRED) characteristic for ionisation instability mechanism that occurs in accretion disks, or irregular suggesting that, beside FRED, additional flickering occurs. We use the model which predicts time dependent evolution of ionisation instability in an accretion disk around black hole, assuming viscosity parameter to be proportional to the total pressure. We test it in detail for two objects: GX 339-4 and XTE J1818-245. The modelled light curves agree with the collected RXTE light curves, indicating that disk instability works in those objects.

  18. Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan

    2015-01-01

    This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.

  19. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  20. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  1. The LINER Nucleus of M87: A Shock-excited Dissipative Accretion Disk

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Koratkar, Anuradha P.; Allen, Mark G.; Tsvetanov, Zlatan I.; Ford, Holland C.; Bicknell, Geoffrey V.; Sutherland, Ralph S.

    1997-11-01

    We present long-baseline Faint Object Spectrograph (FOS) spectra of the nuclear accretion disk in M87 (NGC 4486), offset from the nucleus by 0.6" (42.7 pc) in order to avoid the nuclear continuum. Even so close to the nucleus, the optical spectrum has the appearance of a normal LINER galaxy. We show that the presence of strong UV emission lines provides a definitive test of the excitation mechanism; the disk is shock excited, not photoionized by a UV continuum from the central source. The shock velocity inferred (265 km s-1) is about one-half of the Keplerian rotation velocity found earlier by Ford et al. Since shock dissipation appears to be the principal means of increasing the binding energy of the accreting gas, we can use the FOS data and the luminosity profile of the accretion disk to estimate the rate of mass accretion as a function of radius. We find that this rate decreases with decreasing distance from the nucleus, as the material becomes organized into a cool and thin classical accretion disk in the inner regions. In the outer disk, the accretion rate (~4 M⊙ yr-1) is comparable to that determined for the X-ray-emitting cooling flow, showing that a large fraction of the cooling gas can find its way into the nuclear regions. The accretion rate near the nucleus (~3 × 10-2 M⊙ yr-1) is consistent with the properties of the relativistic jet and its associated radio emission. Over the lifetime of the jets, about 107 M⊙ of cool material may have accumulated in the nuclear regions, allowing the formation of a disk that is optically thick to Thomson scattering where it becomes ionized close to the nucleus. We speculate that LINER emission is a general property of the shocked dissipative regions of accretion disks in active galaxies with strongly sub-Eddington accretion and may therefore be used as a diagnostic of these dissipative accretion flows.

  2. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-05-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.

  3. Local Axisymmetric Simulations of Magnetorotational Instability in Radiation-dominated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Turner, N. J.; Stone, J. M.; Sano, T.

    2002-02-01

    We perform numerical simulations of magnetorotational instability in a local patch of accretion disk in which radiation pressure exceeds gas pressure. Such conditions may occur in the central regions of disks surrounding compact objects in active galactic nuclei and Galactic X-ray sources. We assume axisymmetry and neglect vertical stratification. The growth rates of the instability on initially uniform magnetic fields are consistent with the linear analysis of Blaes & Socrates (2001). As is the case when radiation effects are neglected, the nonlinear development of the instability leads to transitory turbulence when the initial magnetic field has no net vertical flux. During the turbulent phase, angular momentum is transported outward. The Maxwell stress is a few times the Reynolds stress, and their sum is about 4 times the mean pressure in the vertical component of the magnetic field. For magnetic pressure exceeding gas pressure, turbulent fluctuations in the field produce density contrasts about equal to the ratio of magnetic to gas pressure. These are many times larger than in the corresponding gas pressure-dominated situation and may have profound implications for the steady state vertical structure of radiation-dominated disks. Diffusion of radiation from compressed regions damps turbulent motions, converting kinetic energy into photon energy.

  4. Sleuthing the Isolated Compact Stars

    NASA Astrophysics Data System (ADS)

    Drake, J. J.

    2004-08-01

    In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.

  5. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis. PMID:23030150

  6. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  7. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ∼ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ∼ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  8. Bondi accretion onto cosmological black holes

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Malec, Edward

    2013-02-01

    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation era and after (roughly) 1012 years from the big bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—known as the Weyl curvature hypothesis—of the evolution of the Universe.

  9. Accretion flows govern black hole jet properties

    NASA Astrophysics Data System (ADS)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  10. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  11. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  12. Compaction behavior of isomalt after roll compaction.

    PubMed

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  13. Compaction Behavior of Isomalt after Roll Compaction

    PubMed Central

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  14. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Bidwell, Colin S.

    1990-01-01

    An effort to develop a three-dimensional modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flow fields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane normal to the wing leading edge and compared to 2-D results for the same geometry. It is anticipated that many modifications will be made to this approach, however, this effort will lay the groundwork for future modeling efforts. Results indicate that the flow field over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3-D calculation.

  15. Ringed Accretion Disks: Equilibrium Configurations

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  16. Probing Stellar Accretion with Mid-infrared Hydrogen Lines

    NASA Astrophysics Data System (ADS)

    Rigliaco, Elisabetta; Pascucci, I.; Duchene, G.; Edwards, S.; Ardila, D. R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Mulders, G. D.; Najita, J. R.; Carpenter, J.; Furlan, E.; Gorti, U.; Meijerink, R.; Meyer, M. R.

    2015-03-01

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010-1011 cm-3. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10-10 M ⊙ yr-1. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  17. Turbulence in Accretion Discs. The Global Baroclinic Instability

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Bodenheimer, Peter

    The transport of angular momentum away from the central object is a sufficient condition for a protoplanetary disk to accrete matter onto the star and spin it down. Magnetic fields cannot be of importance for this process in a large part of the cold and dusty disk where the planets supposedly form. Our new hypothesis on the angular momentum transport based on radiation hydro simulations is as follows: We present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation hydro simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that this baroclinic flow is unstable and produces turbulence. These findings are currently tested for numerical effects by performing barotropic simulations which show that imposed turbulence rapidly decays. The turbulence in baroclinic disks draws energy from the background shear, transports angular momentum outward and creates a radially inward bound accretion of matter, thus forming a self consistent process. Gravitational energy is transformed into turbulent kinetic energy, which is then dissipated, as in the classical accretion paradigm. We measure accretion rates in 2D and 3D simulations of dot M= - 10-9 to -10-7 Msolar yr-1 and viscosity parameters of α = 10-4 - 10-2, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the (r-φ) plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.

