Science.gov

Sample records for accreting massive black

  1. Retrograde binaries of massive black holes in circumbinary accretion discs

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica

    2016-06-01

    Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under

  2. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  3. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  4. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  5. Growing massive black holes through supercritical accretion of stellar-mass seeds

    NASA Astrophysics Data System (ADS)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  6. Super-Eddington accreting massive black holes as long-lived cosmological standards.

    PubMed

    Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai

    2013-02-22

    Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler.

  7. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    SciTech Connect

    Bregman, Michal; Alexander, Tal

    2012-03-20

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales {approx}> (M{sub .}/M{sub d} )P(R{sub d} ), where M{sub .} and M{sub d} are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius R{sub d}. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10 Degree-Sign ) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  8. The Torquing of Circumnuclear Accretion Disks by Stars and the Evolution of Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Bregman, Michal; Alexander, Tal

    2012-03-01

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales >~ (M •/Md )P(Rd ), where M • and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd . The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  9. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  10. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  11. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay Between Radiative Cooling, Star Formation, and Feedback Processes

    NASA Astrophysics Data System (ADS)

    Souza Lima, Rafael; Mayer, Lucio; Capelo, Pedro R.; Bellovary, Jillian M.

    2017-03-01

    We study the orbital decay of a pair of massive black holes (BHs) with masses 5× {10}5 and 107 {M}ȯ , using hydrodynamical simulations of circumnuclear disks (CNDs) with the alternating presence of sub-grid physics, such as radiative cooling, star formation, supernova feedback, BH accretion, and BH feedback. In the absence of such processes, the orbit of the secondary BH decays over timescales of ∼ 10 {Myr} to the center of the CND, where the primary BH resides. When strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds with densities in the range 104–107 amu cm‑3 occurs, causing stochastic torques and hits that can eject the secondary BH from the midplane. Outside the plane, the low-density medium provides only weak drag, and the BH return is governed by inefficient dynamical friction. In rare cases, clump–BH interactions can lead to a faster decay. Feedback processes lead to outflows, but do not significantly change the overall density of the CND midplane. However, with a spherically distributed BH feedback, a hot bubble is generated behind the secondary, which almost shuts off dynamical friction. We dub this phenomenon “wake evacuation.” It leads to delays in the decay, possibly of ∼ 0.3 {Gyr}. We discuss the non-trivial implications on the discovery space of the eLISA telescope. Our results suggest that the largest uncertainty in predicting BH merger rates lies in the potentially wide variety of galaxy host systems, with different degrees of gas dissipation and heating, yielding decay timescales from ∼ 10 to ∼ 300 {Myr}.

  12. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  13. Black hole growth and AGN feedback under clumpy accretion

    NASA Astrophysics Data System (ADS)

    DeGraf, C.; Dekel, A.; Gabor, J.; Bournaud, F.

    2017-04-01

    High-resolution simulations of supermassive black holes in isolated galaxies have suggested the importance of short (∼10 Myr) episodes of rapid accretion caused by interactions between the black hole and massive dense clouds within the host. Accretion of such clouds could potentially provide the dominant source for black hole growth in high-z galaxies, but it remains unresolved in cosmological simulations. Using a stochastic subgrid model calibrated by high-resolution isolated galaxy simulations, we investigate the impact that variability in black hole accretion rates has on black hole growth and the evolution of the host galaxy. We find this clumpy accretion to more efficiently fuel high-redshift black hole growth. This increased mass allows for more rapid accretion even in the absence of high-density clumps, compounding the effect and resulting in substantially faster overall black hole growth. This increased growth allows the black hole to efficiently evacuate gas from the central region of the galaxy, driving strong winds up to ∼2500 km s-1, producing outflows ∼10 × stronger than the smooth accretion case, suppressing the inflow of gas on to the host galaxy, and suppressing the star formation within the galaxy by as much as a factor of 2. This suggests that the proper incorporation of variability is a key factor in the co-evolution between black holes and their hosts.

  14. Strongly Magnetized Accretion Disks Around Black Holes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2017-01-01

    Recent observations are suggestive of strongly magnetized accretion disks around black holes. Performing local (shearing box) simulations of accretion disks, we investigate how a strong magnetization state can develop and persist. We demonstrate that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion disks. We also show that black hole spin measurements can become unconstrained if magnetic fields provide a significant contribution to the vertical pressure support of the accretion disk atmosphere.

  15. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  16. Accretion onto the first stellar mass black holes

    SciTech Connect

    Alvarez, Marcelo A.; Wise, John H.; Abel, Tom

    2009-08-05

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M{sub {circle_dot}} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the two hundred million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation - stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx} 10{sup 4} K, facilitating intermediate mass black hole formation at their centers.

  17. Reconstructing the massive black hole cosmic history through gravitational waves

    SciTech Connect

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-02-15

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  18. Massive accretion disks in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Scoville, N. Z.

    In the luminous infrared galaxies, very large masses of interstellar matter have been concentrated in the galactic nuclei at radii less than 300 pc as a result of galactic merging, while in lower luminosity systems, this material is probably concentrated by stellar bars and viscous accretion. In both cases, the nuclear region will be highly obscured by dust at visible wavelengths, forcing studies to longer wavelengths where the extinction is reduced. We review recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging of the dense gas and dust accretion disks in nearby luminous galactic nuclei. Since this nuclear ISM is the active ingredient for both starburst activity and a likely fuel for central AGNs, the nuclear accretion disks are critical to both the activity and the optical appearance of the nucleus. For a sample of 24 luminous galaxies imaged with NICMOS at 1-2μm, approximately 13 show nuclear point sources, indicating the existence of a central AGN or an intense starburst at <= 50 pc radius. Approximately 14 of the sample galaxies have apparent central dust disks. In the best studied ultraluminous IR galaxy, Arp 220, the 2μm imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gas masses ~ 109Msolar for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are ~ 2×109Msolar, that is, only slightly larger than the gas masses. These disks have radii ~ 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicate that the gas in the disks has area filling factors ~25-50% and mean densities of >= 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps >= 10 Msolar yr-1. If this inflow persists to very small radii, it is enough to feed even the highest

  19. Transonic disk accretion onto black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1980-01-01

    The solution for the radial drift velocity of thin disk accretion onto black holes must be transonic, and is analogous to the critical solution in spherical Bondi accretion, except for the presence of angular momentum. The transonic requirement yields a correct treatment of the inner region of the disk not found in the conventional Keplerian models and may lead to significantly different overall disk structures. Possible observational consequences, relevant to the black hole hypothesis for Cyg X-1 and other candidates, are discussed.

  20. More on accreting black hole spacetime in equatorial plane

    NASA Astrophysics Data System (ADS)

    Salahshoor, K.; Nozari, K.; Khesali, A. R.

    2017-02-01

    Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.

  1. Birth of Massive Black Hole Binaries

    SciTech Connect

    Colpi, M.; Dotti, M.; Mayer, L.; Kazantzidis, S.; /KIPAC, Menlo Park

    2007-11-19

    If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.

  2. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  3. Chaotic cold accretion on to black holes in rotating atmospheres

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat< 1. Extended multiphase filaments condense out of the hot phase via thermal instability (TI) and rain toward the black hole, boosting the accretion rate up to 100 times the Bondi rate (Ṁ• ~ Ṁcool). Initially, turbulence broadens the angular momentum distribution of the hot gas, allowing the cold phase to condense with prograde or retrograde motion. Subsequent chaotic collisions between the cold filaments, clouds, and a clumpy variable torus promote the cancellation of angular momentum, leading to high accretion rates. As turbulence weakens (Tat > 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images

  4. Do massive black holes reside in elliptical galaxies?

    NASA Technical Reports Server (NTRS)

    Fabian, A. C.; Canizares, C. R.

    1988-01-01

    The accretion by a central black hole of the hot interstellar medium in an elliptical galaxy is investigated, and the minimum expected luminosity and manner of its emission is estimated. It is not obviously detected at any wavelength. The problem of 'starving the monster', if indeed there is a monster, is raised. The simplest conclusion from the evidence is that most bright elliptical galaxies do not contain massive black holes.

  5. Evolution of an accretion disc in binary black hole systems

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.

  6. Chaotic Accretion and Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Nixon, Christopher James

    2012-09-01

    The main driver of the work in this thesis is the idea of chaotic accretion in galaxy centres. Most research in this area focuses on orderly or coherent accretion where supermassive black holes or supermassive black hole binaries are fed with gas always possessing the same sense of angular momentum. If instead gas flows in galaxies are chaotic, feeding occurs through randomly oriented depositions of gas. Previous works show that this chaotic mode of feeding can explain some astrophysical phenomena, such as the lack of correlation between host galaxy structure and the direction of jets. It has also been shown that by keeping the black hole spin low this feeding mechanism can grow supermassive black holes from stellar mass seeds. In this thesis I show that it also alleviates the "final parsec problem" by facilitating the merger of two supermassive black holes, and the growth of supermassive black holes through rapid accretion. I also develop the intriguing possibility of breaking a warped disc into two or more distinct planes.

  7. Black holes in massive gravity

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Brito, Richard

    2015-08-01

    We review the black hole (BH) solutions of the ghost-free massive gravity theory and its bimetric extension, and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact BH solutions, analogous to those of general relativity (GR). In addition to these solutions, hairy BHs—solutions with no correspondent in GR—have been found numerically, whose existence is a natural consequence of the absence of Birkhoff’s theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these BHs richer and more complex than those of GR. In particular, the bi-Schwarzschild BH exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical BHs are described by these solutions, the superradiant instability of the Kerr solution imposes stringent bounds on the graviton mass.

  8. Accretion Disk Emission Around Kerr Black Holes

    NASA Astrophysics Data System (ADS)

    Campitiello, Samuele; Sbarrato, T.; Ghisellini, G.

    2016-10-01

    Measuring the spin of supermassive Black holes in Active Galactic Nuclei is a further step towards a better understanding of the evolution of their physics. We proposed a new method to estimate the Black hole spin, based on data-fitting. We consider a numerical model called KERRBB, including all relativistic effects (i.e. light-bending, gravitational redshift and Doppler beaming). We found that the same spectrum can be produced by different masses, accretion rates and spins, but that these three quantities are related. In other words, having a robust indipendent estimate on one of these three quantities fixes the other two. By using the Black hole mass, estimated by the virial method, we can pinpoint a narrow range of possible spins and accretion rates for the 32 blazars we have studied. For these objects, we found a lower limit of the spin, that must be a/M > 0.6-0.7

  9. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  10. LIMITING ACCRETION ONTO MASSIVE STARS BY FRAGMENTATION-INDUCED STARVATION

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Banerjee, Robi; Low, Mordecai-Mark Mac

    2010-12-10

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform and analyze simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive-mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  11. Small Seed Black Hole Growth in Various Accretion Regimes

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.

    2016-03-01

    Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.

  12. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  13. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  14. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  15. Minidisks in Binary Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey; MacFadyen, Andrew

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  16. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  17. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  18. On the dynamics of misaligned accretion discs and spinning black holes

    NASA Astrophysics Data System (ADS)

    Lodato, G.; Pringle, J. E.

    2005-12-01

    In this contribution, I discuss the dynamics of misaligned accretion discs and spinning black holes in Active Galactic Nuclei, by using a nself-consistent time-dependent approach, that allows to properly track the evolution of the spin of the black hole during the alignment process. I show that, contrary to previous beliefs, the disc angular momentum and the black hole spin can end up counter-aligned, in such a way that accretion proceeds through retrograde orbits. I will discuss the implications that this counter-aligned mode of accretion has on observables from AGNs, such as the shape of X-ray iron lines, the shape of jets, and the possibility of obscuration of the central engine. I will also discuss, more in general, the effects of the alignment (or counter-alignment) process on the spin history of super-massive black holes.

  19. Tidal disruption events by a massive black hole binary

    NASA Astrophysics Data System (ADS)

    Ricarte, Angelo; Natarajan, Priyamvada; Dai, Lixin; Coppi, Paolo

    2016-05-01

    Massive black hole binaries (MBHBs) are a natural byproduct of galaxy mergers. Previous studies have shown that flares from stellar tidal disruption events (TDEs) are modified by the presence of a secondary perturber, causing interruptions in the light curve. We study the dynamics of TDE debris in the presence of a milliparsec-separated MBHB by integrating ballistic particle orbits in the time-varying potential of the binary. We find that gaps in the light curve appear when material misses the accretion radius on its first return to pericentre. Subsequent recurrences can be decomposed into `continuous' and `delayed' components, which exhibit different behaviour. We find that this potential can substantially alter the locations of stream self-intersections. When debris is confined to the plane, we find that close encounters with the secondary massive black hole (MBH) leave noticeable signatures on the fallback rate and can result in significant accretion on to the secondary MBH. Tight, equal-mass MBHBs accrete equally, periodically trading the infalling stream.

  20. Diskoseismology - Signatures of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Nowak, Michael; Wagoner, Robert V.

    1992-01-01

    General relativity requires the existence of a spectrum of oscillations which are trapped near the inner edge of accretion disks around black holes. We have developed a general formalism for analyzing the normal modes of such acoustic perturbations of arbitrary thin disk models, approximating the dominant relativistic effects via a modified Newtonian potential (these modes do not exist in Newtonian gravity). The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall in to two main classes, which are analogous to the p-modes and g-modes in the sun. In this work, we compute the eigenfunctions and eigenfrequencies of isothermal disks. The (relatively small) rates of growth or damping of these oscillations due to gravitational radiation and parameterized models of viscosity are also computed.

  1. AGN Variability: Probing Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  2. Neutrino oscillation above a black hole accretion disk

    SciTech Connect

    Malkus, A.; Kneller, J. P.; McLaughlin, G. C.; Surman, R.

    2015-05-15

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.

  3. Magnetic Field Roles in Black-Holes Accretion Disk's Structure

    NASA Astrophysics Data System (ADS)

    Abbassi, S.; Samadi, M.

    2016-09-01

    We study several factors which play remarkable roles in vertical structure and dynamics of hot accretion flows around black holes. These factors are large-scale magnetic field, thermal conduction, outflow and self-gravity. We consider an axisymmetric, rotating, steady viscous-resistive hot accretion flows.

  4. Black hole accretion discs and screened scalar hair

    NASA Astrophysics Data System (ADS)

    Davis, Anne-Christine; Gregory, Ruth; Jha, Rahul

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ``Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  5. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  6. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  7. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  8. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  9. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  10. Hot accretion flows onto binary and single black holes

    NASA Astrophysics Data System (ADS)

    Gold, Roman; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart; Etienne, Zachariah; Pfeiffer, Harald; McKinney, Jonathan

    2015-04-01

    Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. Binary Black Holes are one of the most promising gravitational wave sources for adLIGO and Pulsar Timing Arrays and - if accreting - can provide a strong electromagnetic counterpart. I will present results from global GRMHD simulations of both single and binary BHs embedded in a hot, magnetized disk, highlighting differences in their observational appearance including their gravitational and electromagnetic radiation.

  11. Accretion of phantom scalar field into a black hole

    SciTech Connect

    Gonzalez, J. A.; Guzman, F. S.

    2009-06-15

    Using numerical methods we present the first full nonlinear study of a phantom scalar field accreted into a black hole. We study different initial configurations and find that the accretion of the field into the black hole can reduce its area down to 50 percent within time scales of the order of few masses of the initial horizon. The analysis includes the cases where the total energy of the space-time is positive or negative. The confirmation of this effect in full nonlinear general relativity implies that the accretion of exotic matter could be considered an evaporation process. We speculate that if this sort of exotic matter has some cosmological significance, this black hole area reduction process might have played a crucial role in black hole formation and population.

  12. TEARING UP THE DISK: HOW BLACK HOLES ACCRETE

    SciTech Connect

    Nixon, Chris; King, Andrew; Price, Daniel; Frank, Juhan

    2012-10-01

    We show that in realistic cases of accretion in active galactic nuclei or stellar-mass X-ray binaries, the Lense-Thirring effect breaks the central regions of tilted accretion disks around spinning black holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment of the outer disk to the spin axis of the hole is 45 Degree-Sign {approx}< {theta} {approx}< 135 Degree-Sign , as in {approx}70% of randomly oriented accretion events, the continued precession of these disks sets up partially counterrotating gas flows. This drives rapid infall as angular momentum is canceled and gas attempts to circularize at smaller radii. Disk breaking close to the black hole leads to direct dynamical accretion, while breaking further out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still occur and may lead to other observable phenomena such as quasi-periodic oscillations. For such effects not to appear, the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disk. Qualitatively similar results hold for any accretion disk subject to a forced differential precession, such as an external disk around a misaligned black hole binary.

  13. Gravothermal collapse of self-interacting dark matter halos and the origin of massive black holes.

    PubMed

    Balberg, Shmuel; Shapiro, Stuart L

    2002-03-11

    Black hole formation is an inevitable consequence of relativistic core collapse following the gravothermal catastrophe in self-interacting dark matter (SIDM) halos. Very massive SIDM halos form supermassive black holes (SMBHs) > or about 10(6)M(middle dot in circle) directly. Smaller halos believed to form by redshift z = 5 produce seed black holes of (10(2)-10(3))M(middle dot in circle) which can merge and/or accrete to reach the observational SMBH range. This scenario for SMBH formation requires no baryons, no prior star formation, and no other black hole seed mechanism.

  14. Optical Variability Signatures from Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam

    2017-01-01

    The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.

  15. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  16. Rossby Wave Instability in the Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Gholipour, Mahmoud

    2017-01-01

    The roles of the Rossby wave instability (RWI) have been significantly developed in some important processes, such as planet formation and angular momentum transport through thin accretion disks. However, their development on accretion flows with advection is insignificant. In this paper, we investigate the effect of advection in the occurrence of RWI through accretion flows around black holes (BHs). In the absence of advection, the occurrence of RWI is extremely low because of high viscosity in the accretion flows around BHs. The results of this paper show that there is a significant chance for the occurrence of RWI in some wavelengths if we consider advection even in low amounts. Therefore, the RWI can be a suitable candidate for angular momentum transport in the accretion flows around BHs. Also, the results show that the advection parameter and the ratio of heat capacity, which are special characters of advection flows, play important roles in the occurrence of RWI.

  17. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Huang, Ying-Ke; Cheng, Cheng; Qiu, Jie; Li, Yan-Rong; Zhang, Yang-Wei; Fan, Xu-Liang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Kaspi, Shai; Ho, Luis C.; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2015-06-01

    We have completed two years of photometric and spectroscopic monitoring of a large number of active galactic nuclei (AGNs) with very high accretion rates. In this paper, we report on the result of the second phase of the campaign, during 2013-2014, and the measurements of five new Hβ time lags out of eight monitored AGNs. All five objects were identified as super-Eddington accreting massive black holes (SEAMBHs). The highest measured accretion rates for the objects in this campaign are \\mathscr{\\dot{M}} {\\mkern 1mu} ≳ 200, where \\mathscr{\\dot{M}} {\\mkern 1mu} ={{\\dot{M}}\\bullet }/{{L}Edd}{{c}-2}, {{\\dot{M}}\\bullet } is the mass accretion rates, {{L}Edd} is the Eddington luminosity and c is the speed of light. We find that the Hβ time lags in SEAMBHs are significantly shorter than those measured in sub-Eddington AGNs, and the deviations increase with increasing accretion rates. Thus, the relationship between broad-line region size ({{R}_{Hβ }}) and optical luminosity at 5100 Å, {{R}_{Hβ }}-{{L}5100}, requires accretion rate as an additional parameter. We propose that much of the effect may be due to the strong anisotropy of the emitted slim-disk radiation. Scaling {{R}_{Hβ }} by the gravitational radius of the black hole (BH), we define a new radius-mass parameter (Y) and show that it saturates at a critical accretion rate of \\mathscr{\\dot{M}} {\\mkern 1mu} {{}c}=6˜ 30, indicating a transition from thin to slim accretion disk and a saturated luminosity of the slim disks. The parameter Y is a very useful probe for understanding the various types of accretion onto massive BHs. We briefly comment on implications to the general population of super-Eddington AGNs in the universe and applications to cosmology.

  18. The role of stellar relaxation in the formation and evolution of the first massive black holes

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Khochfar, Sadegh

    2016-04-01

    We present calculations on the formation of massive black holes of 105 M⊙ at z > 6, which can be the seeds of supermassive black holes at z ≳ 6. Under the assumption of compact star cluster formation in merging galaxies, star clusters in haloes of ˜ 108-109 M⊙ can undergo rapid core collapse, leading to the formation of very massive stars (VMSs) of ˜ 1000 M⊙ that collapse directly into black holes with similar masses. Star clusters in haloes of ≳ 109 M⊙ experience Type II supernovae before the formation of VMSs, due to long core-collapse time-scales. We also model the subsequent growth of black holes via accretion of residual stars in clusters. Two-body relaxation refills the loss cones of stellar orbits efficiently at larger radii and resonant relaxation at small radii is the main driver for accretion of stars on to black holes. As a result, more than 90 percent of stars in the initial cluster are swallowed by the central black holes before z = 6. Using dark matter merger trees, we derive black hole mass functions at z = 6-20. The mass function ranges from 103-105 M⊙ at z ≲ 15. Major merging of galaxies of ≳ 4 × 108 M⊙ at z ˜ 20 leads successfully to the formation of ≳ 105 M⊙ black holes by z ≳ 10, which could be the potential seeds of supermassive black holes seen today.

  19. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  20. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  1. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  2. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  3. Resolving the Bondi Accretion Flow toward the Supermassive Black Hole of NGC 3115 with Chandra

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Irwin, J.; Million, E.; Yukita, M.; Mathews, W.; Bregman, J.

    2011-09-01

    Gas undergoing Bondi accretion on to a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observation show has a very massive SMBH. Our observations show that the gas temperature rises toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. The data support that the Bondi radius is at least about 4-5 arcsec (188-235 pc), suggesting a supermassive blackhole of two billion solar masses that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power law index of 1.03, and we will discuss the interpretations of the results.

  4. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    SciTech Connect

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C. E-mail: jafsma@rit.edu

    2012-01-20

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick angle with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.

  5. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  6. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    NASA Astrophysics Data System (ADS)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  7. Massive Black Hole Implicated in Stellar Destruction

    NASA Astrophysics Data System (ADS)

    2010-01-01

    New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University

  8. SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS

    SciTech Connect

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    2014-04-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solution—advective, optically thick flows that generalize the standard geometrically thin disk model—to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.

  9. COSMOLOGICAL EVOLUTION OF MASSIVE BLACK HOLES: EFFECTS OF EDDINGTON RATIO DISTRIBUTION AND QUASAR LIFETIME

    SciTech Connect

    Cao Xinwu

    2010-12-10

    A power-law time-dependent light curve for active galactic nuclei (AGNs) is expected by the self-regulated black hole growth scenario, in which the feedback of AGNs expels gas and shut down accretion. This is also supported by the observed power-law Eddington ratio distribution of AGNs. At high redshifts, the AGN life timescale is comparable with (or even shorter than) the age of the universe, which sets a constraint on the minimal Eddington ratio for AGNs on the assumption of a power-law AGN light curve. The black hole mass function (BHMF) of AGN relics is calculated by integrating the continuity equation of massive black hole number density on the assumption of the growth of massive black holes being dominated by mass accretion with a power-law Eddington ratio distribution for AGNs. The derived BHMF of AGN relics at z = 0 can fit the measured local mass function of the massive black holes in galaxies quite well, provided the radiative efficiency {approx}0.1 and a suitable power-law index for the Eddington ratio distribution are adopted. In our calculations of the black hole evolution, the duty cycle of AGN should be less than unity, which requires the quasar life timescale {tau}{sub Q} {approx}> 5 x 10{sup 8} years.

  10. Mergers of accreting stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Tagawa, H.; Umemura, M.; Gouda, N.

    2016-11-01

    We present post-Newtonian N-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericentre shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of 10 BHs with initial mass of 30 M⊙. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three-body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is ˜10 Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate (dot{m}_c), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce dot{m}_c especially in gas number density higher than 108 cm-3, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a ˜30 M⊙ BH binary has been detected. Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few M⊙ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.

  11. Where do Accretion Disks Around Black Holes End?

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Duschl, W. J.

    2010-10-01

    Accretion disks around (supermassive) black holes act as "machines" which extract gravitational energy. In fact, the observed radiation allows to sample the physical conditions very close to the event horizon. For a test particle, the innermost stable circular orbit (ISCO) is located at 3 rS for a non-rotating hole (Schwarzschild metrics; at smaller radii for a rotating black hole). This ISCO is usually identified with the inner edge of the accretion disk. For a given black hole mass, it allows, in principle, to determine the Kerr parameter. In "real life," however, we deal not with test particles but with a viscous flow, which introduces additional forces. We have calculated the location of the inner edge in a more realistic environment. The results show that the true inner edge of the disk is no longer located at the ISCO, when radial advection of energy is taken into account with a careful treatment of the transonic nature of the flow.

  12. Black hole accretion disks with coronae

    NASA Technical Reports Server (NTRS)

    Svensson, Roland; Zdziarski, Andrzej A.

    1994-01-01

    Observations suggest the existence of both hot and cold dark matter in the centers of active galactic nuclei. Recent spectral models require a major fraction of power to be dissipated in the hot matter. We study the case when the hot matter forms a corona around a standard cold alpha-disk. In particular, we investigate the case when a major fraction, f, of the power released when the cold matter accretes is transported to and dissipated in the corona. This has major effects on the cold disk, making it colder, more geometrically thin, denser, and having larger optical depths. One important consequence is the disappearance of the effectively optically thin zone as well as of the radiation pressure dominated zone for values of f sufficiently closed to unity. The disappearance of the radiation pressure dominated zone will result in a cold disk with only a gas pressure dominated zone that is stable against thermal and viscous instabilities. We also show that the pressure ( and the radiation) from the corona will only affect the surface layers of the cold disk. Our results disagree with those of other recent work on accretion disks with coronae. We find those works to be based on unphysical assumptions.

  13. Measuring Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  14. Constraints for transonic black hole accretion

    NASA Technical Reports Server (NTRS)

    Abramowicz, Marek A.; Kato, Shoji

    1989-01-01

    Regularity conditions and global topological constraints leave some forbidden regions in the parameter space of the transonic isothermal, rotating matter onto black holes. Unstable flows occupy regions touching the boundaries of the forbidden regions. The astrophysical consequences of these results are discussed.

  15. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  16. Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity

    NASA Astrophysics Data System (ADS)

    Sakurai, Yuya; Inayoshi, Kohei; Haiman, Zoltán

    2016-10-01

    We perform 1D radiation hydrodynamical simulations to solve accretion flows on to massive black holes (BHs) with a very high rate. Assuming that photon trapping limits the luminosity emerging from the central region to L ≲ LEdd, Inayoshi, Haiman & Ostriker (2016) have shown that an accretion flow settles to a `hyper-Eddington solution, with a steady and isothermal (T ≃ 8000 K) Bondi profile reaching ≳ 5000 times the Eddington accretion rate dot{M}_Eddequiv L_Edd/c^2. Here, we address the possibility that gas accreting with finite angular momentum forms a bright nuclear accretion disc, with a luminosity exceeding the Eddington limit (1 ≲ L/LEdd ≲ 100). Combining our simulations with an analytic model, we find that a transition to steady hyper-Eddington accretion still occurs, as long as the luminosity remains below L/LEdd ≲ 35 (MBH/104 M⊙)3/2(n∞/105 cm-3)(T∞/104 K)-3/2(r⋆/1014 cm)-1/2, where n∞ and T∞ are the density and temperature of the ambient gas, and r⋆ is the radius of the photosphere, at which radiation emerges. If the luminosity exceeds this value, accretion becomes episodic. Our results can be accurately recovered in a toy model of an optically thick spherical shell, driven by radiation force into a collapsing medium. When the central source is dimmer than the above critical value, the expansion of the shell is halted and reversed by ram pressure of the collapsing medium, and by shell's weight. Our results imply that rapid, unimpeded hyper-Eddington accretion is possible even if the luminosity of the central source far exceeds the Eddington limit, and can be either steady or strongly episodic.

  17. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  18. RESOLVING THE BONDI ACCRETION FLOW TOWARD THE SUPERMASSIVE BLACK HOLE OF NGC 3115 WITH CHANDRA

    SciTech Connect

    Wong, Ka-Wah; Irwin, Jimmy A.; Yukita, Mihoko; Million, Evan T.; Mathews, William G.

    2011-07-20

    Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. Our analysis suggests that we are resolving, for the first time, the accretion flow within the Bondi radius of an SMBH. We show that the temperature is rising toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. There is no hard central point source that could cause such an apparent rise in temperature. The data support that the Bondi radius is at about 4''-5'' (188-235 pc), suggesting an SMBH of 2 x 10{sup 9} M{sub sun} that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power-law index of 1.03{sup +0.23}{sub -0.21}, which is consistent with gas in transition from the ambient medium and the accretion flow. The accretion rate at the Bondi radius is determined to be M-dot{sub B} = 2.2x10{sup -2} M{sub sun} yr{sup -1}. Thus, the accretion luminosity with 10% radiative efficiency at the Bondi radius (10{sup 44} erg s{sup -1}) is about six orders of magnitude higher than the upper limit of the X-ray luminosity of the nucleus.

  19. EFFECTIVE INNER RADIUS OF TILTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Fragile, P. Chris

    2009-12-01

    One of the primary means of determining the spin a of an astrophysical black hole is by actually measuring the inner radius r {sub in} of a surrounding accretion disk and using that to infer a. By comparing a number of different estimates of r {sub in} from simulations of tilted accretion disks with differing black hole spins, we show that such a procedure can give quite wrong answers. Over the range 0 <= a/M <= 0.9, we find that, for moderately thick disks (H/r approx 0.2) with modest tilt (15 deg.), r {sub in} is nearly independent of spin. This result is likely dependent on tilt, such that for larger tilts, it may even be that r {sub in} would increase with increasing spin. In the opposite limit, we confirm through numerical simulations of untilted disks that, in the limit of zero tilt, r {sub in} recovers approximately the expected dependence on a.

  20. MAGNETICALLY LEVITATING ACCRETION DISKS AROUND SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Gaburov, Evghenii; Johansen, Anders; Levin, Yuri

    2012-10-20

    In this paper, we report on the formation of magnetically levitating accretion disks around supermassive black holes (SMBHs). The structure of these disks is calculated by numerically modeling tidal disruption of magnetized interstellar gas clouds. We find that the resulting disks are entirely supported by the pressure of the magnetic fields against the component of gravitational force directed perpendicular to the disks. The magnetic field shows ordered large-scale geometry that remains stable for the duration of our numerical experiments extending over 10% of the disk lifetime. Strong magnetic pressure allows high accretion rate and inhibits disk fragmentation. This in combination with the repeated feeding of magnetized molecular clouds to an SMBH yields a possible solution to the long-standing puzzle of black hole growth in the centers of galaxies.

  1. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  2. Black Hole Accretion and Feedback Driven by Thermal Instability

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.

    2013-03-01

    Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.

  3. Torque-limited Growth of Massive Black Holes in Galaxies across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Özel, Feryal; Davé, Romeel; Katz, Neal; Kollmeier, Juna A.; Oppenheimer, Benjamin D.

    2015-02-01

    We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier results to show that torque-limited growth yields black holes and host galaxies evolving on average along the M BH-M bulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios gsim 1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a nonlinear feedback loop. Torque-limited growth yields a close-to-linear < \\dot{M}_BH > \\propto star formation rate (SFR) relation for the black hole accretion rate averaged over galaxy evolution timescales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved timescales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as λMSvprop(1 + z)1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.

  4. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  5. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  6. Black Hole Accretion Discs on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey

    2017-01-01

    We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.

  7. Hairy Black Holes in Theories with Massive Gravitons

    NASA Astrophysics Data System (ADS)

    Volkov, Mikhail S.

    This is a brief survey of the known black hole solutions in the theories of ghost-free bigravity and massive gravity. Various black holes exist in these theories, in particular those supporting a massive graviton hair. However, it seems that solutions which could be astrophysically relevant are the same as in General Relativity, or very close to them. Therefore, the no-hair conjecture essentially applies, and so it would be hard to detect the graviton mass by observing black holes.

  8. Unveiling Gargantua: A new search strategy for the most massive central cluster black holes

    NASA Astrophysics Data System (ADS)

    Brockamp, M.; Baumgardt, H.; Britzen, S.; Zensus, A.

    2016-01-01

    Aims: We aim to unveil the most massive central cluster black holes in the Universe. Methods: We present a new search strategy, which is based on a black hole mass gain sensitive calorimeter and which links the innermost stellar density profile of a galaxy to the adiabatic growth of its central supermassive black hole (SMBH). As a first step we convert observationally inferred feedback powers into SMBH growth rates using reasonable energy conversion efficiency parameters, ɛ. In the main part of this paper we use these black hole growth rates, sorted in logarithmically increasing steps encompassing our whole parameter space, to conduct N-body computations of brightest cluster galaxies (BCGs) with the newly developed Muesli software. For the initial setup of galaxies, we use core-Sérsic models to account for SMBH scouring. Results: We find that adiabatically driven core regrowth is significant at the highest accretion rates. As a result, the most massive black holes should be located in BCGs with less pronounced cores when compared to the predictions of empirical scaling relations, which are usually calibrated in less extreme environments. For efficiency parameters ɛ< 0.1, BCGs in the most massive, relaxed, and X-ray luminous galaxy clusters might even develop steeply rising density cusps. Finally, we discuss several promising candidates for follow-up investigations, among them the nuclear black hole in the Phoenix cluster. Based on our results, its central black hole might have a mass of the order of 1011 M⊙.

