Science.gov

Sample records for accreting x-ray sources

  1. Accretion states of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Swartz, Doug

    2009-09-01

    Ultraluminous X-ray sources (ULXs) have extended our knowledge of accretion onto black holes, and in particular of their different ``states'' as a function of accretion rate. At moderate luminosities (˜ 1E39-1E40 erg/s), the X-ray spectra of most ULXs are either fitted by non-standard accretion disks (eg, slim disks) or by a power-law, consistent with inverse-Compton emission (probably an extension of the ``steep-power-law'' state of Galactic black holes). At the highest luminosities (>˜ 1E40 erg/s), most ULXs have a power-law dominated spectrum; in particular, about half of them have hard photon indices (high/hard state, Gamma <˜ 1.7). In addition, two more elements are often found: a thermal ``soft excess'' is the signature of the standard thin disk at large radii, which constrains the radial size of the inner Comptonizing/outflow region; and a break or downturn of the power-law at ˜ 5 keV provides a characteristic temperature of the electrons in the inner region. Thus, the physics of super-Eddington accretion states correlates with that of the low states, with different systems dominated either by energy advection, or mechanical output, or Comptonizing coronae. Another intriguing issue we will discuss is whether there is a cutoff in the luminosity distribution at ˜ a few E40 erg/s, which would still be consistent with stellar black holes formed from direct collapse in metal-poor environments (maximum mass ˜ 70 Msun). If the power-law distribution extends to higher luminosities, it requires more massive black holes, perhaps formed from mergers in dense stellar/protostellar cluster environments

  2. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  3. Time-dependent spherically symmetric accretion onto compact X-ray sources

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Ostriker, J. P.; Stark, A. A.

    1978-01-01

    Analytical arguments and a numerical hydrodynamic code are used to investigate spherically symmetric accretion onto a compact object, in an attempt to provide some insight into gas flows heated by an outgoing X-ray flux. It is shown that preheating of spherically symmetric accretion flows by energetic radiation from an X-ray source results in time-dependent behavior for a much wider range of source parameters than was determined previously and that there are two distinct types of instability. The results are compared with observations of X-ray bursters and transients as well as with theories on quasars and active galactic nuclei that involve quasi-spherically symmetric accretion onto massive black holes. Models based on spherically symmetric accretion are found to be inconsistent with observations of bursters and transients.

  4. On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Poutanen, Juri

    2015-12-01

    We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can reach values of the order of 1040 erg s-1 for the magnetar-like magnetic field (B ≳ 1014 G) and long spin periods (P ≳ 1.5 s). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that L ≃ 1040 erg s-1 is a good estimate for the limiting accretion luminosity of an NS. Because this luminosity coincides with the cut-off observed in the high-mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultraluminous X-ray sources are accreting neutron stars in binary systems.

  5. Accretion mode of the ultraluminous X-ray source M82 X-2

    NASA Astrophysics Data System (ADS)

    Karino, S.; Miller, J. C.

    2016-11-01

    Periodic pulsations have been found in emission from the ultraluminous X-ray source M82 X-2, strongly suggesting that the emitter is a rotating neutron star rather than a black hole. However, the radiation mechanisms and accretion mode involved have not yet been clearly established. In this paper, we examine the applicability to this object of standard accretion modes for high mass X-ray binaries (HMXBs). We find that spherical wind accretion, which drives OB-type HMXBs, cannot apply here but that there is a natural explanation in terms of an extension of the picture for standard Be-type HMXBs. We show that a neutron star with a moderately strong magnetic field, accreting from a disc-shaped wind emitted by a Be-companion, could be compatible with the observed relation between spin and orbital period. A Roche lobe overflow picture is also possible under certain conditions.

  6. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects. PMID:25297433

  7. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  8. Geometry of X-ray sources in accreting black-hole binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    The structure of the X-ray sources in the hard spectral state of accreting black-hole binaries has been a subject of intense debate. The paradigm dominant for many years postulated that the accretion disc in the hard state is truncated at some radius >> the innermost stable orbit (ISCO) whereas the disc reaches the ISCO in the soft state. This paradigm explains a large body of observed phenomena, including the spectral and variability differences between the states and outbursts of transient sources, proceeding from quiescence (where no disc is present) through the hard state to the peak flux in the soft state. On the other hand, there have been numerous claims in recent years that the disc extends to the ISCO in the hard state. Also, the primary X-ray source has been postulated to consist of a compact source on-axis of the rotating black hole (a lamppost). Those claims are based on observations of broad Fe K lines and of soft X-ray components interpreted as blackbody-emitting accretion discs. I will discuss arguments for and against the disc truncation and the lamppost geometry based on current spectral and timing results.

  9. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Walton, Dominic J.; Fabian, Andrew; Roberts, Timothy P.; Heil, Lucy; Pinto, Ciro; Anderson, Gemma; Sutton, Andrew

    2015-12-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen in several sources and appear extremely similar in shape, implying a common origin. Via simple arguments we assert that emission from extreme colliding winds, absorption in a shell of material associated with the ULX nebula and thermal plasma emission associated with star formation are all highly unlikely to provide an origin. Whilst CCD spectra lack the energy resolution necessary to directly determine the nature of the features (i.e. formed of a complex of narrow lines or intrinsically broad lines), studying the evolution of the residuals with underlying spectral shape allows for an important, indirect test for their origin. The ULX NGC 1313 X-1 provides the best opportunity to perform such a test due to the dynamic range in spectral hardness provided by archival observations. We show through highly simplified spectral modelling that the strength of the features (in either absorption or emission) appears to anticorrelate with spectral hardness, which would rule out an origin via reflection of a primary continuum and instead supports a picture of atomic transitions in a wind or nearby material associated with such an outflow.

  10. REVISITING PUTATIVE COOL ACCRETION DISKS IN ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Miller, J. M.; King, A. L.; Reynolds, M. T.; Reis, R. C.; Walton, D. J.; Fabian, A. C.; Miller, M. C.

    2013-10-20

    Soft, potentially thermal spectral components observed in some ultra-luminous X-ray sources (ULXs) can be fit with models for emission from cool, optically thick accretion disks. If that description is correct, the low temperatures that are observed imply accretion onto 'intermediate-mass' black holes. Subsequent work has found that these components may follow an inverse relationship between luminosity and temperature, implying a non-blackbody origin for this emission. We have re-analyzed numerous XMM-Newton spectra of extreme ULXs. Crucially, observations wherein the source fell on a chip gap were excluded owing to their uncertain flux calibration, and the neutral column density along the line of sight to a given source was jointly determined by multiple spectra. The luminosity of the soft component is found to be positively correlated with temperature, and to be broadly consistent with L∝T {sup 4} in the measured band pass, as per blackbody emission from a standard thin disk. These results are nominally consistent with accretion onto black holes with masses above the range currently known in Galactic X-ray binaries, though there are important caveats. Emission from inhomogeneous or super-Eddington disks may also be consistent with the data.

  11. Geometry of X-ray sources in accreting black-hole binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    According to the long-dominant paradigm, the accretion disc in the hard state is truncated at a radius >> ISCO whereas it reaches the ISCO in the soft state. This explains many observed phenomena, e.g., spectral and variability differences between the states and transition from quiescence in transients. On the other hand, there have been many claims that the disc extends to the ISCO in the hard state, and the X-ray source has been postulated to be a lamppost very close to the horizon. I will discuss the current evidence for and against the disc truncation and the lamppost geometry, and their implications. If the lamppost model were correct, most of the produced photons would be trapped by the black hole, and the source luminosity as measured at infinity would then be much larger than that observed. Also, the luminosity measured in the local frame would be >> that observed, due to the photon trapping, time dilation and redshift, and T_e would be significantly higher than that observed. I will also present results of a study of off of the X-ray spectra of the hard state of GX 339-4 observed by XMM-Newton. These results show the truncation radius to be ISCO for all the data sets. These radii also agree with the independent determination of De Marco et al. (2015) based on soft X-ray lags.

  12. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    SciTech Connect

    Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N. A.; Harrison, F. A.; Walton, D. J.; Rana, V.; Fabian, A. C.

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.

  13. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  14. A POPULATION OF ULTRALUMINOUS X-RAY SOURCES WITH AN ACCRETING NEUTRON STAR

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2015-04-01

    Most ultraluminous X-ray sources (ULXs) are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star (NS) accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized NS. In this work we model the formation history of NS ULXs in an M82- or Milky Way (MW)-like Galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birth rate is around 10{sup −4} yr{sup −1} for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass–orbital period plane. Our results suggest that, compared with black hole X-ray binaries, NS X-ray binaries may significantly contribute to the ULX population, and high-mass and intermediate-mass X-ray binaries dominate the NS ULX population in M82- and MW-like Galaxies, respectively.

  15. Circinus X-1: a Laboratory for Studying the Accretion Phenomenon in Compact Binary X-Ray Sources. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Robinson-Saba, J. L.

    1983-01-01

    Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.

  16. X-ray spectra of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The spectroscopic properties of the various classes of Galactic X-ray sources are discussed, with particular emphasis on binary sources containing an accreting compact object, where post-emission scattering in an accretion disk often prevents the initially produced X-radiation from being observed directly. Theoretical interpretations and X-ray observations are considered for the cataclysmic variables, binary systems with a white dwarf as the compact object and which suffer relatively less from Thomson scattering, and the similar phenomenological spectral characteristics of the bulge sources, including soft transients, bursters and steady X-ray sources with thermal spectra, thought to represent an accreting neutron star, are pointed out. The spectral characteristics of X-ray pulsars in accreting binary systems (rather than the Crab pulsar, which is losing rotational kinetic energy with time) are then presented and interpreted in terms of accretion in the polar regions, and mechanisms for the newly discovered X-ray emission from late-type RS CVn stars are considered.

  17. Testing the Paradigm that Ultra-Luminous X-Ray Sources as a Class Represent Accreting Intermediate

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-01-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity > or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.

  18. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  19. Accreting X-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    This presentation describes the behavior of matter in environments with extreme magnetic and gravitational fields, explains the instability/stability of accretion disks in certain systems, and discusses how emergent radiation affects accretion flow. Magnetic field measurements are obtained by measuring the lowest cyclotron absorption line energy, observing the cutoff of accretion due to centrifugal inhibition and measuring the spin-up rate at high luminosity.

  20. Accretion Disk Dynamics in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Ji, Li; Nowak, M.; Canizares, C. R.; Kallman, T.

    2009-09-01

    The last decade of X-ray observations was an era of true discovery in the study of accretion phenomena in X-ray binaries. With the launch of high resolution X-ray spectrometers on board the Chandra X-ray Observatory and XMM Newton we gained novel insights in feedback processes in accretion disks. At the forefront are dynamics in winds and outflows. Recent observations now also not only reveal properties of accretion disk coronal phenomena but point us to highly variable activity in their appearance. Amongst others these include heating along the spectral branches in the Z-source Cyg X-2, short and longterm variations in the photo-ionized emissions in Cir X-1, highly variable and dynamic Ne edges in the ultra-compact binary 4U 0614+091. This presentation summarizes these recent developments and provides an outlook towards more dynamical accretion disk coronal models and perspectives for future missions.

  1. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  2. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    SciTech Connect

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  3. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  4. X-ray Illuminated Ionized Skin of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Nayakshin, S.

    Recently (Nayakshin, Kazanas & Kallman 2000), it was confirmed that the X-ray illuminated upper layer of accretion disk is unstable to the thermal ionization instability, and that most of the previous models of X-ray reflection and iron Kα line emission missed this instability. Not only the detailed predictions of these models, but even the intuition that one gained from the theoretical literature in the last 10 years is often misleading. We discuss how we can deduce the geometry of the primary X-ray source(s) by studying X-ray illuminated accretion disks. In particular, we show that the spectra and iron lines from disks that are illuminated by a single source above the black hole will usually contain highly ionized features that are rarely seen in real spectra. A full corona above a standard like disk will yield a neutral-like reflection component and iron Kα lines and is also incompatible with observations. On the other hand, if the X-ray sources are magnetic flares, then the X-ray flux illuminating the disk surface near to them is very much higher than the disk flux, leading to cold-like reflection and lines with an apparently smaller normalization. Therefore, we claim that the former model is strongly favored by the existing data.

  5. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  6. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  7. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  8. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  9. Jets and Accretion Disks in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  10. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  11. TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS

    SciTech Connect

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  12. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  13. Partial accretion in the propeller stage of accreting millisecond X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Gungor, Can; Gogus, Ersin; Eksi, Kazim Yavuz; Guver, Tolga

    2016-07-01

    Accreting millisecond X-ray pulsars (AMXPs) are very important objects for studying the stages of disk - magnetosphere interaction as these objects may show different stages in an observable duration. A typical X-ray light curve of an outburst of AMXP has a fast rise and an exponential decay phases. Most of the outbursts have a knee where the flux goes from the slow decay stage to the rapid decay stage. This knee may be linked to the transition from accretion to propeller stage. Since, after the knee, the X-ray luminosity of the source is still higher than its quiescent level, the accretion from inner disc must be continuing in the propeller stage with a lower fraction than in the accretion stage. The X-ray does not only come from accretion onto the poles but the inner parts of the disk may also contribute to the total X-ray luminosity. To infer what fraction (f) of the inflowing matter accretes onto the star the light curve in the propeller stage, one should first separate the emission originating from the disk and obtain a light curve of X-ray emission only from the magnetic poles. We provide a new method to infer from the observational data the fraction of accreting matter onto the neutron star pole to the mass transferring from outer layers of the disc to the inner disc (f), as a function of the fastness parameter (ω_{*}), assuming the knee is due to the transition from accretion to the propeller stage. We transform X-ray luminosities to the mass fraction, f, and the time scale of outburst to fastness parameter, ω_*. It allows us to compare different types of outbursts of an AMXP in f - ω_* space which is universal for a unique system. We analysed the Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) observations of the 2000 and the 2011 outbursts and the Swift Gamma-Ray Burst Mission/X-ray Telescope (SWIFT/XRT) data of the 2013 outburst of the most known AMXP, Aql X-1 using a combination of blackbody representing hot spot, disk blackbody

  14. Ultrafast X-ray Sources

    SciTech Connect

    George Neil

    2010-04-19

    Since before the scattering of X-rays off of DNA led to the first understanding of the double helix structure, sources of X-rays have been an essential tool for scientists examining the structure and interactions of matter. The resolution of a microscope is proportional to the wavelength of light so x-rays can see much finer structures than visible light, down to single atoms. In addition, the energy of X-rays is resonant with the core atomic levels of atoms so with appropriate wavelengths the placement of specific atoms in a large molecule can be determined. Over 10,000 scientists use synchrotron sources, storage rings of high energy electrons, each year worldwide. As an example of such use, virtually every picture of a protein or drug molecule that one sees in the scientific press is a reconstruction based on X-ray scattering of synchrotron light from the crystallized form of that molecule. Unfortunately those pictures are static and proteins work through configuration (shape) changes in response to energy transfer. To understand how biological systems work requires following the energy flow to these molecules and tracking how shape changes drive their interaction with other molecules. We'd like to be able to freeze the action of these molecules at various steps along the way with an X-ray strobe light. How fast does it have to be? To actually get a picture of a molecule in a fixed configuration requires X-ray pulses as short as 30 femtoseconds (1/30 of a millionth of a millionth of a second). To capture the energy flow through changes in electronic levels requires a faster strobe, less than 1 femtosecond! And to acquire such information in smaller samples with higher accuracy demands brighter and brighter X-rays. Unfortunately modern synchrotrons (dubbed 3rd Generation Light Sources) cannot deliver such short bright pulses of X-rays. An entirely new approach is required, linear-accelerator (linac-)-based light sources termed 4th or Next Generation Light Sources

  15. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  16. Polarized X-rays from accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  17. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  18. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  19. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  20. Revealing accretion onto black holes through X-ray reflection

    NASA Astrophysics Data System (ADS)

    Plant, D.; Fender, R.; Ponti, G.; Munoz-Darias, T.; Coriat, M.

    2014-07-01

    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ RXTE observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source decays. Using results from archival and AO-12 observations of GX 339-4 with XMM-Newton we reveal the dynamics driving this evolution and the nature of accretion onto black holes in outburst.

  1. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  2. Exceptional X-ray Weak Quasars: Implications for Accretion Flows

    NASA Astrophysics Data System (ADS)

    Brandt, William; Luo, Bin; Hall, Patrick; Wu, Jianfeng; Anderson, Scott; Garmire, Gordon; Gibson, Robert; Just, Dennis; Plotkin, Richard; Richards, Gordon; Schneider, Donald; Shemmer, Ohad; Shen, Yue

    2015-04-01

    Actively accreting supermassive black holes (SMBHs) are found, nearly universally, to create luminous X-ray emission, and this point underlies the utility of X-ray surveys for finding growing SMBHs throughout the Universe. However, there are exceptions to this rule that provide novel insights, including PHL 1811 analogs and some weak-line quasars. We have been systematically studying such X-ray weak quasars with the Chandra X-ray Observatory, aiming (1) to define their optical-to-X-ray spectral energy distributions, (2) to measure their basic X-ray spectral properties, and (3) to establish the optical/UV emission-line and continuum properties that most directly trace X-ray weakness. Many of these type 1 quasars show unusually hard X-ray spectra, suggesting that small-scale absorption/reflection has a primary role in causing their X-ray weakness and distinctive emission-line properties. Physical considerations indicate that this small-scale absorber/reflector may be the geometrically thick inner accretion disk expected to form if PHL 1811 analogs and weak-line quasars have unusually high SMBH accretion rates.

  3. X-ray radiation from accreting, magnetized neutron stars

    SciTech Connect

    Pavlov, G.G.

    1984-01-01

    A review is given of recent developments in the theory of emission from a magnetized plasma for accreting neutron star conditions. Some observational data on X-ray pulsars are discussed, and present problems are indicated. 26 references.

  4. Theory of magnetic cataclysmic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.

    1988-01-01

    The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.

  5. Ultra Luminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Webb, N. A.; Godet, O.

    2015-12-01

    Ultra Luminous X-ray sources (ULXs) are X-ray bright objects that are not coincident with the central nucleus of the host galaxy and which have luminosities that exceed the Eddington limit for a stellar mass black hole, typically L > 3 × 10^{39} erg s^{-1} for a black hole of 20 M_⊙. The nature of these objects is still unclear. However, it is possible that these sources do not form a single class of objects. Many ULXs may house stellar mass black holes accreting at super-Eddington rates, even if the physical mechanism for such high accretion rates is still not understood. Some ULXs may contain intermediate mass black holes (˜1 × 10^{2} - ˜1 × 10^{5} M_⊙). These elusive black holes are thought to be the building blocks of the more massive supermassive black holes, observed at the centre of many galaxies. Other ULXs may not be accreting black holes at all. Recent evidence for the different types of ULXs is presented in this paper.

  6. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  7. X-ray deficiency on strongly accreting T Tauri stars. Comparing Orion with Taurus

    NASA Astrophysics Data System (ADS)

    Bustamante, I.; Merín, B.; Bouy, H.; Manara, C. F.; Ribas, Á.; Riviere-Marichalar, P.

    2016-03-01

    Context. Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Aims: Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster (ONC), we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. Methods: We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. Results: We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. A considerable number of classified non-accreting sources show accretion rates comparable to those of classical T Tauri Stars (CTTS). Our data do not allow us to confirm the classification between classical and weak-line T Tauri stars (WTTS), and the number of WTTS in this work is small compared to the complete samples. Thus, we have used the entire samples as accretors in our analysis. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an ONC T Tauri stars sample. Conclusions: Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the ONC. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the

  8. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  9. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  10. Ultraluminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Gladstone, Jeanette

    2012-07-01

    The first black hole was observed almost 50 years ago, ˜ 1 year after Sco X-1 (although its nature was not confirmed for ˜ 11 years). Observations of black holes have been ongoing since then, falling in to two distinct categories; stellar-mass (sMBHs; 3 - 80 M_{⊙}) and super-massive black holes (10^6 - 10^9 M_⊙). The missing link between these two types, intermediate mass black holes, has been the target of many searches due to their cosmological implications. Ultraluminous X-ray sources (ULXs) have been proposed to harbor such objects, but recent observational evidence has strongly suggested that the majority contain sMBHs. However, a handful of the brightest ULXs are so luminous that they defy this explanation. Here we will discuss the nature of both standard ULXs and this new bright subgroup of this population.

  11. A study of magnetic fields of accreting X-ray pulsars with the Rossi X-ray Timing Explorer

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    2001-12-01

    Pulsars are known to be rotating neutron stars that appear to emit regular flashes or radiation. For accretion powered pulsars, the emission is powered by the accretion of material from a normal stellar companion onto the magnetic poles of the neutron star. The conditions in these polar regions, which exhibit extremes in gravitation, temperature, and magnetic field strength, are impossible to recreate in terrestrial laboratories and are possibly unique in nature. Despite two decades of work, no compelling models exist explaining how the infalling material distributes itself across the polar caps, or how the observed X-ray continuum is formed. More fundamentally, these are unanswered questions of how matter acts and reacts in this extreme environment. By studying the X-ray spectra of these sources, we can hope to elucidate some of these questions. Some accreting pulsars exhibit absorption-like X-ray features, or cyclotron lines. The energies of these lines are the only direct measure of the magnetic field of a neutron star, and their detailed line profiles are sensitive to the physical parameters in the formation region. In this work I have used data from NASA's Rossi X-ray Timing Explorer to study the geometry, physical conditions, and dynamical behavior of phenomena in the polar regions of these rotating neutron stars. I present two new cyclotron lines I discovered during the course of the research in the spectra of 4U 0352+309 and XTE J1946+274. I outline a new method for using cyclotron line shapes as a function of neutron star rotation, along with the temporal structure of the X-ray pulses, to self consistently describe the geometry of the emission regions. This type of analysis is a powerful tool for studying the accretion structures that form at the pulsar magnetic poles. I apply the method qualitatively to three sources, and discuss prospects for future work. I find that the characteristic spectral break energy in X-ray continua is correlated with the

  12. Seeing to the Event Horizon: Probing Accretion Physics with X-ray Reflection

    NASA Astrophysics Data System (ADS)

    Wilkins, Dan

    2015-09-01

    Accretion onto supermassive black holes in active galactic nuclei is known to power some of the most luminous objects we see in the Universe, which through their vast energy outputs must have played an important role in shaping the large scale structure of the Universe we see today. Much remains unknown, however, about the fine details of this process; exactly how energy is liberated from accretion flows onto black holes, how the 'corona' that produces the intense X-ray continuum is formed and what governs this process over time. I will outline how the detection of X-rays reflected from the discs of accreting material around black holes by the present generation of large X-ray observatories, shifted in energy and blurred by relativistic effects in the strong gravitational field close to the black hole, has enabled measurements of the inner regions of the accretion flow in unprecedented detail. In particular, exploiting the shift in energy of atomic emission lines by relativistic effects as a function of location on the disc has enabled the measurement of the illumination pattern of the accretion flow by the X-ray continuum from which the geometry of the emitting region can be inferred and how the detection of time lags between the primary and reflected X-rays owing to the additional path the reflected rays must travel between the corona and the disc places further constraints on the nature of the emitting corona. These techniques allow the evolution of the corona that accompanies transitions from high to low X-ray flux to be studied, giving clues to the physical process that forms and powers the intense X-ray source and uncovering evidence for the potential launching of jets. I will discuss the great steps forward in understanding accretion physics that can be made with the Athena X-ray observatory, combining detailed analysis of observations with predictions and models from general relativistic ray tracing simulations. In particular, I will discuss how high

  13. X-Ray Sources in the Dwarf Spheroidal Galaxy Draco

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I.

    2016-04-01

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with LX > 3 × 1033 erg s-1 in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  14. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  15. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  16. No Compton Reflection In a Chandra/RXTE Observation of Mkn 509: Implications for the Fe-K Line Emission From Accreting X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line

  17. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of

  18. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  19. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  20. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  1. V4046 Sgr: X-rays from accretion shock

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Maggio, A.; Montmerle, T.; Huenemoerder, D.; Alecian, E.; Audard, M.; Bouvier, J.; Damiani, F.; Donati, J.-F.; Gregory, S.; Güdel, M.; Hussain, G.; Kastner, J.; Sacco, G. G.

    2014-08-01

    We present results of the X-ray monitoring of V4046 Sgr, a close classical T Tauri star binary, with both components accreting material. The 360 ks long XMM observation allowed us to measure the plasma densities at different temperatures, and to check whether and how the density varies with time. We find that plasma at temperatures of 1-4 MK has high densities, and we observe correlated and simultaneous density variations of plasma, probed by O VII and Ne IX triplets. These results strongly indicate that all the inspected He-like triplets are produced by high-density plasma heated in accretion shocks, and located at the base of accretion flows.

  2. A new model for the X-ray continuum of the magnetized accreting pulsars

    NASA Astrophysics Data System (ADS)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  3. An accretion disk swept up by a powerful thermonuclear X-ray burst

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  4. X-ray Spectroscopy of Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Ishida, Manabu

    2010-12-01

    The advent of the grating spectrometers onboard Chandra and XMM-Newton opened up a new era in plasma diagnostics of compact binaries. High resolution spectroscopy using these spectrometers is of particular use in investigating accretion plasmas in cataclysmic variables (CVs) because they show a wealth of emission lines owing to their optically thin thermal nature. In this review, I present recent progress on density measurements of the plasma in magnetic CVs by means of He-like triplet and iron L lines, and the outcome of line velocity measurements in the dwarf nova SS Cygni in outburst, to demonstrate the potential power of high resolution spectroscopy to elucidate the geometry of the plasma. In the end, our expectations for the Soft X-ray Spectrometer onboard the forthcoming X-ray mission Astro-H are summarized.

  5. ULTRALUMINOUS X-RAY SOURCES IN ARP 147

    SciTech Connect

    Rappaport, S.; Steinhorn, B.; Levine, A.; Pooley, D. E-mail: aml@space.mit.ed

    2010-10-01

    The Chandra X-Ray Observatory was used to image the collisional ring galaxy Arp 147 for 42 ks. We detect nine X-ray sources with luminosities in the range of (1.4-7) x 10{sup 39} erg s{sup -1} (assuming that the sources emit isotropically) in or near the blue knots of star formation associated with the ring. A source with an X-ray luminosity of 1.4 x 10{sup 40} erg s{sup -1} is detected in the nuclear region of the intruder galaxy. X-ray sources associated with a foreground star and a background quasar are used to improve the registration of the X-ray image with respect to Hubble Space Telescope (HST) high-resolution optical images. The intruder galaxy, which apparently contained little gas before the collision, shows no X-ray sources other than the one in the nuclear bulge which may be a poorly fed supermassive black hole. These observations confirm the conventional wisdom that collisions of gas-rich galaxies trigger large rates of star formation which, in turn, generate substantial numbers of X-ray sources, some of which have luminosities above the Eddington limit for accreting stellar-mass black holes (i.e., ultraluminous X-ray sources, 'ULXs'). We also utilize archival Spitzer and Galex data to help constrain the current star formation rate in Arp 147 to {approx}7 M{sub sun} yr{sup -1}. All of these results, coupled with binary evolution models for ULXs, allow us to tentatively conclude that the most intense star formation may have ended some 15 Myr in the past.

  6. The quiescent X-ray spectrum of accreting black holes

    NASA Astrophysics Data System (ADS)

    Reynolds, Mark T.; Reis, Rubens C.; Miller, Jon M.; Cackett, Edward M.; Degenaar, Nathalie

    2014-07-01

    The quiescent state is the dominant accretion mode for black holes on all mass scales. Our knowledge of the X-ray spectrum is limited due to the characteristic low luminosity in this state. Herein, we present an analysis of the sample of dynamically confirmed stellar-mass black holes observed in quiescence in the Chandra/XMM-Newton/Suzaku era resulting in a sample of eight black holes with ˜570 ks of observations. In contrast to the majority of active galactic nuclei where observations are limited by contamination from diffuse gas, the stellar-mass systems allow for a clean study of the X-ray spectrum resulting from the accretion flow alone. The data are characterized using simple models. We find a model consisting of a power law or thermal bremsstrahlung to both provide excellent descriptions of the data, where we measure Γ = 2.06 ± 0.03 and kT = 5.03^{+0.33}_{-0.31} keV, respectively, in the 0.3-10 keV bandpass, at a median luminosity of Lx ˜ 5.5 × 10-7LEdd. This result in discussed in the context of our understanding of the accretion flow on to stellar and supermassive black holes at low luminosities.

  7. VizieR Online Data Catalog: T Tauri stars X-ray/accretion anti correlation (Bustamante+, 2016)

    NASA Astrophysics Data System (ADS)

    Bustamante, I.; Merin, B.; Bouy, H.; Manara, C.; Ribas, A.; Rivere-Marichalar, P.

    2015-11-01

    Stellar parameters and derived X-ray residual luminosities are presented. Two different subsamples are shown in the table, depending whether the accretion rates were computed using an excess in the U band or using the equivalent width of the Halpha line. Three different sources are used for these data: X-ray information from the Chandra Orion Ultradeep Project (COUP), stellar information from Manara et al. (2012, Cat. J/ApJ/755/154) and properties derived in this work. For each source identification, coordinates and X-ray luminosity (logarithmic) from COUP, identification, coordinates, stellar mass, mass accretion rate and spectral type from Manara et al. (2012, Cat. J/ApJ/755/154) and residual X-ray luminosity derived from this work is given. This last parameter depends on the relations between X-ray luminosity, stellar mass and mass accretion rate derived in this work. (2 data files).

  8. Tsinghua Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang; Huang, Wenhui; Li, Renkai; Du, Yingchao; Yan, Lixin; Shi, Jiaru; Du, Qiang; Yu, Peicheng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Lin, Yuzheng

    2009-09-01

    We proposed the Tsinghua Thomson scattering X-ray (TTX) source as an ultra-fast, high flux source for advanced X-ray imaging studies and applications. A linac system, which consists of an S-band photocathode RF gun, a SLAC type 3 m traveling wave tube and two X-band structures, generates ultra-short, high brightness electron pulses to scatter with tera-watt femto-second laser pulses. A compact low energy electron storage ring is also designed to dramatically enhance the average X-ray flux. In this paper, we present the simulation studies and optimized parameters of the electron and X-ray pulses. The construction and commissioning status of TTX is also reported.

  9. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Roseanne

    2005-01-01

    One of the key accomplishments of the two preceding years was our development of an algorithm to select SSSs in external galaxies which have been observed by Chandra or XMM-Newton. By applying this algorithm to data from a number of galaxies, we discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We call these new sources quasisoft sources (QSSs). During this past year, we have built on and extended this work. We have (1) continued to identify SSSs and QSSs in external galaxies, (2) worked on models for the sources and find that black hole models seem promising for a subset of them, and (3) have studied individual systems, especially M101-ULX1. This special system has been observed as an SSS in its high &ate, with a luminosity in excess of 10(exp 41) erg/s. It has also been observed as a QSS when it is less luminous, and as a hard source in its low state. It is one of the best candidates to be an accreting intermediate-mass black hole. We have several papers in preparation. Below we list papers which are complete, including only new work and papers whose status has changed (e.g., been accepted for publication) since our last report. In addition, our work on QSSs has received some publicity. It was the subject of a Chandra press release and was picked up by several media outlets.