  18. A Study of Ice Accretion Physics to Improve the Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    2001-01-01

    This three-year grant began on November 7, 1996 and was no-cost extended to end on October 30, 2000. The objectives of the grant were: (1) To examine the effect of wind tunnel turbulence on ice accretion; (2) To determine the relationship between ice accretion geometry and airfoil performance; and (3) To determine if the wake-survey method was an appropriate experimental technique for iced-airfoil drag measurement. As specified in the grant the primary deliverables for this research were annual reports in the form of AIAA papers presented at national meetings each year. Masters theses and annual oral reports to be given at NASA Lewis (now Glenn) were also deliverables. Six AIAA papers documented the research findings from this study, Mr. Chad Henze's Masters thesis describes the wind tunnel turbulence work in detail, and a summary of the icing wind tunnel turbulence work was published in the archival AIAA Journal of Aircraft. A brief summary of the findings is given. Please refer to the reports for the details of the studies and findings.

  19. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  20. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  1. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied. PMID:23283175

  2. Accreting Binary Populations in the Earlier Universe

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  3. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  4. Growth of black holes and dark matter accretion

    NASA Astrophysics Data System (ADS)

    Munyaneza, Faustin; Biermann, Peter L.

    2006-12-01

    We investigate the distribution of fermion dark matter in the Milky Way galaxy and find that dark matter could gravitationally condensate in a degenerate core of mass of 3 × 106Mdot o embedded in a dark matter halo of 3 × 1012Mdot o with a size of about 200 kpc. We then show that the galactic black hole of mass of about 3 × 106Mdot o might have grown from a stellar seed black hole by mainly accreting dark matter from the compact degenerate fermion core. This leads to a lower limit on the mass of the fermion dark matter of about (6 10) keV. It is then argued that the constrained dark matter could be a sterile neutrino.

  5. Cloudy intergalactic accretion flows in the outer discs of galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Santillán, A.; Franco, J.

    2007-02-01

    High-resolution two-dimensional magnetohydrodynamical simulations have been carried out to investigate the role of continuing infall of clumpy gas as a driver of turbulence in extended H I galactic discs. We have compared the responses of isothermal gas discs with sound speeds 4 and 8 km/s to infalling, condensed clouds. For mass accretion rates of ˜0.6 M⊙ yr -1, the turbulent motions in the outer disc become slightly faster than transonic. We suggest that the rain of compact high velocity clouds on the disc not only can fuel the Milky Way with fresh material but is a potential source of random motions in outer regions of H I discs.

  6. Quiescent accretion disks in black hole X-ray novae

    NASA Technical Reports Server (NTRS)

    Orosz, Jerome A.; Bailyn, Charles D.; Remillard, Ronald A.; Mcclintock, Jeffrey E.; Foltz, Craig B.

    1994-01-01

    We present detailed time-resolved spectroscopy of the Balmer emission lines from two black hole binary systems in quiescence, A0620-00 and Nova Muscae 1991. We find extraordinary similarities between the two systems. There are 30-40 km/s velocity variations of the emission lines over the orbital period, the phases of which are not aligned with the expected phase of the motion of the compact primary. Detailed modeling of both systems is complicated by variable hot spot components, regions of optical thickness, and intermittent excess emission in the blue line wings of the H-alpha lines. Both sources also display low velocities at the outer edge of the accretion disk, implying a large primary Roche lobe and extreme mass ratios. These complications suggest that although simple optically thin, Keplerian alpha-disk models provide a useful parameterization of emission lines from these systems, the straightforward physical models they imply should be treated with great caution.

  7. COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Dominik, Michal; Kalogera, Vicky; Holz, Daniel E.

    2012-04-10

    The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. A number of supernova engines have been proposed: neutrino- or oscillation-driven explosions enhanced by early (developing in 10-50 ms) and late-time (developing in 200 ms) convection as well as magnetic field engines (in black hole accretion disks or neutron stars). Using our current understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytic prescriptions for both single-star models (as a function of initial star mass) and for binary-star models-prescriptions for compact object masses for major population synthesis codes. These prescriptions have implications for a range of observations: X-ray binary populations, supernova explosion energies, and gravitational wave sources. We show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.

  8. ACOUSTIC COMPACTION LAYER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

  9. Modeling the polarization of high-energy radiation from accreting black holes. A case study of XTE J1118+480

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Chaty, S.

    2016-03-01

    Context. The high-energy emission (400 keV-2 MeV) of Cygnus X-1, which is the best-studied Galactic black hole, was recently found to be strongly polarized. The origin of this radiation is still unknown. Aims: We suggest that the emission is the result of non-thermal processes in the hot corona around the accreting compact object and study the polarization of high-energy radiation that is expected for black hole binaries. Methods: Two contributions to the total magnetic field were taken into account in our study: a small-scale random component related to the corona, and an ordered magnetic field associated with the accretion disk. The degree of polarization of gamma-ray emission for this particular geometry was estimated together with the angle of the polarization vector. Results: We obtain that the configuration of corona plus disk can account for the high degree of polarization of gamma-rays that are detected in galactic black holes and does not need to invoke a relativistic jet. We make specific predictions for sources in a low-hard state. In particular, the model is applied to the transient source XTE J1118+480. We show that if a new outburst of XTE J1118+480 is observed, then its gamma-ray polarization should be measurable by future instruments, such as ASTRO-H or the proposed ASTROGAM.

  10. Plasma (Accretion) Disks with High Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2006-04-01

    ``Corrugated'' plasma disks can form in the dominant gravity of a central object when the peak plasma pressure in the disk is of the same order as that of the pressure of the ``external'' magnetic field, while the magnetic field resulting from internal plasma currents is of the same order as the external field. The corrugation refers to a periodic variation of the plasma density in a region around the equatorial plane. The considered structure represents a transition between a ``classical'' accretion disk and a ``rings sequence'' configuration^2. The common feature of the ``corrugated'' and the ``rings sequence'' configurations is the ``crystal'' structure of the magnetic surfaces that consist of a sequence of pairs of oppositely directed toroidal current density filaments. The connection between the characteristics of these configurations and those of the marginally stable ballooning modes that can be found in a model accretion disk is pointed out and analyzed.