  9. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  10. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  11. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  12. From White Dwarf To Neutron Star To Black Hole: Accretion, Gamma-ray Bursts, And Their Aftermath

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2010-01-01

    When white dwarfs with massive companions experience accretion-induced-collapse, the newborn neutron star may continue to accrete until its mass becomes larger than the maximum neutron-star mass. The resulting black hole may have special properties that allow it to be identified post-collapse. We present a set of such evolutions, punctuated by gamma-ray bursts, and assess the expected rates. An individual system may exhibit a remarkable range of high-energy states: supersoft source, ultraluminous x-ray source, hard x-ray binary, and gamma-ray bursts.

  13. The galactic center: is it a massive black hole?

    PubMed

    Lo, K Y

    1986-09-26

    Studies of active galactic nuclei constitute one of the major efforts in astronomy. Massive black holes are the most likely source for the enormous energy radiated from such nuclei. Observations reviewed here suggest unusual activity and the possible existence of a massive black hole in the nucleus of our galaxy. Because of its proximity to Earth, our galactic nucleus can be observed in unsurpassed detail and may serve as the Rosetta stone both for deciphering active galactic nuclei and for confirming the existence of a massive black hole.

  14. Cosmic microwave background limits on accreting primordial black holes

    NASA Astrophysics Data System (ADS)

    Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2017-02-01

    Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has recently been rekindled following LIGO's first direct detection of a binary-black-hole merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being considered. We analyze Planck CMB temperature and polarization data and find, under our most conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses ≳1 02 M⊙ as the dominant component of dark matter.

  15. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  16. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}⊙ ≲ M * ≲ 103 {M}⊙ . The formation of very massive (≳250 {M}⊙ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}⊙ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}⊙ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  17. Bulk viscosity of accretion disks around non rotating black holes

    NASA Astrophysics Data System (ADS)

    Moeen Moghaddas, M.

    2017-01-01

    In this paper, we study the Keplerian, relativistic accretion disks around the non rotating black holes with the bulk viscosity. Many of authors studied the relativistic accretion disks around the black holes, but they ignored the bulk viscosity. We introduce a simple method to calculate the bulk in these disks. We use the simple form for the radial component of the four velocity in the Schwarzschild metric, then the other components of the four velocity and the components of the shear and the bulk tensor are calculated. Also all components of the bulk viscosity, the shear viscosity and stress tensor are calculated. It is seen that some components of the bulk tensor are comparable with the shear tensor. We calculate some of the thermodynamic quantities of the relativistic disks. Comparison of thermodynamic quantities shows that in some states influences of the bulk viscosity are important, especially in the inner radiuses. All calculations are done analytically and we do not use the boundary conditions. Finally, we find that in the relativistic disks around the black holes, the bulk viscosity is non-negligible in all the states.

  18. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  19. [Predicting Spectra of Accretion Disks Around Galactic Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2004-01-01

    The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.

  20. EVOLUTION OF VERY MASSIVE POPULATION III STARS WITH MASS ACCRETION FROM PRE-MAIN SEQUENCE TO COLLAPSE

    SciTech Connect

    Ohkubo, Takuya; Nomoto, Ken'ichi; Umeda, Hideyuki; Yoshida, Naoki; Tsuruta, Sachiko E-mail: umeda@astron.s.u-tokyo.ac.j E-mail: naoki.yoshida@ipmu.j

    2009-12-01

    We calculate the evolution of zero-metallicity Population III (Pop III) stars whose mass grows from the initial mass of approx1 M{sub sun} by accreting the surrounding gases. Our calculations cover whole evolutionary stages from the pre-main sequence, via various nuclear burning stages, through the final core-collapse or pair-creation instability phases. We adopt two different sets of stellar mass accretion rates as our fiducial models. One is derived from a cosmological simulation of the first generation (PopIII.1) stars, and the other is derived from a simulation of the second generation stars that are affected by radiation from PopIII.1 stars. The latter represents one case of PopIII.2 stars. We also adopt additional models that include radiative feedback effects. We show that the final mass of Pop III.1 stars can be as large as approx1000 M {sub sun}, beyond the mass range (140-300 M{sub sun}) for the pair-instability supernovae. Such massive stars undergo core-collapse to form intermediate-mass black holes, which may be the seeds for merger trees to supermassive black holes. On the other hand, Pop III.2 stars become less massive (approx<40-60 M{sub sun}), being in the mass range of ordinary iron core-collapse stars. Such stars explode and eject heavy elements to contribute to chemical enrichment of the early universe as observed in the abundance patterns of extremely metal-poor stars in the Galactic halo. In view of the large range of possible accretion rates, further studies are important to see if these fiducial models are actually the cases.

  1. Evidence for a massive stellar black hole in x ray Nova Muscae

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1992-01-01

    We present evidence that the X-ray Nova Muscae system contains a massive, greater than 10 M solarmass, black hole. A recently measured photometric binary mass function gives the black hole mass for this system as a function of orbital inclination angle. From the spectral redshift and width of the positron annihilation gamma-ray line observed by GRANAT/SIGMA, we find the accretion disk inclination angle to be 22 deg plus or minus 18 deg. Assuming the accretion disk lies in the orbital plane of the system, the black hole mass is found to have a lower limit of 14 M solar mass although statistics are poor. This is supported by spectral modeling of combined optical/UV/x-ray/gamma-ray data and by a new Nova Muscae distance limit we derive of greater than 3 kpc. The large mass for this black hole and the high binary mass ratio it implies (greater than 20) raise a serious challenge to theoretical models of the formation and evolution of massive binaries. The gamma-ray line technique introduced here can give tight constraints on orbital parameters when high-sensitivity line measurements are made by such missions as GRO.

  2. Black-Hole Accretion Disks --- Towards a New Paradigm ---

    NASA Astrophysics Data System (ADS)

    Kato, S.; Fukue, J.; Mineshige, S.

    2008-03-01

    Part I: Concepts of Accretion Disks: Chap. 1: Introduction, 1.1 Accretion Energy - Historical Origin, { Accretion-Disk Paradigm - Active Universe, 1.3 Accretion-Powered Objects - Observational Reviews, 1.4 X-Ray Binaries and Ultra-Luminous X-Ray Sources, 1.5 Active Galactic Nuclei, 1.6 Present Paradigm, Chap. 2: Physical Processes Related to Accretion, 2.1 Eddington Luminosity, 2.2 Bondi Accretion, 2.3 Viscous Process, 2.4 Magnetic Instabilities, 2.5 Relativistic Effects Part II: Classical Picture: Chap. 3: Classical Models, 3.1 Viscous Accretion Disks, 3.2 Standard Disks, 3.3 Optically Thin Disks, 3.4 Accretion Disk Coronae, 3.5 Relativistic Standard Disks, 3.6 Relativistic Tori Chap. 4: Secular and Thermal Instabilities, 4.1 Secular Instability, 4.2 Thermal Instability, 4.3 Stability Examination on dot{M}-Σ and T-Σ Planes, 4.4 Mathematical Derivation of the Stability Criterion, Chap. 5: Dwarf-Nova Type Instability, 5.1 Thermal-Ionization Instability, 5.2 Time Evolution of Disks in X-Ray Novae Chap. 6: Observability of Relativistic Effects, 6.1 Ray Tracing, 6.2 Imaging - Black Hole Silhouette, 6.3 Spectroscopy - Continuum and Line, 6.4 Photometry - Light Curve Diagnosis, 6.5 Other Effects - Lensing and Jets, Part III: Modern Picture: Chap. 7: Equations to Construct Generalized Models, 7.1 Basic Equations and Importance of Advection, 7.2 One-Temperature Disks, 7.3 Two-Temperature Disks, 7.4 Time-Dependent Equations Chap. 8: Transonic Nature of Accretion Flows, 8.1 Topology of Black-Hole Accretion, 8.2 Regularity Condition at a Critical Radius, 8.3 Topology around the Critical Radius in Isothermal Disks, 8.4 Numerical Examples of Transonic Flows, 8.5 Transonic Flows with Standing Shocks Chap. 9: Radiatively Inefficient Accretion Flows, 9.1 Advection-Dominated Accretion Flow, 9.2 Radial Structure of Advection-Dominated Flow, 9.3 Radiation Spectra of Advection-Dominated Flow, 9.4 Stability of Advection-Dominated Flow, 9.5 Multi-Dimensional Effects, Chap. 10: Slim

  3. On the existence of accretion-driven bursts in massive star formation

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Vorobyov, E. I.; Kuiper, R.; Kley, W.

    2017-01-01

    Accretion-driven luminosity outbursts are a vivid manifestation of variable mass accretion on to protostars. They are known as the so-called FU Orionis phenomenon in the context of low-mass protostars. More recently, this process has been found in models of primordial star formation. Using numerical radiation hydrodynamics simulations, we stress that present-day forming massive stars also experience variable accretion and show that this process is accompanied by luminous outbursts induced by the episodic accretion of gaseous clumps falling from the circumstellar disc on to the protostar. Consequently, the process of accretion-induced luminous flares is also conceivable in the high-mass regime of star formation and we propose to regard this phenomenon as a general mechanism that can affect protostars regardless of their mass and/or the chemical properties of the parent environment in which they form. In addition to the commonness of accretion-driven outbursts in the star formation machinery, we conjecture that luminous flares from regions hosting forming high-mass stars may be an observational implication of the fragmentation of their accretion discs.

  4. Phantom Accretion onto the Schwarzschild AdS Black Hole with Topological Defect

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Farahani, H.

    2012-09-01

    In this paper, we have studied phantom energy accretion of prefect fluid onto the Schwarzschild AdS black hole with topological defect. We have obtained critical point during the accretion of fluid on the black hole where the speed of flow is equal speed of sound (Sharif and Abbas in Phantom accretion onto the Schwarzschild de-Sitter black hole, 2011, arXiv:1109.1043 [gr-qc]). The critical velocities have been computed so that the speed of fluid into the black hole is less than speed of sound. Finally, we have found that the critical point is near the black hole horizon.

  5. Galaxy Bulges and Their Massive Black Holes: A Review

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.

    With references to both key and often forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centers of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.

  6. Tunneling Radiation of Massive Vector Bosons from Dilaton Black Holes

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Jun-Kun; Wu, Xing-Hua

    2016-07-01

    It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza—Klein black hole, and the rotating Kerr—Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature. Supported by National Natural Science Foundation of China under Grant No. 11205048

  7. Diagnosing the Black Hole Accretion Physics of Sgr A*

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  8. The Most Massive Black Holes in the Local Universe

    NASA Astrophysics Data System (ADS)

    Ma, Chung-Pei

    2017-01-01

    For over three decades, the giant elliptical galaxy Messier 87 in the Virgo Cluster has hosted the most massive known black hole in the local universe. New observational data in the past several years have substantially expanded dynamical measurements of black hole masses at the centers of nearby galaxies. I will describe recent progress in discovering black holes up to twenty billion solar masses. This new population of supermassive black holes is revising our understanding of the symbiotic relationship between black holes and galaxies, and of the gravitational wave signals from merging binaries targeted by ongoing pulsar timing array experiments.

  9. Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Ostriker, Jeremiah P.; Natarajan, Priyamvada; Lackner, Claire N.; Cen, Renyue

    2015-02-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain "orbiting" due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M *, bul = 1010 M ⊙, increasing to 4% at M *, bul >~ 1011 M ⊙, and in the cluster it is 4% at M *, bul = 1010 M ⊙ and 23% at 1012 M ⊙. We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3%. Quantifying the growth due to mergers at these late times, we calculate the total energy

  10. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Kulier, Andrea; Ostriker, Jeremiah P.; Lackner, Claire N.; Cen, Renyue; Natarajan, Priyamvada

    2015-02-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M {sub *,} {sub bul} = 10{sup 10} M {sub ☉}, increasing to 4% at M {sub *,} {sub bul} ≳ 10{sup 11} M {sub ☉}, and in the cluster it is 4% at M {sub *,} {sub bul} = 10{sup 10} M {sub ☉} and 23% at 10{sup 12} M {sub ☉}. We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3

  11. Black hole mass and angular momentum in topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Bouchareb, Adel; Clément, Gérard

    2007-11-01

    We extend the Abbott Deser Tekin approach to the computation of the Killing charge for a solution of topologically massive gravity (TMG) linearized around an arbitrary background. This is then applied to evaluate the mass and angular momentum of black hole solutions of TMG with non-constant curvature asymptotics. The resulting values, together with the appropriate black hole entropy, fit nicely into the first law of black hole thermodynamics.

  12. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  13. Testing black hole neutrino-dominated accretion discs for long-duration gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Song, Cui-Ying; Liu, Tong; Gu, Wei-Min; Tian, Jian-Xiang

    2016-05-01

    Long-duration gamma-ray bursts (LGRBs) are generally considered to originate from the massive collapsars. It is believed that the central engine of gamma-ray bursts (GRBs) is a neutrino-dominated accretion flow (NDAF) around a rotating stellar-mass black hole (BH). The neutrino annihilation above the NDAF is a feasible mechanism to power GRB. In this work, we analyse the distributions of the isotropic gamma-ray-radiated energy and jet kinetic energy of 48 LGRBs. According to the NDAF and fireball models, we estimate the mean accreted masses of LGRBs in our sample to investigate whether the NDAFs can power LGRBs with the reasonable BH parameters and conversion efficiency of neutrino annihilation. The results indicate that most of the values of the accreted masses are less than 5 M⊙ for the extreme Kerr BHs and high conversion efficiency. It suggests that the NDAFs may be suitable for most of LGRBs except for some extremely high energy sources.

  14. Dark energy, co-evolution of massive black holes with galaxies, and ASTROD-GW

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2013-02-01

    The detection of low frequency band (100 nHz-100 mHz) and very low frequency band (300 pHz-100 nHz) gravitational waves (GWs) is important for exploration of the equation of state of dark energy and the co-evolution of massive black holes (MBHs) with galaxies. Most galaxies are believed to have a massive black hole in the galactic core. In the formation of these black holes, merging and accretion are the two main processes. Merging of massive black holes generate GWs which could be detected by space GW detectors and Pulsar Timing Arrays (PTAs) to cosmological distances. LISA (Laser-Interferometric Space Antenna) is most sensitive to the frequency band 1 mHz-100 mHz, ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitational Wave detection) is most sensitive to the frequency band 100 nHz-1 mHz and PTAs are most sensitive to the frequency band 300 pHz-100 nHz. In this paper, we discuss the sensitivities and outlooks of detection of GWs from binary massive black holes in these frequency bands with an emphasis on ASTROD-GW. The GWs generated by the inspirals, merging and subsequent ringdowns of binary black holes are standard sirens to the cosmological distance. Using GW observations, we discuss the methods for determining the equation of state of dark energy and for testing the co-evolution models of massive black holes. ASTROD-GW is an optimization of ASTROD to focus on the goal of detection of GWs. The mission orbits of the 3 spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecraft range interferometrically with one another with arm length about 260 million kilometers. With 52 times longer in arm length compared to that of LISA, the strain detection sensitivity is 52 times better toward larger wavelength. The scientific aim is focused for gravitational wave detection at low frequency. The science goals include detection of GWs from

  15. Rapid growth of black holes in massive star-forming galaxies.

    PubMed

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  16. The Emission Line AGN Census: Biases of Line Ratio Selection, and Uniform Black Hole Accretion Regardless of Galaxy Mass

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Zeimann, Gregory; Juneau, Stephanie; Sun, Mouyuan; Luck, Cuyler

    2015-01-01

    Optical emission line ratios offer a powerful tool to reveal accretion onto supermassive black holes, with the ability to find both unobscured and obscured active galactic nuclei (AGNs) in extraordinarily large galaxy samples (like the SDSS). I will demonstrate, however, that classic line ratio selection techniques significantly underestimate the AGN fraction by a factor of >10 in low-mass and star-forming galaxies. Previous conclusions that AGNs require massive green-valley hosts are purely a result of this "star formation dilution" bias. Careful treatment of the biases reveals that AGN accretion is uniform across star-forming galaxies of any stellar mass, similar to the results of bias-corrected X-ray AGN studies. This has dramatic implications for AGN feedback in dwarf galaxies and constraints on the black hole seed population.

  17. Accretion Disks around Black Holes: Dynamical Evolution, Meridional Circulations, and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lee, William H.; Ramirez-Ruiz, Enrico

    2002-10-01

    We study the hydrodynamic evolution of massive accretion disks around black holes, formed when a neutron star is disrupted by a black hole in a binary system. The initial conditions are taken from three-dimensional calculations of coalescing binaries. By assuming azimuthal symmetry we are able to follow the time dependence of the disk structure for 0.2 s in cylindrical coordinates (r,z). We use an ideal gas equation of state and assume that all the dissipated energy is radiated away. The disks evolve because of viscous stresses, modeled with an α law. We study the disk structure and, in particular, the strong meridional circulations that are established and persist throughout our calculations. These consist of strong outflows along the equatorial plane that reverse direction close to the surface of the disk and converge on the accretor. In the context of gamma-ray bursts (GRBs), we estimate the energy released from the system in neutrinos and through magnetic-dominated mechanisms and find it can be as high as Eν~1052 ergs and EBZ~1051 ergs, respectively, during an estimated accretion timescale of 0.1-0.2 s. The νν annihilation is likely to produce bursts from only a short, impulsive energy input Lνν~t-5/2 and so would be unable to account for a large fraction of bursts that show complicated light curves. On the other hand, a gas mass ~0.1-0.25 Msolar survives in the orbiting debris, which enables strong magnetic fields ~1016 G to be anchored in the dense matter long enough to power short duration GRBs. We highlight the effects that the initial disk and black holes masses, viscosity, and binary mass ratio have on the evolution of the disk structure. Finally, we investigate the continuous energy injection that arises as the black hole slowly swallows the rest of the disk and discuss its consequences on the GRB afterglow emission.

  18. The growth of supermassive black holes fed by accretion disks

    NASA Astrophysics Data System (ADS)

    Montesinos Armijo, M. A.; de Freitas Pacheco, J. A.

    2011-02-01

    Context. Supermassive black holes are probably present in the centre of the majority of the galaxies. There is consensus that these exotic objects are formed by the growth of seeds either by mass accretion from a circumnuclear disk and/or by coalescences during merger episodes. Aims: The mass fraction of the disk captured by the central object and the related timescale are still open questions, as is how these quantities depend on parameters, such as the initial mass of the disk or the seed, or on the angular momentum transport mechanism. This paper addresses these particular aspects of the accretion disk evolution and the growth of seeds. Methods: The time-dependent hydrodynamic equations were solved numerically for an axisymmetric disk in which the gravitational potential includes contributions from both the central object and the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. Results: The present simulations indicate that seeds capture about a half of the initial disk mass, a result weakly dependent on model parameters. The timescales required for accreting 50% of the disk mass are in the range 130-540 Myr, depending on the adopted parameters. These timescales can explain the presence of bright quasars at z ~ 6.5. Moreover, at the end of the disk evolution, a "torus-like" geometry develops, offering a natural explanation for the presence of these structures in the central regions of AGNs, representing an additional support to the unified model.

  19. Quiescent accretion disks in black hole X-ray novae

    NASA Technical Reports Server (NTRS)

    Orosz, Jerome A.; Bailyn, Charles D.; Remillard, Ronald A.; Mcclintock, Jeffrey E.; Foltz, Craig B.

    1994-01-01

    We present detailed time-resolved spectroscopy of the Balmer emission lines from two black hole binary systems in quiescence, A0620-00 and Nova Muscae 1991. We find extraordinary similarities between the two systems. There are 30-40 km/s velocity variations of the emission lines over the orbital period, the phases of which are not aligned with the expected phase of the motion of the compact primary. Detailed modeling of both systems is complicated by variable hot spot components, regions of optical thickness, and intermittent excess emission in the blue line wings of the H-alpha lines. Both sources also display low velocities at the outer edge of the accretion disk, implying a large primary Roche lobe and extreme mass ratios. These complications suggest that although simple optically thin, Keplerian alpha-disk models provide a useful parameterization of emission lines from these systems, the straightforward physical models they imply should be treated with great caution.

  20. ON THE LAMPPOST MODEL OF ACCRETING BLACK HOLES

    SciTech Connect

    Niedźwiecki, Andrzej; Szanecki, Michał

    2016-04-10

    We study the lamppost model, in which the X-ray source in accreting black hole (BH) systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp, e.g., neglecting the redshift of the photons emitted by the lamppost that are directly observed. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, if those results were correct, most of the photons produced in the lamppost would be trapped by the BH, and the luminosity generated in the source as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction also present a problem for active galactic nuclei. Then, those models imply the luminosity measured in the local frame is much higher than that produced in the source and measured at infinity, due to the additional effects of time dilation and redshift, and the electron temperature is significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the e{sup ±} pair equilibrium. On the other hand, the above issues pose relatively minor problems for sources at large distances from the BH, where relxilllp can still be used.

  1. The SEDs of Gapped Accretion Disks surrounding Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Gultekin, Kayhan; Miller, J. M.

    2014-01-01

    We calculate the observability of a black hole (BH) accretion disk with a gap or a hole created by a secondary BH embedded in the disk. We find that for an interesting range of parameters of BH masses 10^6-10^9 M⊙), orbital separation 1 AU to ~0.1 pc), and gap width (10-190 disk scale heights), the missing thermal emission from a gap manifests itself in an observable decrement in the spectral energy distribution (SED). The change in slope in the broken power law is strongly dependent on the width of the gap in the accretion disk, which in turn is uniquely determined by the mass ratio of the BHs (under our assumptions), such that it scales roughly as q^(5/12). Thus, one can use spectral observations of the continuum of bright AGNs to infer not only the presence of a closely separated BH binary, but also the mass ratio. When the BH merger opens an entire hole (or cavity) in the inner disk, the broadband SED of the AGNs or quasar may serve as a diagnostic. We note future directions for this research.

  2. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    SciTech Connect

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef; Krolik, Julian H.; Yunes, Nicolas

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  3. The stellar accretion origin of stellar population gradients in massive galaxies at large radii

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.; Forbes, Duncan A.; Duc, Pierre-Alain; Davé, Romeel; Oser, Ludwig; Karabal, Emin

    2015-05-01

    We investigate the evolution of stellar population gradients from z = 2 to 0 in massive galaxies at large radii (r > 2Reff) using 10 cosmological zoom simulations of haloes with 6 × 1012 M⊙ < Mhalo < 2 × 1013 M⊙. The simulations follow metal cooling and enrichment from SNII, SNIa and asymptotic giant branch winds. We explore the differential impact of an empirical model for galactic winds that reproduces the mass-metallicity relation and its evolution with redshift. At larger radii the galaxies, for both models, become more dominated by stars accreted from satellite galaxies in major and minor mergers. In the wind model, fewer stars are accreted, but they are significantly more metal-poor resulting in steep global metallicity (<∇Zstars> = -0.35 dex dex-1) and colour (e.g. <∇g - r> = -0.13 dex dex-1) gradients in agreement with observations. In contrast, colour and metallicity gradients of the models without winds are inconsistent with observations. Age gradients are in general mildly positive at z = 0 (<∇Agestars> = 0.04 dex dex-1) with significant differences between the models at higher redshift. We demonstrate that for the wind model, stellar accretion is steepening existing in situ metallicity gradients by about 0.2 dex by the present day and helps to match observed gradients of massive early-type galaxies at large radii. Colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. The effect of stellar migration of in situ formed stars to large radii is discussed. This study highlights the importance of stellar accretion for stellar population properties of massive galaxies at large radii, which can provide important constraints for formation models.

  4. Magnetic fields during the early stages of massive star formation - I. Accretion and disc evolution

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Klessen, R. S.; Duffin, D.; Pudritz, R. E.

    2011-10-01

    We present simulations of collapsing 100 M⊙ mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian discs can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian discs in the very early stages is suppressed for a mass-to-flux ratio normalized to the critical value μ below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disc. For weak magnetic fields, corresponding to μ≳ 10, large-scale, centrifugally supported discs build up with radii exceeding 100 au. A stability analysis reveals that the discs are supported against gravitationally induced perturbations by the magnetic field and tend to form single stars rather than multiple objects. We find protostellar accretion rates of the order of a few 10-4 M⊙ yr-1 which, considering the large range covered by the initial conditions, vary only by a factor of ˜ 3 between the different simulations. We attribute this fact to two competing effects of magnetic fields. On the one hand, magnetic braking enhances accretion by removing angular momentum from the disc thus lowering the centrifugal support against gravity. On the other hand, the combined effect of magnetic pressure and magnetic tension counteracts gravity by exerting an outward directed force on the gas in the disc thus reducing the accretion on to the protostars.

  5. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star.

    PubMed

    Bloom, Joshua S; Giannios, Dimitrios; Metzger, Brian D; Cenko, S Bradley; Perley, Daniel A; Butler, Nathaniel R; Tanvir, Nial R; Levan, Andrew J; O'Brien, Paul T; Strubbe, Linda E; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lee, William H; Nayakshin, Sergei; Quataert, Eliot; King, Andrew R; Cucchiara, Antonino; Guillochon, James; Bower, Geoffrey C; Fruchter, Andrew S; Morgan, Adam N; van der Horst, Alexander J

    2011-07-08

    Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 10(6) to 10(7) solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.

  6. The tidal disruption of a star by a massive black hole

    NASA Technical Reports Server (NTRS)

    Evans, Charles R.; Kochanek, Christopher S.

    1989-01-01

    Results are reported from a three-dimensional numerical calculation of the tidal disruption of a low-mass main-sequence star on a parabolic orbit around a massive black hole (Mh = 10 to the 6th stellar mass). The postdisruption evolution is followed until hydrodynamic forces becomes negligible and the liberated gas becomes ballistic. Also given is the rate at which bound mass returns to pericenter after orbiting the hole once. The processes that determine the time scale to circularize the debris orbits and allow an accretion torus to form are discussed. This time scale and the time scales for radiative cooling and accretion inflow determine the onset and duration of the subsequent flare in the AGN luminosity.

  7. The formation of a massive protostar through the disk accretion of gas.

    PubMed

    Chini, Rolf; Hoffmeister, Vera; Kimeswenger, Stefan; Nielbock, Markus; Nürnberger, Dieter; Schmidtobreick, Linda; Sterzik, Michael

    2004-05-13

    The formation of low-mass stars like our Sun can be explained by the gravitational collapse of a molecular cloud fragment into a protostellar core and the subsequent accretion of gas and dust from the surrounding interstellar medium. Theoretical considerations suggest that the radiation pressure from the protostar on the in-falling material may prevent the formation of stars above ten solar masses through this mechanism, although some calculations have claimed that stars up to 40 solar masses can in principle be formed via accretion through a disk. Given this uncertainty and the fact that most massive stars are born in dense clusters, it was suggested that high-mass stars are the result of the runaway merging of intermediate-mass stars. Here we report observations that clearly show a massive star being born from a large rotating accretion disk. The protostar has already assembled about 20 solar masses, and the accretion process is still going on. The gas reservoir of the circumstellar disk contains at least 100 solar masses of additional gas, providing sufficient fuel for substantial further growth of the forming star.

  8. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10{sup -3} M{sub sun} yr{sup -1} or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  9. Three-dimensional massive gravity and the bigravity black hole

    NASA Astrophysics Data System (ADS)

    Bañados, Máximo; Theisen, Stefan

    2009-11-01

    We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.

  10. Revealing Massive Black Holes in Dwarf Galaxies with X-rays

    NASA Astrophysics Data System (ADS)

    Reines, A.

    2014-07-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies, power AGN, and are thought to be important agents in the evolution of their hosts. However, the origin of these monster BHs is largely unknown. While direct observations of the first ``seeds" of supermassive BHs in the infant Universe are unobtainable with current telescopes, finding and studying dwarf galaxies hosting massive BHs today can provide valuable constraints on the masses, host galaxies, and formation mechanism of supermassive BH seeds. We have recently completed the first systematic search for AGN in dwarf galaxies using optical spectroscopy, increasing the number of known dwarfs with massive BHs by more than an order of magnitude (Reines et al. 2013). However, this optical search is biased towards BHs radiating at high fractions of their Eddington limit in galaxies with little on-going star formation. Alternative search techniques and diagnostics at other wavelengths are necessary to make further progress. I will discuss our efforts to find and study massive BHs in dwarf galaxies using observations at X-ray wavelengths. These observations are more sensitive to weakly accreting massive BHs and are already beginning to reveal massive BHs hidden at optical wavelengths in star-forming dwarf galaxies.

  11. THE MOST MASSIVE ACTIVE BLACK HOLES AT z ∼ 1.5-3.5 HAVE HIGH SPINS AND RADIATIVE EFFICIENCIES

    SciTech Connect

    Trakhtenbrot, Benny

    2014-07-01

    The radiative efficiencies (η) of 72 luminous unobscured active galactic nuclei at z ∼ 1.5-3.5, powered by some of the most massive black holes (BHs), are constrained. The analysis is based on accretion disk (AD) models, which link the continuum luminosity at rest-frame optical wavelengths and the BH mass (M {sub BH}) to the accretion rate through the AD, M-dot {sub AD}. The data are gathered from several literature samples with detailed measurements of the Hβ emission line complex, observed at near-infrared bands. When coupled with standard estimates of bolometric luminosities (L {sub bol}), the analysis suggests high radiative efficiencies, with most of the sources showing η > 0.2, that is, higher than the commonly assumed value of 0.1, and the expected value for non-spinning BHs (η = 0.057). Even under more conservative assumptions regarding L {sub bol} (i.e., L {sub bol} = 3 × L {sub 5100}), most of the extremely massive BHs in the sample (i.e., M {sub BH} ≳ 3 × 10{sup 9} M {sub ☉}) show radiative efficiencies which correspond to very high BH spins (a {sub *}), with typical values well above a {sub *} ≅ 0.7. These results stand in contrast to the predictions of a ''spin-down'' scenario, in which a series of randomly oriented accretion episodes leads to a {sub *} ∼ 0. Instead, the analysis presented here strongly supports a ''spin-up'' scenario, which is driven by either prolonged accretion or a series of anisotropically oriented accretion episodes. Considering the fact that these extreme BHs require long-duration or continuous accretion to account for their high masses, it is argued that the most probable scenario for the super-massive black holes under study is that of an almost continuous sequence of randomly yet not isotropically oriented accretion episodes.

  12. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  13. Can gravitational microlensing be used to probe geometry of a massive black-hole?

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.; Jovanović, Predrag

    2007-04-01

    Astronomical Observatory, Belgrade, Yugoslavia (Serbia and Montenegro) Here we discuss the possibility to use gravitational microlensing in order to probe the geometry around a massive black hole. Taking into account that lensed quasars are emitting X-rays which come from the heart of these objects (around a massive black hole), we investigated the influence of microlensing on the shape of the X-ray continuum/Fe K-alpha line variability due to microlensing by stars from a foreground galaxy [1,2]. We considered an X-ray accretion disk in Schwarzschild and Kerr metrics that is microlensed by a straight-fold caustic and a magnification pattern [2]. We found that the changes in the shape of the X-ray continuum as well as Fe K-alpha line due to microlensing depend on assumed metrics. This shows that microlensing can be used to investigate an unresolved X-ray emitting region geometry around massive black holes. [1] Popović, L.Č., Mediavilla, E.G.; Jovanović, P., Muñoz, J.A. 2003 A& A...398..975P [2] Popović, L. Č., Jovanović, P., Mediavilla, E.; Zakharov, A. F.; Abajas, C.; Muñoz, J. A.; Chartas, G. 2005, ApJ (to be published in February 2006; astro-ph /0510271).

  14. CLUMPY ACCRETION ONTO BLACK HOLES. I. CLUMPY-ADVECTION-DOMINATED ACCRETION FLOW STRUCTURE AND RADIATION

    SciTech Connect

    Wang Jianmin; Cheng Cheng; Li Yanrong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  15. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ˜600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10-5 M ⊙ yr-1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  16. Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Bing; Li, Ye; Ma, Ren-Yi; Xue, Li

    2016-06-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/antineutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 1050- 1051 erg s-1 peaking at ˜10 MeV , making NDAFs potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed gamma-ray burst (GRB) event rate in the local universe and requiring that at least three neutrinos are detected to claim a detection, we estimate a detection rate up to ˜(0.10 - 0.25 ) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be ˜(1 - 3 ) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the Universe.

  17. Hairy black holes in scalar extended massive gravity

    NASA Astrophysics Data System (ADS)

    Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong

    2015-12-01

    We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.

  18. On stars, galaxies and black holes in massive bigravity

    SciTech Connect

    Enander, Jonas; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2015-11-01

    In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes and stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.