  10. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  11. X-RAY POLARIZATION FROM ACCRETING BLACK HOLES: CORONAL EMISSION

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H. E-mail: jhk@pha.jhu.ed

    2010-04-01

    We present new calculations of X-ray polarization from accreting black holes (BHs), using a Monte Carlo ray-tracing code in full general relativity. In our model, an optically thick disk in the BH equatorial plane produces thermal seed photons with polarization oriented parallel to the disk surface. These seed photons are then inverse-Compton scattered through a hot (but thermal) corona, producing a hard X-ray power-law spectrum. We consider three different models for the corona geometry: a wedge 'sandwich' with aspect ratio H/R and vertically integrated optical depth tau{sub 0} constant throughout the disk; an inhomogeneous 'clumpy' corona with a finite number of hot clouds distributed randomly above the disk within a wedge geometry; and a spherical corona of uniform density, centered on the BH and surrounded by a truncated thermal disk with inner radius R{sub edge}. In all cases, we find a characteristic transition from horizontal polarization at low energies to vertical polarization above the thermal peak; the vertical direction is defined as the projection of the BH spin axis on the plane of the sky. We show how the details of the spectropolarization signal can be used to distinguish between these models and infer various properties of the corona and BH. Although the bulk of this paper focuses on stellar-mass BHs, we also consider the effects of coronal scattering on the X-ray polarization signal from supermassive BHs in active galactic nuclei.

  12. Ultraluminous X-ray sources - three exciting years

    NASA Astrophysics Data System (ADS)

    Bachetti, M.

    2015-09-01

    Ultraluminous X-ray sources are off-nuclear extragalactic sources with (apparent) luminosities exceeding the Eddington limit for a stellar-mass black hole. This naturally suggests an association with the elusive class of intermediate-mass black holes, or with super-Eddington accreting black holes. As it turns out, this peculiar class of sources is actually a variegated zoo, including both classes of accreting black holes mentioned above and, rather unexpectedly, neutron stars. In this talk I will overview the astrophysical properties of these objects, and give an update on the many breakthroughs appeared in the literature in the last three years.

  13. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  14. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  15. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  16. Spectra of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mccray, R.

    1982-01-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  17. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  18. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  19. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  20. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    NASA Astrophysics Data System (ADS)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  1. Accretion in supergiant High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Manousakis, A.; Blondin, J.; Walter, R.

    2013-09-01

    Supergiant High Mass X-ray Binary systems (sgHMXBs) consist of a massive, late type, star and a neutron star. The massive stars exhibit strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i) A heavily obscured sgHMXB (IGR J17252-3616) discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density) we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii) A classical sgHMXB (Vela X-1) has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism) we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very efficiently as a probe to study stellar winds.

  2. Accretion in supergiant High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland; Blondin, John

    2014-01-01

    Supergiant High Mass X-ray Binary systems (sgHMXBs) consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i) A heavily obscured sgHMXB (IGR J17252-3616) discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density) we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii) A classical sgHMXB (Vela X-1) has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism) we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  3. Pulse-to-pulse variations in accreting X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kretschmar, Peter; Marcu, Diana; Kühnel, Matthias; Klochkov, Dmitry; Pottschmidt, Katja; Staubert, Rüdiger; Wilson-Hodge, Colleen A.; Jenke, Peter A.; Caballero, Isabel; Fürst, Felix

    2014-01-01

    In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten) are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  4. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    NASA Astrophysics Data System (ADS)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  5. A New Model for Spectral Formation in Accretion-Powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael T.; Becker, P. A.; Wolfram, K. D.

    2006-09-01

    Accretion-powered X-ray pulsars are among the most luminous X-ray sources in the Galaxy yet no satisfactory model for the formation of their observed X-ray spectra has emerged. We report on a self-consistent calculation of the spectrum emerging from a magnetically funneled pulsar accretion flow that includes a treatment of the bulk and thermal Comptonization occurring in a radiation-dominated shock. Using a rigorous eigenfunction expansion method, we obtain a closed-form expression for the Green's function describing the upscattering of monochromatic radiation injected into the flow. The Green's function is convolved with bremsstrahlung, cyclotron, and blackbody source terms to calculate the emergent photon spectrum. We show that energization of photons in the shock naturally produces a X-ray spectrum with a relatively flat continuum and a high-energy exponential cutoff. Finally, we demonstrate the good agreement of our model with the spectra of bright pulsars such as Her X-1 and Cen X-3. This research was funded by NASA and the Office of Naval Research.

  6. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  7. Simultaneous X-ray and optical observations of the flaring X-ray source, Aquila A-1

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Charles, P. A.

    1979-01-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. The results of extensive observations at X-ray and optical wavelengths throughout this event, which lasted for approximately two months are presented. The peak X-ray luminosity was approximately 1.3 times that of the Crab and exhibited spectral dependent flickering on timescales approximately 5 minutes. The observations are interpreted in terms of a standard accretion disk model withparticular emphasis on the similarities to Sco X-1 and other dward X-ray systems, although the transient nature of the system remains unexplained. It was found that Aquila X-1 can be described adequately by the semi-detached Roche lobe model and yields a mass ratio of less than or approximate to 3.5.

  8. Population synthesis of accreting white dwarfs - II. X-ray and UV emission

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2015-11-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm interstellar medium (ISM). In an earlier paper, we modelled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code BSE, and then following their evolution with a grid of evolutionary tracks computed with MESA. Now we use these results to estimate the soft X-ray (0.3-0.7 keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of supersoft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ˜1 Gyr and decline by ˜1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ˜10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686 Å/H β line ratio measured in stacked Sloan Digital Sky Survey spectra of retired galaxies, the latter characterizing the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He II 4686 Å/H β ratio are significantly overpredicted for stellar ages of ≲4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass-loss for giant stars.

  9. X-ray reflection by photoionized accretion discs

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.; Ross, R. R.; Fabian, A. C.

    2001-10-01

    Calculations of X-ray reflection spectra from ionized, optically thick material are an important tool in investigations of accretion flows surrounding compact objects. We present the results of reflection calculations that treat the relevant physics with a minimum of assumptions. The temperature and ionization structure of the top five Thomson depths of an illuminated disc are calculated while also demanding that the atmosphere is in hydrostatic equilibrium. In agreement with Nayakshin, Kazanas & Kallman, we find that there is a rapid transition from hot to cold material in the illuminated layer. However, the transition is usually not sharp, so that often we find a small but finite region in Thomson depth where there is a stable temperature zone at T~2×106K due to photoelectric heating from recombining ions. As a result, the reflection spectra often exhibit strong features from partially ionized material, including helium-like Fe K lines and edges. The reflection spectra, when added to the illuminating spectra, were fitted by the publicly available constant-density models (i.e. pexriv, pexrav and the models of Ross & Fabian). We find that owing to the highly ionized features in the spectra these models have difficulty correctly parametrizing the new reflection spectra. There is evidence for a spurious R-Γ correlation in the ASCA energy range, where R is the reflection fraction for a power-law continuum of index Γ, confirming the suggestion of Done & Nayakshin that at least part of the R-Γ correlation reported by Zdziarski, Lubiński & Smith for Seyfert galaxies and X-ray binaries might be due to ionization effects. However, large uncertainties in the fit parameters prevent confirmation of the correlation in the 3-20keV energy range. Although many of the reflection spectra show strong, ionized features, these are not typically observed in most Seyfert and quasar X-ray spectra. However, the data are not yet good enough to place constraints on the illumination

  10. Accretion regimes in the X-ray pulsar 4U 1901+03

    NASA Astrophysics Data System (ADS)

    Reig, P.; Milonaki, F.

    2016-10-01

    Context. The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, complex changes in the pulse profiles, and pulse phase dependent spectral variability. Aims: We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. Methods: We extracted light curves and spectra using data from the Rossi X-ray Timing Explorer. Low time resolution light curves were used to create hardness-intensity diagrams and study daily changes in flux. High time resolution light curves were used to create pulse profiles. An average spectrum per observation allowed us to investigate the evolution of the spectral parameters with time. Results: We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical regime. Only at the end of the outburst, when the luminosity decreased below ~1036 (d/ 10 kpc)2 erg s-1, did the source enter the propeller regime. Evidence for the existence of these regimes comes from the pulse profiles, the shape of the hardness-intensity diagram, and the correlation of various spectral parameters with the flux. The 10 keV feature appears to strongly depend on the X-ray flux and on the pulse phase, which opens the possibility to interpret this feature as a cyclotron line.

  11. Chilled disks in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuncic, Zdenka; Gonçalves, Anabela C.

    2007-04-01

    The "soft-excess" component fitted to the X-ray spectra of many ultraluminous X-ray sources (ULXs) remains a controversial finding, which may reveal fundamental information either on the black hole (BH) mass or on the state of the accretion flow. In the simplest model, it was explained as thermal emission from a cool accretion disk around an intermediate-mass BH (about 1000 solar masses). We argue that this scenario is highly implausible, and discuss and compare the two most likely alternatives. 1) The soft-excess does come from a cool disk; however, the temperature is low not because of a high BH mass but because most of the accretion power is drained from the inner disk via magnetic torques, and channelled into jets and outflows ("chilled disk" scenario). Using a phenomenological model, we infer that ULXs contain BHs of about 50 solar masses accreting gas at about 10 times their Eddington rate. 2) The soft excess is in fact a soft deficit, if the power-law continuum is properly fitted. Such broad absorption features are caused by smeared absorption lines in fast, highly ionized outflows. This scenario has already been successfully applied to the soft excess in AGN. If so, this spectral feature reveals details of disk outflows,but is unrelated to the BH mass.

  12. Laser-based X-ray and electron source for X-ray fluorescence studies

    NASA Astrophysics Data System (ADS)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  14. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  15. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  18. Observation of living cells by x-ray microscopy with a laser-plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Tomie, Toshihisa; Shimizu, Hazime; Majima, Toshikazu; Yamada, Mitsuo; Kanayama, Toshihiko; Yano, M.; Kondo, H.

    1991-12-01

    We studied laser-produced plasma as an x-ray source for x-ray microscopy. Using water- window x rays, contact x-ray images of living sea urchin sperm were taken by a 500 picosecond x-ray pulse. The resist relief was examined by atomic force microscope and informations characteristic of x-ray microscopy were obtained. The finest feature noticed in the x-ray image was 0.1 micrometers .

  19. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  20. X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C. E-mail: jhk@pha.jhu.edu

    2013-06-01

    We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T{sub e} {approx} 10 keV in a boundary layer near the disk and rises smoothly to T{sub e} {approx}> 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to Almost-Equal-To 6M as the accretion rate decreases, we find that the shape of the Fe K{alpha} line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  1. Ultraluminous X-ray Sources in NGC 6946.

    NASA Astrophysics Data System (ADS)

    Sánchez Cruces, Mónica; Rosado, Margarita; Fuentes-Carrera, Isaura L.

    2016-07-01

    Ultra-luminous X-ray sources (ULXs) are the most X-ray luminous off-nucleus objects in nearby galaxies with X-ray luminosities between 10^{39} - 10^{41} erg s^{-1} in the 0.5-10 keV band. Since these luminosities cannot be explained by the standard accretion of a stellar mass black hole, these sources are often associated with intermediate-mass black holes (IMBHs, 10^{2}-10^{4} solar masses). However significantly beamed stellar binary systems could also explain these luminosities. Observational knowledge of the angular distribution of the source emission is essential to decide between these two scenarios. In this work, we present the X-ray analysis of five ULXs in the spiral galaxy NGC 6949, along with the kinematical analysis of the ionized gas surrounding each of these sources. For all sources, X-ray observations reveal a typical ULX spectral shape (with a soft excess below 2 keV and a hard curvature above 2 keV) which can be fit with a power-law + multi-color disk model. However, even if ULXs are classified as point-like objects, one of the sources in this galaxy displays an elongated shape in the Chandra images. Regarding the analysis of the emission lines of the surrounding ˜300 pc around each ULX, scanning Fabry-Perot observations show composite profiles for three of the five ULXs. The main component of these profiles follows the global rotation of the galaxy, while the faint secondary component seems to be associated with asymmetrical gas expansion. These sources have also been located in archive images of NGC 6946 in different wavelengths in order to relate them to different physical processes occurring in this galaxy. Though ULXs are usually located in star formation regions, we find that two of the sources lie a few tenths of parsecs away from different HII regions. Based on the X-ray morphology of each ULX, the velocities and distribution of the surrounding gas, as well as the location of the source in the context of the whole galaxy, we give the most

  2. Hard cosmic X-ray sources.

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.

    1973-01-01

    A review of the observational status of X-ray sources detected in the 20 to 500 keV range is presented. Of the approximately 115 sources listed in the March 1972 edition of the UHURU 2-6 keV sky survey catalog, about 15 sources have been studied in hard X rays. Most of the data have been obtained from balloons, although the OSO-3, and more recently the OSO-7, have contributed. With the exception of CEN A, the SMC, and possibly M-87, all the sources detected at higher energies are galactic and heavily concentrated in the galactic plane. The Crab Nebula has been measured to about 500 keV in continuous emission and a component at the 33-msec pulsar period comprising about 20% of the total emission has been detected to 10 MeV. Objects such as SCO-1 and CYG-2 are characterized by an exponential spectrum, which varies over a 10-min time scale about a factor of two, and a flatter spectrum extending to above 40 keV which exhibits independent variability.

  3. SPECTRAL STATES AND EVOLUTION OF ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Feng Hua; Kaaret, Philip

    2009-05-10

    We examined spectral evolution in ultraluminous X-ray sources (ULXs) with apparent luminosities of about 10{sup 40} erg s{sup -1}. Based on new results in this paper, and those reported in the literature, two common spectral behaviors were found. Some ULXs in starburst galaxies have varying luminosity (L) but remain in the hard state with power-law spectra and a constant, hard photon index ({gamma}). Other ULXs, such as NGC 5204 X-1, show a correlation between L and {gamma}. We interpret this L-{gamma} correlated phase as an intermediate state with hybrid properties from the thermal dominant and steep power-law states. When the spectra of NGC 5204 X-1 are fitted with a multicolor disk blackbody plus power-law model, the X-ray luminosity increases with the effective temperature of the accretion disk in a manner similar to that found in stellar-mass black hole X-ray binaries, suggesting that the emission arises from an accretion disk. The luminosity, disk size, and temperature suggest that NGC 5204 X-1 harbors a compact object more massive than stellar-mass black holes. In contrast, the disk model in IC 342 X-1 is ruled out because the luminosity decreases as the temperature increases; sources with such behavior may represent a class of objects with super-Eddington accretion. Also, we report a peculiar soft spectral feature from IC 342 X-2 and variability on a timescale of 20 ks from Holmberg II X-1. More observations are needed to test these results.

  4. X-ray Spectra from GRMHD Simulations of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy; Noble, Scott; Krolik, Julian H.; Kinch, Brooks

    2016-04-01

    We present the results of a global radiation transport code coupled to general relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is Te ~ 10 keV in a boundary layer near the disk and rises smoothly to Te >~ 100 keV in low-density regions far above the disk. We self-consistently solve for the ionization state of gas in each vertical column of the disk, in turn giving iron fluorescent emissivity profile.

  5. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  6. The Integrated X-Ray Spectrum of Galactic Populations of Luminous Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, R.; Becker, C. M.; Fabbiano, G.

    1996-01-01

    We compute the composite X-ray spectrum of a population of unresolved SSS's in a spiral galaxy such as our own or M31. The sources are meant to represent the total underlying population corresponding to all sources which have bolometric luminosities in the range of 10(exp 37) - 10(exp 38) ergs/s and kT on the order of tens of eV. These include close-binary supersoft sources, symbiotic novae, and planetary nebulae, for example. In order to determine whether the associated X-ray signal would be detectable, we also 'seed' the galaxy with other types of X-ray sources, specifically low-mass X-ray binaries (LMXB's) and high-mass X-ray binaries (HMXB's). We find that the total spectrum due to SSS's, LMXB's, and HMXB's exhibits a soft peak which owes its presence to the SSS population. Preliminary indications are that this soft peak may be observable.

  7. Emission lines from X-ray-heated accretion disks in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Kallman, Timothy R.

    1994-01-01

    We investigate the structure of accretion disks illuminated by X-rays from a central compact object in a binary system. X-rays can photoionize the upper atmosphere of the disk and form an accretion disk corona (ADC) where emission lines can form. We construct a model to calculate the vertical structure and the emission spectrum of the ADC with parameters appropriate to low-mass X-ray binaries. These models are made by nonlocal thermodynamic equilibrium calculations of ion and level populations and include a large number of atomic processes for 10 cosmically abundant elements. Transfer of radiation is treated by using the escape probability formalism. The vertical temperature profile of the ADC consists of a Compton-heated region and a mid-T zone where the temperature is approximately 10(exp 6) K. A thermal instability occurs close to the disk photosphere and causes the temperature of the ADC to drop abruptly from 10(exp 6) K to several times 10(exp 4) K. The emission spectrum in the optical, ultraviolet, extreme ultraviolet, and X-ray range is discussed and compared with the observations.

  8. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  9. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  10. Nanomaterial-based x-ray sources.

    PubMed

    Cole, Matthew T; Parmee, R J; Milne, William I

    2016-02-26

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  11. Nanomaterial-based x-ray sources

    NASA Astrophysics Data System (ADS)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  12. Nanomaterial-based x-ray sources.

    PubMed

    Cole, Matthew T; Parmee, R J; Milne, William I

    2016-02-26

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices. PMID:26807781

  13. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  14. Near-infrared spectroscopy of faint discrete X-ray point sources constituting the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Morihana, Kumiko; Tsujimoto, Masahiro; Dubath, Pierre; Yoshida, Tessei; Suzuki, Kensuke; Ebisawa, Ken

    2016-08-01

    The Galactic Ridge X-ray Emission (GRXE) is an apparently extended X-ray emission along the Galactic plane. The X-ray spectrum is characterized by a hard continuum with a strong Fe K emission feature in the 6-7 keV band. A substantial fraction (˜80%) of the GRXE in the Fe band was resolved into point sources by deep Chandra imaging observations; thus GRXE is mostly composed of dim Galactic X-ray point sources, at least in this energy band. To investigate the populations of these dim X-ray point sources, we carried out near-infrared (NIR) follow-up spectroscopic observations in two deep Chandra fields located in the Galactic plane at (l, b) = (0.1°, -1.4°) and (28.5°, 0.0°) using NTT/SofI and Subaru/MOIRCS. We obtained well-exposed NIR spectra from 65 objects and found that there are three main classes of Galactic sources based on the X-ray color and NIR spectral features: those having (A) hard X-ray spectra and NIR emission features such as H I (Brγ), He I, and He II (2 objects), (B) soft X-ray spectra and NIR absorption features such as H I, Na I, Ca I, and CO (46 objects), and (C) hard X-ray spectra and NIR absorption features such as H I, Na I, Ca I, and CO (17 objects). From these features, we argue that class A sources are cataclysmic variables (CVs), and class B sources are late-type stars with enhanced coronal activity, which is in agreement with current knowledge. Class C sources possibly belong to a new group of objects, which has been poorly studied so far. We argue that the candidate sources for class C are the binary systems hosting white dwarfs and late-type companions with very low accretion rates. It is likely that this newly recognized class of sources contribute to a non-negligible fraction of the GRXE, especially in the Fe K band.

  15. The Galactic plane at faint X-ray fluxes - I. Properties and characteristics of the X-ray source population

    NASA Astrophysics Data System (ADS)

    Warwick, R. S.; Pérez-Ramírez, D.; Byckling, K.

    2011-05-01

    We investigate the serendipitous X-ray source population revealed in XMM-Newton observations targeted in the Galactic plane within the region 315° < l < 45° and |b| < 2?. Our study focuses on a sample of 2204 X-ray sources at intermediate to faint fluxes, which were detected in a total of 116 XMM-Newton fields and are listed in the Second XMM-Newton Serendipitous Source Catalog. We characterize each source as spectrally soft or hard on the basis of whether the bulk of the recorded counts have energies below or above 2 keV and find that the sample divides roughly equally (56 per cent:44 per cent) into these soft and hard categories. The X-ray spectral form underlying the soft sources may be represented as either a power-law continuum with Γ˜ 2.5 or a thermal spectrum with kT˜ 0.5 keV, with NH ranging from 1020 to 1022 cm-2. For the hard sources, a significantly harder continuum form is likely, that is, Γ˜ 1, with NH= 1022-1024 cm-2. For ˜50 per cent of the hard sources, the inferred column density is commensurate with the total Galactic line-of-sight value; many of these sources will be located at significant distances across the Galaxy, implying a hard-band luminosity LX > 1032 erg s-1, whereas some will be extragalactic interlopers. A high fraction (≳90 per cent) of the soft sources have potential near-infrared (NIR) (Two-Micron All-Sky Survey and/or United Kingdom Infrared Deep Sky Survey) counterparts inside their error circles, consistent with the dominant soft-X-ray-source population being relatively nearby coronally-active stars. These stellar counterparts are generally brighter than J= 16, a brightness cut-off which corresponds to the saturation of the X-ray coronal emission at LX= 10-3 Lbol. In contrast, the success rate in finding likely IR counterparts to the hard X-ray sample is no more than ≈15 per cent down to J= 16 and ≈25 per cent down to J= 20, set against a rapidly rising chance coincidence rate. The make-up of the hard-X-ray-source

  16. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Warwick, R.

    2014-07-01

    We make a new determination of the hard-band (2-10 keV) X-ray luminosity function (XLF) of relative low-luminosity Galactic X-ray sources based on a source sample derived from the XMM Slew Survey (XSS). The source population is comprised of coronally-active late-type stars and binaries with hard-band X-ray luminosities in the range 10^{28-32} erg s^{-1} and cataclysmic variables (magnetic and non-magnetic) with X-ray luminosities spanning the range 10^{30-34} erg s^{-1}. We use this new estimate of the XLF, to predict the 2-10 keV X-ray source counts on the Galactic Plane at faint fluxes and show that the result is fully consistent with the available observational constraints. Similarly the predicted surface brightness, both in the full 2-10 keV band and in a restricted 6-10 keV bandpass, due to the integrated emission of faint unresolved Galactic sources, is well matched to the observed intensity of the Galactic ridge X-ray emission (GRXE). We find that the coronally-active sources make the dominant contribution to both the faint Galactic X-ray source counts and the GRXE.

  17. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  18. X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  19. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a ~= 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of sime1 × 1033(D/6.7 kpc)2 erg s-1. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of <~ 2 × 1033 erg s-1 and constrain its temperature to be <~ 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of <~ 34% and <~ 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  20. THE QUIESCENT X-RAY PROPERTIES OF THE ACCRETING MILLISECOND X-RAY PULSAR AND ECLIPSING BINARY SWIFT J1749.4-2807

    SciTech Connect

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-10

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a {approx_equal} 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of {approx_equal}1 Multiplication-Sign 10{sup 33}(D/6.7 kpc){sup 2} erg s{sup -1}. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of {approx}< 2 Multiplication-Sign 10{sup 33} erg s{sup -1} and constrain its temperature to be {approx}< 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of {approx}< 34% and {approx}< 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  1. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  2. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    SciTech Connect

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  3. A 6 second periodic X-ray source in Carina

    NASA Technical Reports Server (NTRS)

    Seward, F. D.; Charles, P. A.; Smale, A. P.

    1986-01-01

    A serendipitous source, 1E 1048.1-5937, was discovered during Einstein imaging observations of the Carina nebula. On July 13, 1979, this source had an intensity of 0.14 IPC counts/s, and the signal was 65 percent pulsed with a period of 6.44 s. An earlier observation failed to detect any source with strength greater than 1/10 the above signal. The source is therefore highly variable, perhaps transient. An Exosat observation of this source on June 20, 1985 confirmed the pulse period and refined the source position to an accuracy of 10 arcsec. On the basis of the position, the source is tentatively identified with a V = 19 optical counterpart. The X-ray spectrum is best fitted by a power law with photon index = 2.26 and a column density of 1.6 x 10 to the 22nd atoms/sq cm. The X-ray characteristics are consistent with an accretion-powered Be star binary.

  4. Supersoft X-ray sources: the role of V Sge

    NASA Astrophysics Data System (ADS)

    Simon, Vojtech; Mattei, Janet A.

    2007-07-01

    V Sge is one of a few known super-soft X-ray sources (SSXSs) located in our Galaxy and is the representative of the V Sge class. Here we concentrate on its long-term optical activity (mostly transitions between high and low states, clustering in so-called active segments). We show that cycles are often apparent in such transitions but their length undergoes large, often gradual variations. We give the implications for the accretion wind evolution, modeled by Hachisu & Kato (2003). We also analyze the color indices and absolute magnitudes of V Sge and compare them with those of ´classicaĺ SSXSs with the orbital period shorter than 4 d. This approach helps compare the properties and configuration of the medium, on which soft X-rays are reprocessed in these systems. The specific properties of SSXSs, as regards their optical activity, absolute magnitudes and colors, can be the promising tools for the search for such systems in the optical and near UV passbands. SSXSs yet undetected in the X-ray passband because of absorption thus can be revealed by the photometric method.

  5. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  6. Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  7. X-ray reflectivity imager with 15 W power X-ray source

    NASA Astrophysics Data System (ADS)

    Jiang, Jinxing; Sakurai, Kenji

    2016-09-01

    X-ray reflectivity is usually used for the routine analysis of layered structures of uniform thin films. So far, the technique has some limitations in the application to more practical inhomogeneous/patterned samples. X-ray reflectivity imaging is recently developed technique and can give the reconstructed image from many X-ray reflection projections. The present article gives the instrumental details of the compact X-ray reflectivity imager. Though the power of X-ray source is only 15 W, it works well. The calibration of the system has been discussed, because it is particularly important for the present grazing incidence geometry. We also give a visualization example of the buried interface, physical meaning of the reconstructed image, and discussions about possibilities for improvement.

  8. Exceptional X-ray Weak Quasars: Implications for Accretion Flows and Winds

    NASA Astrophysics Data System (ADS)

    Brandt, Niel

    2014-11-01

    Actively accreting SMBHs are found, nearly universally, to create luminous X-ray emission. However, there are exceptions to this rule that provide novel insights, including PHL 1811 analogs and some weak-line quasars. We have been systematically studying such X-ray weak quasars with Chandra, and have now established the optical/UV emission-line and continuum properties that most directly trace X-ray weakness. We will report our results on the remarkable basic X-ray properties of these objects and describe their implications for models of the accretion disk/corona, emission-line formation, and quasar winds. Furthermore, we will report NuSTAR observations indicating that a significant fraction of BAL quasars are intrinsically X-ray weak, thereby promoting strong wind driving.

  9. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Morihana, Kumiko; Tsujimoto, Masahiro; Ebisawa, Ken; Yoshida, Tessei

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  10. Testing theories for longterm accretion variability in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Cambier, Hal J.

    Many X-ray sources are now understood to be "black hole X-ray binaries'' in which a stellar remnant black hole either tidally "squeezes'' gas off a companion star, or pulls in some fraction the companion's wind. This gas can drain inward through a dense, thin disk characterized by thermalized radiation, or a sparse and radiatively-inefficient flow, or some combination of the two. Observations at other energies often provide crucial information, but our primary tools to study accretion, especially closest to the black hole, are X-ray spectra and their time evolution. This evolution includes numerous behaviors spanning orders of magnitude in timescale and luminosity, and also hints at spatial structure since draining is generally faster at smaller radii. This includes variability at time-scales of weeks to months which remains difficult to explain despite an abundance of possible variability mechanisms since direct simulations covering the full spatial and temporal range remain impractical. After reviewing general aspects of accretion, I present both more and less familiar forms of longterm variability. Based on these, I argue the problem involves finding a physical process (or combination) that can generate repeatable yet adjustable cycles in luminosity and evolution of low and high energy spectral components, while letting the ionization instability dominate conventional outbursts. Specific models examined include: disks embedded in, and interacting with, hot, sparse flows, and another instability that quenches viscous-draining of the disk at more fundamental level. Testing these theories, alone and in combination, motivates building a very general and simplified numerical model presented here. I find that two-phase flow models still predict excessive recondensation in LMC X-3 among other problems, while the viscosity-quenching instability may account for rapid drops and slow recoveries in disk accretion rate but also likely requires diffusivity orders of magnitude

  11. Quiescent accretion disks in black hole X-ray novae

    NASA Technical Reports Server (NTRS)

    Orosz, Jerome A.; Bailyn, Charles D.; Remillard, Ronald A.; Mcclintock, Jeffrey E.; Foltz, Craig B.

    1994-01-01

    We present detailed time-resolved spectroscopy of the Balmer emission lines from two black hole binary systems in quiescence, A0620-00 and Nova Muscae 1991. We find extraordinary similarities between the two systems. There are 30-40 km/s velocity variations of the emission lines over the orbital period, the phases of which are not aligned with the expected phase of the motion of the compact primary. Detailed modeling of both systems is complicated by variable hot spot components, regions of optical thickness, and intermittent excess emission in the blue line wings of the H-alpha lines. Both sources also display low velocities at the outer edge of the accretion disk, implying a large primary Roche lobe and extreme mass ratios. These complications suggest that although simple optically thin, Keplerian alpha-disk models provide a useful parameterization of emission lines from these systems, the straightforward physical models they imply should be treated with great caution.

  12. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    NASA Technical Reports Server (NTRS)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  13. Broadband X-ray Spectroscopy of the ADC Source 4U 1822-37 with Suzaku

    NASA Technical Reports Server (NTRS)

    Cottam, J.; White, N.

    2006-01-01

    We will present the broadband spectra of the low mass x-ray binary 4U 1822-37, recently observed with Suzaku. 4U 1822-37 is the canonical accretion disk corona (ADC) source where the compact object is obscured by an extended corona that intercepts and scatters the central continuum emission, some of which is then reprocessed in the outer regions of the accretion disk. 4U 1822-37 therefore serves as an important link between x-ray binaries and AGN. The broadband x-ray spectra from the Suzaku XIS and HXD provide a unique opportunity to probe the physical conditions in the corona and the accretion disk for this important accretion geometry.

  14. Accretion and ejection in black-hole X-ray transients

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Belloni, T. M.

    2015-02-01

    Context. A rich phenomenology has been accumulated over the years regarding accretion and ejection in black-hole X-ray transients (BHTs) and it needs an interpretation. Aims: Here we summarize the current observational picture of the outbursts of BHTs, based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson cosmic battery (PRCB), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form, whose characteristic time scale is much longer than the dynamical or the cooling ones. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state, i.e., at very low accretion rate, and that state transitions take place over long time scales (hours to days). The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Last, but not least, we demonstrate that the previous history of the system is absolutely necessary for the interpretation of the HLD. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. Finally, the counterclockwise traversal of the HLD is explained as follows: all outbursts start from the quiescent state, in which the inner part of the accretion flow is ADAF-like, threaded by a poloidal magnetic field. As the

  15. Persistent X-ray emission from a gamma-ray burst source

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Cline, T.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Laros, J. G.; Hurley, K. C.; Niel, M.; Klebesadel, R. W.

    1982-01-01

    A quiescent X-ray source detected with the Einstein X-ray Observatory in a location consistent with that of an intense gamma ray burst is shown to be also consistent with the location of the 1928 optical transient, the likely optical counterpart of the gamma ray burst source GBS0117-29. The system appears to be underluminous in X-rays by a factor of 10; possible reasons for this are discussed. The observed X-ray flux would require an accretion rate of about 10 to the -14th (d/1 kpc/)-squared solar masses per year, which is probably too low to be consistent with published nuclear flash models for gamma bursts, unless the distance is substantially greater than about 1 kpc or the burst recurrence time is greater than about 50 yrs, or the accretion rate is highly variable. Such a long recurrence time appears to be inconsistent with the detection of the optical burst.