  11. Accretion disc viscosity: a limit on the anisotropy

    NASA Astrophysics Data System (ADS)

    Nixon, Chris

    2015-07-01

    Observations of warped discs can give insight into the nature of angular momentum transport in accretion discs. Only a few objects are known to show strong periodicity on long time-scales, but when such periodicity is present it is often attributed to precession of the accretion disc. The X-ray binary Hercules X-1/HZ Herculis (Her X-1) is one of the best examples of such periodicity and has been linked to disc precession since it was first observed. By using the current best-fitting models to Her X-1, which invoke precession driven by radiation warping, I place a constraint on the effective viscosities that act in a warped disc. These effective viscosities almost certainly arise due to turbulence induced by the magnetorotational instability. The constraints derived here are in agreement with analytical and numerical investigations into the nature of magnetohydrodynamic disc turbulence, but at odds with some recent global simulations.

  12. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.

  13. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  14. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  15. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    SciTech Connect

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun; Zhao Bo

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  16. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Ruben; Li, Zhi-Yun; Shang, Hsien; Zhao, Bo

    2012-09-01

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  17. Accretion mode of the Ultra-Luminous X-ray source M82 X-2

    NASA Astrophysics Data System (ADS)

    Karino, S.; Miller, J. C.

    2016-05-01

    Periodic pulsations have been found in emission from the ultra-luminous X-ray source (ULX) M82 X-2, strongly suggesting that the emitter is a rotating neutron star rather than a black hole. However, the radiation mechanisms and accretion mode involved have not yet been clearly established. In this paper, we examine the applicability to this object of standard accretion modes for high mass X-ray binaries (HMXBs). We find that spherical wind accretion, which drives OB-type HMXBs, cannot apply here but that there is a natural explanation in terms of an extension of the picture for standard Be-type HMXBs. We show that a neutron star with a moderately strong magnetic field, accreting from a disc-shaped wind emitted by a Be-companion, could be compatible with the observed relation between spin and orbital period. A Roche lobe overflow picture is also possible under certain conditions.

  18. Structure and Evolution of Kuiper Belt Objects and Dwarf Planets

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Prialnik, D.; Stern, S. A.; Coradini, A.

    Kuiper belt objects (KBOs) accreted from a mélange of volatile ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of heating due to radioactive decay, the most important potential source being 26Al, whereas long-term evolution of large bodies is controlled by the decay of U, Th, and 40K. Several studies are reviewed dealing with the evolution of KBO models, calculated by means of one-dimensional numerical codes that solve the heat and mass balance equations. It is shown that, depending on parameters (principally rock content and porous conductivity), KBO interiors may have reached relatively high temperatures. The models suggest that KBOs likely lost ices of very volatile species during early evolution, whereas ices of less-volatile species should be retained in cold, less-altered subsurface layers. Initially amorphous ice may have crystallized in KBO interiors, releasing volatiles trapped in the amorphous ice, and some objects may have lost part of these volatiles as well. Generally, the outer layers are far less affected by internal evolution than the inner part, which in the absence of other effects (such as collisions) predicts a stratified composition and altered porosity distribution. Kuiper belt objects are thus unlikely to be "the most pristine objects in the solar system," but they do contain key information as to how the early solar system accreted and dynamically evolved. For large (dwarf planet) KBOs, long-term radiogenic heating alone may lead to differentiated structures -- rock cores, ice mantles, volatile-ice-rich "crusts," and even oceans. Persistence of oceans and (potential) volcanism to the present day depends strongly on body size and

  19. A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705-44: looking at the inner accretion disc with X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    di Salvo, T.; D'Aí, A.; Iaria, R.; Burderi, L.; Dovčiak, M.; Karas, V.; Matt, G.; Papitto, A.; Piraino, S.; Riggio, A.; Robba, N. R.; Santangelo, A.

    2009-10-01

    Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kα transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent XMM-Newton observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high-velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; this feature appears to be smeared, and is compatible with being produced in the same region where the iron line is produced. From the line profile, we derive the physical parameters of the inner accretion disc with large precision. The line is identified with the Kα transition of highly ionized iron, FeXXV, the inner disc radius is Rin = 14 +/- 2 Rg (where Rg is the Gravitational radius, GM/c2), the emissivity dependence from the disc radius is r-2.27+/-0.08, the inclination angle with respect to the line of sight is i = 39° +/- 1°. Finally, the XMM-Newton spectrum shows evidences of other low-energy emission lines, which again appear broad and their profiles are compatible with being produced in the same region where the iron line is produced.

  20. GRAVITATIONALLY FOCUSED DARK MATTER AROUND COMPACT STARS

    SciTech Connect

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable {gamma}-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  1. Effects of ice accretions on aircraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Lynch, Frank T.; Khodadoust, Abdollah

    2001-11-01

    This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not

  2. Accreting Neutron Stars as Astrophysical Laboratories

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2004-01-01

    In the last year, we have made an extremely important breakthrough in establishing the relationship between thermonuclear burst oscillations in accreting neutron stars and the stellar spin. More broadly, we have continued t o make significant scientific progress in all four of the key focus areas identified in our original proposal: (1) the disk-magnetosphere interaction in neutron stars, (2) rapid variability in accreting neutron stars, (3) physics of accretion flows, and (4) fundamental properties of neutron stars. A list of all publications that have arising from this work since the start of our program is given.

  3. Lyman edges - Signatures of accretion disks

    NASA Astrophysics Data System (ADS)

    Kinney, A. L.

    1992-05-01

    Accretion disks are thought to provide the ultraviolet emission seen in the big blue bump of quasars. However, observations of the UV spectra of quasars do not show the additional signatures predicted by the accretion disk models. This paper will concentrate on just one of those signatures - the Lyman edge. Two studies are briefly discussed which explore the Lyman edge region of both high and low redshift quasars (Antonucci, Kinney, and Ford 1989 and Koratkar, Kinney, and Bohlin 1992). Both studies find that Lyman edges are not present in quasar spectra as frequently as predicted by the models or at the strength predicted by accretion disk models.