  19. COLLAPSE OF MOLECULAR CLOUD CORES WITH RADIATION TRANSFER: FORMATION OF MASSIVE STARS BY ACCRETION

    SciTech Connect

    Sigalotti, Leonardo Di G.; Daza-Montero, Judith; De Felice, Fernando

    2009-12-20

    Most early radiative transfer calculations of protostellar collapse have suggested an upper limit of approx40 M{sub sun} for the final stellar mass before radiation pressure can exceed the star's gravitational pull and halt the accretion. Here we perform further collapse calculations, using frequency-dependent radiation transfer coupled to a frequency-dependent dust model that includes amorphous carbon particles, silicates, and ice-coated silicates. The models start from pressure-bounded, logatropic spheres of mass between 5 M{sub sun} and 150 M{sub sun} with an initial nonsingular density profile. We find that in a logatrope the infall is never reversed by the radiative forces on the dust and that stars with masses approx>100 M{sub sun} may form by continued accretion. Compared to previous models that start the collapse with a rho propor to r{sup -2} density configuration, our calculations result in higher accretion times and lower average accretion rates with peak values of approx5.8 x 10{sup -5} M{sub sun} yr{sup -1}. The radii and bolometric luminosities of the produced massive stars (approx>90 M{sub sun}) are in good agreement with the figures reported for detected stars with initial masses in excess of 100 M{sub sun}. The spectral energy distribution from the stellar photosphere reproduces the observed fluxes for hot molecular cores with peaks of emission from mid- to near-infrared.

  20. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  1. Dark matter and dark energy accretion on to intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Pepe, C.; Pellizza, L. J.; Romero, G. E.

    2012-03-01

    In this work we investigate the accretion of cosmological fluids on to an intermediate-mass black hole at the centre of a globular cluster, focusing on the influence of the parent stellar system on the accretion flow. We show that the accretion of cosmic background radiation and the so-called dark energy on to an intermediate-mass black hole is negligible. On the other hand, if cold dark matter has a non-vanishing pressure, the accretion of dark matter is large enough to increase the black hole mass well beyond the present observed upper limits. We conclude that either intermediate-mass black holes do not exist, or dark matter does not exist, or it is not strictly collisionless. In the latter case, we set a lower limit for the parameter of the cold dark matter equation of state.

  2. A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709

    SciTech Connect

    Reines, Amy E.; Condon, James J.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M {sub BH} ∼ 10{sup 5-7} M {sub ☉}). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M {sub *} ∼ 2.5 × 10{sup 9} M {sub ☉} and M {sub *} ∼ 1.1 × 10{sup 9} M {sub ☉} for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ∼10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  3. Black hole accretion versus star formation rate: theory confronts observations

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-09-01

    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction (`stochastic' phase), during the `merger' proper, lasting ˜0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bivariate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star-forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bivariate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.

  4. Accretion and Feedback from Supermassive Black Holes in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Bogdanovic, Tamara; Park, KwangHo

    2017-01-01

    A significant fraction of galaxy clusters, namely the cool-core clusters, exhibit a dip in their central temperature profiles, with radiative cooling times much shorter than the Hubble time. Unchecked, radiative cooling of this magnitude is expected to cause the accumulation of cold gas at the cluster center that leads to star formation rates 100-1000 times higher than those inferred by observations. This discrepancy suggests the existence of active heating mechanisms that counteract the overcooling in cluster centers. The dominant mechanism has now been widely recognized as the mechanical feedback from the radio-loud active galactic nuclei. However, recent observations find substantial amounts of cold gas in a number of cool-core clusters, as well as evidence that some clusters host quasars in their central dominant galaxies, raising concerns about the significance of radiative feedback in such systems. Motivated by these findings we use 3D radiation hydrodynamic simulations to explore the joint role of the radio- and quasar-mode feedback in the accretion and feedback cycle of supermassive black holes in cool-core clusters.

  5. X-RAY POLARIZATION FROM ACCRETING BLACK HOLES: CORONAL EMISSION

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H. E-mail: jhk@pha.jhu.ed

    2010-04-01

    We present new calculations of X-ray polarization from accreting black holes (BHs), using a Monte Carlo ray-tracing code in full general relativity. In our model, an optically thick disk in the BH equatorial plane produces thermal seed photons with polarization oriented parallel to the disk surface. These seed photons are then inverse-Compton scattered through a hot (but thermal) corona, producing a hard X-ray power-law spectrum. We consider three different models for the corona geometry: a wedge 'sandwich' with aspect ratio H/R and vertically integrated optical depth tau{sub 0} constant throughout the disk; an inhomogeneous 'clumpy' corona with a finite number of hot clouds distributed randomly above the disk within a wedge geometry; and a spherical corona of uniform density, centered on the BH and surrounded by a truncated thermal disk with inner radius R{sub edge}. In all cases, we find a characteristic transition from horizontal polarization at low energies to vertical polarization above the thermal peak; the vertical direction is defined as the projection of the BH spin axis on the plane of the sky. We show how the details of the spectropolarization signal can be used to distinguish between these models and infer various properties of the corona and BH. Although the bulk of this paper focuses on stellar-mass BHs, we also consider the effects of coronal scattering on the X-ray polarization signal from supermassive BHs in active galactic nuclei.

  6. Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X

    NASA Astrophysics Data System (ADS)

    Corbel, Stéphane

    2009-05-01

    In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.

  7. Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X

    SciTech Connect

    Corbel, Stephane

    2009-05-11

    In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.

  8. Are BL Lac-type objects nearby black holes. [gas accretion model

    NASA Technical Reports Server (NTRS)

    Shapiro, S. L.; Elliot, J. L.

    1974-01-01

    It is pointed out that isolated black holes accreting interstellar gas can account for the characteristic properties of the Lacertids. Emission spectra for various interstellar gas densities and black hole masses are compared with the data plotted by Strittmatter et al. (1972) for the BL Lac-type objects. Rough estimates indicate that there may indeed be a finite number of stellar-mass black holes close to the earth as required by the theory. If it is determined that the BL Lac-type objects lie outside of the galactic disk a black hole accretion model may still apply if certain conditions are satisfied.

  9. Efficiently Simulating the Evolution of Massive Black Holes, and Implications for NANOGrav and LISA

    NASA Astrophysics Data System (ADS)

    McWilliams, Sean

    2017-01-01

    The coalescence of massive black-hole binaries is the principle target source for existing pulsar timing arrays (PTAs) like NANOGrav, and future spaced-based observatories like LISA. For the very massive sources that occur in the PTA band, the massive elliptical host galaxies are thought to evolve primarily through mergers, whereas at the lower masses that will be observed by LISA, other factors such as star formation and accretion must be accounted for. We discuss a novel approach to simulate this evolution that avoids expensive numerical simulations by calibrating to galaxy observations, but which ensures a self-consistent merger model by requiring that the sum of all effects on galaxy and black hole growth actually yield the galaxy evolution that we observe. By optimizing this new approach, we are able to simulate many realizations of the Universe, including a variety of evolutionary scenarios, and what impact they have on the signal observable by PTAs. We will also discuss the extension of this approach to predicting LISA event rates, and the challenges that must be overcome if we are to reliably simulate this lower mass population.

  10. A SYSTEMATIC SEARCH FOR MASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    SciTech Connect

    Tsalmantza, P.; Decarli, R.; Hogg, David W.; Dotti, M. E-mail: decarli@mpia.de

    2011-09-01

    We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey (SDSS) spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated with the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest frame of the galaxy. For a sample of 54,586 quasars and 3929 galaxies at redshifts 0.1 < z < 1.5, we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra and discuss possible interpretations.

  11. Super massive black hole in galactic nuclei with tidal disruption of stars

    SciTech Connect

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-10

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  12. The formation and evolution of massive black holes.

    PubMed

    Volonteri, M

    2012-08-03

    The past 10 years have witnessed a change of perspective in the way astrophysicists think about massive black holes (MBHs), which are now considered to have a major role in the evolution of galaxies. This appreciation was driven by the realization that black holes of millions of solar masses and above reside in the center of most galaxies, including the Milky Way. MBHs also powered active galactic nuclei known to exist just a few hundred million years after the Big Bang. Here, I summarize the current ideas on the evolution of MBHs through cosmic history, from their formation about 13 billion years ago to their growth within their host galaxies.

  13. An unusually massive stellar black hole in the Galaxy.

    PubMed

    Greiner, J; Cuby, J G; McCaughrean, M J

    2001-11-29

    The X-ray source known as GRS1915+105 belongs to a group dubbed 'microquasars'. These objects are binary systems which sporadically eject matter at speeds that appear superluminal, as is the case for some quasars. GRS1915+105 is also one of only two known binary sources thought to contain a maximally spinning black hole. Determining the basic parameters of GRS195+105, such as the masses of the components, will help us to understand jet formation in this system, as well as providing links to other objects which exhibit jets. Using X-ray data, indirect methods have previously been used to infer a variety of masses for the accreting compact object in the range 10-30 solar masses (M middle dot in circle). Here we report a direct measurement of the orbital period and mass function of GRS1915+105, which allow us to deduce a mass of 14 +/- 4 M middle dot in circle for the black hole. Black holes with masses >5-7 M middle dot in circle challenge the conventional picture of black-hole formation in binary systems. Based on the mass estimate, we interpret the distinct X-ray variability of GRS1915+105 as arising from instabilities in an accretion disk that is dominated by radiation pressure, and radiating near the Eddington limit (the point where radiation pressure supports matter against gravity). Also, the mass estimate constrains most models which relate observable X-ray properties to the spin of black holes in microquasars.

  14. Black holes with quantum massive spin-2 hair

    SciTech Connect

    Dvali, Gia

    2006-08-15

    We show that black holes can posses a long range quantum-mechanical hair associated with a massive spin-2 field, which can be detected by a stringy generalization of the Aharovon-Bohm effect, in which a string loop lassoes the black hole. The long distance effect persist for arbitrarily high mass of the spin-2 field. An analogous effect is exhibited by a massive antisymmetric two-form field. We make a close parallel between the two and the ordinary Aharonov-Bohm phenomenon, and also show that in the latter case the effect can be experienced even by the electrically-neutral particles, provided some boundary terms are added to the action.

  15. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  16. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    SciTech Connect

    Wang Yan; Li Xiangdong

    2012-01-10

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  17. The Most Massive Black Holes in Small Galaxies

    NASA Astrophysics Data System (ADS)

    van den Bosch, Remco

    2012-10-01

    Massive galaxies represent the extreme of galaxy formation and contain the most massive black holes {BH}, as reflected in the scaling relations of BH masses with galaxy velocity dispersions {M-sigma} and luminosities {M-L}. Our spectroscopic survey of 600 nearby galaxies revealed 17 galaxies with extremely high velocity dispersions {indicating BH masses of 10^10 solar masses} and at the same time shockingly small sizes {<2 kpc} and {bulge} luminosities. For one of these galaxies archival HST imaging allowed us to measure an extremely big BH mass of 23 billion solar masses, and confirm it is hosted by a small disk-dominated galaxy of only 90 billion solar masses in stars. This demonstrates that the BH in this system did not co-evolve with its host galaxy the way others are thought to have. It is imperative to go beyond a single anecdotal example to a real sample of galaxies with small bulges and suspected monster black holes. Here we propose to obtain HST imaging of the other 16 galaxies. The WFC3 imaging is required to resolve their small bulge and put accurate constraints {in combination with our spectroscopy} on their black hole mass. A significant sample of compact galaxies with very high black hole masses would be in stark conflict with the popular co-evolution picture and could form the missing link between local galaxies and the quiescent compact nugget galaxies found at z 2.

  18. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  19. Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-05-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M ⊙. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2-10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M ⊙ simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M ⊙ simulation shows a star with a mass of 5.48 M ⊙ and a disk of mass 3.3 M ⊙, while our 100 M ⊙ simulation forms a 28.8 M ⊙ mass star with a 15.8 M ⊙ disk over the course of 41.6 kyr, and our 200 M ⊙ simulation forms a 43.7 M ⊙ star with an 18 M ⊙ disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  20. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  1. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  2. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  3. Raining on black holes and massive galaxies: the top-down multiphase condensation model

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Temi, P.; Brighenti, F.

    2017-04-01

    The plasma haloes filling massive galaxies, groups and clusters are shaped by active galactic nucleus (AGN) heating and subsonic turbulence (σv ∼ 150 km s-1), as probed by Hitomi. Novel 3D high-resolution simulations show the soft X-ray, keV hot plasma cools rapidly via radiative emission at the high-density interface of the turbulent eddies, stimulating a top-down condensation cascade of warm 104 K filaments. The kpc-scale ionized (optical/ultraviolet) filaments form a skin enveloping the neutral filaments (optical/infrared/21 cm). The peaks of the warm filaments further condense into cold molecular clouds (<50 K; radio) with total mass of several 107 M⊙ and inheriting the turbulent kinematics. In the core, the clouds collide inelastically, mixing angular momentum and leading to Chaotic Cold Accretion (CCA). The black hole accretion rate (BHAR) can be modelled via quasi-spherical viscous accretion, dot{M}_bullet ∝ ν _c, with clump collisional viscosity νc ≡ λc σv and λc ∼ 100 pc. Beyond the core, pressure torques shape the angular momentum transport. In CCA, the BHAR is recurrently boosted up to 2 dex compared with the disc evolution, which arises as turbulence becomes subdominant. With negligible rotation too, compressional heating inhibits the molecular phase. The CCA BHAR distribution is lognormal with pink noise, f-1 power spectrum characteristic of fractal phenomena. Such chaotic fluctuations can explain the rapid luminosity variability of AGN and high-mass X-ray binaries. An improved criterium to trace non-linear condensation is proposed: σv/vcool ≲ 1. The three-phase CCA reproduces key observations of cospatial multiphase gas in massive galaxies, including Chandra X-ray images, SOAR Hα filaments and kinematics, Herschel [C+] emission and ALMA molecular associations. CCA plays important role in AGN feedback and unification, the evolution of BHs, galaxies and clusters.

  4. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  5. The impact of non-thermal electrons on resolved black hole accretion disk images

    NASA Astrophysics Data System (ADS)

    Mao, Shengkai; Dexter, Jason; Quataert, Eliot

    2015-01-01

    Recent developments in radio astronomy (in particular, the Event Horizon Telescope) allow us for the first time to resolve length scales around the Milky Way's Sgr A* comparable to the event horizon radius. These observations are opening up new opportunities to study strong gravity and accretion physics in the vicinity of a supermassive black hole. However, the processes governing black hole accretion are not well understood. In particular, the electron thermodynamics in black hole accretion disks remain mysterious, and current models vary significantly from each other. The impact of these differences between current electron thermodynamics models on results obtained from EHT images is not well understood. Thus, in this work, we explore the effects of non-thermal electrons on black hole images and radio spectra in the context of both semi-analytic and numerical models of accretion flows. Using general relativistic ray-tracing and radiative transfer code, we simulate images of the accretion disk around Sgr A* and compare our simulations to observed radio data. We estimate the range of electron energy distribution functions permissible by the data. In so doing, we also explore the range and variety of black hole images obtained by varying the distribution function.

  6. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  7. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.

    2015-12-01

    Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.

  8. Van der Waals like behavior of topological AdS black holes in massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Mann, R. B.; Panahiyan, S.; Eslam Panah, B.

    2017-01-01

    Motivated by recent developments in black hole thermodynamics, we investigate van der Waals phase transitions of charged black holes in massive gravity. We find that massive gravity theories can exhibit strikingly different thermodynamic behavior compared to that of Einstein gravity, and that the mass of the graviton can generate a range of new phase transitions for topological black holes that are otherwise forbidden.

  9. The evolution of high-redshift massive black holes

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Habouzit, Melanie; Pacucci, Fabio; Tremmel, Michael

    Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more ``normal'' MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.

  10. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  11. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  12. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  13. Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case.

    NASA Astrophysics Data System (ADS)

    Proga, D.; Begelman, M. C.

    2003-03-01

    We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means of numerical 2D, axisymmetric, MHD simulations with and without resistive heating. Our main result is that the properties of the accretion flow depend mostly on an equatorial accretion torus. Initially, accretion occurs only through the polar funnel, as in the hydrodynamic inviscid case, where material has zero or very low angular momentum. The material that has too much angular momentum to be accreted directly forms a thick torus near the equator. However, in the later phase of the evolution, the transport of angular momentum due to the magnetorotational instability (MRI) facilitates accretion through the torus, too. The torus thickens towards the poles and develops a corona or an outflow or both. Consequently, the mass accretion through the funnel is stopped. The accretion of rotating gas through the torus is significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate). Our results do not change if we switch on or off resistive heating. Overall our simulations are very similar those presented by Stone, Pringle, Hawley and Balbus despite different initial and outer boundary conditions. Thus, we confirm that the MRI is very robust and controls the nature of radiatively inefficient accretion flows. DP acknowledges support from NASA under LTSA grant NAG5-11736 and support provided by NASA through grant AR-09532 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. MB acknowledges support from NSF grant AST-9876887.

  14. Accretion Problem in a Kerr Black Hole Geometry Viewed as Flows in Converging-Diverging Ducts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, K.; Majumdar, M. M.; Chakrabarti, Sandip K.

    Accretion flow on a horizon is supersonic, no matter what the flow angular momentum or the spin of the black hole is. This means that a black hole accretion can always be viewed as a flow in a flat space-time through one or more convergent-divergent ducts. In this paper, we study how the area of cross-sections must vary in order that the flow has the same properties in both systems. We show that the accretion flow experiencing a shock is equivalent to having two ducts connected back-to-back, both with a neck where the flow becomes supersonic. We study the pressure and Mach number variations for corotating, contrarotating flows and flows around a black hole with evolving spin.

  15. From Accretion to Explosion and Beyond: Transforming White Dwarfs to Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Harris, R.

    2010-03-01

    White dwarfs accreting at high rates can grow in mass, exhibiting episodes of supersoft-source activity. Some can achieve the Chandrasekhar mass and will either become Type Ia supernovae or else will collapse, becoming neutron stars. We consider white dwarfs with giant donors, computing the rates of both supernovae and collapses. For the collapses, we follow each system to the end of accretion. Some of these systems will appear as ultraluminous x-ray sources and some will go on to become low-mass black holes. This scenario should be fairly common in young stellar populations and links a wide range of astrophysical phenomena. Indeed, it is a veritable cornucopia for the high-energy astrophysicist, offering accreting white dwarfs, neutron stars, and black holes, Type Ia supernovae, gamma-ray bursts, supersoft sources, ultraluminous sources, and neutron star and black hole binaries in globular clusters.

  16. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  17. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  18. A simple accretion model of a rotating gas sphere onto a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Mendoza, S.

    2007-04-01

    We construct a simple accretion model of a rotating gas sphere onto a Schwarzschild black hole. We show how to build analytic solutions in terms of Jacobi elliptic functions. This construction represents a general relativistic generalisation of the Newtonian accretion model first proposed by Ulrich (1976). In exactly the same form as it occurs for the Newtonian case, the flow naturally predicts the existence of an equatorial rotating accretion disc about the hole. However, the radius of the disc increases monotonically without limit as the flow reaches its minimum allowed angular momentum for this particular model.

  19. Evidence for HI replenishment in massive galaxies through gas accretion from the cosmic web

    NASA Astrophysics Data System (ADS)

    Kleiner, Dane; Pimbblet, Kevin A.; Heath Jones, D.; Koribalski, Bärbel S.; Serra, Paolo

    2016-12-01

    We examine the HI -to-stellar mass ratio (HI fraction) for galaxies near filament backbones within the nearby Universe (d < 181 Mpc). This work uses the 6 degree Field Galaxy Survey (6dFGS) and the Discrete Persistent Structures Extractor (DisPerSE) to define the filamentary structure of the local cosmic web. HI spectral stacking of HI Parkes All Sky Survey (HIPASS) observations yield the HI fraction for filament galaxies and a field control sample. The HI fraction is measured for different stellar masses and 5th nearest neighbour projected densities (Σ5) to disentangle what influences cold gas in galaxies. For galaxies with stellar masses log(M⋆) ≤ 11 M⊙ in projected densities 0 ≤ Σ5 < 3 galaxies Mpc-2, all HI fractions of galaxies near filaments are statistically indistinguishable from the control sample. Galaxies with stellar masses log(M⋆) ≥ 11 M⊙ have a systematically higher HI fraction near filaments than the control sample. The greatest difference is 0.75 dex, which is 5.5σ difference at mean projected densities of 1.45 galaxies Mpc-2. We suggest that this is evidence for massive galaxies accreting cold gas from the intra-filament medium which can replenish some HI gas. This supports cold mode accretion where filament galaxies with a large gravitational potential can draw gas from the large scale structure.

  20. NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE

    SciTech Connect

    Fragile, P. Chris; Gillespie, Anna; Monahan, Timothy; Rodriguez, Marco; Anninos, Peter

    2012-08-01

    Modeling the radiation generated by accreting matter is an important step toward realistic simulations of black hole accretion disks, especially at high accretion rates. To this end, we have recently added radiation transport to the existing general relativistic magnetohydrodynamic code, Cosmos++. However, before attempting to model radiative accretion disks, we have tested the new code using a series of shock tube and Bondi (spherical inflow) problems. The four radiative shock tube tests, first presented by Farris et al., have known analytic solutions, allowing us to calculate errors and convergence rates for our code. The Bondi problem only has an analytic solution when radiative processes are ignored, but it is pertinent because it is closer to the physics we ultimately want to study. In our simulations, we include Thomson scattering and thermal bremsstrahlung in the opacity, focusing exclusively on the super-Eddington regime. Unlike accretion onto bodies with solid surfaces, super-Eddington accretion onto black holes does not produce super-Eddington luminosity. In our examples, despite accreting at up to 300 times the Eddington rate, our measured luminosity is always several orders of magnitude below Eddington.

  1. Observing Massive Black Hole Binary Coalescences with LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2005-01-01

    Massive black hole binary coalescences are among the most important astrophysical sources of gravitational waves to be observed by LISA. The ability to observe and characterize such sources with masses approximately equal to 105 M/odot and larger at high redshifts is strongly dependent on the sensitivity of LISA in the low frequency (0.1 mHz and below) regime. We examine LISA's ability to observe these systems at redshifts up to z approximately equal to 10 for various proposed values of the low frequency sensitivity, under current assumptions about the merger rates. The discussion will focus on the astrophysical information that can be gained by these observations.

  2. Astrophysics of Super-Massive Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  3. TRUNCATION OF THE INNER ACCRETION DISK AROUND A BLACK HOLE AT LOW LUMINOSITY

    SciTech Connect

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-12-10

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R {sub in}) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R {sub in} is very close to the black hole at high and moderate luminosities (approx>1% of the Eddington luminosity, L {sub Edd}). Here, we report on X-ray observations of the black hole GX 339 - 4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L {sub Edd} and show that R {sub in} increases by a factor of >27 over the value found when GX 339 - 4 was bright. The exact value of R {sub in} depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R {sub in} > 35R{sub g} at i = 0{sup 0} and R {sub in} > 175R{sub g} at i = 30{sup 0}. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  4. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  5. Charged black hole solutions in Gauss-Bonnet-massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam

    2016-01-01

    Motivated by high interest in the close relation between string theory and black hole solutions, in this paper, we take into account the Einstein-Gauss-Bonnet Lagrangian in the context of massive gravity. We examine the possibility of black hole in this regard, and discuss the types of horizons. Next, we calculate conserved and thermodynamic quantities and check the validity of the first law of thermodynamics. In addition, we investigate the stability of these black holes in context of canonical ensemble. We show that number, type and place of phase transition points may be significantly affected by different parameters. Next, by considering cosmological constant as thermodynamical pressure, we will extend phase space and calculate critical values. Then, we construct thermodynamical spacetime by considering mass as thermodynamical potential. We study geometrical thermodynamics of these black holes in context of heat capacity and extended phase space. We show that studying heat capacity, geometrical thermodynamics and critical behavior in extended phase space lead to consistent results. Finally, we will employ a new method for obtaining critical values and show that the results of this method are consistent with those of other methods.

  6. Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS

    NASA Astrophysics Data System (ADS)

    Mainieri, V.; Bongiorno, A.; Merloni, A.; Aller, M.; Carollo, M.; Iwasawa, K.; Koekemoer, A. M.; Mignoli, M.; Silverman, J. D.; Bolzonella, M.; Brusa, M.; Comastri, A.; Gilli, R.; Halliday, C.; Ilbert, O.; Lusso, E.; Salvato, M.; Vignali, C.; Zamorani, G.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Renzini, A.; Scodeggio, M.; Balestra, I.; Bardelli, S.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Nair, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Pozzetti, L.; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Aussel, H.; Capak, P.; Cappelluti, N.; Elvis, M.; Fiore, F.; Hasinger, G.; Impey, C.; Le Floc'h, E.; Scoville, N.; Taniguchi, Y.; Trump, J.

    2011-11-01

    Aims: We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( ⟨ Lbol ⟩ = 8 × 1045 erg s-1) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. Methods: To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We evaluate the effect on galaxy properties estimates of being unable to remove the nuclear emission from the SED. The superb multi-wavelength coverage of the COSMOS field allows us to obtain reliable estimates of the total stellar masses and star formation rates (SFRs) of the hosts. We supplement this information with a morphological analysis of the ACS/HST images, optical spectroscopy, and an X-ray spectral analysis. Results: We confirm that obscured quasars mainly reside in massive galaxies (M ⋆ > 1010M⊙) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color - magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between SFR and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~ 1, ≈62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ~ 2, and 100% at z ~ 3. We also find that the evolution from z ~ 1 to z ~ 3 of the specific SFR of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge

  7. LOW-MASS AGNs AND THEIR RELATION TO THE FUNDAMENTAL PLANE OF BLACK HOLE ACCRETION

    SciTech Connect

    Gültekin, Kayhan; King, Ashley L.; Miller, Jon M.; Cackett, Edward M.; Pinkney, Jason

    2014-06-20

    We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion—the plane that relates X-ray emission, radio emission, and mass of an accreting black hole—to test whether or not the relation is universal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than 10{sup 6.3} M {sub ☉}, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than ∼10{sup 7} M {sub ☉}, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates.

  8. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  9. STUDIES OF THERMALLY UNSTABLE ACCRETION DISKS AROUND BLACK HOLES WITH ADAPTIVE PSEUDOSPECTRAL DOMAIN DECOMPOSITION METHOD. II. LIMIT-CYCLE BEHAVIOR IN ACCRETION DISKS AROUND KERR BLACK HOLES

    SciTech Connect

    Xue Li; Lu Jufu; Sadowski, Aleksander; Abramowicz, Marek A. E-mail: lujf@xmu.edu.cn

    2011-07-01

    For the first time ever, we derive equations governing the time evolution of fully relativistic slim accretion disks in the Kerr metric and numerically construct their detailed non-stationary models. We discuss applications of these general results to a possible limit-cycle behavior of thermally unstable disks. Our equations and numerical method are applicable in a wide class of possible viscosity prescriptions, but in this paper we use a diffusive form of the 'standard alpha prescription' that assumes that the viscous torque is proportional to the total pressure. In this particular case, we find that the parameters that dominate the limit-cycle properties are the mass-supply rate and the value of the alpha-viscosity parameter. Although the duration of the cycle (or the outburst) does not exhibit any clear dependence on the black hole spin, the maximal outburst luminosity (in the Eddington units) is positively correlated with the spin value. We suggest a simple method for a rough estimate of the black hole spin based on the maximal luminosity and the ratio of outburst to cycle durations. We also discuss a temperature-luminosity relation for the Kerr black hole accretion disk limit cycle. Based on these results, we discuss the limit-cycle behavior observed in microquasar GRS 1915+105. We also extend this study to several non-standard viscosity prescriptions, including a 'delayed heating' prescription recently addressed by the MHD simulations of accretion disks.

  10. The Impact of Feedback During Massive Star Formation by Core Accretion

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei E. I.; Tan, Jonathan C.; Zhang, Yichen

    2017-01-01

    We study feedback during massive star formation using semi-analytic methods, considering the effects of disk winds, radiation pressure, photoevaporation, and stellar winds, while following protostellar evolution in collapsing massive gas cores. We find that disk winds are the dominant feedback mechanism setting star formation efficiencies (SFEs) from initial cores of ∼0.3–0.5. However, radiation pressure is also significant to widen the outflow cavity causing reductions of SFE compared to the disk-wind only case, especially for > 100 {M}ȯ star formation at clump mass surface densities {{{Σ }}}{cl}≲ 0.3 {{g}} {{cm}}-2. Photoevaporation is of relatively minor importance due to dust attenuation of ionizing photons. Stellar winds have even smaller effects during the accretion stage. For core masses {M}c≃ 10–1000 {M}ȯ and {{{Σ }}}{cl}≃ 0.1–3 {{g}} {{cm}}-2, we find the overall SFE to be {\\bar{\\varepsilon }}* f=0.31{({R}c/0.1{pc})}-0.39, potentially a useful sub-grid star formation model in simulations that can resolve pre-stellar core radii, {R}c=0.057{({M}c/60{M}ȯ )}1/2{({{{Σ }}}{cl}/{{g}}{{cm}}-2)}-1/2 {pc}. The decline of SFE with Mc is gradual with no evidence for a maximum stellar-mass set by feedback processes up to stellar masses of {m}* ∼ 300 {M}ȯ . We thus conclude that the observed truncation of the high-mass end of the IMF is shaped mostly by the pre-stellar core mass function or internal stellar processes. To form massive stars with the observed maximum masses of ∼150–300{M}ȯ , initial core masses need to be ≳ 500–1000 {M}ȯ . We also apply our feedback model to zero-metallicity primordial star formation, showing that, in the absence of dust, photoevaporation staunches accretion at ∼ 50 {M}ȯ . Our model implies radiative feedback is most significant at metallicities ∼ {10}-2{Z}ȯ , since both radiation pressure and photoevaporation are effective in this regime.

  11. Massive vector bosons tunnelled from the (2+1)-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Gecim, Ganim; Sucu, Yusuf

    2017-03-01

    In this study, we investigate the Hawking radiation from three-dimensional New-type black hole and Warped-AdS3 black hole by using the quantum tunnelling properties of a massive spin-1 particle, i.e. a massive vector boson. Using the Hamilton-Jacobi method, we calculate the tunnelling probabilities and the Hawking temperature of the escaping massive spin-1 vector particle from the black holes. From these results, we see that the massive vector boson tunnels the same as a scalar and a Dirac particle from these black holes.

  12. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  13. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  14. The Spatial Clustering of ROSAT All-Sky Survey Active Galactic Nuclei. IV. More Massive Black Holes Reside in More Massive Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Husemann, Bernd; Fanidakis, Nikos; Coil, Alison L.; Aceves, Hector

    2015-12-01

    This is the fourth paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey and Sloan Digital Sky Survey (SDSS). In this paper we investigate the cause of the X-ray luminosity dependence of the clustering of broad-line, luminous AGNs at 0.16\\lt z\\lt 0.36. We fit the Hα line profile in the SDSS spectra for all X-ray and optically selected broad-line AGNs, determine the mass of the supermassive black hole (SMBH), {M}{BH}, and infer the accretion rate relative to Eddington (L/{L}{EDD}). Since {M}{BH} and L/{L}{EDD} are correlated, we create AGN subsamples in one parameter while maintaining the same distribution in the other parameter. In both the X-ray and optically selected AGN samples, we detect a weak clustering dependence with {M}{BH} and no statistically significant dependence on L/{L}{EDD}. We find a difference of up to 2.7σ when comparing the objects that belong to the 30% least and 30% most massive {M}{BH} subsamples, in that luminous broad-line AGNs with more massive black holes reside in more massive parent dark matter halos at these redshifts. These results provide evidence that higher accretion rates in AGNs do not necessarily require dense galaxy environments, in which more galaxy mergers and interactions are expected to channel large amounts of gas onto the SMBH. We also present semianalytic models that predict a positive {M}{DMH} dependence on {M}{BH}, which is most prominent at {M}{BH}˜ {10}8-9 {M}⊙ .

  15. A massive binary black hole in 1928 + 738?

    NASA Astrophysics Data System (ADS)

    Roos, Nico; Kaastra, Jelle S.; Hummel, Christian A.

    1993-05-01

    We apply the binary black hole model to explain the wiggles in the milliarcsec radio jet of the superluminal quasar 1928 + 738 (4C 73.18) observed with VLBI at 1.3 cm wavelength by Hummel et al. (1992). The period and amplitude of the wiggles can be explained as due to the orbital motion of a binary black hole with mass of order l0 exp 8 solar masses, mass ratio larger than 0.1, and orbital radius about 10 exp 16 cm. The jet's inclination to the line of sight should be small confirming the standard interpretation of superluminal motion and one-sidedness as due to relativistic motion in a direction close to the line of sight. The small orbital radius suggests that the binary has been losing a significant amount of orbital energy during the last 10 exp 7 yr, possibly by interaction with the matter which is flowing through the active galactic nucleus. The arcsec-scale radio structure provides additional support for a link between activity and binary evolution. If our interpretation of the mass wiggle in this quasar is correct, then many other quasars may contain massive binary black holes as well.

  16. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.

  17. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  18. Accretion Onto Supermassive Black Holes: Observational Signals from 3-Dimensional Disk Models

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Miller, Warner A.

    2003-01-01

    Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.

  19. Magnetohydrodynamic Accretion Around Supermassive Black Holes : Short-Length Disc for Stronger Field

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    Thin accretion flow, i.e., geometrically thin accretion disc was first studied by Shakura and Sunyaev. Relativistic fluid flows around a black hole produce enormous energy on the cost of permanent lost of the gravitational potential due to the fall into a infinitely sloped gravitational well or to be specific, into a space time singularity. This energy is actually observed in different wavelengths and we specify the source as Active Galactic Nuclei, quasars, Gamma-ray burst sources etc. Eventually, two popular kind of accretion disc models are there. The first one is advection dominated, known as geometrically thin optically thick accretion disc. The other is geometrically thick but optically thin as it does not capture photons inside! The jets formed by accretion phenomena are still not well explained. Size of the accretion disc, power of the jets can be powered by magnetic fields generated by the ionized particles of the accretion flow. We show the exact dependency of the disc size upon the magnetic field present along with the quantity of the central gravitating mass.