  16. Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

    NASA Astrophysics Data System (ADS)

    Bonito, R.; Argiroffi, C.; Orlando, S.; Miceli, M.; Peres, G.; Matsakos, T.; Stehle, C.; Ibgui, L.

    2015-01-01

    We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surrounding medium. We explored the effects of absorption for different viewing angles and for the He-like line triplets commonly used for density diagnostic. From the model results we synthesize the X-ray emission from the accretion shock, producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare our results with the observations. Our model shows that the X-ray fluxes detected are lower than expected because of the local absorption. The emerging spectra suggest a complex density vs temperature distribution proving that a detailed model accounting for a realistic treatment of the local absorption is needed to interpret the observations of X-ray emitting accretion shocks.

  17. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  18. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-09-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}}˜ 10^{2-3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  19. XMM-Newton reveals extreme winds in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Middleton, M.; Fabian, A.

    2016-06-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources with X-ray luminosities above 10^{39} erg/s, thought to be powered by accretion onto compact objects. Viable solutions include accretion onto neutron stars with strong magnetic fields, stellar-mass black holes at or in excess of the Eddington limit or intermediate-mass black holes. The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. In this talk, I will show the discovery of rest-frame emission and blueshifted (˜0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The blueshifted absorption lines occurs in a fast outflowing gas, whereas the emission lines originate in slow-moving gas around the source. The compact object is therefore surrounded by powerful winds with an outflow velocity of about 0.2c as predicted by models of hyper-accreting black holes. Further, deep, XMM-Newton observations will reveal powerful winds in many other ultraluminous X-ray sources and provide important hints to estimate the energetics of the wind, the geometry of the system, and the black hole masses.

  20. EVIDENCE FOR ACCRETION RATE CHANGE DURING TYPE I X-RAY BURSTS

    SciTech Connect

    Worpel, Hauke; Galloway, Duncan K.; Price, Daniel J.

    2013-08-01

    The standard approach for time-resolved X-ray spectral analysis of thermonuclear bursts involves subtraction of the pre-burst emission as background. This approach implicitly assumes that the persistent flux remains constant throughout the burst. We reanalyzed 332 photospheric radius expansion bursts observed from 40 sources by the Rossi X-Ray Timing Explorer, introducing a multiplicative factor f{sub a} to the persistent emission contribution in our spectral fits. We found that for the majority of spectra the best-fit value of f{sub a} is significantly greater than 1, suggesting that the persistent emission typically increases during a burst. Elevated f{sub a} values were not found solely during the radius expansion interval of the burst, but were also measured in the cooling tail. The modified model results in a lower average value of the {chi}{sup 2} fit statistic, indicating superior spectral fits, but not yet to the level of formal statistical consistency for all the spectra. We interpret the elevated f{sub a} values as an increase of the mass accretion rate onto the neutron star during the burst, likely arising from the effects of Poynting-Robertson drag on the disk material. We measured an inverse correlation of f{sub a} with the persistent flux, consistent with theoretical models of the disk response. We suggest that this modified approach may provide more accurate burst spectral parameters, as well as offering a probe of the accretion disk structure.

  1. A model of an X-ray-illuminated accretion disk and corona

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1993-01-01

    The X-ray-illuminated surface of the accretion disk in a low-mass X-ray Binary (LMXRB) and the X-ray-heated corona above the disk produce optical, UV, and soft X-ray emission lines. This paper presents 1D models of the emission line spectra and the vertical temperature and density structures at different radii. The models include a detailed treatment of the important atomic processes and an escape probability treatment of radiative transfer. Soker and Raymond (1993) use the density structure predicted by these models for a 2D Monte Carlo simulation of the photon scattering in the accretion disk corona (ADC) to examine the effects of the ADC on the angular distribution of X-rays and the flux of X-rays incident on the outer disk. This paper concentrates on the emission line fluxes for various elemental abundances and disk parameters. The UV lines of the classic LMXRBs are consistent with the model predictions. Some CNO processing is necessary to account for the nitrogen and helium abundances in Sco X-1 and other LMXRBs. Comparison of the models with observed spectra also points to a soft X-ray component with luminosity comparable to the hard X-rays. The models predict a substantial luminosity in the group of highly ionized iron lines near 100 A.

  2. THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS

    SciTech Connect

    Argiroffi, C.; Maggio, A.; Damiani, F.; Montmerle, T.; Huenemoerder, D. P.; Alecian, E.; Audard, M.; Bouvier, J.; Gregory, S. G.; Guedel, M.; Hussain, G. A. J.; Kastner, J. H.; Sacco, G. G.

    2012-06-20

    We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n{sub e}{approx} 10{sup 11}-10{sup 12} cm{sup -3}) plasma at temperatures of 3-4 MK. Our multi-wavelength campaign aims to simultaneously constrain the properties of this X-ray-emitting plasma, the large-scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray-grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22 {+-} 0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.

  3. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  4. IGR J17361-4441: a possible new accreting X-ray binary in NGC 6388

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Ferrigno, C.; Stevens, J.; Belloni, T. M.; Rodriguez, J.; den Hartog, P. R.; Papitto, A.; Kreykenbohm, I.; Fontani, F.; Gibaud, L.

    2011-11-01

    IGR J17361-4441 is a newly discovered INTEGRAL hard X-ray transient, located in the globular cluster NGC 6388. We report here the results of the X-ray and radio observations performed with Swift, INTEGRAL, RXTE, and the Australia Telescope Compact Array (ATCA) after the discovery of the source on 2011 August 11. In the X-ray domain, IGR J17361-4441 showed virtually constant flux and spectral parameters up to 18 days from the onset of the outburst. The broad-band (0.5-100 keV) spectrum of the source could be reasonably well described by using an absorbed power-law component with a high energy cut-off (NH ≃ 0.8 × 1022 cm-2, Γ ≃ 0.7-1.0, and Ecut ≃ 25 keV) and displayed some evidence of a soft component below ~2 keV. No coherent timing features were found in the RXTE data. The ATCA observation did not detect significant radio emission from IGR J17361-4441, and provided the most stringent upper limit (rms 14.1 μJy at 5.5 GHz) to date on the presence of any radio source close to the NGC 6388 center of gravity. The improved position of IGR J17361-4441 in outburst determined from a recent target of opportunity observation with Chandra, together with the X-ray flux and radio upper limits measured in the direction of the source, argue against its association with the putative intermediate-mass black hole residing in the globular cluster and with the general hypothesis that the INTEGRAL source is a black hole candidate. IGR J17361-4441 might be more likely a new X-ray binary hosting an accreting neutron star. The ATCA radio non-detection also permits us to derive an upper limit to the mass of the suspected intermediate massive black hole in NGC 6388 of ≲ 600 M⊙. This is a factor of 2.5 lower than the limit reported previously.

  5. Black hole accretion disks - Electrodynamic coupling of accretion-disk coronae and the partitioning of soft and hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.

    1985-01-01

    It is demonstrated that the observed large ratio of hard to soft X-ray emission and the bimodel behavior of black hole accreting X-ray sources such as Cygnus X-1 can be described in terms of a magnetically structured accretion disk corona which is electrodynamically coupled to the disk turbulent motions while the disk is thermodynamically coupled to the corona as described by a feedback parameter delta. The observed ratio of hard to soft X-ray emission is independent of the disk thickness, and weakly dependent of the disk parameter alpha relating the disk viscous stresses to the total pressure. Observed values of the luminosity ratio point towards strong differences of the feedback of the low state compared to the high state, in the sense that low state means small feedback (delta less than 0.2) and high state means strong feedback delta of about 0.5.

  6. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  7. Spectral Modeling of the Comptonized Continua of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael Thomas; Pottschmidt, Katja; Becker, Peter A.; Marcu, Diana; Wilms, Jörn; Wood, Kent S.

    2015-01-01

    We are undertaking a program to analyze the X-ray spectra of the accretion flows onto strongly magnetic neutron stars in high mass binary systems such as Cen X-3, and XTE J1946+274. These accreting pulsars typically have X-ray spectra consisting of broad Comptonized cutoff power-laws. Current theory suggests these X-ray spectra result from radiation-dominated shocks that develop in the high-velocity magnetically channeled plasma accretion flows onto the surfaces of the neutron stars. These X-ray pulsars often, but not always, show cyclotron resonant scattering features implying neutron star surface magnetic field strengths above 1012 G. Proper fitting of cyclotron line centroids (for example, to investigate how the line centroid varies with X-ray luminosity) requires a robust model for the Comptonized X-ray continuum upon which the cyclotron lines are superposed, and this can be provided by a continuum model based on the physics of the accretion column.We discuss in this presentation our ongoing program for the analysis of the X-ray spectra formed in these systems. Our program consists of two parts. First, we are modeling the X-ray spectra from the Suzaku X-ray satellite of accreting X-ray pulsars Cen X-3 and XTE J1946+274 utilizing the best currently existing empirical models. The second part of our program is building a new analysis tool based on the analytical model of Becker and Wolff (2007). In the high temperature optically thick plasma flows, the processes of bremsstrahlung emission from the hot plasma, black body emission from a thermal mound near the neutron star surface, and cyclotron emission from electrons in the first Landau excited state, all contribute to the total observed X-ray spectrum. We show recent results from our new implementation and its comparison with the Suzaku data for these X-ray pulsars.This research is supported by the NASA Astrophysics Data Analysis Program.

  8. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  9. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki

    2010-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, consisting of 11 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  10. NEAR-INFRARED COUNTERPARTS OF CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER

    SciTech Connect

    DeWitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata; Blum, Robert; Olsen, Knut; Sellgren, Kris

    2010-10-01

    The Chandra X-ray Observatory has now discovered nearly 10,000 X-ray point sources in the 2{sup 0} x 0.{sup 0}8 region around the Galactic Center. The sources are likely to be a population of accreting binaries in the Galactic Center, but little else is known of their nature. We obtained JHK{sub s} imaging of the 17' x 17' region around Sgr A*, an area containing 4339 of these X-ray sources, with the ISPI camera on the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope. We cross-correlate the Chandra and ISPI catalogs to find potential IR counterparts to the X-ray sources. The extreme IR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. We find 2137 IR/X-ray astrometrically matched sources: statistically, we estimate that our catalog contains 289 {+-} 13 true matches to soft X-ray sources and 154 {+-} 39 matches to hard X-ray sources. However, the fraction of true counterparts to candidate counterparts for hard sources is just 11%, compared to 60% for soft sources, making hard source NIR matches particularly challenging for spectroscopic follow-up. We calculate a color-magnitude diagram (CMD) for the matches to hard X-ray sources, and find regions where significant numbers of the IR matches are real. We use their CMD positions to place limits on the absolute K{sub s} -band magnitudes of the potential NIR counterparts to hard X-ray sources. We find regions of the counterpart CMD with 9 {+-} 3 likely Wolf-Rayet/supergiant binaries (with four spectroscopically confirmed in the literature) as well as 44 {+-} 13 candidates that could consist of either main-sequence high mass X-ray binaries or red giants with an accreting compact companion. In order to aid spectroscopic follow-up, we sort the candidate counterpart catalog on the basis of IR and X-ray properties to determine which source characteristics increase the probability of a true match. We find a set of 98 IR

  11. Infrared observations of galactic bulge X-ray sources

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Grindlay, J. E.

    1984-01-01

    Nine unidentified galactic bulge X-ray sources, the recently identified X-ray burster MXB 1728-34, and two optically identified sources (Sco X-1 and MXB 1735-44) were observed with the NASA 3 m Infrared Telescope Facility. The data constrain both the presence of diffuse infrared sources near the X-ray positions and the flux of possible infrared counterparts. None of the nine unidentified sources lies within obscured globular clusters, although there is marginal evidence for diffuse infrared emission near 4U 1822-00 and 4U 1916-05. This implies that at most two additional luminous galactic bulge X-ray sources lie within undiscovered, obscured globular clusters. No infrared counterparts were detected for unidentified sources; the limits derived are consistent with all of the sources observed being similar to the low mass X-ray binary Sco X-1.

  12. The hard X-ray emission spectra from accretion columns in intermediate polars

    NASA Technical Reports Server (NTRS)

    Yi, Insu; Vishniac, Ethan T.

    1994-01-01

    We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass

  13. Multilayers for next generation x-ray sources

    SciTech Connect

    Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

    2007-05-04

    Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

  14. X-Ray Point Sources in the Sombrero Galaxy: Very Soft Sources, the Globular Cluster/Low-Mass X-Ray Binary Connection, and an Overview

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Kong, A. K. H.; VanDalfsen, M. L.; Harris, W. E.; Murray, S. S.; Delain, K. M.

    2003-12-01

    We report on the population of point sources discovered during an 18.5 ks Chandra ACIS-S observation of the Sombrero galaxy. We present the luminosity function and the spectra of the six brightest sources, consider correlations with globular clusters (GCs) and with planetary nebulae, and study the galaxy's population of very soft sources. We detected 122 sources. Twenty-two sources are identified as very soft; of these, five appear to be classical luminous supersoft X-ray sources (SSSs), while 17 may belong to the slightly harder class referred to as quasi-soft (QSSs). There is an overdensity of very soft sources within 2 kpc of the nucleus, which is itself the brightest X-ray source. Very soft sources are also found in the disk and halo, with one QSS in a globular cluster (GC). This source is somewhat harder than most SSSs; the energy distribution of its photons is consistent with what is expected from an accreting intermediate-mass black hole. Several sources in the Sombrero's halo are good candidates for SSS models in which the accretor is a nuclear-burning white dwarf. In total, 32 X-ray sources are associated with GCs. The majority of sources with luminosity greater than 1038 ergs s-1 are in GCs. These results for M104, an Sa galaxy, are similar to what has been found for elliptical galaxies and for the late-type spiral M31. We find that those optically bright GCs with X-ray sources house only the brightest X-ray sources. We find that, in common with other galaxies, there appears to be a positive connection between young (metal-rich) GCs and X-ray sources but that the brightest X-ray sources are equally likely to be in metal-poor GCs. The luminosity function of X-ray sources in GCs has a cut-off near the Eddington luminosity for a 1.4 Msolar object. We propose a model that can explain the trends seen in the data sets from the Sombrero and other galaxies. Thermal timescale mass transfer can occur in some of the younger clusters in which the turnoff mass is

  15. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes. PMID:27120159

  16. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  17. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, Ciro; Middleton, Matthew J.; Fabian, Andrew C.

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 1039 ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (103-105 solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  18. Exceptional X-ray Weak Quasars: Implications for Accretion Flows and Emission-Line Formation

    NASA Astrophysics Data System (ADS)

    Brandt, W. Niel; Luo, Bin; Hall, Patrick B.; Wu, Jianfeng; Anderson, Scott F.; Garmire, Gordon; Gibson, Robert; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Shemmer, Ohad; Shen, Yue

    2016-01-01

    Actively accreting supermassive black holes are found, nearly universally, to create luminous X-ray emission, and this point underlies the utility of X-ray surveys for finding active galactic nuclei throughout the Universe. However, there are apparent X-ray weak exceptions to this rule that are now providing novel insights, including weak-line quasars (WLQs) and especially analogs of the extreme WLQ, PHL 1811. We have been systematically studying such X-ray weak quasars with Chandra and near-infrared spectroscopy, and I will report results on their remarkable properties and describe implications for models of the accretion disk/corona and emission-line formation. We have found evidence that many of these quasars may have geometrically thick inner accretion disks, likely due to high accretion rates, that shield the high-ionization broad line region from the relevant ionizing continuum. This model can explain, in a simple and unified manner, their weak lines and diverse X-ray properties. Such shielding may, more generally, play a role in shaping the broad distributions of quasar emission-line equivalent widths and blueshifts.

  19. The Mechanism of the Optical Variability of Supersoft X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Koyama, A.; Matsuda, T.; Matsumoto, K.; Fukue, J.

    1999-12-01

    We present models of an accretion disk of Supersoft X-ray Sources (SSXSs) to compare with observations. Some SSXSs show peculior behavior in optical light curves. Especially SSXS RX J0513 in the Large Magellanic Cloud (LMC) is known for its quasi-periodic optical variability and X-ray on/off. Considering these observations, we examine three models of an accretion disk whose shape may affect the luminosity from the binary system. We, then, compare the computed spectra based on three models with observation. Two models give good agreements in the optical range, while the other does not. Using present models, we may predict the spectrum in currently unobservable wavelength.

  20. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  1. Binarity and Accretion: X-Ray Emission from AGB stars with FUV Excesses

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2012-10-01

    We propose a pilot survey for X-ray emission from AGB stars that are candidates for having binary companions with active accretion. These objects were identified via our innovative technique to search for FUV/NUV excesses in AGB stars using GALEX. The detection (or non-detection) of X-rays from this sample will enable us to begin testing models for the origin of the UV-excesses, leading to vital breakthroughs in our understanding of accretion-related phenomena and binarity in AGB stars. A larger survey, optimised using results fron this study, will be proposed in future cycles.

  2. Acceleration of binary X-ray sources by their radiation

    NASA Astrophysics Data System (ADS)

    Pal'Shin, V. D.; Tsygan, A. I.

    1998-03-01

    We consider a case where the magnetic field of a neutron star in an X-ray binary system differs from a dipole field. This difference gives rise to an asymmetry in the X-ray radiation from the system and, consequently, to an accelerating force. After averaging over the rotation period of the neutron star, the component of the force along its spin axis remains. Its magnitude, F = Xi L_X/c (where L_X is the total X-ray luminosity of the neutron star, and Xi is the radiation asymmetry coefficient), can exceed the force of gravitational attraction of the binary system to the Galaxy. This effect is most important for low-mass X-ray binary systems at the stage of intense accretion of matter onto the neutron stars. Such systems form the Galactic halo, while some of them go away into intergalactic space.

  3. X-ray Light Curves and Accretion Disk Structure of EX Hydrae

    SciTech Connect

    Hoogerwerf, R; Brickhouse, N S; Mauche, C W

    2005-04-12

    We present X-ray light curves for the cataclysmic variable EX Hydrae obtained with the Chandra High Energy Transmission Grating Spectrometer and the Extreme Ultraviolet Explorer Deep Survey photometer. We confirm earlier results on the shape and amplitude of the binary light curve and discuss a new feature: the phase of the minimum in the binary light curve, associated with absorption by the bulge on the accretion disk, increases with wavelength. We discuss several scenarios that could account for this trend and conclude that, most likely, the ionization state of the bulge gas is not constant, but rather decreases with binary phase. We also conclude that photoionization of the bulge by radiation originating from the white dwarf is not the main source of ionization, but that it is heated by shocks originating from the interaction between the in-flowing material from the companion and the accretion disk. The findings in this paper provide a strong test for accretion disk models in close binary systems.

  4. A test of truncation in the accretion discs of X-ray Binaries.

    NASA Astrophysics Data System (ADS)

    Eckersall, A.

    2016-06-01

    The truncated-disc model is generally used to help explain the change between the soft and hard states in X-ray Binaries, where the standard accretion disc is truncated in the inner regions and replaced by a radiatively inefficient accretion flow. There is still disagreement though in the extent of this truncation, particularly in at what point truncation begins. Here we analyze XMM EPIC-pn spectra in both the soft and hard states for a number of galactic XRBs, along with RGS data and the latest absorption and emission models to get an independent fit for the ISM column densities for each source. Specifically, we assume the 'canonical' model where the luminous accretion disc extends down to the innermost stable orbit at 6r_g, and construct a spectral model accounting for thermal, reflection and Compton processes ensuring consistent geometrical properties of the models. Rather than attempting to infer the inner disc location from spectral fitting and/or reflection models, we instead attempt a direct test of whether a consistent model will fit assuming no truncation. We discuss the implications for emission models of XRBs.

  5. Revealing the accretion disc corona in Mrk 335 with multi-epoch X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Keek, L.; Ballantyne, D. R.

    2016-03-01

    Active galactic nuclei host an accretion disc with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disc has been observed. Reflection produces spectral features such as an Fe Kα emission line, which allow for properties of the inner accretion disc and the corona to be constrained. We perform a multi-epoch spectral analysis of all XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and we optimize our fitting procedure to unveil correlations between the Eddington ratio and the spectral parameters. We find that the disc's ionization parameter correlates strongly with the Eddington ratio: the inner disc is more strongly ionized at higher flux. The slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ˜10 per cent of the Eddington limit, the compact and optically thick corona is located close to the inner disc, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disc surface. Furthermore, we find a soft excess that consists of two components. In addition to a contribution from reflection in low ionization states, a second component is present that traces the overall flux.

  6. Micropinch x-ray source and its applications

    NASA Astrophysics Data System (ADS)

    Gurey, Anatoliy E.; Semyonov, Oleg G.; Tikhomirov, Adolf A.

    2000-11-01

    An experimental model of an industrial micropinch x-ray source is described on the basis of a low inductance vacuum spark. It was designed and tested for applications in x-ray lithography, x-ray microscopy, surface processing (micro-relief leveling) and structural modification of thin dielectric layers. The error analysis of proximity method and test results confirmed the adequacy of its application to produce microchips for the microelectronic industry with spatial resolution of < 0.1 (mu) . The x-ray microscopy of human and rabbit blood and tissue cells was performed using the proximity shadow printing method with the sensitive polymer detectors or resists.

  7. The luminosity function of galactic X-ray sources - A cutoff and a 'standard candle'

    NASA Technical Reports Server (NTRS)

    Margon, B.; Ostriker, J. P.

    1973-01-01

    Analysis of the 2- to 10-kev luminosity distribution of 36 X-ray sources in the Local Group having known or estimated distances, showing that there exists a luminosity cutoff of approximately 10 to the 37.7th ergs/sec in agreement with the theoretical (Eddington) limit for the luminosity of an approximately 1 solar mass star. Furthermore, among the complete sample of high-luminosity sources, there appears to be a statistically significant group of X-ray 'standard candles' at (within less than 0.8 mag) the critical luminosity. This finding (which is in agreement with the self-consistent mass flow accretion models) presents the possibility that X-ray sources may be used as extragalactic distance indicators in the next generation of X-ray astronomy experiments.

  8. Infrared studies of galactic center x-ray sources

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis

    In this dissertation I use a variety of approaches to discover the nature of a subset of the nearly 10,000 X-ray point sources in the 2° x 0.8° region around the Galactic Center. I produced a JHK s source catalog of the 170 x170 region around Sgr A* an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. I cross-correlated the Chandra and ISPI catalogs to find potential near-infrared (NIR) counterparts to the X-ray sources. The extreme NIR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. I found 2137 IR/X-ray astrometrically matched sources; statistically I calculated that my catalog contains 289+/-13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of matches to hard sources that are spurious is 90%, compared to 40% for soft source matches, making the hard source NIR matches particularly challenging for spectroscopic follow-up. I statistically investigated the parameter space of matched sources and identified a set of 98 NIR matches to hard X-ray sources with reddenings consistent with the GC distance which have a 45% probability of being true counterparts. I created two additional photometric catalogs of the GC region to investigate the variability of X-ray counterparts over a time baseline of several years. I found 48 variable NIR sources matched to X-ray sources, with 2 spectroscopically confirmed to be true counterparts (1 in previous literature and one in this study). I took spectra of 46 of my best candidates for counterparts to X-ray sources toward the GC, and spectroscopically confirmed 4 sources as the authentic physical counterpart on the basis of emission lines in the H and K band spectra. These sources include a Be high mass X-ray binary located 16 pc in projection away from Sgr A*; a hard X-ray symbiotic binary located 22 pc in projection from Sgr A*; an O

  9. Time-dependent X-ray emission from unstable accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  10. Ultraviolet spectroscopy of the supersoft X-ray source RX J0439.8-6809

    NASA Astrophysics Data System (ADS)

    Van Teeseling, Andre

    1997-07-01

    Observationally, supersoft X-ray sources are classified as near-Eddington stellar objects with almost all emission at energies < 0.5 keV. Only 13 supersoft X-ray sources have been optically identified, and of these 11 turn out to be binaries, probably with a shell-burning accreting white dwarf. We have recently identified RX J0439.8-6809 with a V=21.63, very blue star in the LMC. A 3sigma upper limit to the peak-to-peak optical variability is 0.07 mag. Of all optically identified supersoft X-ray sources, RX J0439.8-6809 has the lowest optical-to-X-ray flux ratio. The nature of RX J0439.8-6809 is still unknown. It might be the hottest known pre-white dwarf, suffering a late helium shell flash. Alternatively, RX J0439.8-6809 could be an accreting binary, in which case it might be the first known double-degenerate supersoft X-ray source with a predicted orbital period of only a few minutes. An ultraviolet spectrum is essential to distinguish between these two spectacular possibilities, and to bridge the gap between the X-ray and optical observations. Such a spectrum can only be obtained with the HST STIS. Therefore, we propose to obtain two ultraviolet spectra, which will test the assumption that the optical spectrum is the Rayleigh-Jeans tail of the soft X-ray component, which will determine the spectral energy distribution, and which may provide the first direct evidence for accretion in this source by detecting an excess in the ultraviolet or ultraviolet emission lines like N V Lambda 1240.

  11. Attenuation of supersoft X-ray sources by circumstellar material

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Gilfanov, M.

    2015-11-01

    Recent studies have suggested the possibility of significantly obscuring supersoft X-ray sources in relatively modest amounts of local matter lost from the binaries themselves. If correct, then this would have explained the paucity of observed supersoft X-ray sources and would have significance for the search for single-degenerate Type Ia supernova progenitors. We point out that earlier studies of circumbinary obscuration ignored photoionizations of the gas by the emission from the supersoft X-ray source. We revisit the problem using a full, self-consistent calculation of the ionization state of the circumbinary material photoionized by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obscuration of supersoft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does not entirely rule out the possibility of circumstellar material obscuring supersoft X-ray sources, it makes it unlikely that this effect alone can account for the majority of the missing supersoft X-ray sources. We discuss the observational appearance of hypothetical obscured nuclear-burning white dwarfs and show that they have signatures making them distinct from photoionized nebulae around supersoft X-ray sources imbedded in the low-density interstellar medium.

  12. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  13. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  14. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    NASA Technical Reports Server (NTRS)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  15. Origin of X-rays and nature of accretion in the radio galaxy 3C 88

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario

    2005-10-01

    Studies of stellar dynamics have established that the presence of supermassive black holes is almost ubiquitous not only in AGN, but also in normal galaxies. Therefore, of crucial importance is the role played by low-power AGN, which represent the link between powerful AGN and normal galaxies. We propose to observe (35 ks) the radio galaxy 3C88, which complements and extends towards lower X-ray luminosities our sample of low-power radio galaxies hosting a LINER. 3C88 is an FRII/LINER which hosts a black hole of estimated mass. Specific goals are: investigate the origin of X-rays (jet vs. accretion related emission); assess the nature of the accretion in low-power objects; investigate possible intrinsic differences in the X-ray properties of FRIs and FRIIs.

  16. ASCA Observation of Bright X-Ray Sources in the Nearby Spiral Galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Okada, Kyoko; Dotani, Tadayasu; Makishima, Kazuo; Mitsuda, Kazuhisa; Mihara, Tatehiro

    1998-02-01

    X-ray observations of the nearby starburst galaxy IC 342 with ASCA led to the detection of three bright X-ray sources, whose positions are consistent with those from the Einstein and ROSAT observations. The X-ray luminosities of the two sources exceed the Eddington limit of a 1.4MO object by two orders of magnitude for an assumed distance of 4.5 Mpc. The brightest one (source 1) among the three exhibited significant time variations on a time scale of a few hours during the ASCA observation. Thus, the size of the emission region must be smaller than about 10(14) cm. The energy spectrum of the source can be represented either by a power-law with an exponential roll-over, or by an optically thick accretion disk model with a maximum color temperature of 1.77 keV. Although the large luminosity of source 1 may be explained by a ~ 100MO black hole at 4.5 Mpc, the observed energy spectrum is too hard to be accounted for by an optically thick accretion disk around the black hole. Ifsource1 is a relativistic jet source with strong X-ray beaming, both the large luminosity and the hard X-ray spectrum can be explained.

  17. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  18. Modifications of the X-ray source and monitor at the X-ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    Newbolt, W. Barlow

    1986-01-01

    In order to test the instruments aboard the Advanced X-ray Astrophysics Facility (AXAF) some modifications will need to be made in the X-ray Calibration Facility at Marshall. Several of these modifications involve the X-ray source and the monitor. The source was redesigned to increase the spectral purity of the beam and decrease its polarization by minimizing the number of bremsstrahlung photons in the beam. This was accomplished by utilizing an annular electron gun which allowed the beam to take off antiparallel to the direction at which electrons are incident on the anode. Two other features of the source are the conical anode which decreases the effective spot size and a rotatable anode and filter wheel which allow the operator to change targets without breaking vacuum. The monitor is an important part of the facility because it is used to determine the X-ray flux at the target. A commercially available solid-state detector, Si(Li), should be used along with appropriate proportional counters for monitoring. This detector will be particularly useful when energy or wavelength dispersive instruments are tested because of its good resolution.

  19. An extended superhot solar flare X-ray source

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Ohki, K. I.; Tsuneta, S.

    1985-01-01

    A superhot hard X-ray source in a solar flare occulted by the solar limb was identified. Its hard X-ray image was found to show great horizontal extent but little vertical extent. An H alpha brightening at the same limb position about an hour later suggests a multi-component loop prominence system, so that it appears that a superhot source can evolve in the same manner as a normal solar soft X-ray source. The assignment of plausiable values to physical parameters in the source suggests (from the simplest form of classical thermal-conduction theory) that either new physics will be required to suppress conduction, or else that gradual energy release well after the impulsive phase of the flare must occur. In this respect too, the superhot source appears to resemble ordinary soft X-ray sources, except of course that its temperature is higher.

  20. An extended superhot solar flare X-ray source

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Ohki, K. I.; Tsuneta, S.

    1985-08-01

    A superhot hard X-ray source in a solar flare occulted by the solar limb was identified. Its hard X-ray image was found to show great horizontal extent but little vertical extent. An H alpha brightening at the same limb position about an hour later suggests a multi-component loop prominence system, so that it appears that a superhot source can evolve in the same manner as a normal solar soft X-ray source. The assignment of plausiable values to physical parameters in the source suggests (from the simplest form of classical thermal-conduction theory) that either new physics will be required to suppress conduction, or else that gradual energy release well after the impulsive phase of the flare must occur. In this respect too, the superhot source appears to resemble ordinary soft X-ray sources, except of course that its temperature is higher.

  1. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    SciTech Connect

    Ribeiro, T.; Lopes de Oliveira, R.

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  2. Accretion-driven star formation in central dominant galaxies in X-ray clusters

    NASA Astrophysics Data System (ADS)

    Sarazin, C. L.; Oconnell, R. W.

    1983-05-01

    Analytical and observational evidence for the formation of low-mass stars in the gas accreting in the central dominant galaxies in clusters is presented. Observations of the (U-V) and (K-V) color gradients in accreting galaxies are suggested to reveal colors altered by the appearance of young stars, e.g., the excess blue and the A star spectrum detected in NGC 1275. Low-temperature X ray line emissions from accreting galaxies have been partially surveyed with the result that 10 pct of the brightest cluster galaxies in a magnitude-limited sample show evidence of significant accretion. Photometric data from the quasar 3C 48, located in a galaxy with a very blue population, also suggests low-mass star formation, especially when compared to measurements of NGC 1275, which has the highest accretion rate among observed central dominant cluster galaxies. The quasar, however, would not be accreting interstellar gas.