  4. The Behavior of Accretion Disks in Low Mass X-ray Binaries: Disk Winds and Alpha Model

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.

    2010-01-01

    This dissertation presents research on two low mass X-ray binaries. The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy with the ACS/SBC on the Hubble Space Telescope and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s as determined from the Doppler width of the C IV emission line. The broad and shallow eclipse indicates that the disk has a vertically-extended, optically-thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to 50% of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of the disk wind. V1408 Aql (=4U 1957+115) is a low mass X-ray binary which continues to be a black hole candidate. We have new photometric data of this system from the Otto Struve 2.1-m telescope's high speed CCD photometer at McDonald Observatory. The light curve is largely sinusoidal which we model with two components: a constant light source from the disk and a sinusoidal modulation at the orbital period from the irradiated face of the companion star. This is a radical re-interpretation of the orbital light curve. We do not require a large or asymmetric disk rim to account for the modulation in the light curve. Thus, the orbital inclination is unconstrained in our new model, removing the foundation for any claims of the compact object being a black hole.

  5. Universal Accretion Growth Using Sandpile Models

    NASA Astrophysics Data System (ADS)

    Datta, Srabani; McKie, Shane; Spencer, Ralph

    2015-08-01

    The Bak-Tang- Wiesenfeld (BTW) sandpile process is a model of a complex dynamical system with a large collection of particles or grains in a node that sheds load to their neighbours when they reach capacity. The cascades move around thesystem till it reaches stability with a critical point as an attractor. The BTW growth process shows self-organized criticality (SOC) with power-law distribution in cascade sizes having slope -5/3. This self-similarity of structureis synonymous with the fractal structure found in molecular clouds of Kolmogorov dimension 1.67 and by treating cascades as waves, scaling functions are found to be analogous to those observed for velocity structure functions influid turbulence. We apply the BTW sandpile model to study growth on a 2 dimensional rotating lattice in a magnetic field. In this paper, we show that this is a naturally occuring universal process giving rise to scale-freestructures with size limited only by the number of infalling grains. We also compare the BTW process with other sandpile models such as the Manna and Zhang processes. We find that the BTW sandpile model can be applied to a widerange of objects including molecular clouds, accretion disks and perhaps galaxies.

  6. A newly discovered compact planetary nebula

    NASA Astrophysics Data System (ADS)

    Cappellaro, E.; Turatto, M.; Sabbadin, F.

    1989-07-01

    An H-alpha emission object is identified in a 103a-E + RG1 objective prism plate taken with the 92/67-cm Schmidt telescope of the Astronomical Observatory of Padua at Asiago (Italy). The object turns out to be a compact planetary nebula located at alpha(1950.0) = 18 h 4.3 min and delta(1950.0) = -8 deg 56.4 arcmin (classification code: 19 + 5 deg 1).

  7. Chaotic dynamics around astrophysical objects with nonisotropic stresses

    SciTech Connect

    Dubeibe, F. L.; Pachon, Leonardo A.; Sanabria-Gomez, Jose D.

    2007-01-15

    The existence of chaotic behavior for the geodesics of the test particles orbiting compact objects is a subject of much current research. Some years ago, Gueron and Letelier [Phys. Rev. E 66, 046611 (2002)] reported the existence of chaotic behavior for the geodesics of the test particles orbiting compact objects like black holes induced by specific values of the quadrupolar deformation of the source using as models the Erez--Rosen solution and the Kerr black hole deformed by an internal multipole term. In this work, we are interested in the study of the dynamic behavior of geodesics around astrophysical objects with intrinsic quadrupolar deformation or nonisotropic stresses, which induces nonvanishing quadrupolar deformation for the nonrotating limit. For our purpose, we use the Tomimatsu-Sato spacetime [Phys. Rev. Lett. 29 1344 (1972)] and its arbitrary deformed generalization obtained as the particular vacuum case of the five parametric solution of Manko et al. [Phys. Rev. D 62, 044048 (2000)] characterizing the geodesic dynamics throughout the Poincare sections method. We found only regular motion for the geodesics in the Tomimatsu-Sato {delta}=2 solution. Additionally, using the deformed generalization of Tomimatsu-Sato {delta}=2 solution given by Manko et al. we found chaotic motion for oblate deformation instead of prolate deformation, which is in contrast to the results by Gueron and Letelier. It opens the possibility that the particles forming the accretion disk around a large variety of different astrophysical bodies (nonprolate, e.g., neutron stars) could exhibit chaotic dynamics. We also conjecture that the existence of an arbitrary deformation parameter is necessary for the existence of chaotic dynamics.

  8. An Active Black Hole in a Compact Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto

  9. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  10. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  11. Structural properties of impact ices accreted on aircraft structures

    NASA Technical Reports Server (NTRS)

    Scavuzzo, R. J.; Chu, M. L.

    1987-01-01

    The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.

  12. Ice accretion modeling for wind turbine rotor blades

    SciTech Connect

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A.

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  13. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  14. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  15. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  16. Compact baby Skyrmions

    SciTech Connect

    Adam, C.; Klimas, P.; Sanchez-Guillen, J.; Wereszczynski, A.

    2009-11-15

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.

  17. Accretion of Ghost Condensate by Black Holes

    SciTech Connect

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  18. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1993-01-01

    Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared.

  19. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  20. Planetary science: Iron fog of accretion

    DOE PAGESBeta

    Anderson, William W.

    2015-03-02

    Here, pinpointing when Earth's core formed depends on the extent of metal–silicate equilibration in the mantle. Vaporization and recondensation of impacting planetesimal cores during accretion may reconcile disparate lines of evidence.

  1. Diagnosing the Black Hole Accretion Physics of Sgr A*

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  2. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-01

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced. PMID:27505830

  3. Accretion, winds and outflows in young stars

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  4. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  5. Thermonuclear flashes on accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1979-01-01

    Observations of X-ray bursts from binary pulsars and globular clusters are reviewed. The previously proposed hypothesis is considered that such X-ray bursts result from thermonuclear flashes on accreting neutron stars. A general scenario for this mechanism is outlined, and numerical computations of the evolution of the surface layers of an accreting neutron star are discussed. The relation of these calculations to X-ray bursts and other phenomena is examined. Possible improvements in the numerical calculations are suggested.