  20. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  1. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  2. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  3. Fallback and Black Hole Production in Massive Stars

    SciTech Connect

    Zhang, Wei-Qun; Woosley, S.E.; Heger, A.; /UC, Santa Cruz /Los Alamos

    2007-01-08

    The compact remnants of core collapse supernovae--neutron stars and black holes--have properties that reflect both the structure of their stellar progenitors and the physics of the explosion. In particular, the masses of these remnants are sensitive to the density structure of the presupernova star and to the explosion energy. To a considerable extent, the final mass is determined by the ''fallback'', during the explosion, of matter that initially moves outwards, yet ultimately fails to escape. We consider here the simulated explosion of a large number of massive stars (10 to 100 M{sub {circle_dot}}) of Population I (solar metallicity) and III (zero metallicity), and find systematic differences in the remnant mass distributions. As pointed out by Chevalier (1989), supernovae in more compact progenitor stars have stronger reverse shocks and experience more fallback. For Population III stars above about 25 M{sub {circle_dot}} and explosion energies less than 1.5 x 10{sup 51} erg, black holes are a common outcome, with masses that increase monotonically with increasing main sequence mass up to a maximum hole mass of about 35 M{sub {circle_dot}}. If such stars produce primary nitrogen, however, their black holes are systematically smaller. For modern supernovae with nearly solar metallicity, black hole production is much less frequent and the typical masses, which depend sensitively on explosion energy, are smaller. We explore the neutron star initial mass function for both populations and, for reasonable assumptions about the initial mass cut of the explosion, find good agreement with the average of observed masses of neutron stars in binaries. We also find evidence for a bimodal distribution of neutron star masses with a spike around 1.2 M{sub {circle_dot}} (gravitational mass) and a broader distribution peaked around 1.4 M{sub {circle_dot}}.

  4. Do the Most Massive Black Holes at z = 2 Grow via Major Mergers?

    NASA Astrophysics Data System (ADS)

    Mechtley, M.; Jahnke, K.; Windhorst, R. A.; Andrae, R.; Cisternas, M.; Cohen, S. H.; Hewlett, T.; Koekemoer, A. M.; Schramm, M.; Schulze, A.; Silverman, J. D.; Villforth, C.; van der Wel, A.; Wisotzki, L.

    2016-10-01

    The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei (AGN) are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here, we report on a Hubble Space Telescope study to test this hypothesis for z = 2 quasars with high supermassive black hole masses ({M}{BH}={10}9{--}{10}10 {M}⊙ ), which dominate cosmic black hole growth at this redshift. We compare Wide Field Camera 3 F160W (rest-frame V-band) imaging of 19 point source-subtracted quasar hosts to a matched sample of 84 inactive galaxies, testing whether the quasar hosts have greater evidence for strong gravitational interactions. Using an expert ranking procedure, we find that the quasar hosts are uniformly distributed within the merger sequence of inactive galaxies, with no preference for quasars in high-distortion hosts. Using a merger/non-merger cutoff approach, we recover distortion fractions of {f}{{m},{qso}}=0.39+/- 0.11 for quasar hosts and {f}{{m},{gal}}=0.30+/- 0.05 for inactive galaxies (distribution modes, 68% confidence intervals), with both measurements subjected to the same observational conditions and limitations. The slight enhancement in distorted fraction for quasar hosts over inactive galaxies is not significant, with a probability that the quasar fraction is higher P({f}{{m},{qso}}\\gt {f}{{m},{gal}})=0.78 (0.78σ ), in line with results for lower mass and lower z AGN. We find no evidence that major mergers are the primary triggering mechanism for the massive quasars that dominate accretion at the peak of cosmic quasar activity.

  5. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  6. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    PubMed

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  7. Formation of Massive Black Holes in Galactic Nuclei: Runaway Tidal Encounters

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas C.; Küpper, Andreas H. W.; Ostriker, Jeremiah P.

    2017-01-01

    Nuclear star clusters (NSCs) and supermassive black holes (SMBHs) both inhabit galactic nuclei, coexisting in a range of bulge masses, but excluding each other in the largest or smallest galaxies. We propose that the transformation of NSCs into SMBHs occurs via runaway tidal captures, once NSCs exceed a certain critical central density and velocity dispersion. The bottleneck in this process is growing the first e-fold in black hole mass. The growth of a stellar mass black hole past this bottleneck occurs as tidally captured stars are consumed in repeated episodes of mass transfer at pericenter. Tidal captures may deactivate as a growth channel once the black hole mass ≳ 102 - 3M⊙, but tidal disruption events will continue and can grow the seed SMBH to larger sizes. The runaway slows (becomes sub-exponential) once the seed SMBH consumes the core of its host NSC. While most of the cosmic mass density in SMBHs is ultimately produced by episodic gaseous accretion in very massive galaxies, the smallest SMBHs have probably grown from strong tidal encounters with NSC stars. SMBH seeds that grow for a time t entirely through this channel will follow simple power law relations with the velocity dispersion, σ, of their host galaxy. In the simplest regime it is M_bullet ˜ σ ^{3/2}√{M_star t / G} ˜ 106M_⊙ (σ / 50 km s^{-1})^{3/2}(t/10^{10} yr)^{1/2}, but the exponents and prefactor can differ slightly depending on the details of loss cone refilling. Current tidal disruption event rates predicted from this mechanism are consistent with observations.

  8. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    DOE PAGES

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; ...

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals thatmore » baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less

  9. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    SciTech Connect

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.

  10. Tidal capture of stars by a massive black hole

    NASA Technical Reports Server (NTRS)

    Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.

    1992-01-01

    The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.

  11. CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2013-07-15

    The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius, respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.

  12. Accretion and ejection in black-hole X-ray transients

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Belloni, T. M.

    2015-02-01

    Context. A rich phenomenology has been accumulated over the years regarding accretion and ejection in black-hole X-ray transients (BHTs) and it needs an interpretation. Aims: Here we summarize the current observational picture of the outbursts of BHTs, based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson cosmic battery (PRCB), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form, whose characteristic time scale is much longer than the dynamical or the cooling ones. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state, i.e., at very low accretion rate, and that state transitions take place over long time scales (hours to days). The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Last, but not least, we demonstrate that the previous history of the system is absolutely necessary for the interpretation of the HLD. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. Finally, the counterclockwise traversal of the HLD is explained as follows: all outbursts start from the quiescent state, in which the inner part of the accretion flow is ADAF-like, threaded by a poloidal magnetic field. As the

  13. HUBBLE UNCOVERS DUST DISK AROUND A MASSIVE BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling a gigantic hubcap in space, a 3,700 light-year-diameter dust disk encircles a 300 million solar-mass black hole in the center of the elliptical galaxy NGC 7052. The disk, possibly a remnant of an ancient galaxy collision, will be swallowed up by the black hole in several billion years. Because the front end of the disk eclipses more stars than the back, it appears darker. Also, because dust absorbs blue light more effectively than red light, the disk is redder than the rest of the galaxy (this same phenomenon causes the Sun to appear red when it sets in a smoggy afternoon). This NASA Hubble Space Telescope image was taken with the Wide Field and Planetary Camera 2, in visible light. Details as small as 50 light-years across can be seen. Hubble's Faint Object Spectrograph (replaced by the STIS spectrograph in 1997) was used to observe hydrogen and nitrogen emission lines from gas in the disk. Hubble measurements show that the disk rotates like an enormous carousel, 341,000 miles per hour (155 kilometers per second) at 186 light-years from the center. The rotation velocity provides a direct measure of the gravitational force acting on the gas by the black hole. Though 300 million times the mass of our Sun, the black hole is still only 0.05 per cent of the total mass of the NGC 7052 galaxy. Despite its size, the disk is 100 times less massive than the black hole. Still, it contains enough raw material to make three million sun-like stars. The bright spot in the center of the disk is the combined light of stars that have crowded around the black hole due to its strong gravitational pull. This stellar concentration matches theoretical models linking stellar density to a central black hole's mass. NGC 7052 is a strong source of radio emission and has two oppositely directed `jets' emanating from the nucleus. (The jets are streams of energetic electrons moving in a strong magnetic field and unleashing radio energy). Because the jets in NGC 7052 are not

  14. A SWIFT SURVEY OF ACCRETION ONTO STELLAR-MASS BLACK HOLES

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2013-05-20

    We present a systemic analysis of all of the stellar-mass black hole binaries (confirmed and candidate) observed by the Swift observatory up to 2010 June. The broad Swift bandpass enables a trace of disk evolution over an unprecedented range in flux and temperature. The final data sample consists of 476 X-ray spectra containing greater than 100 counts, in the 0.6-10 keV band. This is the largest sample of high-quality CCD spectra of accreting black holes published to date. In addition, strictly simultaneous data at optical/UV wavelengths are available for 255 (54%) of these observations. The data are modeled with a combination of an accretion disk and a hard spectral component. For the hard component we consider both a simple power-law model and a thermal Comptonization model. An accretion disk is detected at greater than the 5{sigma} confidence level in 61% of the observations. Light curves and color-color diagrams are constructed for each system. Hardness-luminosity and disk fraction-luminosity diagrams are constructed and are observed to be consistent with those typically observed by RXTE, noting the sensitivity below 2 keV provided by Swift. The observed spectra have an average luminosity of {approx}1% Eddington, though we are sensitive to accretion disks down to a luminosity of 10{sup -3} L{sub Edd}. Thus, this is also the largest sample of such cool accretion disks studied to date. The accretion disk temperature distribution displays two peaks consistent with the classical hard and soft spectral states, with a smaller number of disks distributed between these. The distribution of inner disk radii is observed to be continuous regardless of which model is used to fit the hard continua. There is no evidence for large-scale truncation of the accretion disk in the hard state (at least for L{sub x} {approx}> 10{sup -3} L{sub Edd}), with all of the accretion disks having radii {approx}< 40 R{sub g} . Plots of the accretion disk inner radius versus hardness ratio

  15. Stellar dynamics around a massive black hole - II. Resonant relaxation

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.

  16. Observing Merging Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J.; McWillimas, S.; Baker, J.; Arnaud, K.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from the inspiral and merger of massive black hole binaries at high redshifts with large signal-to-noise ratios (SNRs). These high-SNR observations will make it possible to extract physical parameters such as hole masses and spins, luminosity distance, and sky position from the observed waveforms. LISA'S effectiveness as a tool for astrophysics will be influenced by the precision with which these parameters can be measured. In addition, the practicality of coordinated observations with other instruments will be affected by the temporal evolution of parameter errors such as sky position. We present estimates of parameter errors for the special case of non-spinning black holes. Our focus is on the contribution of the late inspiral and merger portions of the waveform, a regime which typically dominates the SNR but has not been extensively studied due to the historic lack of a precise description of the waveform. Advances in numerical relativity have recently made such studies possible. Initial results suggest that the portion of the waveform beyond the Schwarzchild inner-most stable circular orbit can reduce parameter uncertainties by up to a factor of two.

  17. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  18. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.

  19. GENERAL RELATIVISTIC SIMULATIONS OF ACCRETION INDUCED COLLAPSE OF NEUTRON STARS TO BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba

    2012-10-10

    Neutron stars (NSs) in the astrophysical universe are often surrounded by accretion disks. Accretion of matter onto an NS may increase its mass above the maximum value allowed by its equation of state, inducing its collapse to a black hole (BH). Here we study this process for the first time, in three-dimensions, and in full general relativity. By considering three initial NS configurations, each with and without a surrounding disk (of mass {approx}7% M{sub NS}), we investigate the effect of the accretion disk on the dynamics of the collapse and its imprint on both the gravitational wave (GW) and electromagnetic (EM) signals that can be emitted by these sources. We show in particular that, even if the GW signal is similar for the accretion induced collapse (AIC) and the collapse of an NS in vacuum (and detectable only for Galactic sources), the EM counterpart could allow us to discriminate between these two types of events. In fact, our simulations show that, while the collapse of an NS in vacuum leaves no appreciable baryonic matter outside the event horizon, an AIC is followed by a phase of rapid accretion of the surviving disk onto the newly formed BH. The post-collapse accretion rates, on the order of {approx}10{sup -2} M{sub Sun} s{sup -1}, make these events tantalizing candidates as engines of short gamma-ray bursts.

  20. Binary Black Hole Accretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity

    NASA Astrophysics Data System (ADS)

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-01

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 <= q <= 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent "mini disks" surrounding each black hole. We find that for q >~ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  1. Binary black hole accretion from a circumbinary disk: Gas dynamics inside the central cavity

    SciTech Connect

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-10

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 ≤ q ≤ 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent 'mini disks' surrounding each black hole. We find that for q ≳ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  2. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  3. AMUSE-Virgo. II. Down-sizing in Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Gallo, Elena; Treu, Tommaso; Marshall, Philip J.; Woo, Jong-Hak; Leipski, Christian; Antonucci, Robert

    2010-05-01

    We complete the census of nuclear X-ray activity in 100 early-type Virgo galaxies observed by the Chandra X-ray Telescope as part of the AMUSE-Virgo survey, down to a (3σ) limiting luminosity of 3.7 × 1038 erg s-1 over 0.5-7 keV. The stellar mass distribution of the targeted sample, which is mostly composed of formally "inactive" galaxies, peaks below 1010 M sun, a regime where the very existence of nuclear supermassive black holes (SMBHs) is debated. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival Hubble Space Telescope images. After carefully accounting for contamination from nuclear low-mass X-ray binaries based on the shape and normalization of their X-ray luminosity function (XLF), we conclude that between 24% and 34% of the galaxies in our sample host an X-ray active SMBH (at the 95% confidence level). This sets a firm lower limit to the black hole (BH) occupation fraction in nearby bulges within a cluster environment. The differential logarithmic XLF of active SMBHs scales with the X-ray luminosity as L X -0.4±0.1 up to 1042 erg s-1. At face value, the active fraction—down to our luminosity limit—is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with BH mass as M BH ^{-0.62^{+0.13}_{-0.12}}, with an intrinsic scatter of 0.46+0.08 -0.06 dex. This finding can be interpreted as observational evidence for "down-sizing" of BH accretion in local early types, that is, low-mass BHs shine relatively closer to their Eddington limit than higher mass objects. As a consequence, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing BH mass.

  4. Radio Telescope Reveals Secrets of Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At the cores of many galaxies, supermassive black holes expel powerful jets of particles at nearly the speed of light. Just how they perform this feat has long been one of the mysteries of astrophysics. The leading theory says the particles are accelerated by tightly-twisted magnetic fields close to the black hole, but confirming that idea required an elusive close-up view of the jet's inner throat. Now, using the unrivaled resolution of the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), astronomers have watched material winding a corkscrew outward path and behaving exactly as predicted by the theory. Galactic core and jet Artist's conception of region near supermassive black hole where twisted magnetic fields propel and shape jet of particles (Credit: Marscher et al., Wolfgang Steffen, Cosmovision, NRAO/AUI/NSF). Click on image for high-resolution file. Watch Video of Black-Hole-Powered Jet (Credit: Cosmovision, Wolfgang Steffen) Download: NTSC Format (90MB) | PAL Format (90MB) "We have gotten the clearest look yet at the innermost portion of the jet, where the particles actually are accelerated, and everything we see supports the idea that twisted, coiled magnetic fields are propelling the material outward," said Alan Marscher, of Boston University, leader of an international research team. "This is a major advance in our understanding of a remarkable process that occurs throughout the Universe," he added. Marscher's team studied a galaxy called BL Lacertae (BL Lac), some 950 million light-years from Earth. BL Lac is a blazar, the most energetic type of black-hole-powered galactic core. A black hole is a concentration of mass so dense that not even light can escape its gravitational pull. Supermassive black holes in galaxies' cores power jets of particles and intense radiation in similar objects including quasars and Seyfert galaxies. Material pulled inward toward the black hole forms a flattened, rotating disk, called an accretion disk

  5. Accretion model of a rotating gas sphere onto a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Huerta, E. A.

    2008-04-01

    We construct a simple accretion model of a rotating pressureless gas sphere onto a Schwarzschild black hole. Far away from the hole, the flow is assumed to rotate as a rigid body. We show how to build analytic solutions in terms of Jacobi elliptic functions. This construction represents a general relativistic generalization of the Newtonian accretion model first proposed by Ulrich (1976). In exactly the same form as it occurs for the Newtonian case, the flow naturally predicts the existence of an equatorial rotating accretion disk about the hole. However, the radius of the disk increases monotonically without limit as the flow reaches the angular momentum corresponding to the maximum limit allowed by the model.

  6. The MassiveBlack-II simulation: the evolution of haloes and galaxies to z ˜ 0

    NASA Astrophysics Data System (ADS)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao-Sheng

    2015-06-01

    We investigate the properties of haloes, galaxies and black holes to z = 0 in the high-resolution hydrodynamical simulation MassiveBlack-II (MBII) which evolves a Λ cold dark matter cosmology in a comoving volume Vbox = (100 Mpc h-1)3. MBII is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the MBII data set and publicly release our galaxy catalogues. We find that baryons affect strongly the halo mass function (MF), with 20-33 per cent change in the halo abundance below the knee of the MF (Mhalo < 1013.2 M⊙ h-1 at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations. We study the halo occupation distribution and clustering of galaxies, in particular the evolution and scale dependence of stochasticity and bias finding reasonable agreement with observational data. The shape of the cosmic spectral energy distribution of galaxies in MBII is consistent with observations, but lower in amplitude. The Galaxy stellar mass function (GSMF) function is broadly consistent with observations at z ≥ 2. At z < 2, the population of passive low-mass (M* < 109 M⊙) galaxies in MBII makes the GSMF too steep compared to observations whereas at the high-mass end (M* > 1011 M⊙) galaxies hosting bright AGNs make significant contributions to the GSMF. The quasar bolometric luminosity function is also largely consistent with observations. We note however that more efficient AGN feedback is necessary for the largest, rarest objects/clusters at low redshifts.

  7. Stability of the massive graviton around a BTZ black hole in three dimensions

    NASA Astrophysics Data System (ADS)

    Moon, Taeyoon; Myung, Yun Soo

    2013-12-01

    We investigate the massive graviton stability of the BTZ black hole obtained from three dimensional massive gravities which are classified into the parity-even and parity-odd gravity theories. In the parity-even gravity theory, we perform the -mode stability analysis by using the BTZ black string perturbations, which gives two Schrödinger equations with frequency-dependent potentials. The -mode stability is consistent with the generalized Breitenlohner-Freedman bound for spin-2 field. It seems that for the parity-odd massive gravity theory, the BTZ black hole is stable when the imaginary part of quasinormal frequencies of massive graviton is negative. However, this condition is not consistent with the -mode stability based on the second-order equation obtained after squaring the first-order equation. Finally, we explore the black hole stability connection between the parity-odd and parity-even massive gravity theories.

  8. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  9. Accretion of Saturn’s Inner Mid-sized Moons from a Massive Primordial Ice Ring

    NASA Astrophysics Data System (ADS)

    Salmon, J.; Canup, R. M.

    2017-02-01

    Saturn’s rings are rock-poor, containing 90%–95% ice by mass. As a group, Saturn’s moons interior to and including Tethys are also about 90% ice. Tethys itself contains < 6 % rock by mass, in contrast to its similar-mass outer neighbor Dione, which contains > 40 % rock. Here we simulate the evolution of a massive primordial ice-rich ring and the production of satellites as ring material spreads beyond the Roche limit. We describe the Roche-interior ring with an analytic model, and use an N-body code to describe material beyond the Roche limit. We track the accretion and interactions of spawned satellites, including tidal interaction with the planet, assuming a tidal dissipation factor for Saturn of Q∼ {10}4. We find that ring torques and capture of moons into mutual resonances produce a system of ice-rich inner moons that extends outward to approximately Tethys’s orbit in 109 years, even with relatively slow orbital expansion due to tides. The resulting mass and semimajor axis distribution of spawned moons resembles that of Mimas, Enceladus, and Tethys. We estimate the mass of rock delivered to the moons by external cometary impactors during a late heavy bombardment. We find that the inner moons receive a mass in rock comparable to their current total rock content, while Dione and Rhea receive an order-of-magnitude less rock than their current rock content. This suggests that external contamination may have been the primary source of rock in the inner moons, and that Dione and Rhea formed from much more rock-rich source material. Reproducing the distribution of rock among the current inner moons is challenging, and appears to require large impactors stochasticity and/or the presence of some rock in the initial ring.

  10. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    NASA Technical Reports Server (NTRS)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  11. Black hole accretion disks - Coronal stabilization of the Lightman-Eardley instability

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.; Kuperus, M.

    1984-01-01

    Physical processes by which the presence of a corona around a black hole can raise the threshold of onset of the Lightman-Eardley (L-E, 1976) instability are explored analytically. The L-E model predicts that an optically thick disk becomes unstable when the disk radiation pressure exceeds the disk gas pressure. The model has important implications for the validity of either the coronal disk or two-temperature disk models for accretion zones around black holes. It is shown that a corona can dissipate accreting gravitational energy through radiative cooling. Specific ratios of hard/soft X-rays are quantified for stable and unstable conditions. X-ray spectra from Cyg X-1 are cited as residing below the instability threshold value and thus are supportive of the coronal disk model.

  12. Variabilities of gamma-ray bursts from black hole hyper-accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Lu, Zu-Jia; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lü, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-11-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) display significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disc, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  13. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  14. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  15. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; García-Bellido, Juan

    2017-03-01

    The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe. aLIGO opens the way to the determination of the distribution and clustering of such massive PBH. If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems. Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance and mass distribution of PBH in the range [5-200] M⊙ to 10% accuracy.

  16. Massive black hole binary mergers in dynamical galactic environments

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2017-01-01

    Gravitational waves (GWs) have now been detected from stellar-mass black hole binaries, and the first observations of GWs from massive black hole (MBH) binaries are expected within the next decade. Pulsar timing arrays (PTA), which can measure the years long periods of GWs from MBH binaries (MBHBs), have excluded many standard predictions for the amplitude of a stochastic GW background (GWB). We use coevolved populations of MBHs and galaxies from hydrodynamic, cosmological simulations (`Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disc. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_{yr^{-1}} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_{yr^{-1}} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1}} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6 - significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHBs driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual active galactic nuclei to constrain binary evolution.

  17. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.

    1979-01-01

    A general procedure is developed for describing non-Keplerian accretion in the region between the event horizon of a black hole or a Rosen collapsed object and a distance greater than or equal to the marginally stable circular orbit. The relevant equations and boundary conditions are described, ways to obtain solutions are discussed, and some flow solutions are examined. The consistency and advantages of the proposed method are examined.

  18. Theory of magnetohydrodynamic accretion of matter with an ultrahard equation of state onto a black hole

    SciTech Connect

    Chernov, S. V.

    2015-06-15

    We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ{sup 2}, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.

  19. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  20. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  1. Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Jang, I.; Gliozzi, M.; Hughes, C.; Titarchuk, L.

    2014-09-01

    In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BHs), can be reliably extended to estimate the mass of supermassive BHs accreting at a moderate to high level. Here we investigate the limits of applicability of this method to low-accreting active galactic nuclei (AGN), using a control sample with good-quality X-ray data and dynamically measured mass. For low-accreting AGN (LX/LEdd ≤ 10-4), because the basic assumption that the photon index positively correlates with the accretion rate no longer holds the X-ray scaling method cannot be used. Nevertheless, the inverse correlation in the Γ-LX/LEdd diagram, found in several low-accreting BHs and confirmed by this sample, can be used to constrain MBH within a factor of ˜10 from the dynamically determined values. We provide a simple recipe to determine MBH using solely X-ray spectral data, which can be used as a sanity check for MBH determination based on indirect optical methods.

  2. A two-fluid model for black-hole accretion flows: particle acceleration and disc structure

    NASA Astrophysics Data System (ADS)

    Lee, Jason P.; Becker, Peter A.

    2017-02-01

    Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.

  3. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.

    PubMed

    Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B

    2003-10-30

    Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

  4. Magnetic connection and current distribution in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng-Xuan; Wang, Ding-Xiong; Gan, Zhao-Ming

    2009-10-01

    We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford-Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.

  5. Cosmic string loops as the seeds of super-massive black holes

    SciTech Connect

    Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul; Quintin, Jerome E-mail: rhb@physics.mcgill.ca E-mail: jquintin@physics.mcgill.ca

    2015-06-01

    Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.

  6. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  7. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  8. SECULAR STELLAR DYNAMICS NEAR A MASSIVE BLACK HOLE

    SciTech Connect

    Madigan, Ann-Marie; Hopman, Clovis; Levin, Yuri

    2011-09-01

    The angular momentum evolution of stars close to massive black holes (MBHs) is driven by secular torques. In contrast to two-body relaxation, where interactions between stars are incoherent, the resulting resonant relaxation (RR) process is characterized by coherence times of hundreds of orbital periods. In this paper, we show that all the statistical properties of RR can be reproduced in an autoregressive moving average (ARMA) model. We use the ARMA model, calibrated with extensive N-body simulations, to analyze the long-term evolution of stellar systems around MBHs with Monte Carlo simulations. We show that for a single-mass system in steady state, a depression is carved out near an MBH as a result of tidal disruptions. Using Galactic center parameters, the extent of the depression is about 0.1 pc, of similar order to but less than the size of the observed 'hole' in the distribution of bright late-type stars. We also find that the velocity vectors of stars around an MBH are locally not isotropic. In a second application, we evolve the highly eccentric orbits that result from the tidal disruption of binary stars, which are considered to be plausible precursors of the 'S-stars' in the Galactic center. We find that RR predicts more highly eccentric (e > 0.9) S-star orbits than have been observed to date.

  9. Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Komossa, S.; Zhang, C.; Feng, H.; Ling, Z.-X.; Zhao, D. H.; Zhang, S.-N.; Osborne, J. P.; O'Brien, P.; Willingale, R.; Lapington, J.; Lapington

    2016-02-01

    Stars are tidally disrupted and accreted when they approach massive black holes (MBHs) closely, producing a flare of electromagnetic radiation. The majority of the (approximately two dozen) tidal disruption events (TDEs) identified so far have been discovered by their luminous, transient X-ray emission. Once TDEs are detected in much larger numbers, in future dedicated transient surveys, a wealth of new applications will become possible. Here, we present the proposed Einstein Probe mission, which is a dedicated time-domain soft X-ray all-sky monitor aiming at detecting X-ray transients including TDEs in large numbers. The mission consists of a wide-field micro-pore Lobster-eye imager (60° × 60°), and is designed to carry out an all-sky transient survey at energies of 0.5-4 keV. It will also carry a more sensitive telescope for X-ray follow-ups, and will be capable of issuing public transient alerts rapidly. Einstein Probe is expected to revolutionise the field of TDE research by detecting several tens to hundreds of events per year from the early phase of flares, many with long-term, well sampled lightcurves.

  10. Using Simulations of Black Holes to Study General Relativity and the Properties of Inner Accretion Flow

    NASA Astrophysics Data System (ADS)

    Hoormann, Janie Katherine

    2016-06-01

    While Albert Einstein's theory of General Relativity (GR) has been tested extensively in our solar system, it is just beginning to be tested in the strong gravitational fields that surround black holes. As a way to study the behavior of gravity in these extreme environments, I have used and added to a ray-tracing code that simulates the X-ray emission from the accretion disks surrounding black holes. In particular, the observational channels which can be simulated include the thermal and reflected spectra, polarization, and reverberation signatures. These calculations can be performed assuming GR as well as four alternative spacetimes. These results can be used to see if it is possible to determine if observations can test the No-Hair theorem of GR which states that stationary, astrophysical black holes are only described by their mass and spin. Although it proves difficult to distinguish between theories of gravity, it is possible to exclude a large portion of the possible deviations from GR using observations of rapidly spinning stellar mass black holes such as Cygnus X-1. The ray-tracing simulations can furthermore be used to study the inner regions of black hole accretion flows. I examined the dependence of X-ray reverberation observations on the ionization of the disk photosphere. My results show that X-ray reverberation and X-ray polarization provides a powerful tool to constrain the geometry of accretion disks which are too small to be imaged directly. The second part of my thesis describes the work on the balloon-borne X-Calibur hard X-ray polarimetry mission and on the space-borne PolSTAR polarimeter concept.

  11. Hawking radiation of massive vector particles from the linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Junkun

    2016-07-01

    By using the tunneling formalism, we calculated the massive vector particles' Hawking radiation from the non-rotating and rotating linear dilaton black holes. By applying the WKB approximation to the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector particles from the linear dilaton black holes. The Hawking temperatures of the linear dilaton black holes have been recovered, which are consistent with the previous results in the literature. This means that the vector particles' tunneling method can also be used in studying the Hawking radiation of asymptotically non-flat and non-AdS black holes.

  12. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  13. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  14. Gravitational shock wave inside a steadily accreting spherical charged black hole

    NASA Astrophysics Data System (ADS)

    Eilon, Ehud

    2017-02-01

    We numerically investigate the interior of a four-dimensional, spherically symmetric charged black hole accreting neutral null fluid. Previous study by Marolf and Ori suggested that late infalling observers encounter an effective shock wave as they approach the outgoing portion of the inner horizon. Nonlinear perturbations could generate an effective gravitational shock wave, which manifests as a drop of the area coordinate r from inner horizon value r- towards zero in an extremely short proper time duration of the infalling observer. We consider three different scenarios: a) A charged black hole accreting a single (ingoing) null fluid; b) a charged black hole perturbed by two null fluids, ingoing and outgoing; c) a charged black hole perturbed by an ingoing null fluid and a self-gravitating scalar field. While we do not observe any evidence for a gravitational shock in the first case, we detect the shock in the other two, using ingoing timelike and null geodesics. The shock width Δ τ decreases rapidly with a fairly good match to a new, generalized exponential law, Δ τ ˜e-∫κ-(V˜ f)d V˜ f , where V˜f is a specific timing parameter for the ingoing timelike geodesics and κ-(V˜f) is a generalized (Reissner-Nordström-like) surface gravity of the charged black hole at the inner horizon. We also gain new insight into the internal (classical) structure of a charged black hole perturbed by two null fluids, including strong evidence for the existence of a spacelike r =0 singularity. We use a finite-difference numerical code with double-null coordinates combined with an adaptive gauge method in order to solve the field equations from the region outside the black hole down to the vicinity of the r =0 singularity.

  15. Cosmological evolution of supermassive black holes and AGN: a synthesis model for accretion and feedback .

    NASA Astrophysics Data System (ADS)

    Merloni, A.

    The growth of supermassive black holes (SMBH) through accretion is accompanied by the release of enormous amounts of energy which can either be radiated away, as happens in quasars, advected into the black hole, or disposed of in kinetic form through powerful jets, as is observed, for example, in radio galaxies. Here, I will present new constraints on the evolution of the SMBH mass function and Eddington ratio distribution, obtained from a study of AGN luminosity functions aimed at accounting for both radiative and kinetic energy output of AGN in a systematic way. First, I discuss how a refined Soltan argument leads to joint constraints on the mass-weighted average spin of SMBH and of the total mass density of high redshift (z˜ 5) and ``wandering'' black holes. Then, I will show how to describe the ``downsizing'' trend observed in the AGN population in terms of cosmological evolution of physical quantities (black hole mass, accretion rate, radiative and kinetic energy output). Finally, the redshift evolution of the AGN kinetic feedback will be briefly discussed and compared with the radiative output of the evolving SMBH population, thus providing a robust physical framework for phenomenological models of AGN feedback within structure formation.

  16. Numerical simulation of the disk dynamics around the black hole: Bondi-Hoyle accretion

    NASA Astrophysics Data System (ADS)

    Koyuncu, Fahrettin; Dönmez, Orhan

    2014-06-01

    We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip-flop oscillation around the black holes. The flip-flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.

  17. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  18. Unstable mass-outflows in geometrically thick accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Okuda, Toru; Das, Santabrata

    2015-10-01

    Accretion flows around black holes generally result in mass-outflows that exhibit irregular behaviour quite often. Using 2D time-dependent hydrodynamical calculations, we show that the mass-outflow is unstable in the cases of thick accretion flows such as the low angular momentum accretion flow and the advection-dominated accretion flow. For the low angular momentum flow, the inward accreting matter on the equatorial plane interacts with the outflowing gas along the rotational axis and the centrifugally supported oblique shock is formed at the interface of both the flows, when the viscosity parameter α is as small as α ≤ 10-3. The hot and rarefied blobs, which result in the eruptive mass-outflow, are generated in the inner shocked region and grow up towards the outer boundary. The advection-dominated accretion flow attains finally in the form of a torus disc with the inner edge of the disc at 3Rg ≤ r ≤ 6Rg and the centre at 6Rg ≤ r ≤ 10Rg, and a series of hot blobs is intermittently formed near the inner edge of the torus and grows up along the outer surface of the torus. As a result, the luminosity and the mass-outflow rate are modulated irregularly where the luminosity is enhanced by 10-40 per cent and the mass-outflow rate is increased by a factor of few up to 10. We interpret the unstable nature of the outflow to be due to the Kelvin-Helmholtz instability, examining the Richardson number for the Kelvin-Helmholtz criterion in the inner region of the flow. We propose that the flare phenomena of Sgr A* may be induced by the unstable mass-outflow as is found in this work.

  19. Flows of X-ray gas reveal the disruption of a star by a massive black hole.

    PubMed

    Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial

    2015-10-22

    Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

  20. NO EVIDENCE OF OBSCURED, ACCRETING BLACK HOLES IN MOST z = 6 STAR-FORMING GALAXIES

    SciTech Connect

    Willott, Chris J.