  3. Magneto-Levitation Accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Pustilnik, Lev; Beskrovnaya, Nina; Ikhsanov, Nazar; Kim, Vitally; Likh, Yuri

    A wind-fed accretion by a neutron star in a High Mass X-ray Binary is discussed. We show that the structure and physical parameters of the accretion flow onto the neutron star strongly depends on the magnetic field strength in the stellar wind of its massive companion. A neutron star accreting material from a magnetized wind is expected to be surrounded by a dense non-Keplerian disk (magnetic slab) in which the material is confined by the magnetic field of the accretion flow itself. The accretion process in this case is governed by anomalous (Bohm) diffusion. We find that spin evolution and equilibrium period of the pulsar within this magneto-levitation accretion scenario are consistent with the observed values.

  4. Superorbital periodic modulation in wind-accretion high-mass X-ray binaries from swift burst alert telescope observations

    SciTech Connect

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-11-20

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418–4532, and IGR J16479–4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493–4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393–4643 (= AX J16390.4–4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1–6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  5. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  6. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  7. A Chandra X-Ray Study of NGC 1068 IL the Luminous X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert 2 galaxy NGC 1068, imaged with a approx. 50 ks Chandra observation. We find a total of 84 compact sources on the S3 chip, of which 66 are located within the 25.0 B-mag/arcsec isophote of the galactic disk of NGC 1068. Spectra have been obtained for the 21 sources with at least 50 counts and modeled with both multicolor disk blackbody and power-law models. The power-law model provides the better description of the spectrum for 18 of these sources. For fainter sources, the spectral index has been estimated from the hardness ratio. Five sources have 0.4 - 8 keV intrinsic luminosities greater than 10(exp 39)ergs/ s, assuming that their emission is isotropic and that they are associated with NGC 1068. We refer to these sources as intermediate-luminosity X-ray objects (ISOs). If these five sources are X-ray binaries accreting with luminosities that are both sub-Eddington and isotropic, then the implied source masses are approx greater than 7 solar mass, and so they are inferred to be black holes. Most of the spectrally modeled sources have spectral shapes similar to Galactic black hole candidates. However, the brightest compact source in NGC 1068 has a spectrum that is much harder than that found in Galactic black hole candidates and other ISOs. The brightest source also shows large amplitude variability on both short-term and long-term timescales, with the count rate possibly decreasing by a factor of 2 in approx. 2 ks during our Chundra observation, and the source flux decreasing by a factor of 5 between our observation and the grating observations taken just over 9 months later. The ratio of the number of sources with luminosities greater than 2.1 x 10(exp 38) ergs/s in the 0.4 - 8 keV band to the rate of massive (greater than 5 solar mass) star formation is the same, to within a factor of 2, for NGC 1068, the Antennae, NGC 5194 (the main galaxy in M51), and the Circinus galaxy. This suggests

  8. On the Thermal Line Emission from the Outflows in Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Di; Cao, Xinwu

    2016-08-01

    The atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) may be associated with the outflow, which may provide a way to explore the physics of the ULXs. We construct a conical outflow model and calculate the thermal X-ray Fe emission lines from the outflows. Our results show that thermal line luminosity decreases with increasing outflow velocity and/or opening angle of the outflow for a fixed kinetic power of the outflows. Assuming the kinetic power of the outflows to be comparable with the accretion power in the ULXs, we find that the equivalent width can be several eV for the thermal X-ray Fe emission line from the outflows in the ULXs with stellar-mass black holes. The thermal line luminosity is proportional to 1/M bh (M bh is the black hole mass of the ULX). The equivalent width decreases with the black hole mass, which implies that the Fe line emission from the outflows can hardly be detected if the ULXs contain intermediate-mass black holes. Our results suggest that the thermal X-ray Fe line emission should be preferentially be detected in the ULXs with high kinetic power slowly moving outflows from the accretion disks surrounding stellar-mass black holes/neutron stars. The recently observed X-ray atomic features of the outflows in a ULX may imply that it contains a stellar-mass black hole.

  9. SPITZER OBSERVATIONS OF MF 16 NEBULA AND THE ASSOCIATED ULTRALUMINOUS X-RAY SOURCE

    SciTech Connect

    Berghea, C. T.; Dudik, R. P. E-mail: rpdudik@usno.navy.mil

    2012-06-01

    We present Spitzer Infrared Spectrograph observations of the ultraluminous X-ray source (ULX) NGC 6946 X-1 and its associated nebula MF 16. This ULX has very similar properties to the famous Holmberg II ULX, the first ULX to show a prominent infrared [O IV] emission line comparable to those found in active galactic nuclei. This paper attempts to constrain the ULX spectral energy distribution (SED) given the optical/UV photometric fluxes and high-resolution X-ray observations. Specifically, Chandra X-ray data and published Hubble optical/UV data are extrapolated to produce a model for the full optical to X-ray SED. The photoionization modeling of the IR lines and ratios is then used to test different accretion spectral models. While either an irradiated disk model or an O-supergiant plus accretion disk model fits the data very well, we prefer the latter because it fits the nebular parameters slightly better. In this second case the accretion disk alone dominates the extreme-UV and X-ray emission, while an O-supergiant is responsible for most of the far-UV emission.

  10. Automated classification of Chandra X-ray sources

    NASA Astrophysics Data System (ADS)

    Brehm, Derek; Kargaltsev, O.; Rangelov, B.; Volkov, I.; Pavlov, G. G.

    2014-01-01

    With the advent of the latest generation X-ray telescopes there has been a major influx of data associated with the detection of hundreds of thousands X-ray sources. As one can rarely tell a source type from its X-ray properties alone, the full potential of the X-ray catalogs can only be unlocked by correlating multiwavelength (MW) properties via cross-identification with other surveys. However, one would spend an enormous amount of time classifying these objects by their physical nature if the classification was to be done on a source-by-source basis by humans. Therefore, we are using a supervised learning algorithm to classify sources detected by the Chandra X-ray Observatory. The classifications are based on a training dataset which currently includes about 7,000 X-ray sources of known nature (main sequence stars, Wolf-Rayet stars, young stars, active galactic nuclei, low mass X-ray binaries, high mass x-ray binaries, and neutron stars). For each source, the training dataset includes up to 24 multiwavelength properties. The efficiency and accuracy of the classification is verified by dividing the training dataset in two and performing cross-validation. The results are also inspected by plotting source properties in 2D slices of the parameter space. As an application of our automated procedure we classified unidentified sources in the supernova remnant (SNR) G352.7-0.1, in the field of HESS J1809-193, and in part of the Chandra Source Catalog 1.0. We present the results of the verification tests and the classification results. This research was partially supported by NASA/SAO grant AR3-14017X.

  11. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  12. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945

    SciTech Connect

    Harrison, Sarah M.; /MIT /SLAC

    2006-09-11

    Recently, X-ray astronomy has been used to investigate objects such as galaxies, clusters of galaxies, Active Galactic Nuclei (AGN), quasars, starburst superbubbles of hot gas, X-ray binary systems, stars, supernova remnants, and interstellar and intergalactic material. By studying the x-ray emission patterns of these objects, we can gain a greater understanding of their structure and evolution. We analyze X-ray emission from the galaxy NGC 4945 using data taken by the Chandra X-ray Observatory. The Chandra Interactive Analysis of Observations (CIAO) software package was used to extract and fit energy spectra and to extract light curves for the brightest off-nuclear sources in two different observations of NGC 4945 (January, 2000 and May, 2004). A majority of sources were closely fit by both absorbed power law and absorbed bremsstrahlung models, with a significantly poorer {chi}{sup 2}/dof for the absorbed blackbody model, and most sources had little variability. This indicates that the sources are accreting binary systems with either a neutron star or black hole as the compact object. The calculated luminosities were about 10{sup 38} erg/s, which implies that the mass of the accreting object is close to 10 solar masses and must be a black hole.

  13. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  14. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  15. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  16. Transient X-Ray Source Population in the Magellanic-type Galaxy NGC 55

    NASA Astrophysics Data System (ADS)

    Jithesh, V.; Wang, Zhongxiang

    2016-04-01

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-ray luminosities (˜1038 erg s-1), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3-2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.

  17. Diagnostics of the accretion plasma in magnetic CVs from high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Burwitz, V.; Reinsch, K.; Haberl, F.; Gänsicke, B. T.; Predehl, P.

    2002-01-01

    High-resolution X-ray spectroscopy with the Chandra low energy transmission grating spectrometer (LETGS) provides an unprecedented diagnostic tool for the hot accretion plasma and the settling flow in the accretion column of magnetic cataclysmic variables (mCVs). We show first results from our analysis of spin-phase resolved X-ray spectroscopy of the two prototype magnetic CVs, AM Her and PQ Gem. The LETGS spectra cover the wavelength range 2--170Å with a spectral resolution λ/Δ λ = 200--3000. For the first time, absorption structures in the soft X-ray component of the heated white-dwarf atmosphere are revealed and individual emission lines of H- and He-like O and N ions including the density sensitive components of the He-like triplets are resolved in the hard X-ray component originating from the settling flow. In addition, phase dependent Doppler-shifts of the emission lines are detected providing detailed information on the geometry of the accretion funnel.

  18. DETECTION OF ACCRETION X-RAYS FROM QS Vir: CATACLYSMIC OR A LOT OF HOT AIR?

    SciTech Connect

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny

    2012-03-10

    An XMM-Newton observation of the nearby 'pre-cataclysmic' short-period (P{sub orb} = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of M-dot = 1.7 Multiplication-Sign 10{sup -13} M{sub sun} yr{sup -1}. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of M-dot {approx}2 Multiplication-Sign 10{sup -12} M{sub sun} yr{sup -1} if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is L{sub X} = 3 Multiplication-Sign 10{sup 28} erg s{sup -1}, which is consistent with that of rapidly rotating 'saturated' K and M dwarfs.

  19. Correlation of X-ray burst properties with source state in the 'atoll' source 4U/MXB 1636 - 53

    NASA Technical Reports Server (NTRS)

    Van Der Klis, M.; Damen, E.; Penninx, W.; Van Paradijs, J.; Hasinger, G.

    1990-01-01

    A series of Exosat observations of the 'atoll' source 4U/MXB 1636 - 53 shows that duration and temperature of the X-ray bursts strongly correlate with the X-ray spectral and fast variability characteristics of the persistent emission of the source. This implies that spectral shape, fast variability, and burst duration and temperature all correlate well with accretion rate M. This provides a strong argument that in the atoll sources, source-state is determined by M, just as in the Z sources. These observations also show that the persistent X-ray intensity can vary independently from the other mentioned characteristics. Therefore, intensity is probably not a good measure for the accretion rate.

  20. New Directions in X-Ray Light Sources

    SciTech Connect

    Falcone, Roger

    2008-07-18

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  1. Self-cleaning rotating anode X-ray source

    DOEpatents

    Paulikas, Arvydas P.

    1989-01-01

    A self-cleaning rotating anode x-ray source comprising an evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof.

  2. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2016-07-12

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  3. Self-cleaning rotating anode x-ray source

    DOEpatents

    Paulikas, A.P.

    1987-06-02

    A self-cleaning rotating anode x-ray source comprising and evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof. 2 figs.

  4. Spectral Modeling of the Comptonized Continua of Accreting X-Ray Pulsars: Recent Progress

    NASA Astrophysics Data System (ADS)

    Wolff, Michael T.; Becker, P. A.; Marcu, D.; Pottschmidt, K.; Wilms, J.; Wood, K. S.

    2014-01-01

    We are undertaking a program to analyze the X-ray spectra of the accretion flows onto strongly magnetic neutron stars in high mass binary systems such as Her X-1, Cen X-3, and LMC X-4. These accreting pulsars typically have X-ray spectra consisting of broad Comptonized cutoff power-laws. Current theory suggests these X-ray spectra result from the impact of the high-velocity magnetically channeled plasma accretion flows onto the surfaces of the neutron stars. The flows have such high energy density that shocks developing in the plasmas can be radiation-dominated. These X-ray pulsars often, but not always, show cyclotron resonant scattering features implying neutron star surface magnetic field strengths above 10^12 G. Over the past few years a number of studies have reported both positive and negative correlations of the cyclotron line energy centroids with X-ray luminosity in a number of pulsars. However, the detailed analysis of the cyclotron line centroids suffers from the lack of a robust model for the Comptonized X-ray continuum upon which the cyclotron lines are superposed. We discuss in this presentation our progress in developing tools for the analysis of the X-ray spectra formed in these systems. The range of parameter conditions presented by the many known real accreting pulsar systems substantially exceeds that of the limited set of pulsars on which the original analytic model of Becker and Wolff (2007) was validated. In the high temperature optically thick plasmas, the processes of bremsstrahlung emission from the hot plasma, black body emission from a thermal mound near the neutron star surface, and cyclotron emission from electrons in the first Landau excited state, all contribute to the total local photon population in the shock structure. We discuss our strategy for numerically accounting for the relative contribution to the full X-ray spectrum made by each of these physical processes. Solving for the integrated spectrum involves numerical

  5. The deep census of the X-ray source populations in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Zezas, A.; Antoniou, V.; SMC XVP Collaboration

    2014-07-01

    We present the first results from the Chandra Deep Survey of the Small Magellanic Cloud (SMC). The goal of this project is to characterize the X-ray sources detected in the 1.1 Ms Chandra survey of the SMC, which provides a census of their populations down to a luminosity of 10^32 erg/s in 11 fields sampling young (10-100 Myr) stellar populations of different ages. We detect between 50-90 X-ray sources in each field, for which we measure their photometric and spectroscopic parameters. Analysis of their light-curves is used to identify accreting pulsars and flaring objects. The initial X-ray source lists have been cross-correlated with optical and IR photometric and spectroscopic catalogs (such as the OGLE and SAGE). We have determined the most likely optical counterpart for those sources, and based on the combination of their X-ray and multiwavelength properties, we identify candidate Be-XRBs and interlopers (foreground stars and AGN). The X-ray luminosity function of the Be-XRBs shows clear evidence for a break at low luminosities that is consistent with the onset of the propeller effect. Finally we present the first results from an analysis of the clustering of the X-ray binaries in the SMC with stellar populations of different ages.

  6. The SWIRE/Chandra Survey: The X-ray Sources

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda J.; Kilgard, Roy; Kim, Dong-Woo; Kim, Minsun; Polletta, Mari; Lonsdale, Carol; Smith, Harding E.; Surace, Jason; Owen, Frazer N.; Franceschini, A.; Siana, Brian; Shupe, David

    2009-12-01

    We report a moderate-depth (70 ks), contiguous 0.7 deg2 Chandra survey in the Lockman Hole Field of the Spitzer/SWIRE Legacy Survey coincident with a completed, ultra-deep VLA survey with deep optical and near-infrared imaging in-hand. The primary motivation is to distinguish starburst galaxies and active galactic nuclei (AGNs), including the significant, highly obscured (log N H > 23) subset. Chandra has detected 775 X-ray sources to a limiting broadband (0.3-8 keV) flux ~4 × 10-16 erg cm-2 s-1. We present the X-ray catalog, fluxes, hardness ratios, and multi-wavelength fluxes. The log N versus log S agrees with those of previous surveys covering similar flux ranges. The Chandra and Spitzer flux limits are well matched: 771 (99%) of the X-ray sources have infrared (IR) or optical counterparts, and 333 have MIPS 24 μm detections. There are four optical-only X-ray sources and four with no visible optical/IR counterpart. The very deep (~2.7 μJy rms) VLA data yield 251 (>4σ) radio counterparts, 44% of the X-ray sources in the field. We confirm that the tendency for lower X-ray flux sources to be harder is primarily due to absorption. As expected, there is no correlation between observed IR and X-ray fluxes. Optically bright, type 1, and red AGNs lie in distinct regions of the IR versus X-ray flux plots, demonstrating the wide range of spectral energy distributions in this sample and providing the potential for classification/source selection. Many optically bright sources, which lie outside the AGN region in the optical versus X-ray plots (fr /fx >10), lie inside the region predicted for red AGNs in IR versus X-ray plots, consistent with the presence of an active nucleus. More than 40% of the X-ray sources in the VLA field are radio-loud using the classical definition, RL . The majority of these are red and relatively faint in the optical so that the use of RL to select those AGNs with the strongest radio emission becomes questionable. Using the 24 μm to radio

  7. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  8. Collapsar Accretion, Shockwaves, and the Gamma-ray Burst X-ray Light Curve

    NASA Astrophysics Data System (ADS)

    Lindner, Christopher C.; Milosavljevic, M.

    2010-03-01

    We present axisymmetric hydrodynamical simulations of the long-term accretion of a rotating gamma-ray burst progenitor star, a "collapsar,'' onto the central black hole. The simulations were carried out with the adaptive mesh refinement code FLASH in two spatial dimensions and with an explicit shear viscosity. The evolution of the central accretion rate exhibits phases reminiscent of the long GRB gamma-ray and X-ray light curve, which lends support to the proposal by Kumar et al. 2008 that the luminosity is modulated by the central accretion rate. In the first "prompt'' phase characterized by an approximately constant accretion rate, the black hole acquires most of its final mass through supersonic quasiradial accretion occurring at a steady rate of 2 Msun s-1. After a few tens of seconds, an accretion shock sweeps outward through the star. The formation and outward expansion of the accretion shock is accompanied with a sudden and rapid power-law decline in the central accretion rate Mdot t-2.8. The collapsed, shock-heated stellar envelope settles into a thick, low-mass equatorial disk embedded within a massive, pressure-supported atmosphere. After a few hundred seconds, the inflow of low-angular-momentum material in the axial funnel reverses into an outflow from the surface of the thick disk, and the decay of the accretion rate is slowed. While the duration of the "prompt'' phase depends on the resolution in our simulations, we provide an analytical model taking into account neutrino losses that estimates the duration to be 20 s. The model suggests that the steep decline in GRB X-ray light curves is triggered by the circularization of the infalling stellar envelope at radii where the virial temperature is below 1010 K, such that neutrino cooling shuts off. We also present results from 1D simulations of the accretion powered acceleration of the shockwave formed in collapsar models.

  9. Carbon nanotube based field emission X-ray sources

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  10. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  11. Linear accelerator x-ray sources with high duty cycle

    SciTech Connect

    Condron, Cathie; Brown, Craig; Gozani, Tsahi; Langeveld, Willem G. J.; Hernandez, Michael

    2013-04-19

    X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

  12. Linear accelerator x-ray sources with high duty cycle

    NASA Astrophysics Data System (ADS)

    Condron, Cathie; Brown, Craig; Gozani, Tsahi; Hernandez, Michael; Langeveld, Willem G. J.

    2013-04-01

    X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

  13. Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve

    NASA Astrophysics Data System (ADS)

    Lindner, Christopher C.; Milosavljević, Miloš; Couch, Sean M.; Kumar, Pawan

    2010-04-01

    We present axisymmetric hydrodynamical simulations of the long-term accretion of a rotating gamma-ray burst (GRB) progenitor star, a "collapsar," onto the central compact object, which we take to be a black hole. The simulations were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions and with an explicit shear viscosity. The evolution of the central accretion rate exhibits phases reminiscent of the long GRB γ-ray and X-ray light curve, which lends support to the proposal by Kumar et al. that the luminosity is modulated by the central accretion rate. In the first "prompt" phase, the black hole acquires most of its final mass through supersonic quasiradial accretion occurring at a steady rate of ~0.2 M sun s-1. After a few tens of seconds, an accretion shock sweeps outward through the star. The formation and outward expansion of the accretion shock is accompanied with a sudden and rapid power-law decline in the central accretion rate \\dot{M}∝ t^{-2.8}, which resembles the L X vprop t -3 decline observed in the X-ray light curves. The collapsed, shock-heated stellar envelope settles into a thick, low-mass equatorial disk embedded within a massive, pressure-supported atmosphere. After a few hundred seconds, the inflow of low angular momentum material in the axial funnel reverses into an outflow from the thick disk. Meanwhile, the rapid decline of the accretion rate slows down, which is potentially suggestive of the "plateau" phase in the X-ray light curve. We complement our adiabatic simulations with an analytical model that takes into account the cooling by neutrino emission and estimate that the duration of the prompt phase can be ~20 s. The model suggests that the steep decline in GRB X-ray light curves is triggered by the circularization of the infalling stellar envelope at radii where the virial temperature is below 1010 K, such that neutrino cooling is inefficient and an outward expansion of the accretion shock becomes imminent

  14. A VARIABLE BLACK HOLE X-RAY SOURCE IN AN NGC 1399 GLOBULAR CLUSTER

    SciTech Connect

    Shih, I Chun; Kundu, Arunav; Zepf, Stephen E.; Maccarone, Thomas J.; Joseph, Tana D. E-mail: akundu@pa.msu.ed E-mail: tjm@astro.soton.ac.u

    2010-09-20

    We have discovered an accreting black hole (BH) in a spectroscopically confirmed globular cluster (GC) in NGC 1399 through the monitoring of its X-ray activity. The source, with a peak luminosity of L{sub X} {approx_equal} 2 x 10{sup 39} erg s{sup -1}, reveals an order of magnitude change in the count rate within {approx_equal}10 ks in a Chandra observation. The BH resides in a metal-rich [Fe/H] {approx_equal} 0.2 GC. After RZ 2109 in NGC 4472 this is only the second BH X-ray source in a GC confirmed via rapid X-ray variability. Unlike RZ 2109, the X-ray spectrum of this BH source did not change during the period of rapid variability. In addition to the short-term variability the source also exhibits long-term variability. After being bright for at least a decade since 1993, within a span of two years it became progressively fainter, and eventually undetectable, or marginally detectable, in deep Chandra and XMM-Newton observations. The source also became harder as it faded. The characteristics of the long-term variability in itself provide sufficient evidence to identify the source as a BH. The long-term decline in the luminosity of this object was likely not recognized in previous studies because the rapid variability within the bright epoch suppressed the average luminosity in that integration. The hardening of the spectrum accompanying the fading would also make this BH source indistinguishable from an accreting neutron star in some epochs. Therefore, some low-mass X-ray binaries identified as neutron-star accretors in snapshot studies of nearby galaxies may also be BHs. Thus, the discovery of the second confirmed BH in an extragalactic GC through rapid variability at the very least suggests that accreting BHs in GCs are not exceedingly rare occurrences.

  15. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    NASA Astrophysics Data System (ADS)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  16. Scanning the Magnetized Accretion Column of X-ray Pulsars with Cyclotron Lines

    NASA Astrophysics Data System (ADS)

    Schönherr, Gabriele; Wilms, J.; Kretschmar, P.; Pottschmidt, K.; Rothschild, R.; Kreykenbohm, I.; MAGNET Collaboration

    2010-03-01

    The strongly magnetized accretion column of X-ray pulsars is still not understood in many aspects like, e.g., its basic geometry and physical parameters. Cyclotron Resonance Scattering Features (short: cyclotron lines) are now becoming a possible tool to tap this mystery. As they form due to scattering processes of X-ray photons with magnetically quantized electrons in the accreted plasma, a better physical understanding of their formation and shape along with direct comparisons to observational data allows to backtrack the physical parameters and magnetic field structure in the line-forming region. High-resolution spectra with todays’ and future instruments now allow for an in-depth analysis of their shapes, promising exciting progress. We discuss results based on our new modelling attempts, which link theoretical Monte Carlo simulations directly to observational findings.

  17. X-ray Signatures of Accretion in AGNs with Intermediate-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Ho, Luis

    2009-09-01

    Supermassive (10^6-10^9 solar mass) black holes (BHs) are closely linked with the evolution of early-type galaxies. Our group has discovered a new class of AGNs with intermediate-mass (10^4-10^6 solar mass) BHs in late-type galaxies. These objects offer important clues to the nature of the seeds of quasars, and their mergers may produce significant gravity waves. We have started to systematically study their multiwavelength properties. A pilot Chandra program revealed that they are unusually X-ray bright, possibly because their low BH masses and high accretion rates sustain a slim accretion disk. We propose to extend and confirm our preliminary results by performing a comprehensive survey of the X-ray properties of a larger sample of this new class of AGNs.

  18. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    NASA Technical Reports Server (NTRS)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  19. Assembling x-ray sources by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sessa, V.; Lucci, M.; Toschi, F.; Orlanducci, S.; Tamburri, E.; Terranova, M. L.; Ciorba, A.; Rossi, M.; Hampai, D.; Cappuccio, G.

    2007-05-01

    By the use of a chemical vapour deposition technique a series of metal wires (W, Ta, Steel ) with differently shaped tips have been coated by arrays of single wall carbon nanotubes (SWNT). The field emission properties of the SWNT deposits have been measured by a home made apparatus working in medium vacuum (10 -6- 10 -7 mbar) and the SWNT-coated wires have been used to fabricate tiny electron sources for X-ray tubes. To check the efficiency of the nanotube coated wires for X-ray generation has, a prototype X-ray tube has been designed and fabricated. The X-ray tube works at pressures about 10 -6 mbar. The target ( Al film) is disposed on a hole in the stainless steel sheath: this configuration makes unnecessary the usual Be window and moreover allows us to use low accelerating potentials (< 6 kV).

  20. Studies of the Origin of High-frequency Quasi-periodic Oscillations of Mass-accreting Black Holes in X-Ray Binaries with Next-generation X-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric

    2016-08-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), PolSTAR (Polarization Spectroscopic Telescope Array), PRAXyS(Polarimetry of Relativistic X-ray Sources), or XIPE (X-ray Imaging Polarimetry Explorer). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT-type mission.

  1. THE LUMINOSITY FUNCTION OF X-RAY SOURCES IN SPIRAL GALAXIES

    SciTech Connect

    Prestwich, A. H.; Primini, F.; McDowell, J. C.; Zezas, A.; Kilgard, R. E.

    2009-11-10

    X-ray sources in spiral galaxies can be approximately classified into bulge and disk populations. The bulge (or hard) sources have X-ray colors which are consistent with low-mass X-ray binaries (LMXBs) but the disk sources have softer colors suggesting a different type of source. In this paper, we further study the properties of hard and soft sources by constructing color-segregated X-ray luminosity functions (XLFs) for these two populations. Since the number of sources in any given galaxy is small, we co-added sources from a sample of nearby, face-on spiral galaxies observed by Chandra as a Large Project in Cycle 2. We use simulations to carefully correct the XLF for completeness. The composite hard source XLF is not consistent with a single-power-law fit. At luminosities L{sub x} > 3 x 10{sup 38} erg s{sup -1}, it is well fitted by a power law with a slope that is consistent with that found for sources in elliptical galaxies by Kim and Fabbiano. This supports the suggestion that the hard sources are dominated by LMXBs. In contrast, the high-luminosity XLF of soft sources has a slope similar to the 'universal' high-mass X-ray binary XLF. Some of these sources are stellar-mass black hole binaries accreting at high rates in a thermal/steep power-law state. The softest sources have inferred disk temperatures that are considerably lower than found in galactic black holes binaries. These sources are not well understood, but some may be super-soft ultra-luminous X-ray sources in a quiescent state as suggested by Soria and Ghosh.

  2. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  3. Inner Accretion Disk Regions of Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    2015-01-01

    The innermost regions of accretion disks in black hole X-ray binaries dominate the observed X-ray emission, which is the main diagnostic that one uses to gain insights into the physics of black holes and accretion. The standard spectrum predicted from a geometrically thin, optically thick disk experiences non-trivial modification due to conspiring physical effects operating within the vertical disk structure such as Comptonization, free-free emission/absorption, bound-free opacities, and energy dissipation by magnetic processes. The complicated interplay of these effects cause the seed accretion disk spectrum to become hardened and it is this hardened emergent spectrum that we observe. To zeroth order, this hardening can be described by a phenomenological parameter called the spectral hardening factor.In practice, the adopted degree of spectral hardening is confined to lie within a rather restrictive range. I will discuss the following consequences of relaxing this criterion, while still requiring the spectral hardening factor to take on physically plausible values. Examining multiple state transitions of the black hole X-ray binary GX 339-4 with archival data from the Rossi X-ray Timing Explorer, I will show that appealing to a spectral hardening factor that varies during state transitions provides a viable alternative to a truncated disk model for the evolution of the inner accretion disk. Having demonstrated that moderate degrees of accretion disk spectral hardening cannot be ruled out by observations, I will explore this possibility from a theoretical standpoint. Extending previous work on radiative transfer modeling coupled to the vertical disk structure, I present the impacts on the emergent accretion disk spectrum caused by disk inclination and by allowing accretion power to be dissipated in the corona. Using magnetohydrodynamic simulations of a localized patch of the accretion disk (i.e., shearing box) performed with the Athena code, I will present the

  4. Advanced X-Ray Sources Ensure Safe Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.

  5. The Sharpest Spatial View of a Black Hole Accretion Flow from the Chandra X-ray Visionary Project Observation of the NGC 3115 Bondi Region

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy; Wong, K.; Shcherbakov, R. V.; Yukita, M.; Mathews, W. G.

    2013-04-01

    Spatially resolved X-ray spectra of hot gas within a black hole accretion flow provide powerful constraints on accretion models. However, very few nearby supermassive black holes have large enough Bondi radii to be spatially resolved even with Chandra. The best candidate for such a study is the 4-5 arcsec (188-235 pc) Bondi region of the nearest billion solar mass supermassive black hole in the S0 galaxy NGC 3115. We present observational results from our Chandra X-ray Visionary Project (XVP) of NGC 3115, a deep 1 Msec observation that allows us to remove most contaminating X-ray point sources in the region close to the black hole, and to create the first detailed density and temperature profiles of the gas within the Bondi region of a radiatively inefficient accretion flow. Interpretation of the results are also discussed.

  6. Optimized Volumetric Scanning for X-Ray Array Sources

    SciTech Connect

    Lehman, S K; Foudray, A M; Wang, A; Kallman, J S; Martz, H

    2009-09-29

    Non-destructive evaluation (NDE) is the science and technology of determining non-invasively the internal structure of manufactured parts, objects, and materials. NDE application areas include medicine, industrial manufacturing, military, homeland security, and airport luggage screening. X-ray measurement systems are most widely used because of their ability to image through a wide range of material densities (from human tissue in medical applications to the dense materials of weapon components). Traditional x-ray systems involve a single source and detector system that rotate and/or translate about the object under evaluation. At each angular location, the source projects x-rays through the object. The rays undergo attenuation proportional to the density of the object's constitutive material. The detector records a measure of the attenuation. Mathematical algorithms are used to invert the forward attenuated ray projection process to form images of the object. This is known as computed tomography (CT). In recent years, the single-source x-ray NDE systems have been generalized to arrays of x-ray sources. Array sources permit multiple views of the object with fewer rotations and translations of the source/detector system. The spatially diverse nature of x-ray array sources has the potential of reducing data collection time, reducing imaging artifacts, and increasing the resolution of the resultant images. Most of the existing CT algorithms were not derived from array source models with a spatially diverse set of viewing perspectives. Single-source x-ray CT data collection, processing, and imaging methods and algorithms are not applicable when the source location is expanded from one dimension (a rotating and/or translating point source) to two (a rotating and/or translating array). They must be reformulated. The goal of this project is to determine the applicability of x-ray array sources to problems of interest to LLNL and its customers. It is believed array source

  7. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  8. Gravitationally Lensed X-Ray Sources at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Rottler, L.