  6. Emission line diagnostics for accretion and outflows in young very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Alcalá, J. M.; Whelan, E.; Scholz, A.

    2014-01-01

    We discuss accretion and outflow properties of three very low-mass young stellar objects based on broad-band mid-resolution X-Shooter/VLT spectra. Our targets (FU Tau A, 2M1207-39, and Par-Lup3-4) have spectral types between M5 and M8, ages between 1Myr and ~ 10Myr, and are known to be accreting from previous studies. The final objective of our project is the determination of mass outflow to accretion rate for objects near or within the substellar regime as a probe for the T Tauri phase of brown dwarfs and the investigation of variability in the accretion and outflow processes.

  7. Clumpy Accretion onto Black Holes. I. Clumpy-advection-dominated Accretion Flow Structure and Radiation

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Min; Cheng, Cheng; Li, Yan-Rong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  8. CLUMPY ACCRETION ONTO BLACK HOLES. I. CLUMPY-ADVECTION-DOMINATED ACCRETION FLOW STRUCTURE AND RADIATION

    SciTech Connect

    Wang Jianmin; Cheng Cheng; Li Yanrong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  9. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  10. Disk accretion by magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Lamb, F. K.

    1978-01-01

    A model for disk accretion by a rotating magnetic neutron star is proposed which includes a detailed description of matter flow in the transition region between the disk and the magnetosphere. It is shown that the disk plasma cannot be completely screened from the stellar magnetic field and that the resulting magnetic coupling between the star and the disk exerts a significant torque on the star. On the assumption that the distortion of the residual stellar field lines threading the disk is limited by reconnection, the total accretion torque on the star is calculated. The calculated torque gives period changes in agreement with those observed in the pulsating X-ray sources and provides a natural explanation of why a fast rotator like Her X-1 has a spin-up rate much below the conventional estimate for slow rotators. It is shown that for such fast rotators, fluctuations in the mass-accretion rate can produce fluctuations in the accretion torque about 100 times larger. For sufficiently fast rotators or, equivalently, for sufficiently low accretion rates, the star experiences a braking torque even while accretion continues and without any mass ejection from its vicinity.

  11. Bondi accretion in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-05-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of an Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  12. Bondi accretion in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-08-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper, we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of a Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore, allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  13. Heating and Cooling in Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew

    2015-10-01

    Neutron stars in low mass X-ray binaries accrete enough mass over their lifetimes to replace their entire crust. The accreted matter undergoes a series of nuclear reactions in the crust as it is compressed by continued accretion to higher density. These reactions, which include electron captures, neutron emissions, and pycnonuclear reactions, heat the crust and core of the neutron star. In this talk I will discuss what we can learn from observations of transiently accreting neutron stars in quiescence, when accretion has turned off and we can see emission from the neutron star directly. The quiescent luminosity of these neutron stars constrains the neutrino emissivity in the neutron star core. In systems with long accretion outbursts, observations of thermal relaxation of the crust in quiescence enable, for the first time, constraints on the thermal conductivity and heat capacity of the crust. In this way, low mass X-ray binary neutron stars offer a remarkable chance to constrain the properties of dense neutron-rich matter, such as neutron superfluidity and pasta phases in the inner crust of neutron stars.

  14. Three-dimensional radiative transfer calculations on an SIMD machine applied to accretion disks

    NASA Astrophysics Data System (ADS)

    Vath, H.

    We have developed a tool to solve the radiative transfer equation for a three-dimensional astrophysical object on the SIMD computer MasPar MP-1. With this tool we can rapidly calculate the image of such an object as seen from an arbitrary direction and at an arbitrary wavelength. Such images and spectra can then be used to directly compare observations with the model. This tool can be applied to many different areas in astrophysics, e.g., HI disks of galaxies and polarized radiative transfer of accretion columns onto white dwarfs. Here we use this tool to calculate the image and spectrum of a simple model of an accretion disk.

  15. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  16. The Role of Physical Viscosity in Accretion Disc Dynamics in Close Binaries and AGN

    NASA Astrophysics Data System (ADS)

    Lanzafame, G.

    2008-04-01

    The role of turbulent physical viscosity is here considered as far as an accretion disc is concerned both in close binaries (CB) and around massive black holes in active galactic nuclei (AGN). The study has been performed via SPH simulations of disc models. Physical viscosity has been considered according to the Shakura and Sunjaev α prescription. Results show that physical viscosity supports and favours accretion disc formation in low compressibility models. Spiral shocks in the radial flux develop only in some high compressibility models. Physical viscosity efficiently supports mass, angular momentum and heat radial transport towards the compact primary star as well as the radial disc spread. Results show that compressibility-viscosity domains exist, where turbulent physical viscosity supports the accretion disc formation. A role also played by the injection kinematics at the inner Lagrangian point L1 is also found. A grid of physically viscous 3D SPH, axially symmetric, accretion disc simulations around black holes (BH) in AGN, have also been performed, paying also attention to the role of the specific angular momentum λ as an initial boundary condition at the disc outer edge. A shock front usually develops, according to assigned outer edge initial and boundary conditions, mainly due to the centrifugal barrier. Pairs of (λ, α) values exist, determining radial periodical oscillations in the shock front. Periodical outflows can develop from the subsonic post shock region close to the BH in some cases.

  17. Lithium and oxygen in globular cluster dwarfs and the early disc accretion scenario

    NASA Astrophysics Data System (ADS)

    Salaris, Maurizio; Cassisi, Santi

    2014-06-01

    elements in the accreted matter - that will have to be reproduced by evolutionary calculations for the polluters and simulations of the global evolution of the intracluster gas - only if pollution happens with timescales of ~1 Myr, so polluters are objects with masses of several tens of solar masses. Accurate spectroscopic measurements of Li and other light elements in dwarf stars in a larger sample of clusters are needed to test this scenario more comprehensively.

  18. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  19. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion

  20. Academician Zeldovich and the foundations of disk accretion

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.