    2011-11-20

    It has been claimed that there is a large population of obscured, accreting black holes at high redshift and that the integrated black hole density at z = 6 as inferred from X-ray observations is {approx}100 times greater than that inferred from optical quasars. I have performed a stacking analysis of very deep Chandra X-ray data at the positions of photometrically selected z = 6 galaxy candidates. It is found that there is no evidence for a stacked X-ray signal in either the soft (0.5-2 keV) or hard (2-8 keV) X-ray bands. Previous work which reported a significant signal is affected by an incorrect method of background subtraction which underestimates the true background within the target aperture. The puzzle remains as to why the z = 6 black hole mass function has such a flat slope and a low normalization compared to the stellar mass function.

  1. TCAF model in XSPEC : An efficient tool to understand accretion flow dynamics around black holes

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali

    2016-07-01

    It has been more than two decades of the classic work by Chakrabarti and his collaborators on the two component advective flow (TCAF) model. Recently we successfully been able to include it in HEASARC's spectral analysis software package XSPEC as an additive local model to fit energy spectra from black hole candidates (BHCs) and obtain physical accretion flow parameters, such as, two component (Keplerian disk and sub-Keplerian halo) accretion rates, shock (location, i.e., the size of the Compton cloud, and the compression ratio) parameters. Evolutions of spectral and timing properties are transparent from the TCAF model fitted/derived physical parameters. Reason of different spectral states and their transitions during an outburst of a transient BHC are also clear. One can also predict frequency of the dominating quasi-periodic oscillation (QPO) from TCAF model fitted shock parameters and even predict most preferable mass range of an unknown BHC from TCAF fits. To our knowledge this gives us the most physical tool to investigate the accretion flow dynamics around black hole candidates.

  2. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    SciTech Connect

    Fragile, P. Chris; Olejar, Ally; Anninos, Peter

    2014-11-20

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M {sub 1} closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  3. Diagnosing the Black Hole Accretion Physics of Sgr A*: Spitzer/Chandra Observations

    NASA Astrophysics Data System (ADS)

    Hora, Joseph L.; Fazio, Giovanni G.; Willner, Steven P.; Gurwell, Mark A.; Smith, Howard Alan; Ashby, Matthew; Baganoff, Frederick K.; Witzel, Gunther; Morris, Mark; Ghez, Andrea M.; Meyer, Leo; Becklin, Eric E.; Ingalls, James G.; Glaccum, William J.; Carey, Sean J.; Haggard, Daryl; Marrone, Daniel P.; Gammie, Charles F.

    2017-01-01

    The Galactic center offers the closest opportunity for studying accretion onto a supermassive black hole. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and its flux may originate in either the accretion flow or a jet, or both. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Following our successful Spitzer observations of the variability of Sgr A* in 2013 and 2014, we have undertaken a program of simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. In addition, several ground-based observatories participated in the campaigns, at wavelengths including radio, sub-mm, and the near-infrared. We will present initial Spitzer/Chandra results from the two 24-hour epochs in 2016 July. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon.

  4. MASSIVE BLACK HOLE PAIRS IN CLUMPY, SELF-GRAVITATING CIRCUMNUCLEAR DISKS: STOCHASTIC ORBITAL DECAY

    SciTech Connect

    Fiacconi, Davide; Mayer, Lucio; Roškar, Rok; Colpi, Monica

    2013-11-01

    We study the dynamics of massive black hole pairs in clumpy gaseous circumnuclear disks. We track the orbital decay of the light, secondary black hole M {sub .2} orbiting around the more massive primary at the center of the disk, using N-body/smoothed particle hydrodynamic simulations. We find that the gravitational interaction of M {sub .2} with massive clumps M {sub cl} erratically perturbs the otherwise smooth orbital decay. In close encounters with massive clumps, gravitational slingshots can kick the secondary black hole out of the disk plane. The black hole moving on an inclined orbit then experiences the weaker dynamical friction of the stellar background, resulting in a longer orbital decay timescale. Interactions between clumps can also favor orbital decay when the black hole is captured by a massive clump that is segregating toward the center of the disk. The stochastic behavior of the black hole orbit emerges mainly when the ratio M {sub .2}/M {sub cl} falls below unity, with decay timescales ranging from ∼1 to ∼50 Myr. This suggests that describing the cold clumpy phase of the interstellar medium in self-consistent simulations of galaxy mergers, albeit so far neglected, is important to predict the black hole dynamics in galaxy merger remnants.

  5. A new way to measure supermassive black hole spin in accretion disc-dominated active galaxies

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, C.; Middleton, M.; Ward, Martin

    2013-09-01

    We show that disc continuum fitting can be used to constrain black hole spin in a subclass of narrow-line Seyfert 1 (NLS1) active galactic nuclei as their low mass and high mass accretion rate means that the disc peaks at energies just below the soft X-ray bandpass. We apply the technique to the NLS1 PG1244+026, where the optical/UV/X-ray spectrum is consistent with being dominated by a standard disc component. This gives a best estimate for black hole spin which is low, with a firm upper limit of a* <0.86. This contrasts with the recent X-ray determinations of (close to) maximal black hole spin in other NLS1 based on relativistic smearing of the iron profile. While our data on PG1244+026 do not have sufficient statistics at high energy to give a good measure of black hole spin from the iron line profile, cosmological simulations predict that black holes with similar masses have similar growth histories and so should have similar spins. This suggests that there is a problem either in our understanding of disc spectra, or/and X-ray reflection or/and the evolution of black hole spin.

  6. Exploring mass-scaling physics and outflow geometry in accreting black holes

    NASA Astrophysics Data System (ADS)

    Connors, Riley Michael Thomas

    2017-01-01

    One of the main tasks facing studies of black hole accretion in both black hole X-ray binaries (XRB) and Active Galactic Nuclei (AGN) is to break spectral model-fitting degeneracies. We explore two methods of simultaneous spectral modelling to reduce these degeneracies: (a) simultaneous fitting of XRBs and AGN, and (b) folding in timing properties in a novel way to better understand the outflow evolution of XRBs during outburst.It is a long-standing idea that AGN are scaled up versions of XRBs, such that the physics of accretion cares only about accretion rate, and not the black hole mass. We show that this principle of scale-invariance may provide us with a way to break degeneracies in broadband spectral modelling of both XRBs and AGN, focusing primarily on low-luminosity sources where degeneracies are more prevalent. We simultaneously model the broadband spectra of the two most quiescent (LX ~ 10-9 LEdd) accreting black holes on opposite ends of the mass scale, the XRB A0620-00 and Sgr A*, the Galactic centre supermassive black hole (during bright flaring). We use an outflow-dominated model capable of reproducing the broadband spectrum from radio to X-ray frequencies, co-evolving parameters that are representative of the mass-scaling properties. Such a method reduces the degeneracies in our model parameters, contributing to answering this question regarding the dominant emission mechanisms.We adopt a similar technique to investigate how spatial parameters of an XRB outflow can be better understood by tracking our model parameters as a function of the XRB variability properties during outburst, focusing in particular on GX 339-4. I shall discuss how utilising a novel characterisation of the timing properties of XRBs allows us to do this in a simple, quantitative way.We are currently developing our models further to incorporate the most up-to-date disc reflection routines in order to describe the jet/disc interaction more accurately. I shall briefly discuss this

  7. The formation and gravitational-wave detection of massive stellar black hole binaries

    SciTech Connect

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  8. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  9. Contrasting Magnetohydrodynamic Turbulence with alpha-Viscosity in Simulations of Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Fragile, P. Christopher Christopher; Etheridge, Sarina Marie; Anninos, Peter; Mishra, Bhupendra

    2017-01-01

    Many analytic, semi-analytic, and even some numerical treatments of black hole accretion parametrize the stresses within the disk as an effective viscosity, even though the true source of stresses is likely to be turbulence driven by the magneto-rotational instability. Despite some attempts to quantify the differences between these treatments, it remains unclear exactly what the consequences of a viscous treatment are, especially in the context of the temporal and spatial variability of global disk parameters. We use the astrophysics code, Cosmos++, to create two accretion disk simulations using alpha-viscosity, one thin and one thick. These simulations are then compared to similar work done using MHD in order to analyze the extent of the validity of the alpha-model. One expected result, which we, nevertheless, demonstrate is the greater spatial and temporal variability of MHD.

  10. Rapid variability as a probe of warped space-time around accreting black holes

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564, and compare these to the time-averaged spectrum and the spectrum of the rapid (<0.1 s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, softer at larger radii closer to the truncated disc and harder in the innermost parts where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole.

  11. Beyond the Standard Scheme for Relativistic Spectral Line Profiles from Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Sochora, V.; Svoboda, J.; Dovciak, M.

    2011-09-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of strong gravitational field acting on the light emitting gas. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus we show that the required sensitivity and energy resolution could be reached with Large Area Detector of the proposed LOFT mission.

  12. Binary Active Galactic Nuclei in Stripe 82: Constraints on Synchronized Black Hole Accretion in Major Mergers

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Wrobel, J. M.; Myers, A. D.; Djorgovski, S. G.; Yan, Lin

    2015-12-01

    Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method for identifying a large and uniform sample of binary AGNs because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kiloparsec-scale binaries over the 92 deg2 of the Sloan Digital Sky Survey Stripe 82 area with 2″-resolution Very Large Array (VLA) images. Here we present 0.″3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line of sight projections of radio structures from single AGNs. The four binary AGNs at z ˜ 0.1 reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between 10.3\\lt {{log}}({M}\\star /{M}⊙ )\\lt 11.5 and velocity dispersions between 120\\lt {σ }\\star \\lt 320 km s-1. The radio emission is compact (≲0.″4) and shows a steep spectrum (-1.8\\lt α \\lt -0.5) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs ≥slant {23}-8+15% of the time when a kiloparsec-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.

  13. Black hole accretion rings revealed by future X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Sochora, V.; Karas, V.; Svoboda, J.; Dovčiak, M.

    2011-11-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of a strong gravitational field acting on the light-emitting gas. The observed shape of the reflection line is formed by integrating contributions over a range of radii across the accretion disc plane, where the individual photons experience a different level of energy shifts, boosting and amplification by relativistic effects. These have to be convolved with the intrinsic emissivity of the line, which is a function of radius and the emission angle in the local frame. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and its interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with a radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus of a type 1 Seyfert galaxy (inclination ≃30°, X-ray flux ≃1-2 mCrab in a keV energy band) we show that the required sensitivity and energy resolution could be reached with a large area detector of the proposed Large Observatory for X-ray Timing mission. Galactic black holes will provide another category of potentially suitable targets if the relativistic spectral features are indeed produced by reflection from their accretion discs.

  14. Stability and quasinormal modes of the massive scalar field around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A. V.

    2006-06-01

    In this paper, we find quasinormal spectrum of the massive scalar field in the background of the Kerr black holes. We show that all found modes are damped under the quasinormal modes boundary conditions when μM≲1, thereby implying stability of the massive scalar field. This complements the region of stability determined by the Beyer inequality for large masses of the field. We show that, similar to the case of a nonrotating black hole, the massive term of the scalar field does not contribute in the regime of high damping. Therefore, the high damping asymptotic should be the same as for the massless scalar field.

  15. ON THE ROLE OF FAST MAGNETIC RECONNECTION IN ACCRETING BLACK HOLE SOURCES

    SciTech Connect

    Singh, C. B.; De Gouveia Dal Pino, E. M.; Kadowaki, L. H. S. E-mail: dalpino@iag.usp.br

    2015-01-30

    We attempt to explain the observed radio and gamma-ray emission produced in the surroundings of black holes by employing a magnetically dominated accretion flow model and fast magnetic reconnection triggered by turbulence. In earlier work, a standard disk model was used and we refine the model by focusing on the sub-Eddington regime to address the fundamental plane of black hole activity. The results do not change substantially with regard to previous work, ensuring that the details of accretion physics are not relevant in the magnetic reconnection process occurring in the corona. Rather, our work puts fast magnetic reconnection events as a powerful mechanism operating in the core region near the jet base of black hole sources on more solid ground. For microquasars and low-luminosity active galactic nuclei, the observed correlation between radio emission and the mass of the sources can be explained by this process. The corresponding gamma-ray emission also seems to be produced in the same core region. On the other hand, emission from blazars and gamma-ray bursts cannot be correlated to core emission based on fast reconnection.

  16. A connection between accretion state and Fe K absorption in an accreting neutron star: black hole-like soft-state winds?

    NASA Astrophysics Data System (ADS)

    Ponti, Gabriele; Muñoz-Darias, Teodoro; Fender, Robert P.

    2014-10-01

    High-resolution X-ray spectra of accreting stellar-mass black holes reveal the presence of accretion disc winds, traced by high-ionization Fe K lines. These winds appear to have an equatorial geometry and to be observed only during disc-dominated states in which the radio jet is absent. Accreting neutron star systems also show equatorial high-ionization absorbers. However, the presence of any correlation with the accretion state has not been previously tested. We have studied EXO 0748-676, a transient neutron star system, for which we can reliably determine the accretion state, in order to investigate the Fe K absorption/accretion state/jet connection. Not one of 20 X-ray spectra obtained in the hard state revealed any significant Fe K absorption line. However, intense Fe XXV and Fe XXVI (as well as a rarely observed Fe XXIII line plus S XVI; a blend of S XVI and Ar XVII; Ca XX and Ca XIX, possibly produced by the same high-ionization material) absorption lines (EW_{Fe {XXIII-XXV}}=31± 3, EW_{Fe {XXVI}}=8± 3 eV) are clearly detected during the only soft-state observation. This suggests that the connection between Fe K absorption and states (and anticorrelation between the presence of Fe K absorption and jets) is also valid for EXO 0748-676 and therefore it is not a unique property of black hole systems but a more general characteristic of accreting sources.

  17. Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    NASA Astrophysics Data System (ADS)

    Yan, Chang-Shuo; Lu, Youjun; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim

    2014-04-01

    Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.

  18. Microlensing of sub-parsec massive binary black holes in lensed QSOs: Light curves and size-wavelength relation

    SciTech Connect

    Yan, Chang-Shuo; Lu, Youjun; Mao, Shude; Yu, Qingjuan; Wambsganss, Joachim E-mail: luyj@nao.cas.cn

    2014-04-01

    Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.

  19. X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C. E-mail: jhk@pha.jhu.edu

    2013-06-01

    We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T{sub e} {approx} 10 keV in a boundary layer near the disk and rises smoothly to T{sub e} {approx}> 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to Almost-Equal-To 6M as the accretion rate decreases, we find that the shape of the Fe K{alpha} line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  20. Probing the Evolving X-ray Sources of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Wilkins, Dan

    2013-04-01

    Material spiralling into black holes powers some of the most luminous objects we see in the Unviverse; AGN and galactic black hole binaries. X-rays are emitted from a corona of energetic particles around the black hole and are seen to reflect off of the accretion disc. As well as being impressive objects in their own right, the black holes in AGN can emit such large amounts of energy that they are important in governing the growth of galaxies and clusters. Through detailed analysis of the observed reflection features in the X-ray spectrum and the variability of the detected emission showing reverberation time lags between the directly observed continuum and the reflection, it is possible to detect the emission from material right down to the innermost stable orbit around the black hole. Comparing these observations to the results of general relativistic ray tracing simulations allows them to be analysed in the context of the geometry of the X-ray emitting region and it has been possible to constrain the locations of the X-ray sources in a number of AGN including 1H 0707-495, IRAS 13224-3809 and MCG-6-30-15. With high quality data from long X-ray observations of these sources, it has, for the first time, been possible to follow the evolution of the coronal X-ray source as the luminosity of the source goes up and down. We are able to find evidence that the size and other properties of the X-ray source changes on the timescale of a few hours, giving rise to the extreme variability seen in these sources with the source increasing in size as the luminosity increases. Such detailed analysis of observations (both of spectra and variability) and studies of how the X-ray source is changing is paving the way to the science that will be possible with the next generation of X-ray instruments (NuStar and Astro-H) and will allow us to understand the processes at work in the innermost regions of accretion black holes, releasing energy from the accretion flow to power some of the

  1. ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK-JET CONNECTIONS

    SciTech Connect

    Miller, J. M.; Reis, R. C.; Pooley, G. G.; Fabian, A. C.; Cackett, E. M.; Nowak, M. A.; Pottschmidt, K.; Wilms, J.

    2012-09-20

    Models of jet production in black hole systems suggest that the properties of the accretion disk-such as its mass accretion rate, inner radius, and emergent magnetic field-should drive and modulate the production of relativistic jets. Stellar-mass black holes in the 'low/hard' state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v/c {approx_equal} 0.3 or the escape velocity for a vertical height of z {approx_equal} 20 GM/c {sup 2} above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z {approx_equal} 20 GM/c {sup 2} for hard X-ray production above a black hole, with a spin in the range 0.6 {<=} a {<=} 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM/c {sup 2}. We discuss these results in the context of disk-jet connections

  2. Spinning Kerr black holes with stationary massive scalar clouds: the large-coupling regime

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-01-01

    We study analytically the Klein-Gordon wave equation for stationary massive scalar fields linearly coupled to spinning Kerr black holes. In particular, using the WKB approximation, we derive a compact formula for the discrete spectrum of scalar field masses which characterize the stationary composed Kerr-black-hole-massive-scalar-field configurations in the large-coupling regime M μ ≫ 1 (here M and μ are respectively the mass of the central black hole and the proper mass of the scalar field). We confirm our analytically derived formula for the Kerr-scalar-field mass spectrum with numerical data that recently appeared in the literature.

  3. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  4. STELLAR ENERGY RELAXATION AROUND A MASSIVE BLACK HOLE

    SciTech Connect

    Bar-Or, Ben; Kupi, Gabor; Alexander, Tal

    2013-02-10

    Orbital energy relaxation around a massive black hole (MBH) plays a key role in the dynamics of galactic nuclei. Its standard description as diffusion provides a perturbative solution in the weak two-body interaction limit. Our N-body simulations show this fails to describe the short-timescale evolution, which is impacted by extreme events even in the weak limit, and is thus difficult to characterize and measure. We derive a non-perturbative solution for energy relaxation as an anomalous diffusion process, and a robust estimation technique to measure it in N-body simulations, and use these to analyze our numerical results. We empirically validate, for the first time, this theoretical description of energy relaxation around an MBH on all timescales. We constrain the modest contribution from strong encounters, and precisely measure that from the weakest encounters, and thereby calibrate the Coulomb logarithm. This yields a robust analytical estimate for the energy diffusion time, t{sub E} . We relate t{sub E} to the time t{sub r} it takes a small density perturbation to return to steady state in a relaxed, single mass stellar cusp, t{sub r} {approx_equal} 10t{sub E} {approx_equal} (5/32)Q {sup 2} P{sub h} /N{sub h} log Q, where Q = M {sub .}/M {sub *} is the MBH to star mass ratio, and the orbital period P{sub h} and star number N{sub h} are evaluated at the energy scale of the MBH's sphere of influence, E{sub h} = {sigma}{sup 2} {sub {infinity}}, where {sigma}{sub {infinity}} is the velocity dispersion at infinity. The observed M {sub .}/{sigma}{sub {infinity}} correlation then implies that passively evolving stellar cusps around lower-mass MBHs (M {sub .} {approx}< 10{sup 7} M {sub Sun }) should be dynamically relaxed by the Hubble time. We briefly consider the implications of anomalous diffusion for stars near the Galactic MBH.

  5. On the Menu: Preferential Feeding Mechanisms for Super Massive Black Holes in Milky Way-Size Galaxies

    NASA Astrophysics Data System (ADS)

    Sanchez, N. Nicole; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2015-08-01

    Using cosmological hydrodynamic simulations of Milky Way-type Galaxies, we explore the effect of accreted gas as feeding mechanisms for supermassive black holes. By examining two of these galaxies with differing merger histories, one characterized by several major mergers and the other with a quiescent history, we can examine the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which did a similar study analyzing the accretion of high mass, high redshift galaxies and their central black holes. Bellovary found that the gas accreted by the central black holes was proportional to that accreted by the host galaxy. Contrary to the previous study's results, we've found that while a galaxy with a quiescent history will still have a black hole mirroring the accretion of its host, a galaxy with an active merger history has a central black hole that is preferentially fueled by gas accreted through mergers. We look to the the angular momentum of the accreted gas in these Milky Way analogs to develop a clearer picture of the mechanisms best fueling their central SMBHs.

  6. Multiphase, non-spherical gas accretion on to a black hole

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, Daniel; Nagamine, Kentaro

    2012-07-01

    We investigate non-spherical behaviour of gas accreting on to a central supermassive black hole. Assuming optically thin conditions, we include radiative cooling and radiative heating by the central X-ray source. Our simulations are performed using the 3D smoothed particle hydrodynamic (SPH) code GADGET-3 and are compared to theoretical predictions as well as to 1D simulations performed using the grid code ZEUS. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (LX) for a fixed density at infinity and accretion efficiency. In the low LX limit, gas accretes in a stable, spherically symmetric fashion. In the high LX limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate LX, the accretion flow becomes unstable developing prominent non-spherical features. Our detailed analysis and tests show that the key reason for this unstable non-spherical nature of the flow is thermal instability (TI). Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate LX quickly grow to form cold and dense clumps surrounded by overheated low-density regions. The cold clumps continue their inwards motion forming filamentary structures, while the hot infalling gas slows down because of buoyancy and can even start outflowing through the channels in between the filaments. We measured various local and global properties of our solutions. In particular, we found that the ratio between the mass inflow rates of the cold and hot gas is a dynamical quantity depending on several factors: time, spatial location and LX; and ranges between 0 and 4. We briefly discuss astrophysical implications of such TI-driven fragmentation of accreting gas on the formation of clouds in narrow- and broad-line regions of active galactic

  7. Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system.

    PubMed

    Valsecchi, Francesca; Glebbeek, Evert; Farr, Will M; Fragos, Tassos; Willems, Bart; Orosz, Jerome A; Liu, Jifeng; Kalogera, Vassiliki

    2010-11-04

    The X-ray source M33 X-7 in the nearby galaxy Messier 33 is among the most massive X-ray binary stellar systems known, hosting a rapidly spinning, 15.65M(⊙) black hole orbiting an underluminous, 70M(⊙) main-sequence companion in a slightly eccentric 3.45-day orbit (M(⊙), solar mass). Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-ray luminosity, the star's underluminosity, the black hole's spin and the orbital eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report simulations of evolutionary tracks which reveal that if M33 X-7 started as a primary body of 85M(⊙)-99M(⊙) and a secondary body of 28M(⊙)-32M(⊙), in a 2.8-3.1-d orbit, its observed properties can be consistently explained. In this model, the main-sequence primary transfers part of its envelope to the secondary and loses the rest in a wind; it ends its life as a ∼16M(⊙) helium star with an iron-nickel core that collapses to a black hole (with or without an accompanying supernova). The release of binding energy, and possibly collapse asymmetries, 'kick' the nascent black hole into an eccentric orbit. Wind accretion explains the X-ray luminosity, and the black-hole spin can be natal.

  8. Event Rate for LISA Gravitational Wave Signals from Black Hole-Massive Black Hole Coalescences

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Salamon, Michael H. (Technical Monitor)

    2002-01-01

    Earlier work under a previous grant had been mainly on investigating the event rate for coalescences of white dwarfs or neutron stars with massive black holes (MBHs) in galactic nuclei. Under the new grant, two studies were undertaken. One was an approximate extension of the earlier study to stellar mass black holes as the lighter object, with masses in the range of roughly 3 to 20 M_sun, rather than about 1 M_sun. The other was an improved estimate of the confusion noise due to galactic binaries against which the signals from BH-MDH coalescences would have to be detected. In the earlier work, the mass of the white dwarfs (WDs) and neutron stars (NSs) was assumed to be about the same as that of the unevolved stars in the density cusp around the galactic center MBH. However, with the BH mass being substantially larger, the sinking down of BHs toward the center (mass segregation) became important and was included in the model. A single representative mass of 7 M_sun was used.

  9. Wiggly tails: A gravitational wave signature of massive fields around black holes

    NASA Astrophysics Data System (ADS)

    Degollado, Juan Carlos; Herdeiro, Carlos A. R.

    2014-09-01

    Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such "dirtiness" within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasibound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasinormal ringing followed by a late time tail. In contrast to "clean" black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasibound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in fully nonlinear studies; our analysis shows they are present at linear level, and, since it reduces to a 1+1 dimensional numerical problem, allows for cleaner numerical data. Moreover, we discuss the power law of the tail and that it only becomes universal sufficiently far away from the dirty black hole. The wiggly tails, by constrast, are a generic feature that may be used as a smoking gun for the presence of massive fields around black holes, either as a linear cloud or as fully nonlinear hair.

  10. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  11. X-ray reflection from black-hole accretion discs with a radially stratified ionisation

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Domcek, V.; Dovčiak, M.; Guainazzi, M.; Marinucci, A.

    2015-07-01

    Recent X-ray observations have suggested a very high compactness of coronae in Active Galactic Nuclei as well as in X-ray Binaries. The compactness of the source implies that the black-hole accretion disc irradiation is a strong function of radius. We will show how the X-ray spectra are modified assuming the radially stratified ionisation according to the illumination by a point-like source on the black-hole rotational axis. We will discuss how this affects the measurements of the other model parameters, such as spin and radial emissivity. We will show the application of this model to the recent XMM-Newton/NUSTAR data of an active galaxy MCG-6-30-15.

  12. X-ray Fe-lines from Relativistic Accretion Disks Around Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Stella, Luigi

    2013-01-01

    The Gas Scintillation Proportional Counter (GSPC) on board the European X-ray Satellite EXOSAT (1983-1986) provided detections of Fe K-alpha emission features around 6-7 keV in the X-ray spectra of accreting neutron star and black hole candidates in X-ray binaries. Surprisingly the width of these lines was found to be broader than the GSPC resolution 10% at 6 keV): it could not be explained by thermal broadening, nor blending of (unresolved) lines from different ionization stages of Fe; very large Doppler shifts and, perhaps, thermal Comptonisation provided more promising interpretations. In 1989 Nick White and I developed the first general relativistic model for the Fe-line profile that is produced by matter orbiting in an accretion disk. By fitting the GSPC Fe-line of the black hole candidate Cyg X-1 with our model we inferred an emitting line region extending to a few tens Schwarzschild radii from the black hole, where matter orbits at ~0.1-0.2 the speed of light and effects such as relativistic Doppler shifts and boosting, as well as gravitational and transverse redshifts are conspicuous. We joined forces with Andy Fabian and Martin Rees, who were working on the same interpretation, and published the results in a MNRAS paper. The relativistic disk interpretation of the broad Fe-lines gave rise to much interest on the possibility of measuring black hole mass and spin and probing the innermost regions of accretion flows and the very strong gravitational fields close to compact objects. Very broad and sometimes highly redshifted Fe-lines have been studied by now in tens of X-ray binaries and bright Active Galactic Nuclei with the CCD detectors of the Chandra and XMM/Newton X-ray telescopes; in some cases the line profile implies the presence of a fast spinning black hole. The potential of the Fe-line diagnostics remains to be largely exploited. Moreover some alternative interpretations are not yet ruled out. An X-ray instrument with a broad energy response

  13. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  14. Dependence of the Spin of Supermassive Black Holes on the Eddington Factor for Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Buliga, S. D.; Gnedin, Yu. N.; Mikhailov, A. G.; Natsvlishvili, T. M.

    2016-12-01

    An equation relating the spin of supermassive black holes (SMBH) to the Eddington factor, i.e., the ratio of the bolometric and Eddington luminosities for accretion disks in active galactic nuclei (AGN), is presented. This equation also depends on the relationship between the magnetic field pressure and the flux of accreted matter at the radius of the event horizon for a black hole. When the pressures of the magnetic field and of the accreted matter are equal, there is a direct relationship between the spin of the black hole and the Eddington factor. Based on available data on the bolometric luminosity and mass of black holes, it is possible to determine the spin of a black hole. The spins of the central SMBH are given for a number of AGN. The proposed method can also be used to determine the ratio of the magnetic field pressure and the pressure of the accreted gas at the event horizon of SMBH for AGN for which the spin of the black hole has been determined reliably.

  15. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas P.

    2009-05-01

    The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  16. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    SciTech Connect

    Bar-Or, Ben; Alexander, Tal

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  17. Steady-state Relativistic Stellar Dynamics Around a Massive Black hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Alexander, Tal

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  18. The statistical mechanics of relativistic orbits around a massive black hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Alexander, Tal

    2014-12-01

    Stars around a massive black hole (MBH) move on nearly fixed Keplerian orbits, in a centrally-dominated potential. The random fluctuations of the discrete stellar background cause small potential perturbations, which accelerate the evolution of orbital angular momentum by resonant relaxation. This drives many phenomena near MBHs, such as extreme mass-ratio gravitational wave inspirals, the warping of accretion disks, and the formation of exotic stellar populations. We present here a formal statistical mechanics framework to analyze such systems, where the background potential is described as a correlated Gaussian noise. We derive the leading order, phase-averaged 3D stochastic Hamiltonian equations of motion, for evolving the orbital elements of a test star, and obtain the effective Fokker-Planck equation for a general correlated Gaussian noise, for evolving the stellar distribution function. We show that the evolution of angular momentum depends critically on the temporal smoothness of the background potential fluctuations. Smooth noise has a maximal variability frequency {{ν }max }. We show that in the presence of such noise, the evolution of the normalized angular momentum j=\\sqrt{1-{{e}2}} of a relativistic test star, undergoing Schwarzschild (in-plane) general relativistic precession with frequency {{ν }GR}/{{j}2}, is exponentially suppressed for j\\lt {{j}b}, where {{ν }GR}/jb2˜ {{ν }max }, due to the adiabatic invariance of the precession against the slowly varying random background torques. This results in an effective Schwarzschild precession-induced barrier in angular momentum. When jb is large enough, this barrier can have significant dynamical implications for processes near the MBH.

  19. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

    PubMed

    Kocsis, Bence; Loeb, Abraham

    2008-07-25

    Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

  20. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    SciTech Connect

    Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

  1. VARIABILITY FROM NON-AXISYMMETRIC FLUCTUATIONS INTERACTING WITH STANDING SHOCKS IN TILTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Henisey, Ken B.; Blaes, Omer M.; Fragile, P. Chris

    2012-12-10

    We study the spatial and temporal behavior of fluid in fully three-dimensional, general relativistic, magnetohydrodynamical simulations of both tilted and untilted black hole accretion flows. We uncover characteristically greater variability in tilted simulations at frequencies similar to those predicted by the formalism of trapped modes, but ultimately conclude that its spatial structure is inconsistent with a modal interpretation. We find instead that previously identified, transient, overdense clumps orbiting on roughly Keplerian trajectories appear generically in our global simulations, independent of tilt. Associated with these fluctuations are acoustic spiral waves interior to the orbits of the clumps. We show that the two non-axisymmetric standing shock structures that exist in the inner regions of these tilted flows effectively amplify the variability caused by these spiral waves to markedly higher levels than in untilted flows, which lack standing shocks. Our identification of clumps, spirals, and spiral-shock interactions in these fully general relativistic, magnetohydrodynamical simulations suggests that these features may be important dynamical elements in models that incorporate tilt as a way to explain the observed variability in black hole accretion flows.

  2. EXCITATION OF TRAPPED WAVES IN SIMULATIONS OF TILTED BLACK HOLE ACCRETION DISKS WITH MAGNETOROTATIONAL TURBULENCE

    SciTech Connect

    Henisey, Ken B.; Blaes, Omer M.; Fragile, P. Chris; Ferreira, Barbara T.

    2009-11-20

    We analyze the time dependence of fluid variables in general relativistic, magnetohydrodynamic simulations of accretion flows onto a black hole with dimensionless spin parameter a/M = 0.9. We consider both the cases where the angular momentum of the accretion material is aligned with the black hole spin axis (an untilted flow) and where it is misaligned by 15 deg. (a tilted flow). In comparison to the untilted simulation, the tilted simulation exhibits a clear excess of inertial variability, that is, variability at frequencies below the local radial epicyclic frequency. We further study the radial structure of this inertial-like power by focusing on a radially extended band at 118(M/10 M{sub sun}){sup -1} Hz found in each of the three analyzed fluid variables. The three-dimensional density structure at this frequency suggests that the power is a composite oscillation whose dominant components are an over dense clump corotating with the background flow, a low-order inertial wave, and a low-order inertial-acoustic wave. Our results provide preliminary confirmation of earlier suggestions that disk tilt can be an important excitation mechanism for inertial waves.

  3. Hot versus cold: The dichotomy in spherical accretion of cooling flows onto supermassive black holes in elliptical galaxies, galaxy groups, and clusters

    SciTech Connect

    Guo, Fulai; Mathews, William G.

    2014-01-10

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ∼100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z {sub ☉}, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R {sub e} ∼ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  4. Variability of accretion disks surrounding black holes: The role of inertial-acoustic mode instabilities

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1995-01-01

    The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.

  5. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-11-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of <~2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes >~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.

  6. Powerful radiative jets in supercritical accretion discs around non-spinning black holes

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh

    2015-11-01

    We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.

  7. Electromagnetic versus Lense-Thirring alignment of black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Polko, Peter; McKinney, Jonathan C.