    2012-01-01

    More than two thousand x-ray sources located within 20 pc of the Galactic Center (GC) have been identified by Muno et al. (2003). If an x-ray source is located behind the Galactic Center and offset by a small angle from the GC projected on the sky, then that x-ray source could be gravitationally lensed. The consequences of finding gravitationally lensed sources at the Galactic Center include the ability to independently measure the mass of the GC as well as provide a new probe of the density distribution of the GC (e.g. Wardle & Yusef-Zadeh 1992). Inspecting x-ray images of the GC we were immediately drawn to a set of four x-ray objects. The identified objects are cataloged as CXOJ 174541.0-290014, 174540.1-290005, 174540.0-290031, and 174538.1-290022. These are the brightest and most obvious variable x-ray objects whose positions suggest patterns of images that may either be an inclined quad or two sets of dual gravitational lens patterns. Based on the image patterns, and image brightnesses and relative variations, we modeled possible lens systems using two algorithms. Both of the algorithms describing gravitational lenses are based on the Fermat potential and its time derivatives. For a lens radius of R = 0.01 pc, the total enclosed mass is 2.6 x 107 M⊙ and for R = 0.001 pc, the total enclosed mass is 2.6 x 105 M⊙. These masses are consistent with other measurements of the mass of the GC, such as 4.5 x 106 M⊙ (Ghez et al. 2008). We will present these results and our plans to further study the nature of these x-ray objects.

  9. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1

    NASA Astrophysics Data System (ADS)

    Luangtip, Wasutep; Roberts, Timothy P.; Done, Chris

    2016-08-01

    We present a new analysis of X-ray spectra of the archetypal ultraluminous X-ray source (ULX) Holmberg IX X-1 obtained by the Swift, XMM-Newton and NuSTAR observatories. This ULX is a persistent source, with a typical luminosity of ˜1040 erg s-1, that varied by a factor of 4-5 over eight years. We find that its spectra tend to evolve from relatively flat or two-component spectra in the medium energy band (1-6 keV), at lower luminosities, to a spectrum that is distinctly curved and disc-like at the highest luminosities, with the peak energy in the curved spectrum tending to decrease with increased luminosity. We argue that the spectral evolution of the ULX can be explained by super-Eddington accretion models, where in this case we view the ULX down the evacuated funnel along its rotation axis, bounded by its massive radiatively driven wind. The spectral changes then originate in enhanced geometric beaming as the accretion rate increases and wind funnel narrows, causing the scattered flux from the central regions of the supercritical flow to brighten faster than the isotropic thermal emission from the wind, and so the curved hard spectral component to dominate at the highest luminosities. The wind also Compton down-scatters photons at the edge of the funnel, resulting in the peak energy of the spectrum decreasing. We also confirm that Holmberg IX X-1 displays spectral degeneracy with luminosity, and suggest that the observed differences are naturally explained by precession of the black hole rotation axis for the suggested wind geometry.

  10. On the evolutionary status of bright, low-mass X-ray sources

    NASA Technical Reports Server (NTRS)

    Webbink, R. F.; Rappaport, S.; Savonije, G. J.

    1983-01-01

    A model of bright, low-mass X-ray binaries is proposed which features a lower giant-branch star losing mass on a nuclear time scale to an accreting compact companion. Simple numerical models show that mass transfer rates equal to or greater than 10 to the -9th solar masses per yr are sustained at very nearly a constant rate until the envelope of the donor star is exhausted. The model predicts orbital periods in the range 1-200 days and X-ray to optical luminosity ratios Lx/Lopt = 200-1000 for these sources. It accounts in a natural way for the large fraction of the total galactic bulge luminosity emitted by a few bright (10 to the 37th erg/s or greater) sources. It also accords very well with the observed X-ray and optical properties of the halo source Cyg X-2 and also with those of 2S 0921-63, provided this latter system contains a massive accreting white dwarf rather than a neutron star. Problems of the prior evolution of low-mass X-ray sources are also briefly delineated.

  11. High intensity line source for x-ray spectrometer calibration

    SciTech Connect

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

  12. NUSTAR and SUZAKU X-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    DOE PAGES

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; et al

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less

  13. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Hendry, Douglas; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-08-01

    We propose a novel theoretical model to describe the physical identity of the soft X-ray excess that is ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic accretion, which implied that the accreting plasma can develop into a standing shock under suitable physical conditions, causing the downstream flow to be sufficiently hot due to shock compression. We perform numerical calculations to examine, for sets of fiducial plasma parameters, the physical nature of fast magnetohydrodynamic shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle θ obs, disk photon temperature kT in, and downstream electron energy kT e to calculate the predicted spectra in comparison with a 60 ks XMM-Newton/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 active galactic nucleus, Ark 120. Our χ 2-analyses demonstrate that the model is plausible for successfully describing data for both non-spinning and spinning BHs with derived ranges of 61.3 keV ≲ kT e ≲ 144.3 keV, 21.6 eV ≲ kT in ≲ 34.0 eV, and 17.°5 ≲ θ obs ≲ 42.°6, indicating a compact Comptonizing region of three to four gravitational radii that resembles the putative X-ray coronae.

  14. X-ray source safety shutter

    DOEpatents

    Robinet, McLouis

    1977-05-31

    An apparatus is provided for controlling the activation of a high energy radiation source having a shutter. The apparatus includes magnets and magnetically responsive switches appropriately placed and interconnected so that only with the shutter and other parts of the source in proper position can safe emission of radiation out an open shutter occur.

  15. On the optical identifications of five X-ray sources

    NASA Technical Reports Server (NTRS)

    Bradt, H. V.; Clark, G. W.; Dower, R.; Doxsey, R.; Hearn, D. R.; Jernigan, J. G.; Mayer, W.; Mcclintock, J.; Apparao, K. M. V.; Joss, P. C.

    1977-01-01

    The data from a recently completed survey of the galactic plane with the SAS-3 modulation collimators provide precise (20 to 60 arcsec) celestial positions of galactic X-ray sources. Preliminary positions of 60-arcsec precision are reported for five sources. One of these led to the identification of the star, Gamma Cas, as an X-ray source, and the others lend substantial confidence to previously proposed optical identifications: 3U 0352+30 = X Per, 3U 1145-61 = HEN 715, GX301-2 = WRA977, and GX304-1 = MMV star. These identifications seem to establish the existence of a previously suggested class of Be-star X-ray emitters.

  16. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  17. On the X-ray spectra of luminous, inhomogeneous accretion flows

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.

    2006-08-01

    We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.

  18. Measuring x-ray spectra of flash radiographic sources

    SciTech Connect

    Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr Lvovich; Webb, Timothy J

    2015-11-02

    The x-ray spectra of flash radiographic sources is difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.

  19. X-Ray Sources in the Dwarf Spheroidal Galaxy DRACO

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Dhuga, K.; Rangelov, B.; Kargaltsev, O.

    2016-06-01

    We present the results of a spectral analysis of X - ray sources in Draco, a nearby dwarf spheroidal galaxy recently observed by XMM-Newton. While most of the sources exhibit properties consistent with AGN, few of them possess characteristics of LMXBs and CVs. We also discuss the possibility of the existence of a central IMBH in Draco.

  20. Integral field spectroscopy of the ultraluminous X-ray source Holmberg II X-1

    NASA Astrophysics Data System (ADS)

    Lehmann, I.; Becker, T.; Fabrika, S.; Roth, M.; Miyaji, T.; Afanasiev, V.; Sholukhova, O.; Sánchez, S. F.; Greiner, J.; Hasinger, G.; Costantini, E.; Surkov, A.; Burenkov, A.

    2005-03-01

    We present optical integral field observations of the H II region containing the ultraluminous X-ray source Holmberg II X-1. We confirm the existence of an X-ray ionized nebula as the counterpart of the source owing to the detection of an extended He II λ4686 region (21× 47 pc) at the Chandra ACIS-S position. An extended blue object with a size of 11× 14 pc is coincident with the X-ray/He II λ4686 region, which could indicate that it is either a young stellar complex or a cluster. We have derived an X-ray to optical luminosity ratio of L_X/LB≥170, and presumable it is L_X/LB˜300{-}400 using the recent HST ACS data. We find a complex velocity dispersion at the position of the ULX. In addition, there is a radial velocity variation in the X-ray ionized region found in the He II emission of ±50 km s-1 on spatial scales of 2 3primeprime. We believe that the putative black hole not only ionizes the surrounding HII gas, but also perturbs it dynamically (via jets or the accretion disk wind). The spatial analysis of the public Chandra ACIS-S data reveals a point-like X-ray source and gives marginal indication of an extended component (ll15% of the total flux). The XMM-Newton EPIC-PN spectrum of HoII X-1 is best fitted with an absorbed power law in addition to either a thermal thick plasma or a thermal thin plasma or a multi-colour disk black body (MCD). In all cases, the thermal component shows a relatively low temperature (kT˜0.14{-}0.22 keV). Finally we discuss the optical/X-ray properties of HoII X-1 with regards to the possible nature of the source. The existence of an X-ray ionized nebula coincident with the ULX and the soft X-ray component with a cool accretion disk favours the interpretation as an intermediate-mass black hole (IMBH). However, the complex velocity behaviour at the position of the ULX indicates a dynamical influence of the black hole on the local HII gas.

  1. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-01

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  2. Luminous Supersoft X-Ray Sources as Progenitors of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    DiStefano, R.

    1996-01-01

    In some luminous supersoft X-ray sources, hydrogen accretes onto the surface of a white dwarf at rates more-or-less compatible with steady nuclear burning. The white dwarfs in these systems therefore have a good chance to grow in mass. Here we review what is known about the rate of Type la supernovae that may be associated with SSSS. Observable consequences of the conjecture that SSSs can be progenitors of Type Ia supernovae are also discussed.

  3. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  4. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  5. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  6. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  7. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  8. X-Ray Constraints on Accretion and Starburst Processes in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew Francis

    The results of X-ray observations of a sample of nearby low-luminosity active galactic nuclei (LLAGN), low-ionization nuclear emission line regions (LINERs), and starburst galaxies are presented. In general the 0.4-10.0 keV spectra of this heterogenous sample are fit well by a two-component model consisting of an optically-thin plasma with a temperature of ~0.7 keV and a power-law model with a photon index of ~1.7. Both the hot gas component and the hard, possibly nonthermal, X-ray emission appear to be common features of galaxies showing signs of nuclear activity. The spectrum of the hard component (roughly in the 2-10 keV bandpass) is most consistent with AGN, which are postulated to be accreting supermassive blackholes. X-ray binaries that are probably accreting blackhole candidates also appear to contribute significantly to the hard, and possibly to a lesser extent, the soft X-ray emission. Very hot (T~108 K) gas in a 'superwind' may also be contributing to the hard flux in some cases, probably concentrated in the nuclear regions of the galaxies. Another possible contributor to the featureless X-ray continuum may be inverse-Compton scattering of infrared photons, but the contribution of this component is sensitive to model assumptions. The soft emission appears to be supernovae-heated interstellar medium (ISM). In some cases, the SN-heating is actually in the form of a superwind, in which case ~90% of the X-ray emitting gas is 'swept-up' ISM and the remainder is (cooling) superwind emission out in the disks of the galaxies. Very low absolutes abundances are observed, but the uncertainties are large. Relative abundances are more secure and suggest that Fe is underabundant relative to α-process elements. The low relative Fe abundance may be due to enrichment by Type-II supernovae and∨ dust depletion, but non-equilibrium ionization may also be playing a part. Future observations by X-ray telescopes with high spatial and spectral resolution and improved

  9. Accretion X-ray ms pulsar as a probe of NS EOS

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Ji, Long

    2016-07-01

    Equation state of NS is one of the core sciences for future mission. Regarding to the possible probes, apart from the bursting ms pulsars for which the relation between the spinning light curve and the mass/radius of NS is well established theoretically, the accretion X-ray ms pulsars are the potential alternatives. However, the emission mechanism of the latter is more complicated since one has to account for the corona on top of the NS surface which provides Comptonizations that mix/distort the black body underneath. Thus disentangling the model components between the black body and the Comptonization becomes a big challenge in case of relating the spinning light curve to the mass/radius of NS. This problem is hard to be handled even with a powerful telescope owning a very large detection area. X-ray polarimetry shows us a new insight on model discrimination, and we take the accretion X-ray ms pulsar XTEJ1751-305 as an example to show how this issue could be addressed with a polarization telescope.

  10. 10 micron detection of the hard X-ray transient GRO J0422+32: Free-free emission from an X-ray-driven accretion disk wind?

    NASA Technical Reports Server (NTRS)

    Paradijs, Van J.; Telesco, C. M.; Kouveliotou, C.; Fishman, G. J.

    1994-01-01

    We report the detection of 10 micrometer emission from the transient low-mass X-ray binary (LMXB) and optical nova GRO J0422+32 near the maximum of its outburst. We discuss this result in terms of (1) a 'standard' model according to which low-energy radiation of LMXB is caused by reprocessing of X-rays in an accretion disk; (2) emission from a cool secondary star; (3) emission from dust grains heated by the transient X-rays, and (4) free-free emission from an X-ray-driven wind from the accretion disk. Only the fourth alternative provides a viable explanation for the observed 10 micrometer emission, with a mass-loss rate in the disk wind that may be substantially higher than the rate of accretion onto the compact star. The presence of such a wind may have a profound effect on the evolution of the binary, and contribute to the solution of the 'birthrate problem' of millisecond ratio pulsars.

  11. X-ray sources for radiography of warm dense matter

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, Alessandra; Brambrink, Erik; Barbrel, Benjamin; Koenig, Michel; Gregory, Chris; Loupias, Bérénice; Ravasio, Alessandra; Rabec Le Gloahec, Marc; Vinci, Tommaso; Boehly, Tom; Endo, Takashi; Kimura, Tomoaki; Ozaki, Norimasa; Wei, Huigang; Aglitskiy, Yefim; Faenov, Anatoly; Pikuz, Tatiana

    2008-11-01

    The knowledge of Warm Dense Matter is important in different domains such as inertial confinement fusion, astrophysics and geophysics. The development of techniques for direct probing of this type of matter is of great interest. X-ray radiography is one of the most promising diagnostic to measure density directly. Here we present some results of low-Z material radiography and an experiment devoted to characterize a short pulse laser driven hard x-ray source for the radiography of medium and high Z matter. Experiments have been performed on LULI2000 and TW facilities at the Ecole Polytechnique.

  12. Quasi-periodic oscillations in accreting magnetic white dwarfs. I. Observational constraints in X-ray and optical

    NASA Astrophysics Data System (ADS)

    Bonnet-Bidaud, J. M.; Mouchet, M.; Busschaert, C.; Falize, E.; Michaut, C.

    2015-07-01

    Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 s resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~40% in the bremsstrahlung (0.5-10 keV) X-ray emission and ~20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~(5-10) g cm-2 s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model. Figures 1-3 are available in electronic form at http://www.aanda.org

  13. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  14. Compact X-ray Light Source Workshop Report

    SciTech Connect

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  15. Coronal accretion: the power of X-ray emission in AGN

    NASA Astrophysics Data System (ADS)

    Liu, B.-F.; Taam, R. E.; Qiao, E.; Yuan, W.

    2016-02-01

    The optical/UV and X-ray emissions in luminous AGN are commonly believed to be produced in an accretion disk and an embedded hot corona respectively. We explore the possibility that a geometrically thick coronal gas flow, which is supplied by gravitational capture of interstellar medium or stellar wind, condenses partially to a geometrically thin cold disk and accretes via a thin disk and a corona onto the supermassive black hole. We found that for mass supply rates less than about 0.01 (expressed in Eddington units), condensation does not occur and the accretion flow takes the form of a corona/ADAF. For higher mass supply rates, corona gas condenses to the disk. As a consequence, the coronal mass flow rate decreases and the cool mass flow rate increases towards the black hole. Here the thin disk is characterized by the condensation rate of hot gas as it flows towards the black hole. With increase of mass supply rate, condensation becomes more efficient, while the mass flow rate of the coronal gas attains values of order 0.02 in the innermost regions of the disk, which can help to elucidate the production of strong X-ray with respect to the optical and ultraviolet radiation in high luminosity AGN.

  16. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  17. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  18. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  19. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  20. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  1. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  2. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  3. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  4. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  5. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  6. Transition radiation very soft X-ray source

    NASA Astrophysics Data System (ADS)

    Umiastowski, K.; Nguyen, A.

    1994-05-01

    There is a growing interest in the transition radiation (TR), as a soft X-ray source, in the last few years. Many papers have been published on calculations or experiments in the 1-10 keV X-ray energy range using 50-200 MeV electron accelerators. We investigate the possibility to generate very soft X-rays (λ = 12 nm) with low-energy electron accelerator (5-20 MeV). Very little information is available on TR in this range of photon wavelength and electron energy. A stack of 20 foils of beryllium placed in vacuum was used in our computer simulation. Calculation shows that for 1 mA electron beam current, radiation with few mW intensity can be produced. Emitted photons are quasi-monoenergetic (FWHM less than 5%), and well collimated. The aim of our study is to investigate the possibility of fabricate a soft X-ray source, much more compact than synchrotron source and producing an intense and quasi-coherent radiation, for industrial applications.

  7. From incoherent to coherent x-rays with ICS sources

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Graves, William S.; Moncton, David E.

    2015-08-01

    We present the design and performance parameters for a compact x-ray light source (CXLS), which is presently under construction, based on inverse Compton scattering (ICS) of a high brightness electron bunch on a picosecond laser pulse. The flux and brilliance of this source are orders of magnitude beyond existing laboratory scale sources. The accelerator operates at a repetition rate of 1 kHz with 100 bunches of 100 pC charge, each separated by 5 ns, in each shot. The entire CXLS is a few meters in length and produces hard x-rays tunable over a wide range of photon energies. The scattering laser is a Yb:YAG solid-state amplifier producing 100 mJ pulses at 1030 nm. The laser pulse is frequency-doubled and coupled into a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5×1011 photons/second in a 5% bandwidth and the brilliance is 2×1012 photons/(secmm2mrad20.1%) with a RMS pulse length of 490 fs. Novel concepts for improving the performance of the CXLS with the generation of relativistic electron beams having current modulation at nanometer scale and below are also discussed. This tunable longitudinal modulation enables the production of coherent hard x-rays with ICS.

  8. Chandra ACIS Survey of X-Ray Point Sources in Nearby Galaxies. II. X-Ray Luminosity Functions and Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Wang, Song; Qiu, Yanli; Liu, Jifeng; Bregman, Joel N.

    2016-09-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α ˜ 1.50 ± 0.07) to elliptical (˜1.21 ± 0.02), to spirals (˜0.80 ± 0.02), to peculiars (˜0.55 ± 0.30), and to irregulars (˜0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D 25 and 2D 25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 1040 erg s-1, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M ⊙ black holes with super-Eddington radiation and intermediate mass black holes.

  9. Galactic X-rays: Variable Sources in Hydromagnetic Waves.

    PubMed

    Lelevier, R E; Libby, L M

    1968-06-28

    Galactic sources of x-rays fluctuating in intensity are explained as being small regions, of enhanced gas density and temperature, emitting thermal Coulomb bremsstrahlung of kiloelectron-volt energies. Hydromagnetic wave motions, of the magnetic fields in the galactic spiral arms, produce the enhanced regions by compressing the clouds of ionized gas to which they are tied by their high electrical conductivity. From the observed periods of fluctuation of a few months, together with the hydromagnetic velocity, it is estimated that the average size of sources does not exceed 10(16) centimeters. By using the formula for Coulomb bremsstrahlung and requiring that the sources shall produce the observed x-ray fluxes, one finds a second estimate of size of sources in agreement at about 1016 centimeters. Such regions are too small to be observable radio sources with current radio telescopes.

  10. High-energy X-ray spectra of five sources.

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  11. Thermal instability accretion disk model for the X-ray transient A0620-00

    NASA Technical Reports Server (NTRS)

    Huang, Min; Wheeler, J. Craig

    1989-01-01

    The limit-cycle thermal instability model for accretion disks is used to study the soft X-ray transient A0620-00. Thermal instability in geometrically thin, Keplerian alpha-model disks is reviewed. The observational constraints on A0620-00 are presented and the parameters chosen for the model are discussed. It is found that, with the adopted parameters, the model requires a central object mass of about 7 solar masses to fit the burst recurrence time. This is consistent with a black hole as the central object. The results suggest that a mass transfer instability may be responsible for outbursts.

  12. CAN THE 62 DAY X-RAY PERIOD OF ULX M82 X-1 BE DUE TO A PRECESSING ACCRETION DISK?

    SciTech Connect

    Pasham, Dheeraj R.; Strohmayer, Tod E. E-mail: tod.strohmayer@nasa.gov

    2013-09-10

    We have analyzed all archival Rossi X-Ray Timing Explorer/Proportional Counter Array monitoring observations of the ultraluminous X-ray source M82 X-1 in order to study the properties of its 62 day X-ray period, which was found by Kaaret and Feng in 2007. Based on its high coherence, it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies, we find the following. (1) The phase-resolved X-ray (3-15 keV) spectra-modeled with a thermal accretion disk and a power law-suggest that the accretion disk's contribution to the total flux is strongly modulated with phase. (2) Suggestive evidence for a sudden phase shift of approximately 0.4 in phase (25 days) between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is {approx}10 yr, which is exceptionally fast for an orbital phenomenon. These two independent pieces of evidence are consistent with the periodicity being due to a precessing accretion disk, similar to the super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the Swift X-Ray Telescope.

  13. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  14. Automatic classification of time-variable X-ray sources

    SciTech Connect

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  15. AGN content of X-ray, IR and radio sources

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.

    2016-09-01

    We have carried out a number of surveys and identification works related to X-ray, IR and radio sources and searched for extragalactic ones. Among them, most interesting are Active Galactic Nuclei (AGN) and Starburst (SB) Galaxies. Some 4500 AGN have been revealed from ROSAT BSC and FSC sources, and many more are hidden ones; those showing evidence of activity but with no emission lines in optical wavelengths. We estimated AGN content of X-ray sources as 52.9%. IR sources contain thousands of SBs, and most important are those having signs of interaction and/or merging. We have carried out optical identifications of IRAS point sources, and 1278 IR galaxies have been revealed, including LIRGs and ULIRGs. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed to estimate AGN content among IR sources as 23.7%. Extragalactic radio sources contain bright galaxies, AGN and SBs. We have studied the border between AGN and normal galaxies by radio/optical flux ratios to establish which objects may be attributed to AGN based on radio properties. Interestingly, absolute majority of objects associated with both X-ray and radio sources are AGN.

  16. Automatic Classification of Time-variable X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  17. High power bremsstrahlung X-ray source for radiation processing

    NASA Astrophysics Data System (ADS)

    Yotsumoto, K.; Sunaga, H.; Tanaka, S.; Kanazawa, T.; Agematsu, T.; Tanaka, R.; Yoshida, K.; Taniguchi, S.; Sakamoto, I.; Tamura, N.

    The high power X-ray irradiation facility designed for the sterilization of medical appliances is described. The X-ray source consists of the 5 MeV, 300 kW Cockcroft Walton type of electron accelerator and the water cooled tantalum target. Conditions necessary for designing the X-ray target are conversion efficiency from electron beam to X-ray, thermal conductivity, readiness for machining and cost of the material. The conversion efficiency was determined through the Monte Carlo type calculation and obtained as 10.8 % for 3.667 g/cm 2 thickness (1 csda range) of tantalum target. In order to obtain the data on the source design, experiments have been carried out at the JAERI TAKASAKI 2 MeV, 60 kW Cockcroft-Walton type of electron accelerator equipped with a tantalum target. The size of package and the speed of conveyor was determined through the calculation of the absorbed dose distribution in the irradiated medium and the utilization efficiency.

  18. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-01-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 [times] 10[sup 14]/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-[mu]m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 [times] 10[sup 7] photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 [times]0.5-mm[sup 2] pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  19. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-12-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 {times} 10{sup 14}/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-{mu}m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 {times} 10{sup 7} photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 {times}0.5-mm{sup 2} pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  20. Laboratory soft x-ray source with foil target

    NASA Astrophysics Data System (ADS)

    Stephan, Karl-Heinz; Braeuninger, Heinrich W.

    1993-02-01

    We have developed a comparatively small soft x-ray source for application in our test facilities, which are used at present to support the developments of the astrophysical space projects XMM and AXAF. The instrument comprises a commercially available color television tube for generation of the electron beam, which is focused on exchangeable metal films serving as targets. The x rays are taken off after having transversed the foil target and have a sufficient spectral purity with regard to the experimental requirements. The maximum electric operating parameters correspond to an emission current of 100 (mu) A generated by a filament heating power of 6.6 watt at an accelerating voltage of 25 kV. The technical advantages of the instrument are lightweight construction, no water cooling, small size electric supply, cost efficient manufacturing, small sized focus, and quick access to the desired characteristic spectral line by exchange of a complete tube. We describe the measurements on the local x-ray intensity profile of the focus, the spectral features of the beam, and present the resulting performance data. A special development could be used as calibration sources in x-ray telescopes.

  1. A possible 55-d X-ray period of the ultraluminous accreting pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Kong, Albert K. H.; Hu, Chin-Ping; Lin, Lupin Chun-Che; Li, K. L.; Jin, Ruolan; Liu, C. Y.; Yen, David Chien-Chang

    2016-10-01

    We report on the possible detection of a 55-d X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-d orbital period, if the 55-d period is real, then it will be the superorbital period of the system. We also investigated variabilities of three other nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data, and we did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-d periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we have confirmed that the 62-d period is not stable, suggesting that it is not the orbital period of M82 X-1; this is in agreement with previous work.

  2. Chandra Discovery of Luminous Supersoft X-Ray Sources in M81

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ghosh, Kajal K.; Sulimanov, Valery; Tennant, Allyn F.; Wu, Kinwah; Six, N. Frank (Technical Monitor)

    2002-01-01

    A Chandra ACIS-S imaging observation of the nearby galaxy M81 (NGC 3031) reveals 9 luminous soft X-ray sources. The local environments, X-ray spectral properties, and X-ray light curves of the sources are presented and discussed in the context of prevailing physical models for supersoft sources. It is shown that the sample falls within expectations based on population synthesis models taken from the literature though the high observed luminosities (L approx.2e36 to approx.3e38 ergs in the 0.2--2.0-keV band) and equivalent blackbody temperatures (T approx.40 to 80 eV) place the brightest detected M81 objects at the high luminosity end of the class of supersoft sources defined by previous ROSAT and Einstein studies of nearby galaxies. This is interpreted as a natural consequence of the higher sensitivity of Chandra to hotter and more luminous systems. Most of the sources can be explained as canonical supersoft sources, secreting white dwarfs powered by steady surface nuclear burning, with X-ray spectra well-fit by hot white dwarf local thermodynamic equilibrium atmosphere models. An exceptionally bright source is scrutinized in greater detail as its estimated barometric luminosity, L approx. 1.5e39 ergs, greatly exceeds theoretical estimates for supersoft sources. This source may be beyond the stability limit and undergoing a phase of mass outflow under extreme conditions. Alternatively, a model in which the observed X-ray spectrum arises from an accretion disk around a blacklists of mass approx.1200/sqrt(cosi) solar masses (viewed at an inclination angle 1) cannot be excluded.

  3. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D.; Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Parker, M. L.; Hailey, C. J.; Ptak, A.; Zhang, W. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  4. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  5. X-ray variability of SS 433: effects of the supercritical accretion disc

    NASA Astrophysics Data System (ADS)

    Atapin, Kirill; Fabrika, Sergei; Medvedev, Aleksei; Vinokurov, Alexander

    2015-01-01

    We study a stochastic variability of SS 433 in the 10-4-5 × 10-2 Hz frequency range based on RXTE data, and on simultaneous observations with RXTE and optical telescopes. We find that the cross-correlation functions and power spectra depend drastically on the precession phase of the supercritical accretion disc. When the wind funnel of the disc is maximally open to the observer, a flat part emerges in the power spectrum; a break is observed at the frequency 1.7 × 10-3 Hz, with a power-law index β ≈ 1.67 at higher frequencies. The soft emission forming mostly in the jets lags behind the hard and optical emission. When the observer does not see the funnel and jets (the `edge-on' disc), the power spectrum is described by a single power-law with β ≈ 1.34 and no correlations between X-ray ranges are detected. We investigated two mechanisms to explain the observed variability at the open disc phase: (1) reflection of radiation at the funnel wall (X-rays and optical) and (2) the gas cooling in the jets (X-rays only). The X-ray variability is determined by the contribution of both mechanisms; however, the contribution of the jets is much higher. We found that the funnel size is (2-2.5) × 1012 cm, and the opening angle is ϑf ˜ 50°. X-ray jets may consist of three fractions with different densities: 8 × 1013, 3 × 1013 and 5 × 1011 cm-3, with most of the jet's mass falling within the latter fraction. We suppose that revealed flat part in the power spectrum may be related to an abrupt change in the disc structure and viscous time-scale at the spherization radius, because the accretion disc becomes thick at this radius, h/r ˜ 1. The extent of the flat spectrum depends on the variation of viscosity at the spherization radius.

  6. Measuring x-ray spectra of flash radiographic sources

    NASA Astrophysics Data System (ADS)

    Gehring, Amanda E.; Espy, Michelle A.; Haines, Todd J.; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr; Webb, Timothy J.

    2015-08-01

    A Compton spectrometer has been re-commissioned for measurements of flash radiographic sources. The determination of the energy spectrum of these sources is difficult due to the high count rates and short nature of the pulses (~50 ns). The spectrometer is a 300 kg neodymium-iron magnet which measures spectra in the <1 MeV to 20 MeV energy range. Incoming x-rays are collimated into a narrow beam incident on a converter foil. The ejected Compton electrons are collimated so that the forward-directed electrons enter the magnetic field region of the spectrometer. The position of the electrons at the magnet's focal plane is a function of their momentum, allowing the x-ray spectrum to be reconstructed. Recent measurements of flash sources are presented.

  7. A supersoft variable low-luminosity X-ray source in the globular cluster M3

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Grindlay, J. E.; Bailyn, C. D.

    1993-01-01

    The globular cluster M3 (NGC 5272) was observed twice with the ROSAT high-resolution imager in order to study the low-luminosity X-ray source 1E 1339.8 + 2837. In 1992 January 1E 1339.8 + 2837 had an X-ray luminosity of 2 x 10 exp 35 ergs/s over an order of magnitude brighter than it was when observed with the Einstein Observatory. The source was unresolved and very soft; such supersoft outbursts would be difficult to detect in the vast majority of globular clusters which are more heavily absorbed than M3. In 1992 June the source was too faint to be detected. The soft outburst luminosity and the blackbody radius suggest that 1E 1339.8 + 2837 is a cataclysmic variable in which much of the luminosity is generated by steady nuclear burning of accreted material on the surface of the white dwarf primary.

  8. Einstein observations of extended galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Seward, F. D.

    1979-01-01

    Features of the X-ray pictures taken aboard the space observatory are presented. Imaging proportional counter pictures in three broad X-ray energy ranges were obtained. The X-ray spectrum of supernova remnants is described.

  9. X-ray Thomson Scattering using the Hybrid X-pinch X-ray Source

    NASA Astrophysics Data System (ADS)

    Hoyt, Cad; Pikuz, Sergei; Shelkovenko, Tania; Hammer, Dave

    2013-10-01

    Stringent photometric and bandwidth requirements have historically relegated X-ray Thomson scattering (XRTS) probe sources to high energy laser plasma sources or free electron lasers. Standard x-pinch configurations in which two or more fine wires cross and subtend an angle of about 30° forming an ``X'' between the anode and cathode of a pulsed power generatorcan produce extremely bright, subnanosecond bursts of continuum and line radiation from micron-scale sources. The hybrid x-pinch is a new configuration based on conical W-Cu alloy electrodes with a short 1-2 mm gap that is bridged by a fine wire resulting in an easier to load setup with improved performance characteristics. We explore the possibility of utilizing the hybid x-pinch as a novel XRTS probe source by examining certain spectral and temporal attributes of a range of materials in a hybrid x-pinch configuration on the XP (500 kA, 50 ns) and COBRA(1MA, 100ns) pulsed power generators. We find that a Ti hybrid x-pinch produces >1012 photons/sr in Ti He-alpha radiation and satisfies the noncollective scattering bandwidth requirement. Measurements of photon fluence, bandwidth and applicability to the relevant scattering regime and initial scattering results will be presented.