    2014-04-01

    The author draws on his memories to review the decisive contributions of Ya B Zeldovich to the formation and development of the theory of disc accretion onto black holes and neutron stars in binaries. A theory developed by N I Shakura and R A Sunyaev in the early 1970s under the guidance of Ya B Zeldovich predicted these objects to be the brightest X-ray sources in the sky and defined the prospects for research in X-ray astronomy and high-energy astrophysics for decades ahead.

  1. X-ray and optical observations of accreting neutron stars and black holes and the construction and testing of the stellar x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Tomsick, John Allen

    1999-10-01

    In the first part of this thesis, I present results from observations of accreting neutron stars and black hole candidates (BHCs). Through measurements of the physical parameters of neutron stars, including the mass, spin period and magnetic field strength, accreting neutron stars provide an opportunity to learn about matter at extremely high densities and in strong magnetic fields. Here, I study the neutron star X-ray binary XTE J2123-058. X-ray observations are used to estimate the neutron star spin period and magnetic field strength, and the measured spin period of 3.9 ms has implications for neutron star evolution. Results of optical observations provide some of the information necessary to eventually determine the neutron star mass. For BHC X-ray binaries, demonstrating the existence of the event horizon and measuring physical parameters of black holes are of great interest. In order to make progress toward these goals, it is necessary to understand the accretion processes and emission mechanisms that operate in these systems. For some accreting compact objects, significant changes in the X- ray emission properties are observed over time. Here, I study the changes in X-ray emission properties that occurred over three months for an accreting BHC, 4U 1630-47. I also include a study of sharp drops in the 4U 1630-47 X-ray flux (i.e. X-ray dips). X-ray dips provide an opportunity to constrain the sizes of the X-ray emission regions. The 4U 1630-47 X-ray dips provide evidence that one of the two X-ray emission components comes from within ten Schwarzschild radii of the compact object. In the second part of this thesis, I describe work I have done on the Stellar X-Ray Polarimeter (SXRP). The SXRP will be more than an order of magnitude more sensitive than any previous X-ray polarimeter in the 2-15 keV energy band and is expected to increase the number of sources with X-ray polarization detections from one, the Crab Nebula, to between 20 and 30. X-ray binaries will be

  2. Challenges in forming the solar system's giant planet cores via pebble accretion

    SciTech Connect

    Kretke, K. A.; Levison, H. F.

    2014-12-01

    Though ∼10 M {sub ⊕} mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  3. Soil compaction across the old rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  4. A search for ionized jets towards massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Cunningham, N.; Purcell, C. R.; Brooks, K. J.; Garay, G.; Gúzman, A. E.; Voronkov, M. A.

    2016-07-01

    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and H II regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as H II regions and 2 were unable to be categorized. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically thin lobes resulting from shocks either internal to the jet and/or at working surfaces. 10 jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of α = -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper limit on the jet phase lasting approximately 6.5 × 104 yr. Typical mass-loss rates in the jet are found to be 1.4 × 10-5 M⊙ yr-1 with associated momentum rates of the order of (1-2) × 10-2 M⊙ km s-1 yr-1.

  5. A search for ionized jets towards massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Cunningham, N.; Purcell, C. R.; Brooks, K. J.; Garay, G.; Gúzman, A. E.; Voronkov, M. A.

    2016-05-01

    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and HII regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as HII regions and 2 were unable to be categorised. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio-luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically-thin lobes resulting from shocks either internal to the jet and/or at working surfaces. Ten jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of α = -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper-limit on the jet phase lasting approximately 6.5 × 104 yr. Typical mass loss rates in the jet are found to be 1.4× 10-5 M⊙yr-1 with associated momentum rates of the order (1-2)× 10^{-2} M_⊙ km s^{-1 yr}^{-1}.

  6. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  7. Investigating accretion disk - radio jet coupling across the stellar mass scale

    NASA Astrophysics Data System (ADS)

    Miller-Jones, James C. A.; Sivakoff, Gregory R.; Altamirano, Diego; Körding, Elmar G.; Krimm, Hans A.; Maitra, Dipankar; Remillard, Ron A.; Russell, David M.; Tudose, Valeriu; Dhawan, Vivek; Fender, Rob P.; Heinz, Sebastian; Markoff, Sera; Migliari, Simone; Rupen, Michael P.; Sarazin, Craig L.

    2011-02-01

    Relationships between the X-ray and radio behavior of black hole X-ray binaries during outbursts have established a fundamental coupling between the accretion disks and radio jets in these systems. I begin by reviewing the prevailing paradigm for this disk-jet coupling, also highlighting what we know about similarities and differences with neutron star and white dwarf binaries. Until recently, this paradigm had not been directly tested with dedicated high-angular resolution radio imaging over entire outbursts. Moreover, such high-resolution monitoring campaigns had not previously targetted outbursts in which the compact object was either a neutron star or a white dwarf. To address this issue, we have embarked on the Jet Acceleration and Collimation Probe Of Transient X-Ray Binaries (JACPOT XRB) project, which aims to use high angular resolution observations to compare disk-jet coupling across the stellar mass scale, with the goal of probing the importance of the depth of the gravitational potential well, the stellar surface and the stellar magnetic field, on jet formation. Our team has recently concluded its first monitoring series, including (E)VLA, VLBA, X-ray, optical, and near-infrared observations of entire outbursts of the black hole candidate H 1743-322, the neutron star system Aquila X-1, and the white dwarf system SS Cyg. Here I present preliminary results from this work, largely confirming the current paradigm, but highlighting some intriguing new behavior, and suggesting a possible difference in the jet formation process between neutron star and black hole systems.

  8. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    NASA Astrophysics Data System (ADS)

    Mewes, Vassilios; Font, José A.; Galeazzi, Filippo; Montero, Pedro J.; Stergioulas, Nikolaos

    2016-03-01

    In this paper we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. Our lightest model, which is the most astrophysically favorable outcome of mergers of binary compact objects, is stable. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of black hole spin and disk angular momentum in the most massive model with constant specific angular momentum l . For the model with nonconstant l -profile we observe a long-lived m =1 nonaxisymmetric structure which shows strong oscillations of the tilt angle in the inner regions of the disk. This effect might be connected to the development of Kozai-Lidov oscillations. Our simulations also confirm earlier findings that the development of the PP instability causes the long-term emission of large amplitude gravitational waves, predominantly for the l =m =2 multipole mode. The imprint of the black hole (BH) precession on the gravitational waves from tilted BH-torus systems remains an interesting open issue that would require significantly longer simulations than those presented in this paper.