    2017-01-01

    Accretion discs and black holes (BHs) have angular momenta that are generally misaligned, which can lead to warped discs and bends in any jets produced. We examine whether a disc that is misaligned at large radii can be aligned more efficiently by the torque of a Blandford-Znajek (BZ) jet than by Lense-Thirring (LT) precession. To obtain a strong result, we will assume that these torques maximally align the disc, rather than cause precession, or disc tearing. We consider several disc states that include radiatively inefficient thick discs, radiatively efficient thin discs, and super-Eddington accretion discs. The magnetic field strength of the BZ jet is chosen as either from standard equipartition arguments or from magnetically arrested disc (MAD) simulations. We show that standard thin accretion discs can reach spin-disc alignment out to large radii long before LT would play a role, due to the slow infall time that gives even a weak BZ jet time to align the disc. We show that geometrically thick radiatively inefficient discs and super-Eddington discs in the MAD state reach spin-disc alignment near the BH when density profiles are shallow as in magnetohydrodynamical simulations, while the BZ jet aligns discs with steep density profiles (as in advection-dominated accretion flows) out to larger radii. Our results imply that the BZ jet torque should affect the cosmological evolution of BH spin magnitude and direction, spin measurements in active galactic nuclei and X-ray binaries, and the interpretations for Event Horizon Telescope observations of discs or jets in strong-field gravity regimes.

  8. Effects of high-energy particles on accretion flows onto a supermassive black hole

    SciTech Connect

    Kimura, Shigeo S.; Takahara, Fumio; Toma, Kenji

    2014-08-20

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10{sup −4} M-dot c{sup 2} to 10{sup −2} M-dot c{sup 2}, where M-dot is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  9. Effects of Spin on High-energy Radiation from Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford-Znajek (BZ) mechanism. We find that the X-ray and γ-ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  10. New Results from Chandra on the X-ray Emission from the Massive Black Hole in the Compact Starburst Galaxy Henize 2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Reynolds, Mark; Miller, Jon M.; Sivakoff, Gregory R.; Greene, Jenny E.; Hickox, Ryan C.; Johnson, Kelsey E.

    2017-01-01

    We present follow-up X-ray observations of the candidate massive black hole (BH) in the nucleus of the low-mass, compact starburst galaxy Henize 2-10. Using new high-resolution observations from the Chandra X-ray Observatory totaling 200 ks in duration, as well as archival Chandra observations from 2001, we demonstrate the presence of a previously unidentified X-ray point source that is spatially coincident with the known nuclear radio source in Henize 2-10 (i.e., the massive BH). We show that the hard X-ray emission previously identified in the 2001 observation is dominated by a source that is distinct from the nucleus, with the properties expected for a high-mass X-ray binary. The X-ray luminosity of the nuclear source suggests the massive BH is radiating significantly below its Eddington limit, and the soft spectrum resembles other weakly accreting massive BHs including Sagittarius A*. Analysis of the X-ray light curve of the nuclear source reveals the tentative detection of a ~9-hour periodicity, although additional observations are required to confirm this result. Our study highlights the need for sensitive high-resolution X-ray observations to probe low-level accretion, which is the dominant mode of BH activity throughout the Universe.

  11. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    SciTech Connect

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  12. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    SciTech Connect

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Jian-Min; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C. E-mail: wangjm@ihep.ac.cn; Collaboration: SEAMBH Collaboration

    2016-03-20

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  13. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  14. Lilienfeld Prize Talk: How do massive black holes grow?

    NASA Astrophysics Data System (ADS)

    Rees, Martin

    2017-01-01

    The supermassive black holes in galactic nuclei evolve in symbiosis with their hosts. This paper will review how they grow, with particular emphasis on mergers, and on the complex phenomena associated with the tidal capture and disruption of stars.

  15. Massive antigravity field and incomplete black hole evaporation

    NASA Astrophysics Data System (ADS)

    Massa, Corrado

    2008-04-01

    If gravity is a mixture of the ordinary attractive force carried by the massless graviton, and of a repulsive force carried by a particle with nonzero mass, an evaporating black hole might leave a stable remnant.

  16. Properties of galaxies around AGNs with the most massive supermassive black holes revealed by clustering analysis

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2016-04-01

    We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0, which was performed to investigate the properties of galaxies associated with the AGNs and reveal the nature of the fueling mechanism of supermassive black holes (SMBHs). We used 8059 AGNs/quasi-stellar objects (QSOs) for which virial masses of individual SMBHs were measured, and divided them into four mass groups.Cross-correlation analysis was performed to reconfirm our previous result that cross-correlation length increases with SMBH mass MBH; we obtained consistent results. A linear bias of AGN for each mass group was measured as 1.47 for MBH = 107.5-108.2 M⊙ and 3.08 for MBH = 109-1010 M⊙. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color Dopt-IR was estimated from a spectral energy distribution (SED) constructed from a catalog derived by merging the Sloan Digital Sky Survey (SDSS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) catalogs. The distributions of color and luminosity were derived by a subtraction method, which does not require redshift information of galaxies. The main results of this work are as follows. (1) A linear bias increases by a factor of two from the lower-mass group to the highest-mass group. (2) The environment around AGNs with the most massive SMBHs (MBH > 109 M⊙) is dominated by red sequence galaxies. (3) Marginal indication of decline in luminosity function at dimmer side of MIR > -19.5 is found for galaxies around AGNs with MBH = 108.2-109 M⊙ and nearest redshift group (z = 0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where a large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be one of the plausible mechanisms to fuel the SMBHs above ˜ 109 M⊙.

  17. Black Hole Evaporation in Horava and New Massive Gravity

    SciTech Connect

    Perez-Payan, S.; Sabido, M.

    2010-07-12

    Recently it has been a lot of interest in the theory proposed by Horava due to the renormalizability properties of the theory and as a candidate for the UV completion of Einstein gravity. On the other hand, we also investigate three dimensional black holes at a Lifshitz point. In the present work we study thermodynamical properties in this setups. In particular we are able to obtain time of evaporation for black hole solutions for the two formalisim.

  18. Launching proton-dominated jets from accreting Kerr black holes: the case of M87

    NASA Astrophysics Data System (ADS)

    Brezinski, F.; Hujeirat, A. A.

    2011-07-01

    A general relativistic model for the formation and acceleration of lowmass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iiia transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally

  19. Event Rate for LISA Gravitational Wave Signals from Black Hole-Massive Black Hole Coalescences

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.

    2002-01-01

    Earlier work under a previous grant had been mainly on investigating the event rate for coalescences of white dwarfs or neutron stars with massive black holes (MBHs) in galactic nuclei. Under the new grant, two studies were undertaken. One was an approximate extension of the earlier study to stellar mass black holes as the lighter object, with masses in the range of roughly 3 to 20 solar mass rather than about 1 solar mass. The other was an improved estimate of the confusion noise due to galactic binaries against which the signals from BH-MBH coalescences would have to be detected. In the earlier work, the mass of the white dwarfs (WDs) and neutron stars (NSs) was assumed to be about the same as that of the evolved stars in the density cusp around the galactic center MBH. However, with the BH mass being substantially larger, the sinking down of pHs toward the center (mass segregation) became important, and was included in the model. A single representative mass of 7 solar mass was used. The other main difference involved what happened after the compact object got scattered in close enough to the MBH to start losing appreciable energy and angular momentum by gravitational radiation. For WDs or NSs, it had been found in most cases that the object would be perturbed considerably by other stars in the cusp before much energy had been lost. Thus the angular momentum would either increase enough so that gravitational radiation would be cut off, or would decrease enough so that the WD or NS would plunge into the MBH in just a few revolutions. The latter event would mean that the signal-to noise ratio would not have time to build up, and the event would not be detectable. The ratio of gradual energy loss events to plunges was found to be roughly one to a few percent, and thus substantially decreased the expected rate of detectable events.

  20. Accretions of dark matter and dark energy onto (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2015-12-01

    In this work, we have studied accretion of the dark matter and dark energy onto of (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass not sensitively depends on the dimension.

  1. Decay of Dirac massive hair in the background of a spherical black hole

    SciTech Connect

    Moderski, Rafal; Rogatko, Marek

    2008-06-15

    The intermediate and late-time behavior of massive Dirac hair in the static spherically general black hole spacetime is studied. It is revealed that the intermediate asymptotic pattern of decay of massive Dirac spinor hair is dependent on the mass of the field under consideration as well as the multiple number of the wave mode. The long-lived oscillatory tail observed at timelike infinity in the considered background decays slowly as t{sup -5/6}.

  2. Massive black holes and light-element nucleosynthesis in a baryonic universe

    NASA Technical Reports Server (NTRS)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5

  3. Tunnelling of relativistic particles from new type black hole in new massive gravity

    SciTech Connect

    Gecim, Ganim; Sucu, Yusuf E-mail: ysucu@akdeniz.edu.tr

    2013-02-01

    In the framework of the three dimensional New Massive Gravity theory introduced by Bergshoeff, Hohm and Townsend, we analyze the behavior of relativistic spin-1/2 and spin-0 particles in the New-type Black Hole backgroud, solution of the New Massive Gravity.We solve Dirac equation for spin-1/2 and Klein-Gordon equation for spin-0. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe that the tunnelling probability and Hawking temperature are same for the spin-1/2 and spin-0.

  4. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    SciTech Connect

    Wellons, Sarah; Zhu, Yucong; Narayan, Ramesh; McClintock, Jeffrey E.; Psaltis, Dimitrios

    2014-04-20

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  5. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  6. Ion Viscosity Mediated by Tangled Magnetic Fields: An Application to Black Hole Accretion Disks

    NASA Technical Reports Server (NTRS)

    Subramanian, Prasad; Becker, Peter A.; Kafatos, Menas

    1996-01-01

    We examine the viscosity associated with the shear stress exerted by ions in the presence of a tangled magnetic field. As an application, we consider the effect of this mechanism on the structure of black hole accretion disks. We do not attempt to include a self-consistent description of the magnetic field. Instead, we assume the existence of a tangled field with coherence length lambda(sub coh), which is the average distance between the magnetic 'kinks' that scatter the particles. For simplicity, we assume that the field is self-similar, and take lambda(sub coh) to be a fixed fraction zeta of the local disk height H. Ion viscosity in the presence of magnetic fields is generally taken to be the cross-field viscosity, wherein the effective mean free path is the ion Larmor radius lambda(sub L), which is much less than the ion-ion Coulomb mean free path A(sub ii) in hot accretion disks. However, we arrive at a formulation for a 'hybrid' viscosity in which the tangled magnetic field acts as an intermediary in the transfer of momentum between different layers in the shear flow. The hybrid viscosity greatly exceeds the standard cross-field viscosity when (lambda/lambda(sub L)) much greater than (lambda(sub L)/lambda(sub ii)), where lambda = ((lambda(sub ii)(sup -1) + lambda(sub (coh)(sup -1))(sup -1) is the effective mean free path for the ions. This inequality is well satisfied in hot accretion disks, which suggests that the ions may play a much larger role in the momentum transfer process in the presence of magnetic fields than was previously thought. The effect of the hybrid viscosity on the structure of a steady-state, two-temperature, quasi-Keplerian accretion disk is analyzed. The hybrid viscosity is influenced by the degree to which the magnetic field is tangled (represented by zeta = lambda(sub coh)), and also by the relative accretion rate M/M(sub E), where M(sub E) = L(sub E)/c(sup 2) and L(sub E) is the Eddington luminosity. We find that ion viscosity in the

  7. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  8. The vertical structure and stability of accretion disks surrounding black holes and neutron stars

    NASA Technical Reports Server (NTRS)

    Milsom, J. A.; Chen, Xingming; Taam, Ronald E.

    1994-01-01

    The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd

  9. The response of relativistic outflowing gas to the inner accretion disk of a black hole

    NASA Astrophysics Data System (ADS)

    Parker, Michael L.; Pinto, Ciro; Fabian, Andrew C.; Lohfink, Anne; Buisson, Douglas J. K.; Alston, William N.; Kara, Erin; Cackett, Edward M.; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C.; Garcia, Javier; Harrison, Fiona A.; King, Ashley L.; Middleton, Matthew J.; Miller, Jon M.; Miniutti, Giovanni; Reynolds, Christopher S.; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J.; Wilkins, Daniel R.; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these—the ultrafast outflows—are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224‑3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very

  10. Formation of discs around super-massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto

    2016-02-01

    We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  11. The Milky Way's nuclear star cluster and massive black hole

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer

    2016-02-01

    Because of its nearness to Earth, the centre of the Milky Way is the only galaxy nucleus in which we can study the characteristics, distribution, kinematics, and dynamics of the stars on milli-parsec scales. We have accurate and precise measurements of the Galactic centre's central black hole, Sagittarius A*, and can study its interaction with the surrounding nuclear star cluster in detail. This contribution aims at providing a concise overview of our current knowledge about the Milky Way's central black hole and nuclear star cluster, at highlighting the observational challenges and limitations, and at discussing some of the current key areas of investigation.

  12. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    PubMed

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  13. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    SciTech Connect

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C

    2003-10-17

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.

  14. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    SciTech Connect

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  15. XMM-Newton reveals matter accreting onto the central supermassive black hole of NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-06-01

    NGC 2617 (z=0.042) underwent a strong broad-band outburst during 2013/14, concurrently switching from being a Seyfert 1.8 to be a Seyfert 1.0 sometimes during the previous 10 years. Thanks to the combination of the large effective area and the good spectral resolution of the EPIC-pn onboard XMM-Newton, striking insights about the very inner accretion flow of this AGN have been revealed. In particular, persistent Fe K absorption redshifted by ˜ 35,000 km/s was solidly detected in two observations spaced by one month: a highly ionised flow of mass toward the central supermassive black hole of NGC 2617 has started to be traced. So far NGC 2617 is a quasi-unique observational example: what are the perspectives of enlarging these studies in the future? Thanks to current large and prolonged optical surveys like the SDSS/BOSS, many "optically changing-look AGN" like NGC 2617 are being discovered month after month: XMM-Newton has the ideal instruments to perform a proper X-ray study of such objects in the near future. I will assess the impact of XMM-Newton on studying the dynamics of the inner accretion flow in AGN in a systematic way and in synergy with near- and mid-future X-ray instruments such as (ASTRO-H)Hitomi and ATHENA.

  16. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  17. The Effects of Accretion Flow Dynamics on the Black Hole Shadow of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Akiyama, Kazunori; Asada, Keiichi

    2016-11-01

    A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission is dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.

  18. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  19. Time-dependent X-ray emission from unstable accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  20. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.

    2015-11-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  1. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    NASA Technical Reports Server (NTRS)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  2. Evolution of accretion discs around a kerr black hole using extended magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Chandra, Mani; Gammie, Charles F.; Quataert, Eliot

    2016-02-01

    Black holes accreting well below the Eddington rate are believed to have geometrically thick, optically thin, rotationally supported accretion discs in which the Coulomb mean free path is large compared to GM/c2. In such an environment, the disc evolution may differ significantly from ideal magnetohydrodynamic (MHD) predictions. We present non-ideal global axisymmetric simulations of geometrically thick discs around a rotating black hole. The simulations are carried out using a new code GRIM, which evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal MHD. Non-ideal effects are modelled through heat conduction along magnetic field lines, and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. We find that the pressure anisotropy grows to match the magnetic pressure, at which point it saturates due to the mirror instability. The pressure anisotropy produces outward angular momentum transport with a magnitude comparable to that of MHD turbulence in the disc, and a significant increase in the temperature in the wall of the jet. We also find that, at least in our axisymmetric simulations, conduction has a small effect on the disc evolution because (1) the heat flux is constrained to be parallel to the field and the field is close to perpendicular to temperature gradients, and (2) the heat flux is choked by an increase in effective collisionality associated with the mirror instability.

  3. Numerical simulation of vertical oscillations in an axisymmetric thick accretion flow around a black hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.

    2016-11-01

    We study time evolution of rotating, axisymmetric, two-dimensional inviscid accretion flows around black holes using a grid-based finite difference method. We do not use reflection symmetry on the equatorial plane in order to inspect if the disc along with the centrifugal barrier oscillated vertically. In the inviscid limit, we find that the CENtrifugal pressure supported BOundary Layer (CENBOL) is oscillating vertically, more so, when the specific angular momentum is higher. As a result, the rate of outflow produced from the CENBOL, also oscillates. Indeed, the outflow rates in the upper half and the lower half are found to be anticorrelated. We repeat the exercise for a series of specific angular momentum λ of the flow in order to demonstrate effects of the centrifugal force on this interesting behaviour. We find that, as predicted in theoretical models of discs in vertical equilibrium, the CENBOL is produced only when the centrifugal force is significant and more specifically, when λ > 1.5. Outflow rate itself is found to increase with λ as well and so is the oscillation amplitude. The cause of oscillation appears to be due to the interaction among the back flow from the centrifugal barrier, the outflowing winds and the inflow. For low angular momentum, the back flow as well as the oscillation are missing. To our knowledge, this is the first time that such an oscillating solution is found with a well-tested grid-based finite difference code, and such a solution could be yet another reason of why quasi-periodic oscillations should be observed in black hole candidates that are accreting low angular momentum transonic flows.

  4. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillations decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.

  5. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  6. Massive Black Hole Mergers: Can We "See" what LISA will "Hear"?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of massive black holes produces strong gravitational radiation that can be detected by the space-borne LISA. If the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We will review current efforts to simulate these systems, and discuss possibilities for observing the electromagnetic signals they produce.

  7. The low-metallicity QSO HE 2158 - 0107: a massive galaxy growing by accretion of nearly pristine gas from its environment?

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Wisotzki, L.; Jahnke, K.; Sánchez, S. F.

    2011-11-01

    The metallicities of active galactic nuclei (AGN) are usually well above solar in their narrow-line regions, often reaching up to several times solar in their broad-line regions independent of redshift. Low-metallicity AGN are rare objects that have so far always been associated with low-mass galaxies hosting low-mass black holes (MBH106M⊙). We present integral field spectroscopy data of the low-redshift (z = 0.212) quasi-stellar object (QSO) HE 2158 - 0107 for which we find strong evidence of sub-solar NLR metallicities associated with a massive black hole (MBH ~ 3 × 108M⊙). The QSO is surrounded by a large extended emission-line region reaching out to 30 kpc from the QSO in a tail-like geometry. We present optical and near-infrared images and investigate the properties of the host galaxy. The host of HE 2158 - 0107 is most likely a very compact bulge-dominated galaxy with a size of re ~ 1.4 kpc. The multi-colour spectral energy distribution (SED) of the host is quite blue, indicative of a significant young age stellar population formed within the last 1 Gyr. A 3σ upper limit of Lbulge,H < 4.5 × 1010L ⊙ ,H for the H-band luminosity and a corresponding stellar mass upper limit of Mbulge < 3.4 × 1010M⊙ show that the host is offset from the local black hole-bulge relations. This is independently supported by the kinematics of the gas. Although the stellar mass of the host galaxy is lower than expected, it cannot explain the exceptionally low metallicity of the gas. We suggest that the extended emission-line region and the galaxy growth are caused by the infall of nearly pristine gas from the environment of the QSO host. Minor mergers of low-metallicity dwarf galaxies or the theoretically predicted smooth accretion of cold (~ 104 K) gas are both potential drivers behind that process. Because the metallicity of the gas in the QSO narrow-line region is much lower than expected, we suspect that the external gas has already reached the galaxy centre and may

  8. Black hole accretion disks - Electrodynamic coupling of accretion-disk coronae and the partitioning of soft and hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.

    1985-01-01

    It is demonstrated that the observed large ratio of hard to soft X-ray emission and the bimodel behavior of black hole accreting X-ray sources such as Cygnus X-1 can be described in terms of a magnetically structured accretion disk corona which is electrodynamically coupled to the disk turbulent motions while the disk is thermodynamically coupled to the corona as described by a feedback parameter delta. The observed ratio of hard to soft X-ray emission is independent of the disk thickness, and weakly dependent of the disk parameter alpha relating the disk viscous stresses to the total pressure. Observed values of the luminosity ratio point towards strong differences of the feedback of the low state compared to the high state, in the sense that low state means small feedback (delta less than 0.2) and high state means strong feedback delta of about 0.5.

  9. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  10. Floating and sinking: the imprint of massive scalars around rotating black holes.

    PubMed

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-09

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.

  11. Massive vector particles tunneling from black holes influenced by the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Qian

    2016-12-01

    This study considers the generalized uncertainty principle, which incorporates the central idea of large extra dimensions, to investigate the processes involved when massive spin-1 particles tunnel from Reissner-Nordstrom and Kerr black holes under the effects of quantum gravity. For the black hole, the quantum gravity correction decelerates the increase in temperature. Up to O (1Mf/2), the corrected temperatures are affected by the mass and angular momentum of the emitted vector bosons. In addition, the temperature of the Kerr black hole becomes uneven due to rotation. When the mass of the black hole approaches the order of the higher dimensional Planck mass Mf, it stops radiating and yields a black hole remnant.

  12. Floating and Sinking: The Imprint of Massive Scalars around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-01

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into “floating orbits” for which the net gravitational energy loss at infinity is entirely provided by the black hole’s rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.

  13. Black hole solution of Gauss-Bonnet massive gravity coupled to Maxwell and Yang-Mills fields in five dimensions

    NASA Astrophysics Data System (ADS)

    Meng, K.; Li, J.

    2016-10-01

    We construct a new static black hole solution of Gauss-Bonnet massive gravity coupled to Maxwell and Yang-Mills fields in five dimensions. We calculate the thermodynamical quantities of the black hole and check the first law of black hole thermodynamics. Thermal stability of the black hole is explored in the context of both canonical and grand canonical ensembles. By identifying the cosmological constant as the pressure of the gravitational system, we study the phase transitions of the black hole.

  14. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    SciTech Connect

    Gracia-Linares, M.; Guzmán, F. S.

    2015-10-10

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methods used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.

  15. Active galactic nuclei at z ˜ 1.5 - III. Accretion discs and black hole spin

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Netzer, H.; Lira, P.; Trakhtenbrot, B.; Mejía-Restrepo, J.

    2016-07-01

    This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at z ˜ 1.5, selected to cover a large range in black hole mass (MBH) and Eddington ratio (L/LEdd). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of nine new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved MBH estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter (a*) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from ˜-0.6 to maximum spin for our sample, and our results are consistent with the `spin-up' scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.

  16. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  17. Direct probe of the inner accretion flow around the supermassive black hole in NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Costantini, E.; De Marco, B.; Svoboda, J.; Motta, S. E.; Proga, D.; Saxton, R.; Ferrigno, C.; Longinotti, A. L.; Miniutti, G.; Grupe, D.; Mathur, S.; Shappee, B. J.; Prieto, J. L.; Stanek, K.

    2017-01-01

    Aims: NGC 2617 is a nearby (z 0.01) active galaxy that recently switched from being a Seyfert 1.8 to be a Seyfert 1.0. At the same time, it underwent a strong increase of X-ray flux by one order of magnitude with respect to archival measurements. We characterise the X-ray spectral and timing properties of NGC 2617 with the aim of studying the physics of a changing-look active galactic nucleus (AGN). Methods: We performed a comprehensive timing and spectral analysis of two XMM-Newton pointed observations spaced by one month, complemented by archival quasi-simultaneous INTEGRAL observations. Results: We found that, to the first order, NGC 2617 looks like a type 1 AGN in the X-ray band and, with the addition of a modest reflection component, its continuum can be modelled well either with a power law plus a phenomenological blackbody, a partially covered power law, or a double Comptonisation model. Independent of the continuum adopted, in all three cases a column density of a few 1023 cm-2 of neutral gas covering 20-40% of the continuum source is required by the data. Most interestingly, absorption structures due to highly ionised iron have been detected in both observations with a redshift of about 0.1c with respect to the systemic redshift of the host galaxy. Conclusions: The redshifted absorber can be ascribed to a failed wind/aborted jets component, to gravitational redshift effects, and/or to matter directly falling towards the central supermassive black hole. In either case, we are probing the innermost accretion flow around the central supermassive black hole of NGC 2617 and might be even watching matter in a direct inflow towards the black hole itself.

  18. An Accretion Model for the Growth of the Central Black Holes Associated with Ionization Instability in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.

  19. AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION

    SciTech Connect

    Markoff, Sera; Silva, Catia V.; Nowak, Michael A.; Gallo, Elena; Plotkin, Richard M.; Hynes, Robert; Wilms, Jörn; Maitra, Dipankar; Drappeau, Samia E-mail: C.V.DeJesusSilva@uva.nl E-mail: egallo@umich.edu E-mail: joern.wilms@sternwarte.uni-erlangen.de E-mail: samia.drappeau@irap.omp.eu

    2015-10-20

    Over the past decade, evidence has mounted that several aspects of black hole (BH) accretion physics proceed in a mass-invariant way. One of the best examples of this scaling is the empirical “fundamental plane of BH accretion” relation linking mass, radio, and X-ray luminosity over eight orders of magnitude in BH mass. The currently favored theoretical interpretation of this relation is that the physics governing power output in weakly accreting BHs depends more on relative accretion rate than on mass. In order to test this theory, we explore whether a mass-invariant approach can simultaneously explain the broadband spectral energy distributions from two BHs at opposite ends of the mass scale but that are at similar Eddington accretion fractions. We find that the same model, with the same value of several fitted physical parameters expressed in mass-scaling units to enforce self-similarity, can provide a good description of two data sets from V404 Cyg and M81*, a stellar and supermassive BH, respectively. Furthermore, only one of several potential emission scenarios for the X-ray band is successful, suggesting it is the dominant process driving the fundamental plane relation at this accretion rate. This approach thus holds promise for breaking current degeneracies in the interpretation of BH high-energy spectra and for constructing better prescriptions of BH accretion for use in various local and cosmological feedback applications.

  20. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  1. The dim inner accretion disk of the quiescent black hole A0620-00

    NASA Technical Reports Server (NTRS)

    Mcclintock, Jeffrey E.; Horne, Keith; Remillard, Ronald A.

    1995-01-01

    We observed the X-ray nova A0620-00 with the Hubble Space Telescope (HST) Faint object Spectrograph 16 yr after its 1975 outburst. We present a single spectrum (1250-4750 A), which is approximately an average over a full 7.8 hr orbital cycle of the source. The continuum can be fitted approximately by a blackbody model with T = 9000 K and a small projected source area, which is approximately 1 % of the expected area of the accretion disk. AS0620-00 is faint in the far-UV band; its luminosity is comparable to the luminosity of the quiescent dwarf-nova accretion disk (i.e., excluding the white dwarf). By analogy with dwarf novae, the optical luminosity of the disk (M(sub nu) approximately = 7) and the orbital period of A0620-00 imply that the rate of mass transfer onto the outer disk in M(sub d) approximately 10(exp -10) solar mass/yr. We also observed A0620-00 with the ROSAT PSPC X-ray detector for 3 x 10(exp 4) s and detected a faint source (5 sigma) at the location of the X-ray nova. For an assumed blackbody spectrum the source temperature and luminosity are approximately 0.16 keV and 6 x 10(exp 30) ergs/s, respectively (d = 1 kpc). This luminosity implies that the rate of mass transfer into the black hole is extraordinarily small: M(sub BH) less than 5 x 10(exp -15) solar mass/yr. The much larger mass transfer rate onto the outer disk, and the UV/X-ray faintness of the inner disk confirm key predictions of the disk instability model for the nova outburst of A0620-00 published by Huang and Wheeler and by Mineshige and Wheeler.

  2. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    SciTech Connect

    García, J.; Steiner, J. F.; McClintock, J. E.; Brenneman, L. E-mail: jsteiner@head.cfa.harvard.edu E-mail: lbrenneman@cfa.harvard.edu; and others

    2014-02-20

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  3. Observable Consequences of Merger-driven Gaps and Holes in Black Hole Accretion Disks

    NASA Astrophysics Data System (ADS)

    Gültekin, Kayhan; Miller, Jon M.

    2012-12-01

    We calculate the observable signature of a black hole (BH) accretion disk with a gap or a hole created by a secondary BH embedded in the disk. We find that for an interesting range of parameters of BH masses (~106-109 M ⊙), orbital separation (~1 AU to ~0.1 pc), and gap width (10-190 disk scale heights), the missing thermal emission from a gap manifests itself in an observable decrement in the spectral energy distribution (SED). We present observational diagnostics in terms of power-law forms that can be fit to line-free regions in active galactic nucleus (AGN) spectra or in fluxes from sequences of broad filters. Most interestingly, the change in slope in the broken power law is almost entirely dependent on the width of the gap in the accretion disk, which in turn is uniquely determined by the mass ratio of the BHs, such that it scales roughly as q 5/12. Thus, one can use spectral observations of the continuum of bright AGNs to infer not only the presence of a closely separated BH binary, but also the mass ratio. When the BH merger opens an entire hole (or cavity) in the inner disk, the broadband SED of the AGNs or quasar may serve as a diagnostic. Such sources should be especially luminous in optical bands but intrinsically faint in X-rays (i.e., not merely obscured). We briefly note that viable candidates may have already been identified, though extant detailed modeling of those with high-quality data have not yet revealed an inner cavity.

  4. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  5. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2010-03-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z > 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts. This research is supported in part by NASA grant 06-BEFS06-19 to Goddard Space Flight Center.

  6. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate.

    PubMed

    D'Orazio, Daniel J; Haiman, Zoltán; Schiminovich, David

    2015-09-17

    Because most large galaxies contain a central black hole, and galaxies often merge, black-hole binaries are expected to be common in galactic nuclei. Although they cannot be imaged, periodicities in the light curves of quasars have been interpreted as evidence for binaries, most recently in PG 1302-102, which has a short rest-frame optical period of four years (ref. 6). If the orbital period of the black-hole binary matches this value, then for the range of estimated black-hole masses, the components would be separated by 0.007-0.017 parsecs, implying relativistic orbital speeds. There has been much debate over whether black-hole orbits could be smaller than one parsec (ref. 7). Here we report that the amplitude and the sinusoid-like shape of the variability of the light curve of PG 1302-102 can be fitted by relativistic Doppler boosting of emission from a compact, steadily accreting, unequal-mass binary. We predict that brightness variations in the ultraviolet light curve track those in the optical, but with a two to three times larger amplitude. This prediction is relatively insensitive to the details of the emission process, and is consistent with archival ultraviolet data. Follow-up ultraviolet and optical observations in the next few years can further test this prediction and confirm the existence of a binary black hole in the relativistic regime.

  7. Vacuum polarization of massive spinor and vector fields in the spacetime of a nonlinear black hole

    SciTech Connect

    Matyjasek, Jerzy

    2007-10-15

    Building on general formulas obtained from the approximate renormalized effective action, the stress-energy tensor of the quantized massive spinor and vector fields in the spacetime of the regular black hole is constructed. Such a black hole is the solution to the coupled system of nonlinear electrodynamics and general relativity. A detailed analytical and numerical analysis of the stress-energy tensor in the exterior region is presented. It is shown that for small values of the charge as well as large distances from the black hole the leading behavior of the stress-energy tensor is similar to that in the Reissner-Nordstroem geometry. Important differences appear when the inner horizon becomes close to the event horizon. A special emphasis is put on the extremal configuration and it is shown that the stress-energy tensor is regular inside the event horizon of the extremal black hole.

  8. Massive Black Hole Mergers: Can we see what LISA will hear?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    Coalescing massive black hole binaries are formed when galaxies merge. The final stages of this coalescence produce strong gravitational wave signals that can be detected by the space-borne LISA. When the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  9. Waveforms in massive gravity and neutralization of giant black hole ringings

    NASA Astrophysics Data System (ADS)

    Décanini, Yves; Folacci, Antoine; Ould El Hadj, Mohamed

    2016-06-01

    A distorted black hole radiates gravitational waves in order to settle down in a smoother geometry. During that relaxation phase, a characteristic damped ringing is generated. It can be theoretically constructed from both the black hole quasinormal frequencies (which govern its oscillating behavior and its decay) and the associated excitation factors (which determine intrinsically its amplitude) by carefully taking into account the source of the distortion. In the framework of massive gravity, the excitation factors of the Schwarzschild black hole have an unexpected strong resonant behavior which, theoretically, could lead to giant and slowly decaying ringings. If massive gravity is relevant to physics, one can hope to observe these extraordinary ringings by using the next generations of gravitational wave detectors. Indeed, they could be generated by supermassive black holes if the graviton mass is not too small. In fact, by focusing on the odd-parity ℓ=1 mode of the Fierz-Pauli field, we shall show here that such ringings are neutralized in waveforms due to (i) the excitation of the quasibound states of the black hole and (ii) the evanescent nature of the particular partial modes which could excite the concerned quasinormal modes. Despite this, with observational consequences in mind, it is interesting to note that the waveform amplitude is nevertheless rather pronounced and slowly decaying (this effect is now due to the long-lived quasibound states). It is worth noting also that, for very low values of the graviton mass (corresponding to the weak instability regime for the black hole), the waveform is now very clean and dominated by an ordinary ringing which could be used as a signature of massive gravity.

  10. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    SciTech Connect

    Kim, Ji-hoon; Wise, John H.; Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  11. Horndeski scalar-tensor black hole geodesics

    NASA Astrophysics Data System (ADS)

    Tretyakova, Darya; Melkoserov, Dmitry; Adyev, Timur

    2016-10-01

    We examine massive particles and null geodesics for the scalar-tensor black hole in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits, corresponding to circular and elliptic orbits, are absent for the black hole solution with the static scalar field. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations.