  10. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  11. Application of monochromatic keV X-ray source to X-ray drug delivery system

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Taguchi, Hiroki; Mori, Azusa; Yusa, Noritaka; Kato, Takamitsu; Okayasu, Ryuichi

    2009-09-01

    X-ray Drug Delivery System (DDS) enhances accumulation of anti-cancer drug or contrast agent by surrounding it with polymer and Enhanced Penetration and Retention (EPR) effect. DDS uses advanced nano-scaled polymers that contain and deliver drug or contrast agent to cancers without side effects. Several X-ray DDSs pose high-Z atoms such as gold to absorb X-rays effectively and used as contrast agent for inspection. Moreover, they have radiation enhancement effect by emission of Auger electron and successive characteristic X-rays. The enhancement factor of gold is more than five. This could be used even for therapy. This new modality must be very important for inspection and therapy of deep cancers. We are making use of our X-band Compton scattering monochromatic keV X-ray source for the inspection. Numerical simulation on monochromatic X-ray CT for possible concentration of gold-colloid DDS considering the X-ray property from the source was done. Enough visibility was confirmed. Furthermore, in vitro experiment analyzed its toxic effect to cells by the Alkaline comet assay and fluorescent immunostaining method for single and double strand breaks of DNA. Availability of clear imaging for the inspection has been confirmed by the numerical simulation and the in-vitro evaluation of the therapy effect is under way.

  12. Propagation of nuclear burning fronts on accreting neutron stars: X-ray bursts and sub-hertz noise

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars

    1995-01-01

    We identify a new regime of time dependent helium burning for high accretion rate neutron stars and suggest that this burning is the origin of the low-level luminosity variations (on timescales of 10-10(exp 4) s, designated the 'very low-frequency noise'(VLFN) by van der Klis and collaborators) always detected in the brightest accreting X-ray sources. Only two nuclear burning regimes were previously recognized. At accretion rates in excess of the Eddington limit (dot-M approximately greater than (1-3) x 10(exp -8) solar mass/yr), the accreted matter fuses steadily. At very low dot-M, the star's entire surface is rapidly (approximately less than 10 s) burned by a fast propagating convective burning front at regular intervals, giving quasi-periodic Type I X-ray bursts. We show that for the observationally interesting range of 5 x 10(exp -10) solar mass/yr approximately less than dot-M approximately less than 10(exp -8) solar mass/yr, parts of the stellar surface burn slowly. At these accretion rates, a local thermonuclear instability starts a fire which propagates horizontally at v approximately 300 cm/s. The fire propagates around the flammable surface in roughly the same time it takes to accrete enough fuel for the next instability (approximately 10(exp 3)-10(exp 4), so that only a few fires are burning at once, giving rise to large luminosity flares. Nuclear burning is always time dependent for sub-Eddington local accretion rates: a local patch undergoes a recurrent cycle, accumulation fuel for hours until it becomes thermally unstable or is 'ignited' by a nearby burning region. The global pattern of burning and the resulting luminosity are thus very dependent on how fast nuclear fires spread around the star. The nuclear burning luminosity is not uniform over the stellar surface and so may provide a handle on measuring, or constraining, the spin periods of these neutron stars.

  13. Effect of Viewing Angle on Super-Soft-Source X-Ray Spectra

    NASA Astrophysics Data System (ADS)

    Ness, Jan-Uwe

    2012-09-01

    The advent of the X-ray grating spectrometers has given new momentum to the studies of Super-Soft-Source (SSS) X-ray spectra in high resolution. Earlier CCD-type spectra only allow determinations of effective temperatures while in the grating spectra, lines and continuum can be resolved. I have studied the X-ray grating spectra of eight classical novae during their SSS phase, two of them candidates for recurrent novae, two established recurrent novae, and four permanent SSSs including the prototypes Cal 83 and Cal 87. I discovered two categories of SSSs: those dominated by emission lines (SSSe) and by absorption line (SSSa). All spectra contain photospheric continuum emission, indicated by the shape of a blackbody. For the majority of SSSe, the inclination angle is known, which are all greater than 75 degrees. I argue that the SSSe are high-inclination systems in which photospheric X-ray emission from the central source is partially blocked and scattered via Thompson scattering, which preserves the spectral shape of the continuum. Since the electrons in the scattering medium move at high velocities, photospheric absorption lines are smeared out and are therefore not seen. Additional emission lines are produced by resonant line scattering. The fact that only high inclination systems show these effects of scattering, the scattering material must be concentrated to the ecliptic plane. While in permanent SSSs, the accretion disk can explain this behavior, this result implies that in novae, the reformation of the accretion disk has already progressed to an advanced stage during their SSS phase. I argue that also the novae in low-inclination angle systems possess a reformed accretion disk. The viewing angle dependence requires non-symmetrical modeling approaches. Early disk reformation can also explain high-amplitude variations that have frequently been observed during the early SSS phase.

  14. The Behavior of Accretion Disks in Low Mass X-ray Binaries: Disk Winds and Alpha Model

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.

    2010-01-01

    This dissertation presents research on two low mass X-ray binaries. The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy with the ACS/SBC on the Hubble Space Telescope and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s as determined from the Doppler width of the C IV emission line. The broad and shallow eclipse indicates that the disk has a vertically-extended, optically-thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to 50% of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of the disk wind. V1408 Aql (=4U 1957+115) is a low mass X-ray binary which continues to be a black hole candidate. We have new photometric data of this system from the Otto Struve 2.1-m telescope's high speed CCD photometer at McDonald Observatory. The light curve is largely sinusoidal which we model with two components: a constant light source from the disk and a sinusoidal modulation at the orbital period from the irradiated face of the companion star. This is a radical re-interpretation of the orbital light curve. We do not require a large or asymmetric disk rim to account for the modulation in the light curve. Thus, the orbital inclination is unconstrained in our new model, removing the foundation for any claims of the compact object being a black hole.

  15. New flaring of an ultraluminous X-ray source in NGC1365

    NASA Astrophysics Data System (ADS)

    Soria, R.; Baldi, A.; Risaliti, G.; Fabbiano, G.; King, A.; La Parola, V.; Zezas, A.

    2007-08-01

    We have studied a highly variable ultraluminous X-ray source (ULX) in the Fornax galaxy NGC1365, with a series of 12 Chandra and XMM-Newton observations between 2002 and 2006. In 2006 April, the source peaked at a luminosity ~3 × 1040erg s-1 in the 0.3-10 keV band (similar to the maximum luminosity found by ASCA in 1995), and declined on an e-folding time-scale ~3 d. The X-ray spectrum is always dominated by a broad power-law-like component. When the source is seen at X-ray luminosities ~1040 erg s-1, an additional soft thermal component (which we interpret as emission from the accretion disc) contributes ~1/4 of the X-ray flux; when the luminosity is higher, ~3 × 1040erg s-1, the thermal component is not detected and must contribute <10per cent of the flux. At the beginning of the decline, ionized absorption is detected around ~0.5-2 keV; it is a possible signature of a massive outflow. The power law is always hard, with a photon index Γ ~ 1.7 (and even flatter at times), as is generally the case with bright ULXs. We speculate that this source and perhaps most other bright ULXs are in a high/hard state: as the accretion rate increases well above the Eddington limit, more and more power is extracted from the inner region of the inflow through non-radiative channels, and is used to power a Comptonizing corona, jet or wind. The observed thermal component comes from the standard outer disc; the transition radius between outer standard disc and Comptonizing inner region moves further out and to lower disc temperatures as the accretion rate increases. This produces the observed appearance of a large, cool disc. Based on X-ray luminosity and spectral arguments, we suggest that this accreting black hole has a likely mass ~50-150Msolar (even without accounting for possible beaming).

  16. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  17. Minimum X-ray source size of the on-axis corona in AGN

    NASA Astrophysics Data System (ADS)

    Dovčiak, M.; Done, C.

    2016-05-01

    The ``lamppost'' model is often used to describe the X-ray source geometry in AGN, where an infinitesimal point source is located on the black hole spin axis. This is especially invoked for narrow line Seyfert 1 (NLS1) galaxies, where an extremely broad iron line seen in episodes of low X-ray flux can both be explained by extremely strong relativistic effects as the source approaches the black hole horizon. The most extreme spectrum seen from the NLS1 1H0707-495 requires that the source is less than 1 GM/c2 above the event horizon in this geometry. However, the source must also be large enough to intercept sufficient seed photons from the disc to make the hard X-ray Compton continuum which produces the observed iron line/reflected spectrum. We use a fully relativistic ray tracing code to show that this implies that the source must be substantially larger than 1 GM/c2 in 1H0707-495 if the disc is the source of seed photons. Hence the source cannot fit as close as 1 GM/c2 to the horizon, so the observed spectrum and variability are not formed purely by effects of strong gravity but probably also by changes in corona and inner accretion flow geometry.

  18. 1 kHz tabletop ultrashort hard x-ray source for time-resolved x-ray protein crystallography

    NASA Astrophysics Data System (ADS)

    Bonvalet, Adeline; Darmon, Adeline; Lambry, Jean-Christophe; Martin, Jean-Louis; Audebert, Patrick

    2006-09-01

    We describe a compact, reliable, and high-average-power femtosecond x-ray source and its first application to diffraction on protein crystal. The setup relies on a homemade Ti: sapphire system delivering 12 mJ at a 1 kHz repetition rate, associated with a small vacuum chamber especially designed for laser-plasma interaction and x-ray applications. This device allows the generation of 5×109 photons/s/sr at 8 keV and optimized x-ray irradiation of the studied sample, which can be placed close to the source. We present the diffraction pattern of a protein crystal in a divergent beam geometry, which is a first step to a subpicosecond x-ray diffraction experiment.

  19. Analysis of the Central X-ray Source in DG Tau

    NASA Astrophysics Data System (ADS)

    Schneider, P. Christian; Schmitt, Jürgen H. M. M.

    As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out.

  20. Measuring X-ray Spectra of Flash Radiographic Sources

    NASA Astrophysics Data System (ADS)

    Gehring, Amanda; Espy, Michelle; Haines, Todd; Mendez, Jacob; Moir, David; Sedillo, Robert; Volegov, Petr; Webb, Tim

    2015-10-01

    A Compton spectrometer has been re-commissioned for measurements of flash radiographic sources. The determination of the energy spectrum provides information about the x-ray production mechanisms of these sources (ie. reaction history of plasmas, electron-target interactions) and benefits the analysis of images obtained at radiographic facilities. However, the measurements of the spectra are difficult due to the high count rates and short nature of the pulses (~ 50 ns). The spectrometer is a 300 kg neodymium-iron magnet which measures spectra in the <1 MeV to 20 MeV energy range. Incoming x-rays are collimated into a narrow beam incident on a converter foil. The ejected Compton electrons are collimated so that the forward-directed electrons enter the magnetic field region of the spectrometer. The position of the electrons at the focal plane of the magnet is a function of their momentum, allowing the x-ray spectrum to be reconstructed. Recent measurements of both flash and continuous radiographic sources will be presented.

  1. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows. PMID:26605521

  2. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  3. Continuum and line spectra of degenerate dwarf X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1981-01-01

    Recent observations of X-ray sources are summarized. Unresolved issues concerning these sources are discussed and an outline of the kinds of X-ray observations that would best advance the understanding of these sources is presented.

  4. Discovery of Extremely Embedded X-ray Sources in the R Coronae Australis Star Forming Core

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Ken-Ji; Corcoran, Michael F.; Petre, Rob; White, Nicholas E.; Stelzer, Beate; Nedachi, Ko; Kobayashi, Naoto

    2004-01-01

    We detected three extremely embedded X-ray sources in the R Corona Australis (R CrA) star forming core, IRS 7 region. Two weak X-ray sources are associated with the VLA centimeter radio sources 10E & W, whereas the third brightest source detected in the two XMM-Newton observations on March 2003 has no counterpart at any wavelengths. The large K-band upper-limit (19.4m) measured with the University of Hawaii 88-inch Telescope and strong absorption derived in X-rays (N(sub H) approx. 2.8 x 10(exp 23)/sq cm equivalent to A(sub v) approx. 180 m) indicate that the source is younger than typical Class I protostars, i.e. a Class 0 protostar or an intermittent phase between Class 0 and Class I protostars. The X-ray luminosity was less than one thirtieth (log L(sub x) less than or approx. equals 29.3 ergs/s) in the former Chandra observation in October 2000, which suggests that the X-ray activity, probably generated by magnetic activity, is triggered by an intermittent mass accretion episode such as FU Ori type outbursts. Because the source was detected at high significance in the XMM-Newton observations (approx. 2,000 cnts), X-ray properties of such young protostars can be well investigated for the first time. The light curves were constant in the 1st observation and increased linearly by a factor of two during 30 ksec in the 2nd observation. Both spectra showed iron K lines originated in hot thin-thermal plasma and fluorescence by cold gas. They can be reproduced by an absorbed thin-thermal plasma model with a Gaussian component at 6.4 keV (kT approx. 3-4 keV, L(sub x) approx. 7-20 x 10(exp 30) ergs/s). The rising timescale of the light curves in the 2nd observation was too slow for magnetically generated X-ray flares, whereas large equivalent width of the fluorescence iron K line in the 1st observation (approx. 810 eV) requires strong partial covering of the X-ray source. These results suggest that a confined hot (perhaps accretion) spot on the protostellar core was

  5. The Chandra COSMOS-Legacy Survey: Source X-Ray Spectral Properties

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Lanzuisi, G.; Civano, F.; Iwasawa, K.; Suh, H.; Comastri, A.; Zamorani, G.; Allevato, V.; Griffiths, R.; Miyaji, T.; Ranalli, P.; Salvato, M.; Schawinski, K.; Silverman, J.; Treister, E.; Urry, C. M.; Vignali, C.

    2016-10-01

    We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5–7 keV band. A total of 38% of the sources are optically classified type 1 active galactic nuclei (AGNs), 60% are type 2 AGNs, and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index Γ and of the intrinsic absorption {N}{{H},{{z}}} based on the sources’ optical classification: type 1 AGNs have a slightly steeper mean photon index Γ than type 2 AGNs, which, on the other hand, have average {N}{{H},{{z}}} ∼ 3 times higher than type 1 AGNs. We find that ∼15% of type 1 AGNs have {N}{{H},{{z}}}\\gt {10}22 cm‑2, i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have {L}2{--10{keV}} \\gt 1044 erg s‑1. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being, for example, caused by dust-free material surrounding the inner part of the nuclei. Approximately 18% of type 2 AGNs have {N}{{H},{{z}}}\\lt {10}22 cm‑2, and most of these sources have low X-ray luminosities (L {}2{--10{keV}} \\lt 1043 erg s‑1). We expect a part of these sources to be low-accretion, unobscured AGNs lacking broad emission lines. Finally, we also find a direct proportional trend between {N}{{H},{{z}}} and host-galaxy mass and star formation rate, although part of this trend is due to a redshift selection effect.

  6. The thermonuclear-flash model for X-ray burst sources - A new tool for observing neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1979-01-01

    The helium-flash model for X-ray burst sources, in which matter is presumed to accrete onto the surface of a neutron star, is discussed. Attention is given to the accretion process, nuclear burning, X-ray emission, and the energy released by convection as well as by radiative diffusion near the surface. The rise times of observed bursts, their spectral evolution, and the properties of the spectrally soft X-ray transients are considered. Problems in interpreting the continuum spectra are discussed, along with problems in the detection and measurement of line features in the spectra. Also considered are the ratio of time-averaged persistent luminosity to time-averaged burst luminosity, peak burst luminosities, and the possibility of detecting binary membership for burst sources.

  7. On the physical nature of the source of ultraluminous X-ray pulsations

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.

    2016-01-01

    To reconcile the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 with the most extreme violation of the Eddington limit, and in view that the persistent X-ray radiation from M82X-2 almost precludes the possibility of common pulsars, we tackle the problem by the implications of microscopic theory of black hole (MTBH). The preceding developments of MTBH are proved to be quite fruitful for the physics of ultra-high energy (UHE) cosmic-rays. Namely, replacing a central singularity by the infrastructures inside event horizon, subject to certain rules, MTBH explains the origin of ZeV-neutrinos which are of vital interest for the source of UHE-particles. The M82X-2 is assumed to be a spinning intermediate mass black hole resided in final stage of growth. Then, the thermal blackbody X-ray emission, arisen due to the rotational kinetic energy of black hole, escapes from event horizon through the vista to outside world, which is detected as ultraluminous X-ray pulsations. The M82X-2 indeed releases ˜99.6 % of its pulsed radiative energy predominantly in the X-ray bandpass 0.3-30 keV. We derive a pulse profile and give a quantitative account of energetics and orbital parameters of the semi-detached X-ray binary containing a primary accretor M82X-2 of inferred mass M≃138.5-226 M_{⊙} and secondary massive, M2> 48.3-64.9 M_{⊙}, O/B-type donor star with radius of R> 22.1-25.7 R_{⊙}, respectively. We compute the torque added to M82X-2 per unit mass of accreted matter which yields the measured spin-up rate.

  8. On the x-ray emission from the radio source SGR A*

    SciTech Connect

    Coker, R. F.; Pittard, J. M.

    2004-01-01

    Recent infrared observations of the Galactic Center have permitted the estimation of orbital parameters for the 8 O stars closest to the compact, nonthermal radio source, Sgr A*. The emission of Sgr A* is thought to be due to the accretion of gas down the potential well of a {approx} 3 x 10{sup 6} solar mass black hole at the dynamical heart of the Milky Way. The O stars are located within 0.03 pc of Sgr A* and are likely to have significant stellar winds. Since they are deep within the potential well of a black hole, much of their winds are gravitationally bound. These hot winds may be piling up and emitting significantly in the X-rays. Thus it is possible that the emission from the recently detected compact CHANDRA source may at least in part be due to the winds of these O stars rather than the hot gas close to the event horizon of the black hole. This has serious implications for applicable black hole accretion models. From preliminary 3D numerical simulations which treat the 8 O stars as mass sources moving on individual orbits, we have constructed simulated X-ray images. We present these images and discuss their impact on accretion models for Sgr A*.

  9. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    NASA Technical Reports Server (NTRS)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  10. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes. PMID:25297432

  11. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  12. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source

    SciTech Connect

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-15

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipments for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  13. Accretion Column Structure of Magnetic Cataclysmic Variables from X-ray Spectroscopy

    SciTech Connect

    Hoogerwerf, R; Brickhouse, N S; Mauche, C W

    2006-02-27

    Using Chandra HETG data we present light curves for individual spectral lines of Mg XI and Mg XII for EX Hydrae, an intermediate-polar type cataclysmic variable. The Mg XI light curve, folded on the white dwarf spin period, shows two spikes that are not seen in the Mg XII or broad-band light curves. Occultation of the accretion column by the body of the white dwarf would produce such spikes for an angle between the rotation axis and the accretion columns of {alpha} = 18{sup o} and a height of the Mg XI emission above the white dwarf surface of {approx}< 0.0004 white dwarf radii or {approx}< 4 km. The absence of spikes in the Mg XII and broad-band light curves could then be explained if the bulk of its emission forms at much larger height, > 0.004 white dwarf radii or > 40 km, above the white dwarf surface. The technique described in this letter demonstrates that high signal-to-noise ratio and high spectral resolution X-ray spectra can be used to map the temperature and density structure of accretion flows in magnetic cataclysmic variables. The Mg XI and Mg XII light curves are not consistent with the temperature and density structure predicted by the standard Aizu model.

  14. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  15. XMM-Newton observation of the X-ray point source population of the starburst galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Kong, Albert K. H.

    2003-11-01

    We present the results of an XMM-Newton observation of the starburst galaxy IC 342. Thirty-seven X-ray point sources were detected down to a luminosity limit of ~1037 erg s-1. Most of the sources are located near the spiral arms. The X-ray point source luminosity function is consistent with a power-law shape with a slope of 0.55, typical of starburst galaxies. We also present the energy spectra of several ultraluminous X-ray sources (ULXs), including the luminous X-ray source in the galactic nucleus. Except for the nucleus and a luminous supersoft X-ray source, other ULXs can generally be fitted with a simple power-law spectral model. The nucleus is very luminous (~1040 erg s-1 in 0.2-12 keV) and requires disc blackbody and power-law components to describe the X-ray emission. The spectral fit reveals a cool accretion disc (kT= 0.11 keV) and suggests that the source harbours either an intermediate-mass black hole or a stellar-mass black hole with outflow.

  16. X-Ray Reflection from Inhomogeneous Accretion Disks. I. Toy Models and Photon Bubbles

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.; Turner, N. J.; Blaes, O. M.

    2004-03-01

    Numerical simulations of the interiors of radiation-dominated accretion disks show that significant density inhomogeneities can be generated in the gas. Here, we present the first results of our study on X-ray reflection spectra from such heterogeneous density structures. We consider two cases: first, we produce a number of toy models in which a sharp increase or decrease in density, of variable width, is placed at different depths in a uniform slab. Comparing the resulting reflection spectra to those from an unaltered slab shows that the inhomogeneity can affect the emission features, in particular the Fe Kα and O VIII Lyα lines. The magnitude of any differences depends on both the parameters of the density change and the ionizing power of the illuminating radiation, but the inhomogeneity is required to be within ~2 Thomson depths of the surface to cause an effect. However, only relatively small variations in density (by factors of a few) are necessary for significant changes in the reflection features to be possible. Our second test was to compute reflection spectra from the density structure predicted by a simulation of the nonlinear outcome of the photon-bubble instability. The resulting spectra also exhibited differences from the constant-density models, caused primarily by a strong 6.7 keV iron line. Nevertheless, constant-density models can provide a good fit to simulated spectra, albeit with a low reflection fraction, between 2 and 10 keV. Below 2 keV, differences in the predicted soft X-ray line emission result in very poor fits with a constant-density ionized-disk model. The results indicate that density inhomogeneities may further complicate the relationship between the Fe Kα equivalent width and the X-ray continuum. Further calculations are needed to verify that density variations of sufficient magnitude will occur within a few Thomson depths of the disk photosphere.

  17. A XMM-Newton Observation of Nova LMC 1995, a Bright Supersoft X-ray Source

    NASA Technical Reports Server (NTRS)

    Orio, Marina; Hartmann, Wouter; Still, Martin; Greiner, Jochen

    2003-01-01

    Nova LMC 1995, previously detected during 1995-1998 with ROSAT, was observed again as a luminous supersoft X-ray source with XMM-Newton in December of 2000. This nova offers the possibility to observe the spectrum of a hot white dwarf, burning hydrogen in a shell and not obscured by a wind or by nebular emission like in other supersoft X-ray sources. Notwithstanding uncertainties in the calibration of the EPIC instruments at energy E<0.5 keV, using atmospheric models in Non Local Thermonuclear Equilibrium we derived an effective temperature in the range 400,000-450,000 K, a bolometric luminosity Lbolabout equal to 2.3 times 10 sup37 erg s sup-l, and we verified that the abundance of carbon is not significantly enhanced in the X-rays emitting shell. The RGS grating spectra do not show emission lines (originated in a nebula or a wind) observed for some other supersoft X-ray sources. The crowded atmospheric absorption lines of the white dwarf cannot be not resolved. There is no hard component (expected from a wind, a surrounding nebula or an accretion disk), with no counts above the background at E>0.6 keV, and an upper limit Fx,hard = 10 sup-14 erg s sup-l cm sup-2 to the X-ray flux above this energy. The background corrected count rate measured by the EPIC instruments was variable on time scales of minutes and hours, but without the flares or sudden obscuration observed for other novae. The power spectrum shows a peak at 5.25 hours, possibly due to a modulation with the orbital period. We also briefly discuss the scenarios in which this nova may become a type Ia supernova progenitor.

  18. Structure of the X-ray source in the Virgo cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Fabricant, D.; Topka, K.; Tucker, W.; Harnden, F. R., Jr.

    1977-01-01

    High-angular-resolution observations in the 0.15-1.5-keV band with an imaging X-ray telescope shows the extended X-ray source in the Virgo cluster of galaxies to be a diffuse halo of about 15 arcmin core radius surrounding M87. The angular structure of the surface brightness is marginally consistent with either of two simple models: (1) an isothermal (or adiabatic or hydrostatic) sphere plus a point source at M87 accounting for 12% of the total 0.5-1.5-keV intensity or (2) a power-law function without a discrete point source. No evidence for a point source is seen in the 0.15-0.28-keV band, which is consistent with self-absorption by about 10 to the 21st power per sq cm of matter having a cosmic abundance. The power-law models are motivated by the idea that radiation losses regulate the accretion of matter onto M87 and can account for the observed difference in the size of the X-ray source as seen in the present measurements and at higher energies.

  19. Probing the nature of ultraluminous X-ray sources through fast (a few milliseconds) and slow (a few years) X-ray variability

    NASA Astrophysics Data System (ADS)

    Dheeraj, Pasham

    2014-01-01

    The X-ray point sources in nearby galaxies with luminosities exceeding the Eddington limiting value of a 20 solar mass black hole (> 3x10^39 ergs/sec) are referred to as ultraluminous X-ray sources (ULXs). Currently, it is unclear whether these sources are powered by super-Eddington accretion onto stellar-mass black holes (mass range of 3-50 solar mass) or if they are intermediate-mass black holes (IMBHs: mass range of a few 100-1000 solar mass) accreting at sub-Eddington rates. In my thesis, I studied the X-ray quasi-periodic variability and long-term modulations of a sample of variable ULXs. My thesis work consists of two parts: (1) understanding the nature of the mHz quasi-periodic oscillations (QPOs) from ULXs (fast variability) and (2) search for and study the properties of the long X-ray periods from ULXs (slow variability). (1) A sample of ULXs exhibit X-ray QPOs in the frequency range of 10-200 mHz. These QPOs have been argued to be analogous to the type-C low-frequency QPOs of stellar-mass black holes (frequency range of 1-15 Hz) but occurring at longer timescales owing to the presence of IMBHs within these systems. We tested this hypothesis by searching for a correlation between the QPO's centroid frequency and the power-law index of the energy spectrum which is a characteristic property of the type-C QPOs of stellar-mass black holes. Using roughly 1 Mega-second of XMM-Newton data from ULXs NGC 5408 X-1 and M82 X-1 we find that the two quantities are NOT correlated. This suggests that one of the strongest arguments for existence of IMBHs in ULXs may be flawed. I will discuss the implications of this result on the masses of the black holes within these systems. (2) Swift/XRT and RXTE/PCA have monitored a sample of ULXs on timescales of 3-6 years. We analyzed all the archival data of these sources to search for periodicities that might represent the orbital motion of the black hole binary. We detected periodicities in some ULXs. I will discuss the various

  20. Uhuru observations of 4U 1608-52 - The 'steady' X-ray source associated with the X-ray burst source in Norma

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Chaisson, L. J.; Forman, W.; Jones, C.; Matilsky, T. A.

    1976-01-01

    Data are presented for the X-ray source 4U 1608-52, summarizing its light curve, location, and spectral parameters. Evidence is presented showing that this source is the 'steady' X-ray counterpart of the X-ray burst source in Norma. The spectrum of the 'steady' source is compared with the spectrum observed during two bursts, and it is noted that there is substantially more low-energy absorption during the bursts. The 'steady' source spectral data are used to examine the optical data, and it is concluded that if the X-ray spectrum is thermal, then a globular-cluster counterpart probably would have been detected (whereas none has been). Further X-ray and optical observations are suggested for this source, since an optical identification may be central in determining whether all X-ray bursts have a common origin and if this origin requires a globular-cluster environment.

  1. The Origin of Warped, Precessing Accretion Disks in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.

    1997-01-01

    The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.

  2. Determination of Local Densities in Accreted Ice Samples Using X-Rays and Digital Imaging

    NASA Technical Reports Server (NTRS)

    Broughton, Howard; Sims, James; Vargas, Mario

    1996-01-01

    At the NASA Lewis Research Center's Icing Research Tunnel ice shapes, similar to those which develop in-flight icing conditions, were formed on an airfoil. Under cold room conditions these experimental samples were carefully removed from the airfoil, sliced into thin sections, and x-rayed. The resulting microradiographs were developed and the film digitized using a high resolution scanner to extract fine detail in the radiographs. A procedure was devised to calibrate the scanner and to maintain repeatability during the experiment. The techniques of image acquisition and analysis provide accurate local density measurements and reveal the internal characteristics of the accreted ice with greater detail. This paper will discuss the methodology by which these samples were prepared with emphasis on the digital imaging techniques.

  3. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Heindl, William

    We propose to renew our Cycle 4-7 ToO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  4. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    We propose to renew our cycle 4-9 TOO program to search for and study cyclotron lines in transient accreting x-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering the 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  5. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Pottschmidt, Katja

    We propose to renew our Cycle 4-11 TOO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering cyclotron lines and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While most of the transient pulsars have been awarded in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  6. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We propose to renew our Cycle 4-11 TOO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering cyclotron lines and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While most of the transient pulsars have been awarded in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  7. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Heindl, William

    We propose to renew our Cycle 4-8 ToO program to search for and study cyclotron lines in transient accreting X-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines like in Cen X-3 (discovered with RXTE), or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  8. a Search for Cyclotron Resonance Scattering Features in Transient Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    We propose to renew our cycle 4-10 TOO program to search for and study cyclotron lines in transient accreting x-ray pulsars. By discovering and studying cyclotron lines, we will directly measure neutron star magnetic fields and investigate the emission mechanism. While some of the transient pulsars have been observed in previous cycles, we make observations optimized for cyclotron line studies. In particular, observations made for other purposes may not be long enough to provide the high statistics necessary to detect shallow, broad lines, or high energy lines and harmonics which appear on the steeply falling part of the spectrum. In cycle 4, our strategy succeeded in discovering the 3rd-5th harmonic cyclotron lines in 4U 0115+63.

  9. X-Ray Counterparts of Puzzling Gev-Tev Sources

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg

    2014-09-01

    We propose to look for X-ray counterparts of the extended TeV source HESS J1616-508 that may also have been detected with Fermi at GeV energies. The nature of the source and the connection between the TeV source and the nearby GeV sources are unknown. It has been suggested that it may be a relic plerion powered by the offset PSR J1617-5055, but a deep Chandra observation of this pulsar and its wind nebula has not confirmed this hypothesis. To understand the nature of this long-standing "dark accelerator", we propose to observe the GeV sources (which could be young pulsars) and another nearby young pulsar (J1614-5048) to check whether or not they could supply relativistic particles and power the TeV source. We will also explore the nature of the GeV sources.

  10. Properties and Applications of Laser Generated X-Ray Sources

    SciTech Connect

    Smith, R F; Key, M H

    2002-02-25

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and x-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarizes, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Conclusions are drawn on areas where the development of laser based sources is most promising and competitive in terms of applications potential.

  11. AN ACCRETION MODEL FOR THE ANOMALOUS X-RAY PULSAR 4U 0142+61

    SciTech Connect

    Truemper, J. E.; Dennerl, K.; Kylafis, N. D.; Zezas, A.; Ertan, Ue.