  9. On different types of instabilities in black hole accretion discs: implications for X-ray binaries and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka; Czerny, Bożena

    2011-07-01

    We discuss two important instability mechanisms that may lead to the limit-cycle oscillations of the luminosity of the accretion discs around compact objects: ionization instability and radiation pressure instability. Ionization instability is well established as a mechanism of X-ray novae eruptions in black hole binary systems, but its applicability to active galactic nuclei (AGN) is still problematic. Radiation pressure theory has still a very weak observational background in any of these sources. In this paper, we attempt to confront the parameter space of these instabilities with the observational data. At the basis of this simple survey of sources properties, we argue that the radiation pressure instability is likely to be present in several Galactic sources with the Eddington ratios being above 0.15 and in AGN with the Eddington ratio above 0.025. Our results favour the parametrization of the viscosity through the geometrical mean of the radiation and gas pressure in both Galactic sources and AGN. More examples of the quasi-regular outbursts in the time-scales of 100 s in Galactic sources and hundreds of years in AGN are needed to formulate firm conclusions. We also show that the disc sizes in the X-ray novae are consistent with the ionization instability. This instability may also considerably influence the lifetime cycle and overall complexity in the supermassive black hole environment.

  10. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  11. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  12. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  13. Torque Reversals in Disk Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Li, Jianke; Wickramasinghe, Dayal T.

    1998-07-01

    X-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10-13 Hz s-1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque-mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.

  14. Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, Chris

    2004-01-01

    A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.

  15. Ceramic compaction models: Useful design tools or simple trend indicators?

    SciTech Connect

    Mahoney, F.M.; Readey, M.J.

    1995-08-01

    It is well-known that dry pressing of ceramic powders leads to density gradients in a ceramic compact resulting in non-uniform shrinkage during densification. This necessitates diamond grinding to final dimensions which, in addition to being an extra processing step, greatly increases the manufacturing cost of ceramic components. To develop methods to control and thus mitigate density variations in compacted powders, it has been an objective of researchers to better understand the mechanics of the compaction process and the underlying material and tooling effects on the formation of density gradients. This paper presents a review of models existing in the literature related to the compaction behavior of ceramic powders. In particular, this paper focuses on several well-known compaction models that predict pressure and density variations in powder compacts.

  16. An Ultraluminous X-Ray Object with a 2 Hour Period in M51

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Irwin, Jimmy; Seitzer, Patrick

    2002-12-01

    Ultraluminous X-ray objects (ULXs) are off-nucleus point sources with LX=1039-1041 ergs s-1, but the nature of such systems is largely unidentified. Here we report a 2.1 hr period observed in a Chandra ACIS observation for ULX M51 X-7, which is located on the edge of a young star cluster in the star-forming region in a spiral arm. In two ACIS observations separated by 1 yr, the ULX changed from a high-hard to a low-soft spectral state, in contrast to most Galactic low-mass X-ray binaries. On the basis of its period and spectral behaviors, we suggest that this ULX is a low-mass X-ray binary system, with a dwarf companion of 0.2-0.3 Msolar and a compact accretor, either a neutron star or a black hole, whose mass is not well constrained. Relativistic beaming effects are likely involved to produce the observed high X-ray luminosities, given its low accretion rate as inferred from a sustainable accretion scenario via Roche lobe overflow.

  17. ACCRETION IN EVOLVED AND TRANSITIONAL DISKS IN CEP OB2: LOOKING FOR THE ORIGIN OF THE INNER HOLES

    SciTech Connect

    Sicilia-Aguilar, Aurora; Henning, Thomas; Hartmann, Lee W.

    2010-02-10

    We present accretion rates for a large number of solar-type stars in the Cep OB2 region, based on U-band observations. Our study comprises 95 members of the {approx}4 Myr old cluster Tr 37 (including 20 'transition' objects (TOs)), as well as the only classical T Tauri star (CTTS) in the {approx}12 Myr old cluster NGC 7160. The stars show different disk morphologies, with the majority of them having evolved and flattened disks. The typical accretion rates are about 1 order of magnitude lower than in regions aged 1-2 Myr, and we find no strong correlation between disk morphology and accretion rates. Although half of the TOs are not accreting, the median accretion rates of normal CTTS and accreting 'transition' disks are similar ({approx}3 x 10{sup -9} and 2 x 10{sup -9} M{sub sun} yr{sup -1}, respectively). Comparison with other regions suggests that the TOs observed at different ages do not necessarily represent the same type of objects, which is consistent with the fact that the different processes that can lead to reduced IR excess/inner disk clearing (e.g., binarity, dust coagulation/settling, photoevaporation, giant planet formation) do not operate on the same timescales. Accreting TOs in Tr 37 are probably suffering strong dust coagulation/settling. Regarding the equally large number of non-accreting TOs in the region, other processes, such as photoevaporation, the presence of stellar/substellar companions, and/or giant planet formation, may account for their 'transitional' spectral energy distributions and negligible accretion rates.

  18. Accretion in Evolved and Transitional Disks in CEP OB2: Looking for the Origin of the Inner Holes

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Henning, Thomas; Hartmann, Lee W.

    2010-02-01

    We present accretion rates for a large number of solar-type stars in the Cep OB2 region, based on U-band observations. Our study comprises 95 members of the ~4 Myr old cluster Tr 37 (including 20 "transition" objects (TOs)), as well as the only classical T Tauri star (CTTS) in the ~12 Myr old cluster NGC 7160. The stars show different disk morphologies, with the majority of them having evolved and flattened disks. The typical accretion rates are about 1 order of magnitude lower than in regions aged 1-2 Myr, and we find no strong correlation between disk morphology and accretion rates. Although half of the TOs are not accreting, the median accretion rates of normal CTTS and accreting "transition" disks are similar (~3 × 10-9 and 2 × 10-9 M sun yr-1, respectively). Comparison with other regions suggests that the TOs observed at different ages do not necessarily represent the same type of objects, which is consistent with the fact that the different processes that can lead to reduced IR excess/inner disk clearing (e.g., binarity, dust coagulation/settling, photoevaporation, giant planet formation) do not operate on the same timescales. Accreting TOs in Tr 37 are probably suffering strong dust coagulation/settling. Regarding the equally large number of non-accreting TOs in the region, other processes, such as photoevaporation, the presence of stellar/substellar companions, and/or giant planet formation, may account for their "transitional" spectral energy distributions and negligible accretion rates.