  12. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    SciTech Connect

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  13. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    SciTech Connect

    Esquej, P.; Alonso-Herrero, A.; Hernán-Caballero, A.; González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Roche, P.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  14. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  15. New modes for massive Dirac field in higher-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Sporea, Ciprian A.

    2015-08-01

    In this paper, we derive new modes for massive Dirac field in the background of a higher-dimensional Schwarzschild black hole. We use in our approach the Cartesian gauge defined in local frames. We work in the context of Arkani-Hamed, Dimopoulos and Dvali (ADD)-like theories, assuming that the Standard Model fields (fermions and bosons) live only on a (3+1)-dimensional brane and the extra dimensions of space can be large in size.

  16. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers and the Early Universe

    DTIC Science & Technology

    2010-01-01

    Exploring the Low-Frequency Gravita- tional Wave Spectrum Gravitational waves are fluctuations in the fabric of spacetime predicted by Einstein’s...time? We suspect the local spacetime metric is perturbed by the cumulative effect of gravitational waves (GWs) emitted by numerous massive black hole...millisecond pulsars evenly 1 distributed on the sky. A passing GW modifies the spacetime around the Earth in a manner that produces correlated shifts in the

  17. DO MAGNETIC FIELDS DESTROY BLACK HOLE ACCRETION DISK g-MODES?

    SciTech Connect

    Ortega-Rodríguez, Manuel; Solís-Sánchez, Hugo; Arguedas-Leiva, J. Agustín; Wagoner, Robert V.; Levine, Adam

    2015-08-10

    Diskoseismology, the theoretical study of normal-mode oscillations in geometrically thin, optically thick accretion disks, is a strong candidate for explaining some quasi-periodic oscillations in the power spectra of many black hole X-ray binary systems. The existence of g-modes, presumably the most robust and visible of the modes, depends on general relativistic gravitational trapping in the hottest part of the disk. As the existence of the required cavity in the presence of magnetic fields has been put into doubt by theoretical calculations, we will explore in greater generality what effect the inclusion of magnetic fields has on the existence of g-modes. We use an analytical perturbative approach on the equations of MHD to assess the impact of such effects. Our main conclusion is that there appears to be no compelling reason to discard g-modes. In particular, the inclusion of a non-zero radial component of the magnetic field enables a broader scenario for cavity non-destruction, especially taking into account recent simulations’ saturation values for the magnetic field.

  18. The structure and stability of transonic accretion disks surrounding black holes

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1993-01-01

    Stationary transonic alpha-viscosity models of accretion disks surrounding nonrotating black holes have been investigated. The viscosity is modified such that it vanishes in the supersonic region to ensure its effect does not violate the causality condition. In contrast to previous studies, the viscous stress is taken to be explicitly proportional to the angular velocity gradient and is not assumed to depend solely on the local pressure in the disk. The numerical results reveal that the structure of the innermost regions of the disk are more sensitive to the modified form of the viscosity than to the form of the viscous stress. The critical sonic point is located inside the innermost stable circular orbit of a test particle at 3 Schwarzschild radii. In these solutions, the transition from subsonic to supersonic flow results from pressure effects and not viscous effects. The linear stability of these disks has been examined in the local approximation. It is found that radiative energy transport and viscous stresses in the radial direction can have important effects. As a result, it is shown that the growth rate of the inertial-acoustic mode reaches a maximum at a critical wavelength.

  19. A toy model for magnetic connection in black hole accretion disc

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Ye, Yong-Chun; Li, Yang; Liu, Dong-Mei

    2007-01-01

    A toy model for magnetic connection in black hole (BH) accretion disc is discussed based on a poloidal magnetic field generated by a single electric current flowing around a Kerr BH in the equatorial plane. We discuss the effects of the coexistence of two kinds of magnetic connection (MC) arising, respectively, from (1) the closed field lines connecting the BH horizon with the disc (henceforth MCHD) and (2) the closed field lines connecting the plunging region with the disc (henceforth MCPD). The magnetic field configuration is constrained by conservation of magnetic flux and a criterion of the screw instability of the magnetic field. Two parameters λ and αm are introduced to describe our model instead of resolving the complicated magnetohydrodynamic equations. Compared with MCHD, energy and angular momentum of the plunging particles are extracted via MCPD more effectively, provided that the BH spin is not very high. It turns out that negative energy can be delivered to the BH by the plunging particles without violating the second law of BH thermodynamics, however it cannot be realized via MCPD in a stable way.

  20. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  1. Stronger Reflection from Black Hole Accretion Disks in Soft X-Ray States

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely, the Compton power law. We find that reflection is several times more pronounced (˜3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  2. Photon-conserving Comptonization in simulations of accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh

    2015-12-01

    We introduce a new method for treating Comptonization in computational fluid dynamics. By construction, this method conserves the number of photons. Whereas the traditional `blackbody Comptonization' approach assumes that the radiation is locally a perfect blackbody and therefore uses a single parameter, the radiation temperature, to describe the radiation, the new `photon-conserving Comptonization' approach treats the photon gas as a Bose-Einstein fluid and keeps track of both the radiation temperature and the photon number density. We have implemented photon-conserving Comptonization in the general relativistic radiation magnetohydrodynamical code KORAL and we describe its impact on simulations of mildly supercritical black hole accretion discs. We find that blackbody Comptonization underestimates the gas and radiation temperature by up to a factor of 2 compared to photon-conserving Comptonization. This discrepancy could be serious when computing spectra. The photon-conserving simulation indicates that the spectral colour correction factor of the escaping radiation in the funnel region of the disc could be as large as 5.

  3. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  4. Global General Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Flows: A Convergence Study

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.

    2012-01-01

    Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ("shearing box") calculations and with the recent non-relativistic global convergence studies of Hawley et al.

  5. Massive charged BTZ black holes in asymptotically (a)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panah, B. Eslam; Panahiyan, S.

    2016-05-01

    Motivated by recent developments of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in the presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometrical properties such as type of singularity and asymptotical behavior as well as thermodynamic structure of the solutions through canonical ensemble. We show that despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Then, we regard varying cosmological constant and examine the Van der Waals like behavior of the solutions in extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields consistent picture. For neutral solutions, it will be shown that generalization to massive gravity leads to the presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly one recovers this property.

  6. Magnetized accretion

    NASA Astrophysics Data System (ADS)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  7. THE X-RAY SPECTRUM OF THE COOLING-FLOW QUASAR H1821+643: A MASSIVE BLACK HOLE FEEDING OFF THE INTRACLUSTER MEDIUM

    SciTech Connect

    Reynolds, Christopher S.; Lohfink, Anne M.; Babul, Arif; Fabian, Andrew C.; Russell, Helen R.; Walker, Stephen A.; Hlavacek-Larrondo, Julie

    2014-09-10

    We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spectral separation of emission from the active galactic nucleus (AGN) and the intracluster medium (ICM). With a high degree of confidence, we identify the signatures of X-ray reflection/reprocessing by cold and slowly moving material in the AGN's immediate environment. The iron abundance of this matter is found to be significantly sub-solar (Z ≈ 0.4 Z {sub ☉}), an unusual finding for powerful AGN but in line with the idea that this quasar is feeding from the ICM via a Compton-induced cooling flow. We also find a subtle soft excess that can be described phenomenologically (with an additional blackbody component) or as ionized X-ray reflection from the inner regions of a high inclination (i ≈ 57°) accretion disk around a spinning (a > 0.4) black hole. We describe how the ionization state of the accretion disk can be used to constrain the Eddington fraction of the source. Applying these arguments to our spectrum implies an Eddington fraction of 0.25-0.5, with an associated black hole mass of 3--6×10{sup 9} M{sub ⊙}.

  8. Resonant excitation of black holes by massive bosonic fields and giant ringings

    NASA Astrophysics Data System (ADS)

    Décanini, Yves; Folacci, Antoine; Ould El Hadj, Mohamed

    2014-04-01

    We consider the massive scalar field, the Proca field, and the Fierz-Pauli field in the Schwarzschild spacetime and we focus more particularly on their long-lived quasinormal modes. We show numerically that the associated excitation factors have a strong resonant behavior and we confirm this result analytically from semiclassical considerations based on the properties of the unstable circular geodesics on which a massive particle can orbit the black hole. The conspiracy of (i) the long-lived behavior of the quasinormal modes and (ii) the resonant behavior of their excitation factors induces intrinsic giant ringings, i.e., ringings of a huge amplitude. Such ringings, which are moreover slowly decaying, are directly constructed from the retarded Green function. If we describe the source of the black hole perturbation by an initial value problem with Gaussian initial data, i.e., if we consider the excitation of the black hole from an extrinsic point of view, we can show that these extraordinary ringings are still present. This suggests that physically realistic sources of perturbations should generate giant and slowly decaying ringings and that their existence could be used to constrain ultralight bosonic field theory interacting with black holes.

  9. Formation of massive black holes through runaway collisions in dense young star clusters.

    PubMed

    Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W

    2004-04-15

    A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.

  10. Predictions for the Reverberating Spectral Line from a Newly Formed Black Hole Accretion Disk: Case of Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Zhang, Wenda; Yu, Wenfei; Karas, Vladimír; Dovčiak, Michal

    2015-07-01

    Tidal disruption events (TDEs) can be perfect probes of dormant supermassive black holes in normal galaxies. During the rising phase, the accretion luminosity can increase by orders of magnitude in several weeks, and the emergent ionizing radiation illuminates the fresh accretion flow. In this paper, we simulated the evolution of the expected spectral line profile of iron due to such a flare by using a ray-tracing code with effects of general relativity taken into account. We found that the time-dependent profile changes significantly with black hole spin, inclination angle with respect to the black hole equatorial plane, and the expansion velocity of the ionization front. At low values of spin, a “loop” feature appears in the line profile versus time plot when the inclination is no less than 30° and the expansion velocity {v}{exp} is no less than half the speed of light, owing to a shadow in the emission of the truncated disk. In the light curve two peaks occur depending on the inclination angle. At large {v}{exp}, a shallow “nose” feature may develop ahead of the loop; its duration depends on the expansion velocity and the inclination angle. We explore the entire interval of black hole spin parameter ranging from extreme prograde to extreme retrograde rotation, -1\\lt a\\lt 1. In the prograde case, a low-energy tail appears to be more pronounced in the evolving centroid energy of the line. Our results demonstrate the importance of searching for X-ray spectral lines in the early phase of TDE flares in order to constrain black hole mass and spin, as well as properties of the innermost accretion flow.

  11. Accretion Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge

    2014-03-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  12. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    SciTech Connect

    East, William E.

    2014-11-10

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  13. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  14. Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Prasia, P.; Kuriakose, V. C.

    2017-01-01

    In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole.

  15. Rapid formation of massive black holes in close proximity to embryonic protogalaxies

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Visbal, Eli; Wise, John H.; Haiman, Zoltán; Johansson, Peter H.; Bryan, Greg L.

    2017-03-01

    The appearance of supermassive black holes at very early times1-3 in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse4,5 black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided6,7; this can be achieved by destroying H2 by means of Lyman-Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background Lyman-Werner flux of JBG ≳ 100J21 (J21 is the intensity of background radiation in units of 10‑21 erg cm‑2 s‑1 Hz‑1 sr‑1). Second, an intense burst of Lyman-Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 104‑105M⊙.

  16. Relativistic jet activity from the tidal disruption of a star by a massive black hole.

    PubMed

    Burrows, D N; Kennea, J A; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y-B; Jun, H D; Kawai, N; Kim, J H; Krimm, H A; Marshall, F E; P Mészáros; Negoro, H; Omodei, N; Park, W-K; Perkins, J S; Sugizaki, M; Sung, H-I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

  17. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  18. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Metzger, Brian D.

    2013-10-01

    Expulsion of neutron-rich matter following the merger of neutron star binaries is crucial to the radioactively powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion discs formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modelled as a lightbulb that accounts for the disc geometry and moderate optical depth effects. Over several viscous times (˜1 s), a fraction of ˜10 per cent of the initial disc mass is ejected as a moderately neutron-rich wind (Ye ˜ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the properties of the outflow vary in time and direction, their mean values in the heavy-element production region are relatively robust to variations in the initial conditions of the disc and the magnitude of its viscosity. The outflow is sufficiently neutron-rich that most of the ejecta forms heavy r-process elements with mass number A ≳ 130, thus representing a new astrophysical source of r-process nucleosynthesis, distinct from that produced in the dynamical ejecta. Due to its moderately high entropy, disc outflows contain a small residual fraction ˜1 per cent of helium, which could produce a unique spectroscopic signature.

  19. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    PubMed

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow.

  20. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  1. Accretion onto Black Holes from Large Scales Regulated by Radiative Feedback. III. Enhanced Luminosity of Intermediate-mass Black Holes Moving at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Ricotti, Massimo

    2013-04-01

    In this third paper of a series, we study the growth and luminosity of black holes (BHs) in motion with respect to their surrounding medium. We run a large set of two-dimensional axis-symmetric simulations to explore a large parameter space of initial conditions and formulate an analytical model for the accretion. Contrary to the case without radiation feedback, the accretion rate increases with increasing BH velocity v bh reaching a maximum value at v bh = 2c s, in ~ 50 km s-1, where c s, in is the sound speed inside the "cometary-shaped" H II region around the BH, before decreasing as v_bh^{-3} when the ionization front (I-front) becomes R-type (rarefied) and the accretion rate approaches the classical Bondi-Hoyle-Lyttleton solution. The increase of the accretion rate with v bh is produced by the formation of a D-type (dense) I-front preceded by a standing bow shock that reduces the downstream gas velocity to transonic values. There is a range of densities and velocities where the dense shell is unstable producing periodic accretion rate peaks which can significantly increase the detectability of intermediate-mass BHs. We find that the mean accretion rate for a moving BH is larger than that of a stationary BH of the same mass if the medium temperature is T ∞ < 104 K. This result could be important for the growth of seed BHs in the multi-phase medium of the first galaxies and for building an early X-ray background that may affect the formation of the first galaxies and the reionization process.

  2. Effects of Accretion Disks on Spins and Eccentricities of Binaries, and Implications for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Baker, John

    2012-01-01

    Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.

  3. Tidal Disruption and Ignition of White Dwarfs by Moderately Massive Black Holes

    SciTech Connect

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2009-01-01

    We present a numerical investigation of the tidal disruption of white dwarfs by moderately massive black holes, with particular reference to the centers of dwarf galaxies and globular clusters. Special attention is given to the fate of white dwarfs of all masses that approach the black hole close enough to be disrupted and severely compressed to such an extent that explosive nuclear burning can be triggered. Consistent modeling of the gas dynamics together with the nuclear reactions allows for a realistic determination of the explosive energy release. In the most favorable cases, the nuclear energy release may be comparable to that of typical Type Ia supernovae. Although the explosion will increase the mass fraction escaping on hyperbolic orbits, a good fraction of the debris remains to be swallowed by the hole, causing a bright soft X-ray flare lasting for about a year. Such transient signatures, if detected, would be a compelling testimony for the presence of a moderately massive black hole (below 10{sup 5} M {sub {circle_dot}}).

  4. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  5. EVIDENCE FOR THREE ACCRETING BLACK HOLES IN A GALAXY AT z {approx} 1.35: A SNAPSHOT OF RECENTLY FORMED BLACK HOLE SEEDS?

    SciTech Connect

    Schawinski, Kevin; Urry, Meg; Treister, Ezequiel; Simmons, Brooke; Natarajan, Priyamvada; Glikman, Eilat

    2011-12-20

    One of the key open questions in cosmology today pertains to understanding when, where, and how supermassive black holes form. While it is clear that mergers likely play a significant role in the growth cycles of black holes, the issue of how supermassive black holes form, and how galaxies grow around them, still needs to be addressed. Here, we present Hubble Space Telescope Wide Field Camera 3/IR grism observations of a clumpy galaxy at z = 1.35, with evidence for 10{sup 6}-10{sup 7} M{sub Sun} rapidly growing black holes in separate sub-components of the host galaxy. These black holes could have been brought into close proximity as a consequence of a rare multiple galaxy merger or they could have formed in situ. Such holes would eventually merge into a central black hole as the stellar clumps/components presumably coalesce to form a galaxy bulge. If we are witnessing the in situ formation of multiple black holes, their properties can inform seed formation models and raise the possibility that massive black holes can continue to emerge in star-forming galaxies as late as z = 1.35 (4.8 Gyr after the big bang).

  6. A Stringent Constraint on Alternatives to a Massive Black Hole at the Center of NGC 4258

    NASA Astrophysics Data System (ADS)

    Maoz, Eyal

    1995-07-01

    There is now dynamical evidence for massive dark objects at the center of several galaxies, but suggestions that these are supermassive black holes are based only on indirect astrophysical arguments. As emphasized by Kormendy and Richstone, large M/L ratios and gas motions of order ~103 km s-1 do not uniquely imply a massive black hole (BH), and it is possible that the central dark objects in these galaxies are massive clusters of stellar remnants, brown dwarfs, low-mass stars, or halo dark matter. The recent unprecedented measurement of the rotation curve of maser emission sources at the center of NGC 4258, and the remarkable discovery that it is Keplerian to high precision, provide us with a unique opportunity for testing alternatives to a BH. We use a conservative upper limit on the systematic deviation from a Keplerian rotation curve to constrain the mass distribution at the galaxy center. Based on evaporation and physical collision timescale arguments, we show that a central cluster is firmly ruled out, unless the cluster consists of extremely dense objects with mass <~0.03 M⊙ (e.g., low-mass BHs or elementary particles). Since both of these dynamically allowed systems are very improbable for other astrophysical reasons, we conclude that a central dense cluster at the center of NGC 4258 is very improbable, thus leaving the alternative possibility of a massive BH. We also show that the mass of the BH must be >~98% of the mass enclosed within the inner edge of the masering disk (3.6 x 107 M⊙). A substantial contribution to that mass from a density cusp in the background mass distribution is excluded.

  7. Impact of LISA's Low Frequency Sensitivity on Observations of Massive Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J.; Centrella, J.

    2005-01-01

    LISA will be able to detect gravitational waves from inspiralling massive black hole (MBH) binaries out to redshifts z > 10. If the binary masses and luminosity distances can be extracted from the Laser Interferometer Space Antenna (LISA) data stream, this information can be used to reveal the merger history of MBH binaries and their host galaxies in the evolving universe. Since this parameter extraction generally requires that LISA observe the inspiral for a significant fraction of its yearly orbit, carrying out this program requires adequate sensitivity at low frequencies, f < 10(exp -4) Hz. Using several candidate low frequency sensitivities, we examine LISA's potential for characterizing MBH binary coalescences at redshifts z > 1.

  8. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Wang, Fang; Qiu, Jie; Li, Yan-Rong; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2014-02-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6^{+1.7}_{-2.9}, 6.4^{+0.8}_{-2.2} and 11.4^{+2.9}_{-1.9} days, respectively. The corresponding BH masses are (8.3_{-3.2}^{+2.6})\\times 10^6\\,M_{\\odot }, (3.4_{-1.2}^{+0.5})\\times 10^6\\,M_{\\odot }, and (7.5_{-4.1}^{+4.3})\\times 10^6\\,M_{\\odot }, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  9. Warping of an accretion disc and launching of a jet by a spinning black hole in NGC 4258

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Yan, Hao; Yi, Zhu

    2013-12-01

    We fit the most up-to-date broad-band spectral energy distribution from radio to X-rays for NGC 4258 with a coupled accretion-jet model that surrounds a Kerr black hole (BH). Here, both the jet and the warped H2O maser disc are assumed to be triggered by a spinning BH through the Blandford-Znajek mechanism and the Bardeen-Petterson effect, respectively. The accretion flow consists of an inner radiatively inefficient accretion flow and an outer truncated standard thin disc, where the transition radius Rtr ≃ 3 × 103Rg for NGC 4258, based on the width and variability of its narrow Fe Kα line. The hybrid jet formation model, as a variant of the Blandford-Znajek model, is used to model the jet power. Therefore, we can estimate the accretion rate and BH spin through the two observed quantities (i.e. X-ray emission and jet power), where the observed jet power is estimated from the low-frequency radio emission. Using this method, we find that the BH of NGC 4258 should be mildly spinning with dimensionless spin parameter a* ≃ 0.7 ± 0.2. The outer thin disc mainly radiates at the near-infrared waveband and the jet contributes predominantly at the radio waveband. Using the above-estimated BH spin and the inferred accretion rate at the region of the maser disc based on the physical existence of the H2O maser, we find that the warp radius is ˜8.6 × 104Rg if it is driven by the Bardeen-Petterson effect. This is very consistent with the observational result.

  10. Relativistic tidal interaction of a white dwarf with a massive black hole

    NASA Technical Reports Server (NTRS)

    Frolov, V. P.; Khokhlov, A. M.; Novikov, I. D.; Pethick, C. J.

    1994-01-01

    We compute encounters of a realistic white dwarf model with a massive black hole in the regime where relativistic effects are important, using a three-dimensional, finite-difference, Eulerian, piecewise parabolic method (PPM) hydrodynamical code. Both disruptive and nondisruptive encounters are considered. We identify and discuss relativistic effects important for the problem: relativistic shift of the pericenter distance, time delay, relativistic precession, and the tensorial structure of the tidal forces. In the nondisruptive case, stripping of matter takes place. In the surface layers of the surviving core, complicated hydrodynamical phenomena are revealed. In both disruptive and nondispruptive encounters, material flows out in the form of two thin, S-shaped, supersonic jets. Our results provide realistic initial conditions for the subsequent investigation of the dynamics of the debris in the field of the black hole. We evaluate the critical conditions for complete disruption of the white dwarf, and compare our results with the corresponding results for nonrelativistic encounters.

  11. Can massive primordial black holes be produced in mild waterfall hybrid inflation?

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Tada, Yuichiro

    2016-08-01

    We studied the possibility whether the massive primordial black holes (PBHs) surviving today can be produced in hybrid inflation. Though it is of great interest since such PBHs can be the candidate for dark matter or seeds of the supermassive black holes in galaxies, there have not been quantitatively complete works yet because of the non-perturbative behavior around the critical point of hybrid inflation. Therefore, combining the stochastic and δN formalism, we numerically calculated the curvature perturbations in a non-perturbative way and found, without any specific assumption of the types of hybrid inflation, PBHs are rather overproduced when the waterfall phase of hybrid inflation continues so long that the PBH scale is well enlarged and the corresponding PBH mass becomes sizable enough.

  12. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  13. Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; García, Javier A.; Eikmann, Wiebke; McClintock, Jeffrey E.; Brenneman, Laura W.; Dauser, Thomas; Fabian, Andrew C.

    2017-02-01

    Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339–4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state’s accretion rate. For bright hard states, we show that disk truncation to large scales R\\gg {R}{ISCO} is unlikely as this would require accretion rates far in excess of the observed \\dot{M} of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.

  14. Perturbations of slowly rotating black holes: Massive vector fields in the Kerr metric

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo; Berti, Emanuele; Ishibashi, Akihiro

    2012-11-01

    We discuss a general method to study linear perturbations of slowly rotating black holes which is valid for any perturbation field, and particularly advantageous when the field equations are not separable. As an illustration of the method we investigate massive vector (Proca) perturbations in the Kerr metric, which do not appear to be separable in the standard Teukolsky formalism. Working in a perturbative scheme, we discuss two important effects induced by rotation: a Zeeman-like shift of nonaxisymmetric quasinormal modes and bound states with different azimuthal number m, and the coupling between axial and polar modes with different multipolar index ℓ. We explicitly compute the perturbation equations up to second order in rotation, but in principle the method can be extended to any order. Working at first order in rotation we show that polar and axial Proca modes can be computed by solving two decoupled sets of equations, and we derive a single master equation describing axial perturbations of spin s=0 and s=±1. By extending the calculation to second order we can study the superradiant regime of Proca perturbations in a self-consistent way. For the first time we show that Proca fields around Kerr black holes exhibit a superradiant instability, which is significantly stronger than for massive scalar fields. Because of this instability, astrophysical observations of spinning black holes provide the tightest upper limit on the mass of the photon: mγ≲4×10-20eV under our most conservative assumptions. Spin measurements for the largest black holes could reduce this bound to mγ≲10-22eV or lower.

  15. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of L{sub X}/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  16. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  17. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  18. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  19. Quasi-Periodic Oscillations and Frequencies in AN Accretion Disk and Comparison with the Numerical Results from Non-Rotating Black Hole Computed by the Grh Code

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    The shocked wave created on the accretion disk after different physical phenomena (accretion flows with pressure gradients, star-disk interaction etc.) may be responsible observed Quasi Periodic Oscillations (QPOs) in X-ray binaries. We present the set of characteristics frequencies associated with accretion disk around the rotating and non-rotating black holes for one particle case. These persistent frequencies are results of the rotating pattern in an accretion disk. We compare the frequency's from two different numerical results for fluid flow around the non-rotating black hole with one particle case. The numerical results are taken from Refs. 1 and 2 using fully general relativistic hydrodynamical code with non-selfgravitating disk. While the first numerical result has a relativistic tori around the black hole, the second one includes one-armed spiral shock wave produced from star-disk interaction. Some physical modes presented in the QPOs can be excited in numerical simulation of relativistic tori and spiral waves on the accretion disk. The results of these different dynamical structures on the accretion disk responsible for QPOs are discussed in detail.

  20. The connection between the formation of galaxies and that of their central supermassive black holes.

    PubMed

    Haehnelt, Martin G

    2005-03-15

    Massive black holes appear to be an essential ingredient of massive galactic bulges but little is known yet to what extent massive black holes reside in dwarf galaxies and globular clusters. Massive black holes most likely grow by a mixture of merging and accretion of gas in their hierarchically merging host galaxies. While the hierarchical merging of dark matter structures extends to sub-galactic scales and very high redshift, it is uncertain if the same is true for the build-up of massive black holes. I discuss here some of the relevant problems and open questions.

  1. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  2. Near horizon symmetries of the non-extremal black hole solutions of Generalized Minimal Massive Gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-09-01

    We consider the Generalized Minimal Massive Gravity (GMMG) model in the first order formalism. We show that all the solutions of the Einstein gravity with negative cosmological constants solve the equations of motion of considered model. Then we find an expression for the off-shell conserved charges of this model. By considering the near horizon geometry of a three dimensional black hole in the Gaussian null coordinates, we find near horizon conserved charges and their algebra. The obtained algebra is centrally extended. By writing the algebra of conserved charges in terms of Fourier modes and considering the BTZ black hole solution as an example, one can see that the charge associated with rotations along Y0 coincides exactly with the angular momentum, and the charge associated with time translations T0 is the product of the black hole entropy and its temperature. As we expect, in the limit when the GMMG tends to the Einstein gravity, all the results we obtain in this paper reduce to the results of the paper [1].

  3. X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu; Perna, Rosalba; Haiman, Zoltán.

    2012-10-01

    Observations of high-redshift quasars at z ≳6 imply that supermassive black holes (SMBHs) with masses M≳109 M were in place less than 1 Gyr after the big bang. If these SMBHs assembled from 'seed' BHs left behind by the first stars, then they must have accreted gas at close to the Eddington limit during a large fraction (>rsim 50 per cent) of the time. A generic problem with this scenario, however, is that the mass density in M ˜ 106 M⊙ SMBHs at z ˜ 6 already exceeds the locally observed SMBH mass density by several orders of magnitude; in order to avoid this overproduction, BH seed formation and growth must become significantly less efficient in less massive protogalaxies through some form of feedback, while proceeding unabated in the most massive galaxies that formed first. Using Monte Carlo realizations of the merger and growth history of BHs, we show that X-rays from the earliest accreting BHs can provide such a feedback mechanism, on a global scale. Our calculations paint a self-consistent picture of BH-made climate change, in which the first miniquasars - among them the ancestors of the z ˜ 6 quasar SMBHs - globally warm the intergalactic medium and suppress the formation and growth of subsequent generations of BHs. We present two specific models with global miniquasar feedback that provide excellent agreement with recent estimates of the z = 6 SMBH mass function. For each of these models, we estimate the rate of BH mergers at z > 6 that could be detected by the proposed gravitational-wave observatory eLISA/NGO.

  4. Thermodynamical structure of AdS black holes in massive gravity with stringy gauge-gravity corrections

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.

    2016-12-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory and novel aspects of massive gravity in the context of lattice physics, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first, the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters are studied and black hole solutions with multi horizons are found in this gravity. Also, the conserved and thermodynamic quantities are calculated, and it is shown that the solutions satisfy the first law of thermodynamics. Furthermore, using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in the context of extended phase space is studied. It is shown how the variation of the different parameters affects the existence and absence of phase transition. Also, it is found that for specific values of different parameters, these black holes may enjoy the existence of a new type of phase transition which to our knowledge was not observed in black hole physics before.

  5. THE NOT-SO-MASSIVE BLACK HOLE IN THE MICROQUASAR GRS1915+105

    SciTech Connect

    Steeghs, D.; Parsons, S. G.; McClintock, J. E.; Reid, M. J.; Littlefair, S.; Dhillon, V. S.

    2013-05-10

    We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the Very Large Telescope. We detect a large number of donor star absorption features across a wide range of wavelengths spanning the H and K bands. Our 24 epochs covering a baseline of over 1 yr permit us to determine a new binary ephemeris including a refined orbital period of P = 33.85 {+-} 0.16 days. The donor star radial velocity curves deliver a significantly improved determination of the donor semi-amplitude which is both accurate (K{sub 2} = 126 {+-} 1 km s{sup -1}) and robust against choice of donor star template and spectral features used. We furthermore constrain the donor star's rotational broadening to vsin i = 21 {+-} 4 km s{sup -1}, delivering a binary mass ratio of q = 0.042 {+-} 0.024. If we combine these new constraints with distance and inclination estimates derived from modeling the radio emission, a black hole mass of M{sub BH} = 10.1 {+-} 0.6 M{sub Sun} is inferred, paired with an evolved mass donor of M{sub 2} = 0.47 {+-} 0.27 M{sub Sun }. Our analysis suggests a more typical black hole mass for GRS1915+105 rather than the unusually high values derived in the pioneering dynamical study by Greiner et al. Our data demonstrate that high-resolution infrared spectroscopy of obscured accreting binaries can deliver dynamical mass determinations with a precision on par with optical studies.

  6. Dynamics of massive black holes as a possible candidate of Galactic dark matter

    NASA Technical Reports Server (NTRS)

    Xu, Guohong; Ostriker, Jeremiah P.

    1994-01-01

    If the dark halo of the Galaxy is comprised of massive black holes (MBHs), then those within approximately 1 kpc will spiral to the center, where they will interact with one another, forming binaries which contract, owing to further dynamical friction, and then possibly merge to become more massive objects by emission of gravitational radiation. If successive mergers would invariably lead, as has been proposed by various authors, to the formation of a very massive nucleus of 10(exp 8) solar mass, then the idea of MBHs as a dark matter candidate could be excluded on observational grounds, since the observed limit (or value) for a Galactic central black hole is approximately 10(exp 6.5) solar mass. But, if successive mergers are delayed or prevented by other processes, such as the gravitational slingshot or rocket effect of gravitational radiation, then a large mass accumulation will not occur. In order to resolve this issue, we perform detailed N-body simulations using a modfied Aarseth code to explore the dynamical behavior of the MBHs, and we find that for a 'best estimate' model of the Galaxy a runaway does not occur. The code treates the MBHs as subject to the primary gravitational forces of one another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to dynamical friction and gravitational radiation. Instead of a runaway, three-body interactions between hard binaries and single MBHs eject massive objects before accumulation of more than a few units, so that typically the center will contain zero, one, or two MBHs. We study how the situation depends in detail on the mass per MBH, the rotation of the halo, the mass distribution within the Galaxy, and other parameters. A runaway will most sensitively depend on the ratio of initial (spheroid/halo) central mass densities and secondarily on the typical values

  7. Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment

    NASA Astrophysics Data System (ADS)

    Bonoli, Silvia; Mayer, Lucio; Callegari, Simone

    2014-01-01

    We study the statistics and cosmic evolution of massive black hole seeds formed during major mergers of gas-rich late-type galaxies. Generalizing the results of the hydrosimulations from Mayer et al., we envision a scenario in which a supermassive star can form at the centre of galaxies that just experienced a major merger owing to a multiscale powerful gas inflow, provided that such galaxies live in haloes with masses above 1011 M⊙, are gas rich and disc dominated, and do not already host a massive black hole. We assume that the ultimate collapse of the supermassive star leads to the rapid formation of a black hole of 105 M⊙ following a quasi-star stage. Using a model for galaxy formation applied to the outputs of the Millennium Simulation, we show that the conditions required for this massive black hole formation route to take place in the concordance Λ cold dark matter model are actually common at high redshift and can be realized even at low redshift. Most major mergers above z ˜ 4 in haloes with mass >1011 M⊙ can lead to the formation of a massive seed and, at z ˜ 2, the fraction of favourable mergers decreases to about half. Interestingly, we find that even in the local universe a fraction (˜20 per cent) of major mergers in massive haloes still satisfies the conditions for our massive black hole formation route. Those late events take place in galaxies with a markedly low clustering amplitude, that have lived in isolation for most of their life and that are experiencing a major merger for the first time. We predict that massive black hole seeds from galaxy mergers can dominate the massive end of the mass function at high (z > 4) and intermediate (z ˜ 2) redshifts relative to lighter seeds formed at higher redshift, for example, by the collapse of Pop III stars. Finally, a fraction of these massive seeds could lie, soon after formation, above the MBH-MBulge relation.