    2013-02-10

    We propose that the quiescent emission of anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs) is powered by accretion from a fallback disk, requiring magnetic dipole fields in the range 10{sup 12}-10{sup 13} G, and that the luminous hard tails of their X-ray spectra are produced by bulk-motion Comptonization in the radiative shock near the bottom of the accretion column. This radiation escapes as a fan beam, which is partly absorbed by the polar cap photosphere, heating it up to relatively high temperatures. The scattered component and the thermal emission from the polar cap form a polar beam. We test our model on the well-studied AXP 4U 0142+61, whose energy-dependent pulse profiles show double peaks, which we ascribe to the fan and polar beams. The temperature of the photosphere (kT {approx} 0.4 keV) is explained by the heating effect. The scattered part forms a hard component in the polar beam. We suggest that the observed high temperatures of the polar caps of AXPs/SGRs, compared with other young neutron stars, are due to the heating by the fan beam. Using beaming functions for the fan beam and the polar beam and taking gravitational bending into account, we fit the energy-dependent pulse profiles and obtain the inclination angle and the angle between the spin axis and the magnetic dipole axis, as well as the height of the radiative shock above the stellar surface. We do not explain the high-luminosity bursts, which may be produced by the classical magnetar mechanism operating in super-strong multipole fields.

  12. Revealing the Nature of the Ultraluminous X-ray sources in NGC 4861

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Jung

    2012-09-01

    ULXs are defined as off-nuclear X-ray sources with isotropic luminosities much higher than the Eddington limit for a solar mass black hole (Lx~1.3e38 erg/s). Typical X-ray luminosities of ULXs are in between 10^39 and 10^41 erg/s. The physical nature of ULXs has been an enigma because of their high energy output. Some ULXs show strong variability suggesting that they are accreting compact objects. Assuming the emission is isotropic, some of the very bright ULXs may harbor intermediate-mass black holes. Some ULXs may just be stellar mass black holes with radiation pressure-dominated or slim accretion disks that cause super-Eddington luminosities. Alternatively, some ULXs may be young X-ray luminous supernova remnants in a high density medium, or hypernova remnants. Optical counterparts of some ULXs are found to be consistent with high mass stars with sometimes evidence for variability and blue spectra possibly indicative of an accretion disc. In addition, a large fraction of ULXs appear to be associated with extended nebulae; supershells hundreds of parsecs in diameter. These large supershells are found to be powered by photoionization and/ or shock-excitation from the ULXs. In this talk, I will present our new results of ULXs in the metal-deficit blue compact dwarf galaxy NGC 4861. Previous studies reveal two ULXs (both ~10^40 erg/s) in this galaxy. From our INT H-alpha and [SII] images, we find that both sources are in the proximity of regions of diffuse nebulosity, which may be powered by the ULXs. Moreover, ULX-1 is found to be associated with a bright H-alpha point source with a [SII] counterpart. Our new Chandra observation together with several archival HST images confirm the association, which will shed light on understanding the nature of these objects.

  13. X-RAY AND NEAR-INFRARED OBSERVATIONS OF THE OBSCURED ACCRETING PULSAR IGR J18179-1621

    SciTech Connect

    Nowak, M. A.; Paizis, A.; Rodriguez, J.; Chaty, S.; Grinberg, V.; Wilms, J.; Chini, R. E-mail: ada@iasf-milano.inaf.it

    2012-10-01

    IGR J18179-1621 is an obscured accreting X-ray pulsar discovered by INTEGRAL on 2012 February 29. We report on our 20 ks Chandra-High Energy Transmission Gratings Spectrometer observation of the source performed on 2012 March 17, on two short contemporaneous Swift observations, and on our two near-infrared (K{sub s} , H{sub n} , and J{sub n} ) observations performed on 2012 March 13 and 26. We determine the most accurate X-ray position of IGR J18179-1621, {alpha}{sub J2000} = 18{sup h}17{sup m}52.{sup s}18, {delta}{sub J2000} = -16 Degree-Sign 21'31.''68 (90% uncertainty of 0.''6). A strong periodic variability at 11.82 s is clearly detected in the Chandra data, confirming the pulsating nature of the source, with the light-curve softening at the pulse peak. The quasi-simultaneous Chandra-Swift spectra of IGR J18179-1621 can be well fit by a heavily absorbed hard power law (N{sub H} = 2.2 {+-} 0.3 Multiplication-Sign 10{sup 23} cm{sup -2} and photon index {Gamma} = 0.4 {+-} 0.1) with an average absorbed 2-8 keV flux of 1.4 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}. At the Chandra-based position, a source is detected in our near-infrared (NIR) maps with K{sub s} 13.14 {+-} 0.04 mag, H{sub n} = 16 {+-} 0.1 mag, and no J{sub n} -band counterpart down to {approx}18 mag. The NIR source, compatible with 2MASS J18175218-1621316, shows no variability between 2012 March 13 and 26. Searches of the UKIDSS database show similar NIR flux levels at epochs six months prior to and after a 2007 February 11 archival Chandra observation where the source's X-ray flux was at least 87 times fainter. In many ways IGR J18179-1621 is unusual: its combination of a several week long outburst (without evidence of repeated outbursts in the historical record), high absorption column (a large fraction of which is likely local to the system), and 11.82 s period does not fit neatly into existing X-ray binary categories.

  14. The Transient X-Ray Burster Gro J1744-28: An Unstable Accretion System?

    NASA Technical Reports Server (NTRS)

    Wood, Kent; Hertz, Paul; Imamura, James; Wolff, Mike; Scargle, Jeffrey; Cuzzi, Jeffrey N. (Technical Monitor)

    1996-01-01

    The newly discovered burst/pulsar source GRO J1744-28 may be considered as a quasi-periodic oscillator (QPO) with a frequency in the 1-10 milli-Hz range, plus an X-ray pulsar with a period of .47 sec (IAU Circulars 6272, 6275, 6276, 6284, 6285, 6286). Since some of the observed properties of this system do not fit with the relaxation oscillators used to interpret rapid bursters, we are investigating the applicability of models that have been used for QPO in X-ray binary systems. Noting that some features of the nonlinear dynamical model called the dripping handrail are seen in the reported observations, we compare this model with the beat-frequency modulation picture of QPO.

  15. An XMM-Newton view of M101 - I. The luminous X-ray source population

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Roberts, T. P.; Warwick, R. S.; Kilgard, R. E.; Ward, M. J.

    2004-04-01

    We present the first results of an XMM-Newton EPIC observation of the luminous X-ray source population in the face-on supergiant spiral galaxy M101. We have studied the spectral and temporal properties of the 14 most luminous sources, all of which have intrinsic X-ray luminosities exceeding the Eddington limit for a 1.4-Msolar neutron star, with a subset in the ultraluminous X-ray source (ULX) regime (LX>= 1039 erg s-1). Eleven sources show evidence of short-term variability, and most vary by a factor of ~2-4 over a baseline of 11-24 yr, providing strong evidence that these sources are accreting X-ray binary (XRB) systems. Our results demonstrate that these sources are a heterogeneous population, showing a variety of spectral shapes. Interestingly, there is no apparent spectral distinction between those sources above and below the ULX luminosity threshold. Nine sources are well fitted with either simple absorbed disc blackbody or power-law models. However, in three of the four sources best fitted with power-law models, we cannot exclude the disc blackbody fits and therefore conclude that, coupled with their high luminosities, eight out of nine single-component sources are possibly high-state XRBs. The nuclear source (XMM-10) has the only unambiguous power-law spectrum (Γ~ 2.3), which may be evidence for the presence of a low-luminosity active galactic nucleus (LLAGN). The remaining five sources require at least two-component spectral fits, with an underlying hard component that can be modelled by a power-law continuum or, in three cases, a hot disc blackbody (Tin= 0.9-1.5 keV), plus a soft component modelled as a cool blackbody/disc blackbody/thermal plasma. We have compared the spectral shapes of nine sources covered by both this observation and an archival 100-ks Chandra observation of M101; eight show behaviour typical of Galactic XRBs (i.e. softening with increasing luminosity), the only exception being a transient source (XMM-2) which shows little change in

  16. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    SciTech Connect

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  17. Total-reflection X-ray fluorescence analysis using special X-ray sources

    NASA Astrophysics Data System (ADS)

    Wobrauschek, P.; Kregsamer, P.; Ladisich, W.; Rieder, R.; Streli, C.

    1993-02-01

    The parameter variations of exciting radiation, like spectral distribution, intensity, brilliance, polarization and the phenomenon of X-ray total reflection, leads to improved lower limits of detection (LLD) in XRF. Observations and results from experiments performed with different X-ray tubes such as fine focus Cu and Mo anodes, a specially designed Au anode operated with 100 kV and high power rotating anodes are reported. Results from measurements with monochromatic X-rays tuned with a multilayer structure as well as the use of polarized X-rays from the synchrotron will be shown. All developed measuring devices will be described in terms of their recent design features showing the possible geometric arrangements denned by the beam-reflector-detector position. The extrapolated detection limits for the K-shell excitation of rare earth elements are in the region of 0.3 ng, for medium Z elements in the pg range and for optimized conditions, with a rotating Cu anode, 170 fg for Mn are achieved corresponding to the pg g -1 (ppt) concentration level.

  18. The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications

    NASA Technical Reports Server (NTRS)

    Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul

    1995-01-01

    We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.

  19. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  20. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    NASA Technical Reports Server (NTRS)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray

  1. Two Eclipsing Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-11-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M51: CXOM51 J132940.0+471237 (ULX-1, for simplicity) and CXOM51 J132939.5+471244 (ULX-2). Three eclipses were detected for ULX-1 and two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed toward us. Despite the similar viewing angles and luminosities ({L}{{X}}≈ 2× {10}39 erg s‑1 in the 0.3–8 keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature {{kT}}e≈ 1 {keV}. ULX-2 is harder, well fitted by a slim disk with {{kT}}{in}≈ 1.5–1.8 keV and normalization consistent with a ∼10 M ⊙ black hole. ULX-1 has a significant contribution from multi-temperature thermal-plasma emission ({L}{{X},{mekal}}≈ 2× {10}38 erg s‑1). About 10% of this emission remains visible during the eclipses, proving that the emitting gas comes from a region slightly more extended than the size of the donor star. From the sequence and duration of the Chandra observations in and out of eclipse, we constrain the binary period of ULX-1 to be either ≈ 6.3 days, or ≈12.5–13 days. If the donor star fills its Roche lobe (a plausible assumption for ULXs), both cases require an evolved donor, most likely a blue supergiant, given the young age of the stellar population in that Galactic environment.

  2. X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111

    NASA Technical Reports Server (NTRS)

    Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.

    2011-01-01

    We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.

  3. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-08-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7% confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  4. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-11-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7 per cent confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion on to SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  5. X-ray and ultraviolet radiation from accreting white dwarfs. IV - Two-temperature treatment with electron thermal conduction

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Durisen, R. H.; Lamb, D. Q.; Weast, G. J.

    1987-01-01

    Results are reported from two-temperature calculations of the structures and X-ray spectra of radiation shocks generated by accretion onto nonmagnetic white dwarfs. The approach was necessitated by the domination of bremsstrahlung in the emission region by Compton cooling. Features of the shock model, which includes steady, spherical infall of fully ionized plasma and dominance of the stand-off shock by collisional processes, are summarized. A maximum hard X-ray temperature of about 50 keV and a maximum hard X-ray luminosity of 2 x 10 to the 36th ergs/sec were obtained. The results prove that the bulk of accretion energy cannot be transported to the star by electron thermal conduction, provided that bremsstrahlung cooling is dominant over cyclotron cooling.

  6. Accretion Disk Dynamo as the Trigger for X-Ray Binary State Transitions

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Armitage, Philip J.; Reynolds, Christopher S.

    2015-08-01

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a “dead zone” where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the spectral states of X-ray binaries. Specifically, “intermediate” and “hard” accretion states occur when MRI is triggered in the hot, upper zone of the corona, while disks in “soft” states do not develop the upper MRI zone. We discuss the conditions under which various transitions should take place and speculate on the relationship of dynamo activity to the various types of quasi-periodic oscillations that sometimes appear in the hard spectral components. The model also explains why luminous accretion disks in the “soft” state show no signs of the thermal/viscous instability predicted by standard α-models.

  7. ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS

    SciTech Connect

    Begelman, Mitchell C.; Armitage, Philip J.; Reynolds, Christopher S.

    2015-08-20

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a “dead zone” where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the spectral states of X-ray binaries. Specifically, “intermediate” and “hard” accretion states occur when MRI is triggered in the hot, upper zone of the corona, while disks in “soft” states do not develop the upper MRI zone. We discuss the conditions under which various transitions should take place and speculate on the relationship of dynamo activity to the various types of quasi-periodic oscillations that sometimes appear in the hard spectral components. The model also explains why luminous accretion disks in the “soft” state show no signs of the thermal/viscous instability predicted by standard α-models.

  8. Lensless imaging using broadband X-ray sources

    NASA Astrophysics Data System (ADS)

    Abbey, Brian; Whitehead, Lachlan W.; Quiney, Harry M.; Vine, David J.; Cadenazzi, Guido A.; Henderson, Clare A.; Nugent, Keith A.; Balaur, Eugeniu; Putkunz, Corey T.; Peele, Andrew G.; Williams, G. J.; McNulty, I.

    2011-07-01

    High-resolution X-ray imaging techniques using optical elements such as zone plates are widely used for viewing the internal structure of samples in exquisite detail. The resolution attainable is ultimately limited by the manufacturing tolerances for the optics. Combining ideas from crystallography and holography, this limit may be surpassed by the method of coherent diffractive imaging (CDI). Although CDI shows particular promise in applications involving X-ray free-electron lasers, it is also emerging as an important new technique for imaging at third-generation synchrotrons. The limited coherent output of these sources, however, is a significant barrier to obtaining shorter exposure times. A fundamental assumption of coherent diffractive imaging is that the incident light is well-approximated by a single optical frequency. In this Letter, we demonstrate the first experimental realization of `polyCDI', using a broadband source to achieve a factor of 60 reduction in the exposure time over quasi-monochromatic coherent diffractive imaging.

  9. Population of post-nova supersoft X-ray sources

    NASA Astrophysics Data System (ADS)

    Soraisam, Monika D.; Gilfanov, Marat; Wolf, William M.; Bildsten, Lars

    2016-01-01

    Novae undergo a supersoft X-ray phase of varying duration after the optical outburst. Such transient post-nova supersoft X-ray sources (SSSs) are the majority of the observed SSSs in M31. In this paper, we use the post-nova evolutionary models of Wolf et al. to compute the expected population of post-nova SSSs in M31. We predict that depending on the assumptions about the white dwarf (WD) mass distribution in novae, at any instant there are about 250-600 post-nova SSSs in M31 with (unabsorbed) 0.2-1.0 keV luminosity Lx ≥ 1036 erg s-1. Their combined unabsorbed luminosity is of the order of ˜1039 erg s-1. Their luminosity distribution shows significant steepening around log (Lx) ˜ 37.7-38 and becomes zero at Lx ≈ 2 × 1038 erg s-1, the maximum Lx achieved in the post-nova evolutionary tracks. Their effective temperature distribution has a roughly power-law shape with differential slope of ≈4-6 up to the maximum temperature of Teff ≈ 1.5 × 106 K. We compare our predictions with the results of the XMM-Newton monitoring of the central field of M31 between 2006 and 2009. The predicted number of post-nova SSSs exceeds the observed number by a factor of ≈2-5, depending on the assumed WD mass distribution in novae. This is good agreement, considering the number and magnitude of uncertainties involved in calculations of the post-nova evolutionary models and their X-ray output. Furthermore, only a moderate circumstellar absorption, with hydrogen column density of the order of ˜1021 cm-2, will remove the discrepancy.

  10. The Broadband XMM-Newton and NuSTAR X-Ray Spectra of Two Ultraluminous X-Ray Sources in the Galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Rana, Vikram; Harrison, Fiona A.; Bachetti, Matteo; Walton, Dominic J.; Furst, Felix; Barret, Didier; Miller, Jon M.; Fabian, Andrew C.; Boggs, Steven E.; Christensen, Finn C.; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Madsen, Kristin K.; Ptak, Andrew F.; Stern, Daniel; Webb, Natalie A.; Zhang, William W.

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ~7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04+0.08-0.06 × 1040 erg s-1 for IC 342 X-1 and 7.40 ± 0.20 × 1039 erg s-1 for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  11. X-ray spectral and optical properties of an ultraluminous X-ray source in NGC 4258 (M106)

    NASA Astrophysics Data System (ADS)

    Avdan, Hasan; Balman, Solen; Akyuz, Aysun; Avdan, Senay; Aksaker, Nazim; Akkaya Oralhan, İnci

    2016-07-01

    We report the X-ray and optical properties of an ultraluminous X-ray source (ULX) in the nearby galaxy NGC 4258 (M106). The XMM-Newton and Chandra archival observations were used to examine the X-ray spectral properties of the source. Throughout the X-ray observations, we discuss that the source appears to exhibit possible spectral changes by considering the hardness ratios and the spectral model parameters. The luminosity of the source varies a factor of two during the observations and has a peak value of ˜2x10^{39} erg s^{-1}. In the optical band, the source seems to belong to a star cluster. The archival HST images were used to search the optical counterpart of the ULX and three possible candidates were found within the 1σ error radius of 0.3". Also the mass for the compact object is estimated in the range of 10-15 M _{sun} which indicates a stellar-mass black hole.

  12. Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    Giménez-García, A.; Shenar, T.; Torrejón, J. M.; Oskinova, L.; Martínez-Núñez, S.; Hamann, W.-R.; Rodes-Roca, J. J.; González-Galán, A.; Alonso-Santiago, J.; González-Fernández, C.; Bernabeu, G.; Sander, A.

    2016-06-01

    two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions: The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

  13. Possible Twin kHz Quasi-periodic Oscillations in the Accreting Millisecond X-ray Pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Kalamkar, Maithili; Altamirano, Diego; van der Klis, M.

    2011-03-01

    We report on the aperiodic X-ray timing and color behavior of the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057, using all the pointed observations obtained with the Rossi X-Ray Timing Explorer Proportional Counter Array since the source's discovery on 2009 September 12. The source can be classified as an atoll source on the basis of the color and timing characteristics. It was in the hard state during the entire outburst. In the beginning and at the end of the outburst, the source exhibited what appear to be twin kHz quasi-periodic oscillations (QPOs). The separation Δν between the twin QPOs is ~120 Hz. Contrary to expectations for slow rotators, instead of being close to the 244.8 Hz spin frequency, it is close to half the spin frequency. However, identification of the QPOs is not certain as the source does not fit perfectly in the existing scheme of correlations of aperiodic variability frequencies seen in neutron star low-mass X-ray binaries (NS LMXBs), nor can a single shift factor make it fit as has been reported for other AMXPs. These results indicate that IGR J17511-3057 is a unique source differing from other AMXPs and could play a key role in advancing our understanding of not only AMXPs, but also of NS LMXBs in general.

  14. LIGHT SOURCE: Spot size diagnostics for flash radiographic X-ray sources at LAPA

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Gang; Li, Qin; Shi, Jin-Shui; Deng, Jian-Jun

    2009-06-01

    Spot size is one of the parameters to characterize the performance of a radiographic X-ray source. It determines the degree of blurring due to magnification directly. In recent years, a variety of measurement methods have been used to diagnose X-ray spot size at Laboratory of Accelerator Physics and Application (LAPA). Computer simulations and experiments showed that using a rolled-edge to measure the spot size are more accurate, and the intensity distribution of X-ray source was obtained by a device with a square aperture. Experimental and simulation results on a flash X-ray source at our laboratory are presented and discussed in this paper. In addition, a new method for time resolved diagnostics of X-ray spot size is introduced too.

  15. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    SciTech Connect

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  16. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    SciTech Connect

    Cheng, P.C.

    1990-01-01

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  17. Novae as a Class of Transient X-ray Sources

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.; Valle, M. Della

    2007-01-01

    Motivated by the recently discovered class of faint (10(exp 34)-10(exp 35) ergs/s) X-ray transients in the Galactic Center region, we investigate the 2-10 keV properties of classical and recurrent novae. Existing data are consistent with the idea that all classical novae are transient X-ray sources with durations of months to years and peak luminosities in the 10(exp 34)-10(exp 35)ergs/s range. This makes classical novae a viable candidate class for the faint Galactic Center transients. We estimate the rate of classical novae within a 15 arcmin radius region centered on the Galactic Center (roughly the field of view of XMM-Newton observations centered on Sgr A*) to be approx.0.1 per year. Therefore, it is plausible that some of the Galactic Center transients that have been announced to date are unrecognized classical novae. The continuing monitoring of the Galactic Center region carried out by Chandra and XMM-Newton may therefore provide a new method to detect classical novae in this crowded and obscured region, an

  18. LARGE HIGHLY IONIZED NEBULAE AROUND ULTRA-LUMINOUS X-RAY SOURCES

    SciTech Connect

    Moon, Dae-Sik; Shariff, Jamil A.; Harrison, Fiona A.; Cenko, S. Bradley E-mail: shariff@astro.utoronto.ca E-mail: cenko@astro.berkeley.edu

    2011-04-20

    We present the results of deep optical spectroscopic observations using the LRIS spectrograph on the Keck I 10 m telescope of three ultra-luminous X-ray sources (ULXs): Ho IX X-1, M81 X-6, and Ho II X-1. Our observations reveal the existence of large (100-200 pc diameter) highly ionized nebulae, identified by diffuse He II {lambda}4686 emission, surrounding these sources. Our results are the first to find highly ionized nebulae of this extent, and the detection in all three objects indicates this may be a common feature of ULXs. In addition to the extended emission, Ho IX X-1 has an unresolved central component containing about one-third of the total He II flux, with a significant velocity dispersion of {approx_equal}370 km s {sup -1}, suggestive of the existence of a photoionized accretion disk or an extremely hot early-type stellar counterpart. Most of the He II emission appears to be surrounded by significantly more extended H{beta} emission, and the intensity ratios between the two lines, which range from 0.12 to 0.33, indicate that photoionization is the origin of the He II emission. Sustaining these extended nebulae requires substantial X-ray emission, in the range {approx}10{sup 39}-10{sup 40} erg s {sup -1}, comparable to the measured X-ray luminosities of the sources. This favors models where the X-ray emission is isotropic, rather than beamed, which includes the interpretation that ULXs harbor intermediate-mass black holes.

  19. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  20. X-ray lasers - the ultimate radiation source?

    SciTech Connect

    Matthews, D.L.

    1995-12-31

    I will review the development of the x-ray laser from its first demonstration in 1984 to today`s systems which operate from 45 to 3.5 nm with output power levels up to GW and linewidths less than 10{sup -4}. At first, these sources required large pump laser facility in order to be produced, but just now new systems are appearing which are much more efficient and are near table-top in size. I will also discuss the future development of this source which should lead to wavelengths as short as 1 nm with a near-diffraction-limited output characteristics and considerable average output power, up to 10{sup 15} ph/sec. Finally, I will discuss some of the interesting applications such as in vitro biological imaging, microsurgery on microorganisms, construction of nanomachines, probing of semiconductors and plasmas, lithographic printing of semiconductor circuits and numerous other potential uses.

  1. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  2. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  3. On the Nature of the Eclipsing Bright X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Wu, K.; Tennant, A. F.; Swartz, D. A.

    2003-01-01

    The X-ray spectrum and light curve of the bright source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of about 50 solar masses although it was noted that the light curve resembles that of an AM Her-type system. Here we show that the light curve and orbital dynamics constrain the mass of the compact object to less than 30 solar masses and the mass of the companion to less than 1 solar mass. Combining the mass constraints with the observed X-ray flux, we show that an accreting object must either radiate anisotropically or strongly violate the Eddington limit. If the emission is beamed, then the companion star, which intercepts this flux during eclipse, will be driven out of thermal equilibrium and evaporate within approx. 103 yr. We find, therefore, that the observations are most consistent with the interpretation of CG X-1 as a bright, long-period, AM Her system in the Milky Way.

  4. The XMM deep survey in the CDF-S. VIII. X-ray properties of the two brightest sources

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; Vignali, C.; Comastri, A.; Gilli, R.; Vito, F.; Brandt, W. N.; Carrera, F. J.; Lanzuisi, G.; Falocco, S.; Vagnetti, F.

    2015-02-01

    We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z = 0.544) and PID 319 (z = 0.742). The long exposure of 2.5 Ms over a 10 year period (net 4 yr with a 6 yr gap) makes it possible to obtain high quality X-ray spectra of these two Type I AGN with X-ray luminosity of 1044 erg s-1, which is the typical luminosity for low-redshift PG quasars, and track their X-ray variability both in flux and spectral shape. Both sources showed X-ray flux variability of ~10-20% in rms, which is similar in the soft (0.5-2 keV) and hard (2-7 keV) bands. PID 203, which has evidence for optical extinction, shows modest amount of absorption (NH≤ 1 × 1021 cm-2) in the X-ray spectrum. Fe K emission is strongly detected in both objects with EW ~ 0.2 keV. The lines in both objects are moderately broad and exhibit marginal evidence for variability in shape and flux, indicating that the bulk of the line emission comes from their accretion disks rather than distant tori.

  5. Can the Subsonic Accretion Model Explain the Spin Period Distribution of Wind-fed X-Ray Pulsars?

    NASA Astrophysics Data System (ADS)

    Li, Tao; Shao, Yong; Li, Xiang-Dong

    2016-06-01

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 1036 erg s-1), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period-orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 km s-1). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 1036 erg s-1 is about 1:10.

  6. An active M star with X-ray double flares disguised as an ultra-luminous X-ray source

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Ji-Feng; Wang, Song; Wu, Yue; Qin, Yu-Xiang

    2016-02-01

    Here we present research on an ultra-luminous X-ray source (ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star. More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray (0.3-11.0 keV) flux of the first peak was derived from the two-temperature APEC model as ˜ 1.1 ± 0.1 × 10-12 erg cm-2 s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences. By optical spectral fitting, it is confirmed to be a late type dMe2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ˜ 133.4 ± 14.2 pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.

  7. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-07-01

    We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band

  8. Classification of X-ray sources in the XMM-Newton serendipitous source catalog: Objects of special interest

    SciTech Connect

    Lin, Dacheng; Webb, Natalie A.; Barret, Didier

    2014-01-01

    We analyze 18 sources that showed interesting properties of periodicity, very soft spectra, and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog, but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ∼1.62 hr (2XMM J165334.4–414423) and ∼2.1 hr (2XMM J133135.2–315541) and are probably magnetic cataclysmic variables. One source, 2XMM J123103.2+110648, is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT ∼ 0.1 keV) and exhibiting an intermittent ∼3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT < 0.2 keV), which might be in other galaxies with luminosities between ∼10{sup 38}-10{sup 42} erg s{sup –1}. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10{sup 37} erg s{sup –1} and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3-10 keV for at least four years since it was discovered entering an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ∼10{sup 34} erg s{sup –1} if they are in our Galaxy. Thus, they are great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.

  9. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  10. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  11. A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705-44: looking at the inner accretion disc with X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    di Salvo, T.; D'Aí, A.; Iaria, R.; Burderi, L.; Dovčiak, M.; Karas, V.; Matt, G.; Papitto, A.; Piraino, S.; Riggio, A.; Robba, N. R.; Santangelo, A.

    2009-10-01

    Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kα transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent XMM-Newton observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high-velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; this feature appears to be smeared, and is compatible with being produced in the same region where the iron line is produced. From the line profile, we derive the physical parameters of the inner accretion disc with large precision. The line is identified with the Kα transition of highly ionized iron, FeXXV, the inner disc radius is Rin = 14 +/- 2 Rg (where Rg is the Gravitational radius, GM/c2), the emissivity dependence from the disc radius is r-2.27+/-0.08, the inclination angle with respect to the line of sight is i = 39° +/- 1°. Finally, the XMM-Newton spectrum shows evidences of other low-energy emission lines, which again appear broad and their profiles are compatible with being produced in the same region where the iron line is produced.

  12. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Robert, A.; Curtis, R.; Flath, D.; Gray, A.; Sikorski, M.; Song, S.; Srinivasan, V.; Stefanescu, D.

    2013-03-01

    The X-ray Correlation Spectroscopy instrument (XCS) at the Linac Coherent Light Source (LCLS) is a dedicated instrument using coherent x-ray scattering techniques to investigate dynamics in condensed matter systems. XCS can probe both slow and ultrafast dynamics on lengthscales of interest. It employs an extensive suite of X-ray instrumentation to tailor the LCLS X-ray beam properties to experimental requirements. Results demonstrating the full transverse coherence of the LCLS beam are presented.

  13. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    SciTech Connect

    García, J.; Steiner, J. F.; McClintock, J. E.; Brenneman, L. E-mail: jsteiner@head.cfa.harvard.edu E-mail: lbrenneman@cfa.harvard.edu; and others

    2014-02-20

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  14. A rapid noninvasive characterization of CT x-ray sources

    SciTech Connect

    Randazzo, Matt; Tambasco, Mauro

    2015-07-15

    Purpose: The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. Methods: To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name “HVL Jig” was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). Results: At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. Conclusions: The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter

  15. NuSTAR results on Ultra-Luminous X-ray sources: black holes or neutron stars?

    NASA Astrophysics Data System (ADS)

    Fuerst, Felix

    2015-04-01

    Ultraluminous X-ray sources (ULXs) are extremely bright, off-nuclear point sources in nearby galaxies. The only process known to power them is a very high accretion rate onto a compact object. If the compact object is similar to those observed in our own galaxy, i.e., a standard stellar remnant, the accretion rate has to exceed the Eddington rate by a factor of 10-100 in a so-called super-Eddington accretion regime. If on the other hand the compact were more massive, ULXs would be the only known evidence for intermediate mass black holes with masses of 100's or 1000's solar masses. Broadband spectral studies of a sample of ULXs, making full use of the hard X-ray sensitivity of the Nuclear Spectroscopic Telescope Array (NuSTAR), are suggestive of super-Eddington accretion. A definitive answer has, however, not yet been reached owing to continued difficulty constraining ULX masses. I will report on recent, multi-epoch NuSTAR observations, which allow us to examine the evolution of these enigmatic sources and their accretion process by studying their time variability and hard X-ray spectrum above 10keV. In a surprising discovery we have recently shown that the ULX M82 X-2 harbors a neutron star, the first evidence for a neutron star in a ULX. I will discuss possible modes of super-Eddington accretion on neutron stars and compare M82 X-2 to known accreting neutron stars in our galaxy. On behalf of the NuSTAR ULX science team led by Fiona Harrison.

  16. Stronger Reflection from Black Hole Accretion Disks in Soft X-Ray States

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely, the Compton power law. We find that reflection is several times more pronounced (˜3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  17. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    NASA Astrophysics Data System (ADS)

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  18. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    SciTech Connect

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-06-10

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  19. X-ray coherent pulsations during a sub-luminous accretion disc state of the transitional millisecond pulsar XSS J12270-4859

    NASA Astrophysics Data System (ADS)

    Papitto, A.; de Martino, D.; Belloni, T. M.; Burgay, M.; Pellizzoni, A.; Possenti, A.; Torres, D. F.

    2015-04-01

    We present the first detection of X-ray coherent pulsations from the transitional millisecond pulsar XSS J12270-4859, while it was in a sub-luminous accretion disc state characterized by a 0.5-10 keV luminosity of 5 × 1033 erg s-1 (assuming a distance of 1.4 kpc). Pulsations were observed by XMM-Newton at an rms amplitude of (7.7 ± 0.5) per cent with a second harmonic stronger than the fundamental frequency, and were detected when the source is neither flaring nor dipping. The most likely interpretation of this detection is that matter from the accretion disc was channelled by the neutron star magnetosphere and accreted on to its polar caps. According to standard disc accretion theory, for pulsations to be observed the mass inflow rate in the disc was likely larger than the amount of plasma actually reaching the neutron star surface; an outflow launched by the fast rotating magnetosphere then probably took place, in agreement with the observed broad-band spectral energy distribution. We also report about the non-detection of X-ray pulsations during a recent observation performed while the source behaved as a rotationally-powered radio pulsar.