  19. Doppler tomography of accretion in binaries

    NASA Astrophysics Data System (ADS)

    Steeghs, D.

    2004-03-01

    Since its conception, Doppler tomography has matured into a versatile and widely used tool. It exploits the information contained in the highly-structured spectral line-profiles typically observed in mass-transferring binaries. Using inversion techniques akin to medical imaging, it permits the reconstruction of Doppler maps that image the accretion flow on micro-arcsecond scales. I summarise the basic concepts behind the technique and highlight two recent results; the use of donor star emission as a means to system parameter determination, and the real-time movies of the evolving accretion flow in the cataclysmic variable WZ Sge during its 2001 outburst. I conclude with future opportunities in Doppler tomography by exploiting the combination of superior data sets, second generation reconstruction codes and simulated theoretical tomograms to delve deeper into the physics of accretion flows.

  20. The accretion column of AE Aqr

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Costa, D. Joaquim; Luna, Gerardo; Lima, Isabel J.; Silva, Karleyne M. G.; De Araujo, Jose Carlos N.; Coelho, Jaziel

    2016-07-01

    AE Aqr is a magnetic cataclysmic variable, whose white dwarf rotates at the very fast rate of 33 s modulating the flux from high-energies to optical wavelengths. There are many studies of the origin of its emission, which consider emission from a rotating magnetic field or from an accretion column. Recently, MAGIC observations have discarded AE Aqr emission in very high energy gamma-rays discarding non-thermal emission. Furthermore, soft and hard X-ray data from Swift and NuSTAR were fitted using thermal models. Here we present the modelling of AE Aqr X-ray spectra and light curve considering the emission of a magnetic accretion column using the Cyclops code. The model takes into consideration the 3D geometry of the system, allowing to properly represent the white-dwarf auto eclipse, the pre-shock column absorption, and the varying density and temperature of a tall accretion column.

  1. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  2. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1990-01-01

    Based on previous observations of glaze ice accretion, a 'Multi-Zone' model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: to determine the laminar to turbulent transition location and to calculate the turbulent heat transfer coefficient. A two zone version of the Multi-Zone model is implemented in the LEWICE code, and compared with experimental heat transfer coefficient and ice accretin results. The analysis of the boundary layer transition, surface roughness, and viscous flow field effects significantly increased the accuracy in predicting heat transfer coefficients. The Multi-Zone model was found to greatly improve the ice accretion prediction for the cases compared.

  3. The accretion halo in AM Herculis systems

    NASA Technical Reports Server (NTRS)

    Achilleos, N.; Wickramasinghe, D. T.; Wu, Kinwah

    1992-01-01

    Previous phase-resolved spectropolarimetric observations of the AM Herculis systems V834 Centauri (E1405-451) and EF Eridani have shown broad, Zeeman-shifted absorption features during the bright phases. These features are thought to be nonphotospheric in origin, and to arise from a cool 'halo' of unshocked gas surrounding the accretion shock on the surface of the white dwarf primary. Preliminary models for the accretion halo region are presented and these models are used to perform a more detailed analysis of the relevant data for these two systems than has previously been done. To explain the observed halo Zeeman features, geometries which are consistent with the presence of linearly extended cyclotron emission regions are required. Such regions have previously been deduced from different considerations by other investigators. The estimated masses for the accretion halo are comparable to the mass of the cyclotron emission region.

  4. Thermal structure of the accreting earth

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Pflugrath, J. C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper the existence of a global magma ocean is postulated and calculations are carried out of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. It is found that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. It is concluded that the core segregated and an atmosphere was formed during accretion.

  5. Thermal structure of the accreting earth

    SciTech Connect

    Turcotte, D.L.; Pflugrath, J.C.

    1985-02-15

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion.

  6. Accretion disks in Algols: Progenitors and evolution

    NASA Astrophysics Data System (ADS)

    Van Rensbergen, W.; De Greve, J. P.

    2016-08-01

    Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. Aims: We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. Methods: With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Results: Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. Conclusions: When Roche lobe overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  7. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-05-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  8. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  9. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  10. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  11. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  12. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  13. Revealing the accretion disc corona in Mrk 335 with multi-epoch X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Keek, L.; Ballantyne, D. R.

    2016-03-01

    Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe Kα emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-epoch spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ˜10 per cent of the Eddington limit, the compact and optically thick corona is located close to the inner disc, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disc surface. Furthermore, we find a soft excess that consists of two components. In addition to a contribution from reflection in low ionization states, a second component is present that traces the overall flux.

  14. Phase Coherent Timing of the Ultra-compact Candidates V407 Vul and RX J0806.3+1527

    NASA Technical Reports Server (NTRS)

    Strohmayer, T. E.

    2004-01-01

    I report on the results of ongoing campaigns with Chandra to precisely time the X-ray pulsations from two candidate ultra-compact white dwarf systems; V407 Vu1 and RX J0806.3+1527. If these objects are ultra-compact binaries, then the gravitational radiation-driven evolution of the orbital period can be probed with precise X-ray timing observations. Recent Chandra data have confirmed that the X-ray frequency of V407 Vu1 is increasing at a mean rate of about 8 x 10-18 Hz s-1, a value consistent with loss of gravitational radition from the system. However, the frequency derivative, X-ray variability and phase timing noise could also be explained in an accretion driven, intermediate polar scenario. Previous studies suggested that RX J0806.3+1527 is spinning up at an even faster rate than V407 Vul, however, preliminary analysis of Chandra data do not confirm this. Indeed, the present evidence suggests we may be seeing a torque reversal in this source.

  15. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  16. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  17. Thermonuclear processes on