  8. On the formation of low-mass black holes in massive binary stars

    SciTech Connect

    Brown, G.E.; Weingartner, J.C.; Wijers, R.A. |

    1996-05-01

    Recently, Brown & Bethe suggested that most stars with main-sequence mass in the range of {approximately}18{minus}30 {ital M}{sub {circle_dot}} explode, returning matter to the Galaxy, and then go into low-mass ({ge}1.5 {ital M}{sub {circle_dot}}) black holes. Even more massive main-sequence stars would chiefly go into high-mass ({approximately}10 {ital M}{sub {circle_dot}}) black holes. The Brown-Bethe estimates gave {approximately}5{times}10{sup 8} low-mass black holes in the Galaxy. We here address why none of these have been seen, with the possible exception of the compact objects in SN 1987A and 4U 1700-37. Our main point is that the primary star in a binary loses its hydrogen envelope by transfer of matter to the secondary and loss into space, and the resulting {open_quote}{open_quote}naked{close_quote}{close_quote} helium star evolves differently than a helium core, which is at least initially covered by the hydrogen envelope in a massive main-sequence star. We show that primary stars in binaries can end up as neutron stars even if their initial mass substantially exceeds the mass limit for neutron star formation from single stars ({approximately}18 {ital M}{sub {circle_dot}}). An example is 4U 1223{endash}62, in which we suggest that the initial primary mass exceeded 35 {ital M}{sub {circle_dot}}, yet X-ray pulsations show a neutron star to be present. We also discuss some individual systems and argue that 4U 1700{endash}37, the only example of a well-studied high-mass X-ray binary that does not pulse, could well contain a low-mass black hole. The statistical composition of the X-ray binary population is consistent with our scenario, but due to the paucity of systems it is consistent with more traditional models as well. {copyright} {ital 1996 The American Astronomical Society.}

  9. Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2010-01-01

    It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,

  10. Gravitational lensing by a massive black hole at the Galactic center

    NASA Technical Reports Server (NTRS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    1992-01-01

    The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.

  11. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  12. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    SciTech Connect

    Miller, J. M.; King, A. L.; Tomsick, J. A.; Boggs, S. E.; Bachetti, M.; Wilkins, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Kara, E.; Grefenstette, B. W.; Harrison, F. A.; Hailey, C. J.; Stern, D. K; Zhang, W. W.

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  13. Collisions of massive particles, timelike thin shells and formation of black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Lindgren, Jonathan

    2016-12-01

    We study collisions of massive pointlike particles in three dimensional anti-de Sitter space, generalizing the work on massless particles in [1]. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massive particles that fall in radially and collide at the origin of AdS. No restrictions on the masses or the angular and radial positions from where the particles are released, are imposed. We also consider the limit of an infinite number of particles, obtaining novel timelike thin shell spacetimes. These thin shells have an arbitrary mass distribution as well as a non-trivial embedding where the radial location of the shell depends on the angular coordinate, and we analyze these shells using the junction formalism of general relativity. We also consider the massless limit and find consistency with earlier results, as well as comment on the stress-energy tensor modes of the dual CFT.

  14. Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

    NASA Technical Reports Server (NTRS)

    T.Dauser; Garcia, J.; Wilms, J.; Boeck, M.; Brenneman, L. W.; Falanga, M.; Fukumura, Keigo; Reynolds, C. S.

    2013-01-01

    X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given

  15. Corrected entropy of the rotating black hole solution of the new massive gravity using the tunneling method and Cardy formula

    SciTech Connect

    Mirza, Behrouz; Sherkatghanad, Zeinab

    2011-05-15

    We study the AdS rotating black hole solution for the Bergshoeff-Hohm-Townsend massive gravity in three dimensions. The field equations of the asymptotically AdS black hole of the static metric can be expressed as the first law of thermodynamics, i.e. dE=TdS-PdV. The corrected Hawking-like temperature and entropy of the asymptotically AdS rotating black hole are calculated using the Cardy formula and the tunneling method. Comparison of these methods will help identify the unknown leading correction parameter {beta}{sub 1} in the tunneling method.

  16. Massive black hole and gas dynamics in mergers of galaxy nuclei - II. Black hole sinking in star-forming nuclear discs

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo; Colpi, Monica

    2015-11-01

    Mergers of gas-rich galaxies are key events in the hierarchical built-up of cosmic structures, and can lead to the formation of massive black hole binaries. By means of high-resolution hydrodynamical simulations we consider the late stages of a gas-rich major merger, detailing the dynamics of two circumnuclear discs, and of the hosted massive black holes during their pairing phase. During the merger gas clumps with masses of a fraction of the black hole mass form because of fragmentation. Such high-density gas is very effective in forming stars, and the most massive clumps can substantially perturb the black hole orbits. After ˜10 Myr from the start of the merger a gravitationally bound black hole binary forms at a separation of a few parsecs, and soon after, the separation falls below our resolution limit of 0.39 pc. At the time of binary formation the original discs are almost completely disrupted because of SNa feedback, while on pc scales the residual gas settles in a circumbinary disc with mass ˜ 105 M⊙. We also test that binary dynamics is robust against the details of the SNa feedback employed in the simulations, while gas dynamics is not. We finally highlight the importance of the SNa time-scale on our results.

  17. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; García-Bellido, Juan

    2015-07-01

    In this paper we present a new scenario where massive primordial black holes (PBHs) are produced from the collapse of large curvature perturbations generated during a mild-waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetarylike masses at matter-radiation equality and producing abundances comparable to those of dark matter today, while the matter power spectrum on scales probed by cosmic microwave background (CMB) anisotropies agrees with Planck data. These PBHs could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and microlensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultraluminous x-ray sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-Planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a Swiss-cheese-like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.

  18. The gravitational wave background from star-massive black hole fly-bys

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia; Hopman, Clovis; Freitag, Marc

    2009-09-01

    Stars on eccentric orbits around a massive black hole (MBH) emit bursts of gravitational waves (GWs) at periapse. Such events may be directly resolvable in the Galactic Centre. However, if the star does not spiral in, the emitted GWs are not resolvable for extragalactic MBHs, but constitute a source of background noise. We estimate the power spectrum of this extreme mass ratio burst background (EMBB) and compare it to the anticipated instrumental noise of the Laser Interferometer Space Antenna (LISA). To this end, we model the regions close to an MBH, accounting for mass segregation, and for processes that limit the presence of stars close to the MBH, such as GW inspiral and hydrodynamical collisions between stars. We find that the EMBB is dominated by GW bursts from stellar mass black holes, and the magnitude of the noise spectrum (fSGW)1/2 is at least a factor of ~10 smaller than the instrumental noise. As an additional result of our analysis, we show that LISA is unlikely to detect relativistic bursts in the Galactic Centre.

  19. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  20. XMM-Newton Observations of IC 10 X-1, the Most Massive Known Stellar Black Hole: Eclipse Mapping and 7 mHz QPOs

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod E.; Pasham, D. R.

    2013-04-01

    IC 10 X-1 is a rare example of an eclipsing black hole/Wolf-Rayet X-ray binary with an orbital period of 34.4 hr. The mass of the black hole is determined dynamically to be 23-35 solar masses, making it the most massive stellar-mass black hole currently known. We present results of XMM-Newton observations which, for the first time, have sampled its X-ray emission for a complete binary orbit. We fully resolve the eclipse and find that it is deep but not total, with an X-ray flux (0.2 - 10 keV) at minimum of about 10% of the off-eclipse average. Interestingly, the eclipse appears moderately asymmetric, with the ingress steeper than the egress. The duration of maximum eclipse is approximately 5.2 hr, or about 15% of the orbital period. The steeper ingress and shallower egress have durations of about 3.3 and 4.6 hr, respectively. The X-ray spectrum shows interesting systematic variations around the orbit which likely reflect the changing optical depth through the Wolf-Rayet companion's wind. For example, the (2 - 10 keV) / (0.2 - 2 keV) hardness ratio peaks during egress, reaches a minimum at a location consistent with superior conjunction of the donor, and then increases again approaching ingress. The emission outside of the eclipse shows substantial aperiodic variability. Moreover, power spectral analysis reveals evidence for a quasiperiodic oscillation (QPO) with a centroid frequency of 6.7 mHz, effectively confirming a marginal QPO detection at the same frequency from an earlier, shorter XMM-Newton observation. The QPO has an amplitude (rms) of approximately 6% (in the full EPIC band-pass) and a quality factor of about 5. We discuss the implications of these observations for the accretion geometry of the source, as well as mass estimates of accreting black holes from X-ray timing measurements.

  1. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  2. Testing Gravity with Quasi-periodic Oscillations from Accreting Black Holes: The Case of Einstein-Dilaton-Gauss-Bonnet Theory

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Gualtieri, Leonardo; Pani, Paolo; Stella, Luigi; Ferrari, Valeria

    2015-03-01

    Quasi-periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting black holes are associated with phenomena occurring near the horizon. Future very large area X-ray instruments will be able to measure QPO frequencies with very high precision, thus probing this strong-field region. Using the relativistic precession model, we show the way in which QPO frequencies could be used to test general relativity (GR) against those alternative theories of gravity which predict deviations from the classical theory in the strong-field and high-curvature regimes. We consider one of the best-motivated high-curvature corrections to GR, namely, the Einstein-Dilaton-Gauss-Bonnet theory, and show that a detection of QPOs with the expected sensitivity of the proposed ESA M-class mission LOFT would set the most stringent constraints on the parameter space of this theory.

  3. Using Multiwavelength Observations to Determine the Black Hole Mass and Accretion Rate in the Type 1 Seyfert Galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Chiang, James; Blaes, Omer

    2002-01-01

    We model the spectral energy distribution of the type 1 Seyfert galaxy NGC 5548, fitting data from simultaneous optical, UV, and X-ray monitoring observations. We assume a geometry consisting of a hot central Comptonizing region surrounded by a thin accretion disk. The properties of the disk and the hot central region are determined by the feedback occurring between the hot Comptonizing region and thermal reprocessing in the disk that, along with viscous dissipation, provides the seed photons for the Comptonization process. The constraints imposed upon this model by the multiwavelength data allow us to derive limits on the central black hole mass, Mu is approximately or less than 2x10(exp 7) solar mass, the accretion rate, Mu is approximately or less than 2.5x10(exp 5) sq solar mass per year/Mu, and the radius of the transition region between the thin outer disk and the geometrically thick, hot inner region, is approximately 2-5x10(exp 14) cm.

  4. Flaring Black Hole Accretion Disk in the Binary System V404 Cygni

    NASA Video Gallery

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this syste...

  5. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  6. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  7. THE COOL ACCRETION DISK IN ESO 243-49 HLX-1: FURTHER EVIDENCE OF AN INTERMEDIATE-MASS BLACK HOLE

    SciTech Connect

    Davis, Shane W.; Narayan, Ramesh; Zhu Yucong; Servillat, Mathieu; Barret, Didier; Godet, Olivier; Webb, Natalie A.; Farrell, Sean A.

    2011-06-20

    With an inferred bolometric luminosity exceeding 10{sup 42} erg s{sup -1}, HLX-1 in ESO 243-49 is the most luminous of ultraluminous X-ray sources and provides one of the strongest cases for the existence of intermediate-mass black holes. We obtain good fits to disk-dominated observations of the source with BHSPEC, a fully relativistic black hole accretion disk spectral model. Due to degeneracies in the model arising from the lack of independent constraints on inclination and black hole spin, there is a factor of 100 uncertainty in the best-fit black hole mass M. Nevertheless, spectral fitting of XMM-Newton observations provides robust lower and upper limits with 3000 M{sub sun} {approx}< M {approx}< 3 x 10{sup 5} M{sub sun}, at 90% confidence, placing HLX-1 firmly in the intermediate-mass regime. The lower bound on M is entirely determined by matching the shape and peak energy of the thermal component in the spectrum. This bound is consistent with (but independent of) arguments based solely on the Eddington limit. Joint spectral modeling of the XMM-Newton data with more luminous Swift and Chandra observations increases the lower bound to 6000 M{sub sun}, but this tighter constraint is not independent of the Eddington limit. The upper bound on M is sensitive to the maximum allowed inclination i, and is reduced to M {approx}< 10{sup 5} M{sub sun} if we limit i {approx}< 75{sup 0}.

  8. DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION

    SciTech Connect

    Bodenheimer, Peter; Fortney, Jonathan J.; Saumon, Didier E-mail: gennaro.dangelo@nasa.gov E-mail: jfortney@ucolick.org

    2013-06-20

    Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.

  9. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  10. THE SPIN OF THE BLACK HOLE GS 1124–683: OBSERVATION OF A RETROGRADE ACCRETION DISK?

    SciTech Connect

    Morningstar, Warren R.; Miller, Jon M.; Reis, Rubens C.; Ebisawa, Ken E-mail: jonmm@umich.edu

    2014-04-01

    We re-examine archival Ginga data for the black hole binary system GS 1124–683, obtained when the system was undergoing its 1991 outburst. Our analysis estimates the dimensionless spin parameter a {sub *} = cJ/GM{sup 2} by fitting the X-ray continuum spectra obtained while the system was in the ''thermal dominant'' state. For likely values of mass and distance, we find the spin to be a{sub ∗}=−0.25{sub −0.64}{sup +0.05} (90% confidence), implying that the disk is retrograde (i.e., rotating antiparallel to the spin axis of the black hole). We note that this measurement would be better constrained if the distance to the binary and the mass of the black hole were more accurately determined. This result is unaffected by the model used to fit the hard component of the spectrum. In order to be able to recover a prograde spin, the mass of the black hole would need to be at least 15.25 M {sub ☉}, or the distance would need to be less than 4.5 kpc, both of which disagree with previous determinations of the black hole mass and distance. If we allow f {sub col} to be free, we obtain no useful spin constraint. We discuss our results in the context of recent spin measurements and implications for jet production.

  11. HYDROMAGNETICS OF ADVECTIVE ACCRETION FLOWS AROUND BLACK HOLES: REMOVAL OF ANGULAR MOMENTUM BY LARGE-SCALE MAGNETIC STRESSES

    SciTech Connect

    Mukhopadhyay, Banibrata; Chatterjee, Koushik E-mail: kchatterjee009@gmail.com

    2015-07-01

    We show that the removal of angular momentum is possible in the presence of large-scale magnetic stresses in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady state, in the complete absence of α-viscosity. The efficiency of such an angular momentum transfer could be equivalent to that of α-viscosity with α = 0.01–0.08. Nevertheless, the required field is well below its equipartition value, leading to a magnetically stable disk flow. This is essentially important in order to describe the hard spectral state of the sources when the flow is non/sub-Keplerian. We show in our simpler 1.5 dimensional, vertically averaged disk model that the larger the vertical-gradient of the azimuthal component of the magnetic field is, the stronger the rate of angular momentum transfer becomes, which in turn may lead to a faster rate of outflowing matter. Finding efficient angular momentum transfer in black hole disks via magnetic stresses alone, is very interesting when the generic origin of α-viscosity is still being explored.

  12. The effects of high density on the X-ray spectrum reflected from accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    García, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Michael L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jörn

    2016-10-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter ξ, which is the ratio of the incident flux to the gas density. The density is typically fixed at ne = 1015 cm-3. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for ne ≳ 1017 cm-3 that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies ≲ 2 keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  13. THE CENTRAL ENGINE STRUCTURE OF 3C120: EVIDENCE FOR A RETROGRADE BLACK HOLE OR A REFILLING ACCRETION DISK

    SciTech Connect

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2012-06-20

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. Spectral fits to the X-ray Imaging Spectrometer and Hard X-ray Detector/positive intrinsic negative data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow K{alpha} core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, the inner region of the disk appears to be truncated, with an inner radius of r{sub in} = 11.7{sup +3.5}{sub -5.2} r{sub g} . If we assume that fluorescent iron line features terminate at the inner-most stable circular orbit (ISCO), then we measure a black hole spin of a-hat < -0.1 at a 90% confidence level. A rapidly spinning prograde black hole ( a-hat > 0.8) can be ruled out at the 99% confidence level. Alternatively, the disk may be truncated well outside of the ISCO of a rapid prograde hole. The most compelling scenario is the possibility that the inner regions of the disk were destroyed/ejected by catastrophic instabilities just prior to the time these observations were made.

  14. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  15. Star formation and cosmic massive black hole formation, a universal process organized by angular momenta

    SciTech Connect

    Colgate, S. A.

    2004-01-01

    It is suggested that star formation is organized following the same principles as we have applied in a recent explanation of galaxy and massive black hole formation. In this scenario angular momentum is randomly distributed by tidal torquing among condensations, Lyman-{alpha} clouds or cores for star formation during the initial non-linear phase of collapse. This angular momentum is characterized by the parameter, {lambda}, the ratio of the angular momentum of the cloud to that of a Keplerian orbit with the same central mass and radius. This parameter is calculated in very many simulations of structure formation of the universe as well as core formation and appears to be universal and independent of any scale. The specific angular momentum during the collapse of every cloud is locally conserved and universally produces a near flat rotation curve M{sub massive galactic black hole, 10{sup 8} M{sub o}, ({sup -}10{sup -3} of the galactic disk mass) or 1 M{sub o} ({sup -}0.03 of the core or of the protostellar disk mass). The inviscid collapse of a protosteller core with the same average {lambda} = 0.05 leads to the formation of a flat rotation curve (protostellar) disk of mass M{sub dsk} {sup -}30 M{sub o} of radius R{sub dsk} {approx_equal} 1100 AU or 5.4 x 10{sup -3} pc. In such a disk {Sigma} {proportional_to} 1/R and reaches the RVI condition at R{sub crit} {approx_equal} 40 AU where M{sub

  16. EFFECTS OF COMPTON COOLING ON OUTFLOW IN A TWO-COMPONENT ACCRETION FLOW AROUND A BLACK HOLE: RESULTS OF A COUPLED MONTE CARLO TOTAL VARIATION DIMINISHING SIMULATION

    SciTech Connect

    Garain, Sudip K.; Ghosh, Himadri; Chakrabarti, Sandip K. E-mail: himadri@bose.res.in

    2012-10-20

    We investigate the effects of cooling of the Compton cloud on the outflow formation rate in an accretion disk around a black hole. We carry out a time-dependent numerical simulation where both the hydrodynamics and the radiative transfer processes are coupled together. We consider a two-component accretion flow in which the Keplerian disk is immersed into an accreting low-angular momentum flow (halo) around a black hole. The soft photons which originate from the Keplerian disk are inverse-Comptonized by the electrons in the halo and the region between the centrifugal pressure supported shocks and the horizon. We run several cases by changing the rate of the Keplerian disk and see the effects on the shock location and properties of the outflow and the spectrum. We show that as a result of Comptonization of the Compton cloud, the cloud becomes cooler with the increase in the Keplerian disk rate. As the resultant thermal pressure is reduced, the post-shock region collapses and the outflow rate is also reduced. Since the hard radiation is produced from the post-shock region, and the spectral slope increases with the reduction of the electron temperature, the cooling produces softer spectrum. We thus find a direct correlation between the spectral states and the outflow rates of an accreting black hole.

  17. Wavelength dependence of polarization and physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Buliga, S. D.; Natsvlishvili, T. M.

    2014-08-01

    Analysis of the wavelength dependence of the polarization of radiation from active galactic nuclei (AGNs) is shown to allow the main physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in these objects to be determined. These main processes include the generation of magnetic fields as a result of the equality between the magnetic and radiation pressures or as a result of the equality between the magnetic and gas pressures. In several cases, the wavelength dependence of polarization is shown to be explained, provided that the Shakura-Sunyaev viscosity parameter depends on the accretion-disk radius.

  18. OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Guillochon, James; Kasen, Daniel; Rosswog, Stephan

    2016-03-01

    In this paper, we model the observable signatures of tidal disruptions of white dwarf (WD) stars using massive black holes (MBHs) of moderate mass, ≈10{sup 3}–10{sup 5} M{sub ⊙}. When the WD passes deep enough within the MBH’s tidal field, these signatures include thermonuclear transients from burning during maximum compression. We combine a hydrodynamic simulation that includes nuclear burning of the disruption of a 0.6 M{sub ⊙} C/O WD with a Monte Carlo radiative transfer calculation to synthesize the properties of a representative transient. The transient’s emission emerges in the optical, with light curves and spectra reminiscent of Type I supernovae. The properties are strongly viewing angle dependent, and key spectral signatures are ≈10,000 km s{sup −1} doppler shifts, due to the orbital motion of the unbound ejecta. Disruptions of He WDs likely produce large quantities of intermediate-mass elements, offering a possible production mechanism for Ca-rich transients. Accompanying multi-wavelength transients are fueled by accretion and arise from the nascent accretion disk and relativistic jet. If MBHs of moderate mass exist with number densities similar to those of supermassive BHs, both high-energy wide-field monitors and upcoming optical surveys should detect tens to hundreds of WD tidal disruptions per year. The current best strategy for their detection may therefore be deep optical follow-up of high-energy transients of unusually long duration. The detection rate or the nondetection of these transients by current and upcoming surveys can thus be used to place meaningful constraints on the extrapolation of the MBH mass function to moderate masses.

  19. Optical Thermonuclear Transients from Tidal Compression of White Dwarfs as Tracers of the Low End of the Massive Black Hole Mass Function

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico; Kasen, Daniel; Rosswog, Stephan

    2016-03-01

    In this paper, we model the observable signatures of tidal disruptions of white dwarf (WD) stars using massive black holes (MBHs) of moderate mass, ≈103-105 M⊙. When the WD passes deep enough within the MBH’s tidal field, these signatures include thermonuclear transients from burning during maximum compression. We combine a hydrodynamic simulation that includes nuclear burning of the disruption of a 0.6 M⊙ C/O WD with a Monte Carlo radiative transfer calculation to synthesize the properties of a representative transient. The transient’s emission emerges in the optical, with light curves and spectra reminiscent of Type I supernovae. The properties are strongly viewing angle dependent, and key spectral signatures are ≈10,000 km s-1 doppler shifts, due to the orbital motion of the unbound ejecta. Disruptions of He WDs likely produce large quantities of intermediate-mass elements, offering a possible production mechanism for Ca-rich transients. Accompanying multi-wavelength transients are fueled by accretion and arise from the nascent accretion disk and relativistic jet. If MBHs of moderate mass exist with number densities similar to those of supermassive BHs, both high-energy wide-field monitors and upcoming optical surveys should detect tens to hundreds of WD tidal disruptions per year. The current best strategy for their detection may therefore be deep optical follow-up of high-energy transients of unusually long duration. The detection rate or the nondetection of these transients by current and upcoming surveys can thus be used to place meaningful constraints on the extrapolation of the MBH mass function to moderate masses.

  20. Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar

    NASA Astrophysics Data System (ADS)

    Sáez, Reinaldo; Moreno, Carmen; González, Felipe; Almodóvar, Gabriel R.

    2011-07-01

    Black shales and massive sulfides represent reduced lithofacies that require isolation from oxic environments to be preserved. This, together with the sedimentary affinity of both lithofacies, can explain their common concurrence in the geologic record. The present study is based on the comparison of Rammelsberg in Germany, Tharsis in Spain, and Draa Sfar in Morocco, three massive sulfide deposits closely associated with black shales that are distributed along the European and North African Variscan orogen. The study entails geochemical, biostratigraphic, and stratigraphic analyses of the black shale sequences hosting the three deposits and mineralogical and textural analyses of the sulfides. All three deposits were formed in immature, tectonically unstable basins within an active continental margin or continental magmatic arc. Their stratigraphic records consist of a sequence of black shales enclosing massive sulfides and variable proportions of bimodal volcanic and subvolcanic rocks. The major differences among the three deposits concern the size, composition, and mineralogy. Regarding age, they are diachronous and younger southward: Rammelsberg is middle Eifelian, Tharsis latest Famennian, and Draa Sfar late Viséan. The study of redox conditions of the paleoenvironment using organic and inorganic proxies highlights similarities and significant differences among the three ore-hosting basins during massive sulfide and black shale deposition. The black shales generally display low Corg and high Stot contents. At Rammelsberg, the Stot/Ctot ratios provide values typical for normal Middle Devonian marine environments, which suggests that the original reactive organic C is now fixed in carbonates. At Tharsis, most of the samples have Corg >1 and Stot/Corg values equivalent to those of Devonian-Carboniferous normal marine sediments. However, some pyritic hanging-wall samples have Corg <1 and Stot up to 5 wt.%, suggesting the epigenetic addition of HS-. The Stot

  1. The Black-Hole Accretion Disk in NGC 4258: One of Nature's Most Beautiful Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moran, J. M.

    2008-08-01

    In this talk I will summarize some of the work that the CfA group has done to study the structure of the water masers in the accretion disk of NGC 4258. A series of 18 epochs of VLBA data taken from 1997.3 to 2000.8 were used for this study. The vertical distribution of maser features in the systemic group was found to be Gaussian, as expected for hydrostatic equilibrium, with a σ-width of 5.1 microarcsec (μas). If the disk is in hydrostatic equilibrium, its temperature is about 600 K. The systemic features exhibit a small, but persistent, gradient in acceleration versus impact parameter. This characteristic may indicate the presence of a spiral density wave rotating at sub-Keplerian speed. A more precise understanding of the dynamical properties of the disk is expected to lead to a more refined estimate of the distance to the galaxy.

  2. Radio-Mode Feedback in Massive Galaxies at Redshift 0 < z < 1

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Croom, Scott M.; Ching, John H. Y.; Johnston, Helen M.; Cannon, Russell D.; Mauch, Tom

    2010-05-01

    We have carried out a large observational study of the radio luminosities, stellar populations, and environments of massive galaxies over the redshift range 0 < z < 1. Radio jets powered by an accreting central black hole are common in massive galaxies, and there is a large class of “optically quiet AGN,” with radio emission but no optical/IR signature of black-hole accretion. The central black holes in these galaxies are probably accreting in a radiatively inefficient mode, and our results suggest that “radio-mode feedback” as described by Croton et al. is likely to occur in all masssive early-type galaxies at z < 0.8. While it appears that radio-loud AGN occur episodically in all massive early-type galaxies, we also identify a sub-population of galaxies with powerful radio sources and a prominent younger (~ 108 yr) stellar population that may have undergone recent mergers.

  3. Revisiting the dynamical case for a massive black hole in IC10 X-1

    NASA Astrophysics Data System (ADS)

    Laycock, Silas G. T.; Maccarone, Thomas J.; Christodoulou, Dimitris M.

    2015-09-01

    The relative phasing of the X-ray eclipse ephemeris and optical radial velocity (RV) curve for the X-ray binary IC10 X-1 suggests that the He [λ4686] emission line originates in a shadowed sector of the stellar wind that avoids ionization by X-rays from the compact object. The line attains maximum blueshift when the wind is directly towards us at mid X-ray eclipse, as is also seen in Cygnus X-3. If the RV curve is unrelated to stellar motion, evidence for a massive black hole (BH) evaporates because the mass function of the binary is unknown. The reported X-ray luminosity, spectrum, slow QPO and broad eclipses caused by absorption/scattering in the Wolf-Rayet (WR) wind are all consistent with either a low-stellar-mass BH or a neutron star (NS). For an NS, the centre of mass lies inside the WR envelope whose motion is then far below the observed 370 km s-1 RV amplitude, while the velocity of the compact object is as high as 600 km s-1. The resulting 0.4 per cent Doppler variation of X-ray spectral lines could be confirmed by missions in development. These arguments also apply to other putative BH binaries whose RV and eclipse curves are not yet phase-connected. Theories of BH formation and predicted rates of gravitational wave sources may need revision.

  4. Effects of Stellar-Mass Black Holes on Massive Star Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Morscher, Meagan; Rodriguez, Carl L.; Pattabiraman, Bharat; Rasio, Frederic A.

    2017-03-01

    Recent observations have revealed the existence of stellar mass black hole (BH) candidates in some globular clusters (GC) in the Milky Way and in other galaxies. Given that the detection of BHs is challenging, these detections likely indicate the existence of large populations of BHs in these clusters. This is in direct contrast to the past understanding that at most a handful of BHs may remain in old GCs due to quick mass segregation and rapid mutual dynamical ejection. Modern realistic star-by-star numerical simulations suggest that the retention fraction of BHs is typically much higher than what was previously thought. The BH dynamics near the cluster center leads to dynamical formation of new binaries and dynamical ejections, and acts as a persistent and significant energy source for these clusters. We have started exploring effects of BHs on the global evolution and survival of star clusters. We find that the evolution as well as survival of massive star clusters can critically depend on the details of the initial assumptions related to BH formation physics, such as natal kick distribution, and the initial stellar mass function (IMF). In this article we will present our latest results.

  5. Super Massive Black Holes in Disk Galaxies: HST/STIS Observations for 3 new Objects

    NASA Astrophysics Data System (ADS)

    Coccato, L.; Sarzi, M.; Corsini, E. M.; Pizzella, A.; Bertola, F.

    We present long-slit HST/STIS measurements of the ionized-gas kinematics in the nucleus of three disk galaxies, namely NGC 2179, NGC 4343, NGC 4435. The sample galaxies have been selected on the basis of their ground-based spectroscopy, for displaying a strong central velocity gradient for the ionized gas, which is consistent with the presence of a circumnuclear Keplerian disk (CNKD, Bertola et al. 1998; Funes et al. 2002) rotating around a super massive black hole (SMBH). For each target galaxy we obtained the Hα and [NII] 6583A kinematics along the major axis and two 0.25'' parallel offset positions. Out of three objects only NGC 4435 turned out to have a disk of ionized gas in regular motion and a regular dust-lane morphology. Preliminary modeling indicates a SMBH mass (MBH) one order of magnitude lower than the one expected from the MBH - αc relation for galaxies (Ferrarese & Merritt 2000; Gebhardt et al. 2000).

  6. The Coevolution of Nuclear Star Clusters, Massive Black Holes, and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-01

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  7. CONSTRAINING THE DARK ENERGY EQUATION OF STATE USING LISA OBSERVATIONS OF SPINNING MASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-10

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  8. Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    2011-05-01

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a ΛCDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2σ error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.

  9. Quantum stress tensor for a massive vector field in the space-time of a cylindrical black hole

    SciTech Connect

    Fernandez Piedra, Owen Pavel; Matyjasek, Jerzy

    2010-09-15

    The components of the renormalized quantum energy-momentum tensor for a massive vector field coupled to the gravitational field configuration of static 3+1 dimensional black strings in anti-de Sitter space are analytically evaluated using the Schwinger-DeWitt approximation. The general results are employed to investigate the pointwise energy conditions for the quantized matter field, and it is shown that they are violated at some regions of the space-time, in particular the horizon of the black hole.

  10. Quasinormal modes of self-dual warped AdS{sub 3} black hole in topological massive gravity

    SciTech Connect

    Li Ran; Ren Jirong

    2011-03-15

    We consider the scalar, vector and spinor field perturbations in the background of self-dual warped AdS{sub 3} black hole of topological massive gravity. The corresponding exact expressions for quasinormal modes are obtained by analytically solving the perturbation equations and imposing the vanishing Dirichlet boundary condition at asymptotic infinity. It is expected that the quasinormal modes agree with the poles of retarded Green's functions of the CFT dual to self-dual warped AdS{sub 3} black hole. Our results provide a quantitative test of the warped AdS/CFT correspondence.

  11. Strong orbital expansion of Saturn’s inner ice-rich moons through ring torques and mutual resonances during their accretion from a massive ring

    NASA Astrophysics Data System (ADS)

    Salmon, Julien; Canup, Robin M.

    2015-11-01

    Saturn has a diversity of moons with possibly diverse origins. Titan likely formed in Saturn’s sub-nebula (e.g., Canup & Ward 2006). The small moons interior to Mimas are likely recent aggregates of ring’s material spreading through the Roche limit (Charnoz et al. 2010). The origin of the mid-size moons, Mimas through Rhea, is debated. Charnoz et al. (2011) considered a massive ice-rock ring and strong tidal dissipation in Saturn (Q ~ 103), and found that moons out to Rhea could be spawned from such a ring. However such a small value for Q for Saturn is debated. In addition, capture into mutual Mean Motion Resonances (MMR) and resulting eccentricity growth (not included in the Charnoz et al. (2011) model) could lead to orbital destabilization as the moons tidally expand over such large distances (Peale & Canup 2015).Here we consider weak planetary tides (Q ≥ 104) and investigate whether Mimas, Enceladus and Tethys could have been spawned from a massive ice ring (Canup 2010). In this scenario, the rock in these moons would be delivered by material from outside the rings, e.g. by heliocentric impactors during the LHB (Canup 2013). We have expanded a numerical model developed to study the Moon’s accretion (Salmon and Canup 2012, 2014), which couples an analytic Roche-interior disk model to the N-body code SyMBA (Duncan et al. 1998) for satellites, so that we can directly track their accretion and mutual interactions (including MMRs), as well as their tidal interaction with the planet. We consider an initially large Saturn (Fortney et al. 2007) and its progressive contraction, which impacts the strength of tides and the location of the corotation resonance. We perform simulations with and without Dione and Rhea, and study the influence of tidal dissipation into the moons.We find that recoil of the moons due to ring torques, together with capture of moons into MMRs, can produce a distribution similar to that observed. If tidal dissipation in the moons was weak

  12. Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field

    NASA Astrophysics Data System (ADS)

    Mosallanezhad, Amin; Bu, Defu; Yuan, Feng

    2016-03-01

    We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the r - θ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical θ angle, θ ˜ 47°, the inflow changes its direction of radial motion and becomes wind. The driving for