  20. The Polarization from Relativistic Astrophysical X-ray Sources (PRAXyS) Mission

    NASA Astrophysics Data System (ADS)

    Jahoda, Keith; Kallman, Timothy; Tamagawa, Toru; Kaaret, Philip; Hill, Joanne; Kouveliotou, Chryssa; Black, J. Kevin

    2016-07-01

    The PRAXyS mission, currently in a NASA Phase A study, will be the first mission dedicated to X-ray Polarimetry in the 2-10 keV band. Polarization is an expected feature of non-symmetric sources; most of the bright X-ray sources are associated with black holes and neutron star systems or other sources which are intrinsically asymmetric. Propagation through the intense gravitational and magnetic fields near these sources introduces additional polarization signatures. Polarization is thus a probe of structure on scales many orders of magnitude to small for any current imaging capability. PRAXyS will survey the polarization characteristics of emission from stellar mass black holes in our galaxy, the super massive black holes at the heart of active galaxies and blazars, neutron stars powered by rotation, accretion, or magnetic fields, and other high energy sources. We present measured performance characteristics of the PRAXyS instrumentation that provides both the estimated sensitivity to polarization and the upper limits to instrumental systematic effects. We also present the opportunities for community involvement via rapid data release and vigorous guest observer and theory programs.

  1. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  2. OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Gladstone, Jeanette C.; Heinke, Craig O.; Cartwright, Taylor F.; Copperwheat, Chris; Roberts, Timothy P.; Levan, Andrew J.; Goad, Mike R.

    2013-06-01

    We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope (HST) in nearby ({approx}<5 Mpc) galaxies. Of the 33 ULXs with HST and Chandra data, 9 have no visible counterpart, placing limits on their M{sub V} of {approx} -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 {+-} 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the spectral energy distribution and M{sub V} to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For seven ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes' mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1, and NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.

  3. The light curve of a transient X-ray source

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Eadie, G.; Pounds, K. A.; Ricketts, M. J.; Watson, M.

    1975-01-01

    The Ariel-5 satellite has monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on Dec. 4, 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of about 2 months, the source exhibited an extended, variable preflare on-state of about 1 month at a level of greater than 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-5 operation are indicative of a galactic disk distribution, a luminosity at maximum in excess of 10 to the 37-th power ergs/sec, a frequency of occurrence which may be as high as 100/yr, and a median decay time which is less than 1 month.

  4. Radio search for the pulsing X-ray source in Hercules.

    NASA Technical Reports Server (NTRS)

    Doxsey, R.; Rappaport, S.; Spencer, J.; Zaumen, W.; Murthy, G. T.

    1972-01-01

    The region of the celestial sphere near the pulsing X-ray source in Hercules (2U 1705+34) has been searched for radio emission with the NRAO three-element interferometer. The search was conducted during a period when the Hercules source was in its 27-day state of low X-ray luminosity. Four weak radio sources, which may be considered as candidates for the radio counterpart of this X-ray source, were detected.

  5. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; Cackett, E. M.; Brown, E. F.; D'Angelo, C.; Degenaar, N.; Miller, J. M.; Reynolds, M.; Wijnands, R.

    2014-01-01

    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index γ about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT = 59 - 80 eV) and a power law (with spectral index Γ = 1.4 - 2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.

  6. Search for a correlation between kHz quasi-periodic oscillation frequencies and accretion-related parameters in the ensemble of neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Çatmabacak, Önder; Erkut, M. Hakan; Catmabacak, Onur; Duran, Sivan

    2016-07-01

    The distribution of neutron star sources in the ensemble of low-mass X-ray binaries shows no evidence for a correlation between kHz quasi-periodic oscillation (QPO) frequencies and X-ray luminosity. Sources differing by orders of magnitude in luminosity can exhibit similar range of QPO frequencies. We study the possibility for the existence of a correlation between kHz QPO frequencies and accretion related parameters. The parameters such as the mass accretion rate and the size of the boundary region in the innermost disk are expected to be related to X-ray luminosity. Using the up-to-date data of neutron star low-mass X-ray binaries, we search for a possible correlation between lower kHz QPO frequencies and mass accretion rate through the mass and radius values predicted by different equations of state for the neutron star. The range of mass accretion rate for each source can be estimated if the accretion luminosity is assumed to be represented well by the X-ray luminosity of the source. Although we find no correlation between mass accretion rate and QPO frequencies, the source distribution seems to be in accordance with a correlation between kHz QPO frequencies and the parameter combining the neutron star magnetic field and the mas accretion rate. The model function we employ to descibe the correlation is able to account for the scattering of individual sources around a simple power law. The correlation argues disk-magnetosphere interaction as the origin of these millisecond oscillations.

  7. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; Liu, Zhiguo; Sun, Tianxi; Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen; Ma, Yongzhong; Ding, Xunliang

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the "virtual" X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  8. King's College laser plasma x-ray source design

    NASA Astrophysics Data System (ADS)

    Alnaimi, Radhwan; Adjei, Daniel; Alatabi, Saleh; Appuhamilage, Indika Arachchi; Michette, Alan

    2013-05-01

    The aim of this work is to design and build a source for a range of applications, with optimized multilayer structures in order to use the source output as efficiently as possible. The source is built around a Nd:YAG laser with fundamental wavelength 1064 nm, frequency doubled 532 nm (green) and tripled 355 nm, with a pulse length of about 800 ps and a repetition rate up to 50 Hz. The target material is Mylar (C10H8O4) tape, which is cheap, readily available and has many benefits as explained in this article. A versatile cubic target chamber and a set of computer controlled stage motors are used to allow positioning of the X-ray emission point. A range of measures is used to protect delicate components and optics, including a glass slide between the focusing lens and the target to prevent the lens being coated with debris. A low pressure gas (typically 3-6 mbar) is used inside the chamber as collision of atomic size debris particles with gas molecules reduces their kinetic energy and consequently their adhesion to the surrounding surfaces. The gas used is typically helium or nitrogen, the latter also acting as a spectral filter. Finally, the chamber is continually pumped to ensure that more than 70% of the debris particles are pumped out of the chamber.

  9. Can the 62 Day X-ray Period of ULX M82 X-1 Be Due to a Precessing Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We have analyzed all the archival RXTE/PCA monitoring observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to study the properties of its previously discovered 62 day X-ray period (Kaaret & Feng 2007). Based on the high coherence of the modulation it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies we find: (1) The phase-resolved X-ray (3-15 keV) energy spectra - modeled with a thermal accretion disk and a power-law corona - suggest that the accretion disk's contribution to the total flux is responsible for the overall periodic modulation while the power-law flux remains approximately constant with phase. (2) Suggestive evidence for a sudden phase shift-of approximately 0.3 in phase (20 days)-between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is approx. = 10 yrs, which is exceptionally fast for an orbital phenomenon. These independent pieces of evidence are consistent with the 62 day period being due to a precessing accretion disk, similar to the so-called super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the X-ray telescope (XRT) on board Swift.

  10. A proposal for a collecting mirror assembly for large divergence x-ray sources.

    PubMed

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Oku, Satoshi

    2014-11-01

    We propose a new type of collecting mirror assembly (CMA) for x rays, which will enable us to build a powerful optical system for collecting x rays from large divergence sources. The CMA consists of several mirror sections connected in series. The angle of each section is designed so that the x rays reflected from it are parallel to the x rays directly incident on the following sections. A simplified CMA structure is designed and applied to the Al-Kα emission line. It is estimated that by using the CMA the number of x rays detected could be increased by a factor of about 2.5.

  11. Observation of soft X-rays from extended sources. [such as Perseus star cluster

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.

    1974-01-01

    Efforts were directed toward surveying several supernova remnants for the emission of soft X-rays. Rather than attempt to detect such faint X-ray emission, the program was redirected to observe the spectrum and angular structure of the extended X-ray source in the Perseus cluster of galaxies and the super-nova remnant Puppis A. An attempt was made to detect X-ray line emission from Puppis A with a Bragg crystal spectrometer. Observations provide evidence for the presence of X-ray line emission in the spectrum of Puppis A near .65 keV.

  12. X-ray QPOs from the Ultra-luminous X-ray Source in M82: Evidence Against Beaming

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2003-01-01

    We report the discovery with the European Photon Imaging Camera (EPIC) CCD cameras onboard XMM-Newton of a 54 mHz quasiperiodic oscillation (QPO) in the greater than 2 keV X-ray flux from the ultra-luminous X-ray source (ULX) X41.4+60 in the starburst galaxy M82. This is the first detection of a QPO in the X-ray flux from an extra-Galactic ULX, and confirms that the source is a compact object. The QPO is detected in the combined PN and MOS data at the approx. 6sigma level, and separately at lower significances in both the PN and MOS instruments. It had a centroid frequency of 54.3 +/- 0.9 mHz, a coherence Q is identical with nu(sub 0)/Delta nu(sub fwhm) is approx. 5, and an amplitude (rms) in the 2 - 10 keV band of 8.5%. Below about 0.2 Hz the power spectrum can be described by a power-law with index approx. 1, and integrated amplitude (rms) of 13.5%. The X-ray spectrum requires a curving continuum, with a disk-blackbody (diskbb) at T = 3.1 keV providing an acceptable, but not unique, fit. A broad Fe line centered at 6.55 keV is required in all fits, but the equivalent width (EW) of the line is sensitive to the choice of continuum model. There is no evidence of a reflection component. The implied bolometric luminosity is approx. 4 - 5 x 10(exp 40) ergs/s. Data from several archival Rossi X-ray Timing Explorer (RXTE) pointings at M82 also show evidence for QPOs in the 50 - 100 mHz frequency range. Several Galactic black hole candidates (BHCs), including GRS 1915+105, GRO J1655-40, and XTE 1550-564, show QPOs in the same frequency range as the 50 - 100 mHz QPOs in X41.4+60, which at first glance suggests a possible connection with such objects. However, strong, narrow QPOs provide solid evidence for disk emission, and thus present enormous theoretical difficulties for models which rely on either geometrically or relativistically beamed emission to account for the high X-ray luminosities. We discuss the implications of our findings for models of the ULX sources.

  13. NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS

    SciTech Connect

    Luo Yang; Gu Weimin; Liu Tong; Lu Jufu

    2013-08-20

    The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}< 0.5 M{sub Sun} may power most of the observed X-ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

  14. XMM-Newton View of the Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Dewangan, Gulab C.; Griffiths, Richard E.; Choudhury, Manojendu; Miyaji, Takamitsu; Schurch, Nicholas J.

    2005-12-01

    We present results based on XMM-Newton observations of the nearby spiral galaxy M51 (NGC 5194 and NGC 5195). We confirm the presence of the seven known ultraluminous X-ray sources (ULXs) with luminosities exceeding the Eddington luminosity for a 10 Msolar black hole, a low-luminosity active galactic nucleus (LLAGN) with 2-10 keV luminosity of 1.6×1039 ergs s-1, and soft thermal extended emission from NGC 5194 detected with Chandra. In addition, we also detected a new ULX with luminosity of ~1039 ergs s-1. We have studied the spectral and temporal properties of the LLAGN and eight ULXs in NGC 5194 and an ULX in NGC 5195. Two ULXs in NGC 5194 show evidence for short-term variability, and all but two ULXs vary on long timescales (over a baseline of ~2.5 yr), providing strong evidence that these are accreting sources. One ULX in NGC 5194, source 69, shows possible periodic behavior in its X-ray flux. We derive a period of 5925+/-200 s at a confidence level of 95% on the basis of three cycles. This period is lower than the period of 7620+/-500 s derived from a Chandra observation in 2000. The higher effective area of XMM-Newton enables us to identify multiple components in the spectra of ULXs. Most ULXs require at least two components, a power law and a soft X-ray excess component that is modeled by an optically thin plasma or a multicolor disk blackbody (MCD). However, the soft excess emissions inferred from all ULXs except source 69 are unlikely to be physically associated with the ULXs, as their strengths are comparable to that of the surrounding diffuse emission. The soft excess emission of source 69 is well described either by a two-temperature MEKAL plasma or a single-temperature MEKAL plasma (kT~690 eV) and an MCD (kT~170 eV). The MCD component suggests a cooler accretion disk compared to those in Galactic X-ray binaries, consistent with those expected for intermediate-mass black holes (IMBHs). An iron Kα line (EW~700 eV) or K absorption edge at ~7.1 keV is

  15. Optical identification of X-ray source 1RXS J180431.1-273932 as a magnetic cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Nucita, A. A.; Parisi, P.

    2012-08-01

    The X-ray source 1RXS J180431.1-273932 has been proposed as a new member of the symbiotic X-ray binary (SyXB) class of systems, which are composed of a late-type giant that loses matter to an extremely compact object, most likely a neutron star. In this paper, we present an optical campaign of imaging plus spectroscopy on selected candidate counterparts of this object. We also reanalyzed the available archival X-ray data collected with XMM-Newton. We find that the brightest optical source inside the 90% X-ray positional error circle is spectroscopically identified as a magnetic cataclysmic variable (CV), most likely of intermediate polar type, through the detection of prominent Balmer, He i, He ii, and Bowen blend emissions. On either spectroscopic or statistical grounds, we discard as counterparts of the X-ray source the other optical objects in the XMM-Newton error circle. A red giant star of spectral type M5 III is found lying just outside the X-ray position: we consider this latter object as a fore-/background one and likewise rule it out as a counterpart of 1RXS J180431.1-273932. The description of the X-ray spectrum of the source using a bremsstrahlung plus black-body model gives temperatures of kTbr ~ 40 keV and kTbb ~ 0.1 keV for these two components. We estimate a distance of d ~ 450 pc and a 0.2-10 keV X-ray luminosity of LX ~ 1.7 × 1032 erg s-1 for this system and, using the information obtained from the X-ray spectral analysis, a mass MWD ~ 0.8 M⊙ for the accreting white dwarf (WD). We also confirm an X-ray periodicity of 494 s for this source, which we interpret as the spin period of the WD. In summary, 1RXS J180431.1-273932 is identified as a magnetic CV and its SyXB nature is excluded. Partly based on observations collected at the Italian Telescopio Nazionale Galileo, located at the Observatorio del Roque de los Muchachos (Canary Islands, Spain).Reduced data used for imaging and spectra is only available at the CDS via anonymous ftp to cdsarc

  16. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  17. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  18. X-ray emission from a metal depleted accretion shock onto the classical T Tauri star TW Hya

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Schmitt, J. H. M. M.

    2004-05-01

    We present the X-ray spectrum of TW Hya observed at high and intermediate spectral resolution with the Reflection Grating Spectrometer (RGS) and the European Photon Imaging Camera (EPIC) onboard the XMM-Newton satellite. TW Hya is the first classical T Tauri star for which simultaneous X-ray data with both high spectral resolution and high sensitivity were obtained, thus allowing to probe the X-ray emission properties of stars in the early pre-main sequence phase. Despite TW Hya's high X-ray luminosity in excess of 1030 erg/s its X-ray spectrum is dominated by emission lines from rather cool plasma (T ≈ 3 MK), and only little emission measure is present at high temperatures (T ≈ 10 MK). We determine photon fluxes for the emission lines in the high resolution spectrum, confirming the earlier result from Chandra that the predominant emission is from neon and oxygen, with comparatively weak iron lines. Further, the line ratios of He-like triplets of nitrogen, oxygen and neon require densities of n_e ˜ 1013 cm-3, about two orders of magnitude higher than for any other star observed so far at high spectral resolution. Finally, we find that nearly all metals are underabundant with respect to solar abundances, while the abundances of nitrogen and neon are enhanced. The high plasma density, the (comparatively) low temperature, and peculiar chemical abundances in the X-ray emitting region on TW Hya are untypical for stellar coronae. An alternative X-ray production mechanism is therefore called for and a natural explanation is an accretion column depleted of grain forming elements. The metal depletion could be either due to the original molecular cloud that formed TW Hya or due to a settling of dust in the circumstellar disk of TW Hya.

  19. Tabletop Ultrabright Kiloelectronvolt X-Ray Sources from Xe and Kr Hollow Atom States

    NASA Astrophysics Data System (ADS)

    Sankar, Poopalasingam

    Albert Einstein, the father of relativity, once said, "Look deep into nature, and then you will understand everything better". Today available higher resolution tabletop tool to look deep into matters and living thing is an x-ray source. Although the available tabletop x-rays sources of the 20th century, such as the ones used for medical or dental x-rays are tremendously useful for medical diagnostics and industry, a major disadvantage is that they have low quality skillful brightness, which limits its resolution and accuracy. In the other hand, x-ray free-electrons laser (XFEL) and synchrotron radiation sources provided extreme bright x-rays. However, number of applications of XFEL and synchrotron such as medical and industrials, has been hampered by their size, complexity, and cost. This has set a goal of demonstrating x-ray source with enough brightness for potential applications in an often-called tabletop compact x-ray source that could be operated in university laboratory or hospitals. We have developed two tabletop ultrabright keV x-ray sources, one from a Xe hollow-atom states and the other one from Kr hollow-atom stares with a unique characteristic that makes them complementary to currently-available extreme-light sources; XFEL, and synchrotron x-ray source. Upgraded tabletop ultra-fast KrF* pump-laser interacts with target rare-gas clusters and produces hollow-atom states, which later coherently collapse to the empty inner-shell and thereby generate keV x-ray radiation. The KrF* pump-laser beam is self-focused and forms a self-channel to guide the generated x-ray radiation in the direction of the pump-laser beam to produce directed x-ray beam. Xe (M) x-ray source operates at 1.2-1.6 nm wavelength while the Kr(L) x-ray source operates in 600-800 pm wavelength. System is mounted upon 3 optical-tables (5´x12´) with two KrF amplifiers at a repetition rate of 0.1 Hz. A lower bound for brightness value for both Xe and Kr x-ray sources is 1026 photons s-1mm-2

  20. Optical characteristics of young quasars as sources of the cosmic X-ray background

    NASA Technical Reports Server (NTRS)

    Boldt, E.; Leiter, D.

    1983-01-01

    The sources which dominate the thermal cosmic X-ray background cannot have X-ray spectra similar to the power laws measured for bright active galactic nuclei. The optical consequences of this disparity are pursued by considering a standard model for the photoexcitation and heating of the line emitting gas surrounding a central source (e.g., such as a quasar). The optical line emission to be associated with compact young quasar sources having the same X-ray spectrum as the X-ray background is found to be substantially different from that characteristic of typical quasars. Implications on quasar source counts and the identification of such new objects are discussed.

  1. Directional properties of hard x-ray sources generated by tightly focused ultrafast laser pulses

    SciTech Connect

    Hou Bixue; Mordovanakis, Aghapi; Easter, James; Krushelnick, Karl; Nees, John A.

    2008-11-17

    Directional properties of ultrafast laser-based hard x-ray sources are experimentally studied using tightly focused approximately millijoule laser pulses incident on a bulk Mo target. Energy distributions of K{alpha} and total x rays, as well as source-size distributions are directionally resolved in vacuum and in flowing helium, respectively. Directional distributions of x-ray emission is more isotropic for p-polarized pump than for s-polarized. Based on source-size measurements, a simple two-location model, with expanded plasma and bulk material, is employed to represent the x-ray source profile.

  2. OPTICAL STUDY OF THE HYPER-LUMINOUS X-RAY SOURCE 2XMM J011942.7+032421

    SciTech Connect

    Gutiérrez, Carlos M.; Moon, Dae-Sik

    2014-12-10

    We present the identification and characterization of the optical counterpart to 2XMM J011942.7+032421, one of the most luminous and distant ultra-luminous X-ray sources (ULXs). The counterpart is located near a star-forming region in a spiral arm of the galaxy NGC 470 with u, g, and r magnitudes of 21.53, 21.69, and 21.71 mag, respectively. The luminosity of the counterpart is much larger than that of a single O-type star, indicating that it may be a stellar cluster. Our optical spectroscopic observations confirm the association of the X-ray source and the optical counterpart with its host galaxy NGC 470, which validates the high, ≳10{sup 41} erg s{sup -1}, X-ray luminosity of the source. Its optical spectrum is embedded with numerous emission lines, including H recombination lines, metallic forbidden lines, and more notably the high-ionization He II (λ4686) line. That line shows a large velocity dispersion of ≅410 km s{sup -1}, consistent with the existence of a compact (<5 AU) highly ionized accretion disk rotating around the central X-ray source. The ∼1.4 × 10{sup 37} erg s{sup -1} luminosity of the He II line emission makes the source one of the most luminous ULXs in that emission. This, together with the high X-ray luminosity and the large velocity dispersion of the He II emission, suggests that the source is an ideal candidate for more extensive follow-up observations for understanding the nature of hyper-luminous X-ray sources, a more luminous subgroup of ULXs, and more likely candidates for intermediate-mass black holes.

  3. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  4. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; Griffiths, R. E.; Haba, Y.; Kokubun, M.; Kotoku J.; Makishima, K.; Matsushita, K.; Mushotzky, R. F.; Namiki, M.; Petre, R.; Takahashi, H.; Tamagaw, T.; Terashima, Y.

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  5. NUSTAR and SUZAKU X-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    SciTech Connect

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  6. Spectroscopic follow-up of NIR candidate counterparts to Galactic Center X-ray sources

    NASA Astrophysics Data System (ADS)

    Dewitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Blum, Robert; Olsen, Knut; Sellgren, Kris; Bauer, Franz E.

    2010-08-01

    The Chandra X-ray Observatory has discovered 4339 X-ray point sources within the 17 arcmin^2 field centered on Sgr A^*. Nearly a dozen of the brighter near-IR (NIR) counterparts in this region have been spectroscopically identified as Wolf-Rayet/O supergiants, possibly in colliding wind binaries or high mass X-ray binaries. However, the nature of the X-ray sources whose candidate counterparts have IR magnitudes of K_s > 12 mag is almost completely unknown. We utilized our JHK ISPI imaging of this 17 arcmin^2 region to create a catalog of NIR/X-ray astrometric matches with 2205 X-ray/IR sources. Using Monte-Carlo simulations, we identified 88 IR sources that have a high probability of being true counterparts to Galactic Center (GC) X-ray sources. We propose to obtain JHK spectra of 28 potential IR counterparts with K_s=12-14 mag. Our analysis suggests that half of these objects will be true physical counterparts. Definitive identification of the X-ray source counterparts will help probe a previously unknown segment of the GC X-ray source population, and will have important implications for our understanding of XRBs in the Galaxy, including their formation, evolutionary history, and physical characteristics.

  7. Observation of the X-ray source Sco X-1 from Skylab. [radiant flux density

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An attempt to observe the discrete X-ray source Sco X-1 on 20 September 1973 between 0856 and 0920 UT is reported. Data obtained with the ATM/S-056 X-ray event analyzer, in particular the flux observed with the 1.71 to 4.96 KeV counter, is analyzed. No photographic image of the source was obtained because Sco X-1 was outside the field of view of the X-ray telescope.

  8. Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines

    NASA Astrophysics Data System (ADS)

    Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.

    2016-10-01

    Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org

  9. The associated X-ray spectra of Amersham caesium-137 afterloading sources.

    PubMed

    Bradley, D A; Chong, C S

    1987-02-01

    Low-energy X rays are clearly observed in the energy spectra of Amersham 137Cs afterloading sources. Examination is made of the effects of encapsulation and source train attenuation on the source spectra. Estimates of the resulting X-ray intensities are also made.

  10. Discovery of a highly variable dipping ultraluminous X-ray source in M94

    SciTech Connect

    Lin, Dacheng; Irwin, Jimmy A.; Webb, Natalie A.; Barret, Didier; Remillard, Ronald A.

    2013-12-20

    We report the discovery of a new ultraluminous X-ray source (ULX) 2XMM J125048.6+410743 within the spiral galaxy M94. The source has been observed by ROSAT, Chandra, and XMM-Newton on several occasions, exhibiting as a highly variable persistent source or a recurrent transient with a flux variation factor of ≳100, a high duty cycle (at least ∼70%), and a peak luminosity of L {sub X} ∼ 2 × 10{sup 39} erg s{sup –1} (0.2-10 keV, absorbed). In the brightest observation, the source is similar to typical low-luminosity ULXs, with the spectrum showing a high-energy cutoff but harder than that from a standard accretion disk. There are also sporadical short dips, accompanied by spectral softening. In a fainter observation with L {sub X} ∼ 3.6 × 10{sup 38} erg s{sup –1}, the source appears softer and is probably in the thermal state seen in Galactic black hole X-ray binaries (BHBs). In an even fainter observation (L {sub X} ∼ 9 × 10{sup 37} erg s{sup –1}), the spectrum is harder again, and the source might be in the steep-power-law state or the hard state of BHBs. In this observation, the light curve might exhibit ∼7 hr (quasi-)periodic large modulations over two cycles. The source also has a possible point-like optical counterpart from Hubble Space Telescope images. In terms of the colors and the luminosity, the counterpart is probably a G8 supergiant or a compact red globular cluster containing ∼2 × 10{sup 5} K dwarfs, with some possible weak UV excess that might be ascribed to accretion activity. Thus, our source is a candidate stellar-mass BHB with a supergiant companion or with a dwarf companion residing in a globular cluster. Our study supports that some low-luminosity ULXs are supercritically accreting stellar-mass BHBs.

  11. A Search for Hyperluminous X-Ray Sources in the XMM-Newton Source Catalog

    NASA Astrophysics Data System (ADS)

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Bachetti, M.; Barret, D.

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 1041 < LX < 1044 erg s-1, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243-49 HLX-1 and M82 X-1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada-France-Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  12. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    SciTech Connect

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Bachetti, Matteo; Barret, Didier; Webb, Natalie A.; Miller, Jon M.; Fabian, Andrew C.; Boggs, Steven E.; Craig, William W.; Christensen, Finn C.; Hailey, Charles J.; Ptak, Andrew F.; Zhang, William W.; Stern, Daniel

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  13. The Radiation Dose Determination of the Pulsed X-ray Source

    NASA Astrophysics Data System (ADS)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  14. Infrared identification of hard X-ray sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Pineau, F.-X.; Carrera, F. J.; Pakull, M. W.; Riddick, F.

    2015-09-01

    The nature of the low- to intermediate-luminosity (LX ˜ 1032-34 erg s-1) source population revealed in hard band (2-10 keV) X-ray surveys of the Galactic plane is poorly understood. To overcome such problem, we cross-correlated the XMM-Newton 3XMM-DR4 survey with the infrared Two Micron All Sky Survey and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire catalogues. We identified reliable X-ray-infrared associations for 690 sources. We selected 173 sources having hard X-ray spectra, typical of hard X-ray high-mass stars (kT > 5 keV), and 517 sources having soft X-ray spectra, typical of active coronae. About 18 per cent of the soft sources are classified in the literature: ˜91 per cent as stars, with a minor fraction of Wolf-Rayet (WR) stars. Roughly 15 per cent of the hard sources are classified in the literature: ˜68 per cent as high-mass X-ray stars single or in binary systems (WR, Be and high-mass X-ray binaries - HMXBs), with a small fraction of G and B stars. We carried out infrared spectroscopic pilot observations at the William Herschel Telescope for five hard X-ray sources. Three of them are high-mass stars with spectral types WN7-8h, Ofpe/WN9 and Be, and LX ˜ 1032-1033erg s-1. One source is a colliding-wind binary, while another source is a colliding-wind binary or a supergiant fast X-ray transient in quiescence. The Be star is a likely γ-Cas system. The nature of the other two X-ray sources is uncertain. The distribution of hard X-ray sources in the parameter space made of X-ray hardness ratio, infrared colours and X-ray-to-infrared flux ratio suggests that many of the unidentified sources are new γ-Cas analogues, WRs and low LX HMXBs. However, the nature of the X-ray population with Ks ≥ 11 and average X-ray-to-infrared flux ratio remains unconstrained.

  15. Phase-contrast imaging with a novel X-ray source

    SciTech Connect

    Takahashi, Yumiko; Kuwada, Takao; Sakai, Takeshi; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Imagaki, Manabu; Tanaka, Toshinari; Hayakawa, Ken; Sato, Isamu

    2010-04-06

    A novel X-ray source based on Parametric X-ray radiation (PXR) has been employed for phase-contrast imaging at the Laboratory for Electron Beam Research and Application (LEBRA), Nihon University, Japan. The PXR X-rays were generated by the 100 MeV electron beam passing through a Si single crystal. The X-rays in the 16approx34 keV range were chosen for imaging of biological samples. The quasi-monochromatic, tunable, and coherent X-ray source is appropriate for this application. In addition, the large X-ray beam irradiation field of approximately 100 mm in diameter, which was achieved without special optics, suggests that the PXR is applicable to imaging for medical diagnostics.

  16. Swift-XRT six-year monitoring of the ultraluminous X-ray source M33 X-8

    NASA Astrophysics Data System (ADS)

    La Parola, V.; D'Aí, A.; Cusumano, G.; Mineo, T.

    2015-08-01

    Context. The long-term evolution of ultraluminous X-ray sources (ULX) with their spectral and luminosity variations in time give important clues on the nature of ULX and on the accretion process that powers them. Aims: We report here the results of a Swift-XRT six-year monitoring campaign of the closest example of a persistent ULX, M33 X-8, that extends the monitoring of this source in the soft X-rays to 16 years. The luminosity of this source is a few 1039 erg s-1, marking the faint end of the ULX luminosity function. Methods: We analyzed the set of 15 observations collected during the Swift monitoring. We searched for differences in the spectral parameters at different observing epochs, adopting several models commonly used to fit the X-ray spectra of ULX. Results: The source exhibits flux variations of about 30%. No significant spectral variations are observed during the monitoring. The average 0.5-10 keV spectrum can be well described by a thermal model, either in the form of a slim disk, or as a combination of a Comptonized corona and a standard accretion disk.

  17. SPECTROSCOPIC STUDIES OF AN ULTRALUMINOUS SUPERSOFT X-RAY SOURCE IN M81

    SciTech Connect

    Bai, Yu; Liu, JiFeng; Wang, Song

    2015-04-01

    Ultraluminous supersoft X-ray sources (ULSs) exhibit supersoft X-ray spectra with blackbody temperatures below 0.1 keV and bolometric luminosities above 10{sup 39} ergs s{sup −1}. In this Letter, we report the first optical spectroscopic observations of a ULS in M81 using the LRIS spectrograph on the Keck I telescope. The detected Balmer emission lines show a mean intrinsic velocity dispersion of 400 ± 80 km s{sup −1}, which is consistent with that from an accretion disk. The spectral index of the continuum on the blue side is also consistent with the multi-color disk model. The H{sub α} emission line exhibits a velocity of ∼180 km s{sup −1} relative to the local stellar environment, suggesting that this ULS may be a halo system in M81 belonging to an old population. No significant shift is found for the H{sub α} emission line between two observations separated by four nights.

  18. DYNAMICAL MASS CONSTRAINTS ON THE ULTRALUMINOUS X-RAY SOURCE NGC 1313 X-2

    SciTech Connect

    Liu Jifeng; Orosz, Jerome; Bregman, Joel N.

    2012-01-20

    Dynamical mass measurements hold the key to answering whether ultraluminous X-ray sources (ULXs) are intermediate-mass black holes (IMBHs) or stellar-mass black holes with special radiation mechanisms. NGC 1313 X-2 is so far the only ULX with Hubble Space Telescope light curves, the orbital period, and the black hole's radial velocity amplitude based on the He II {lambda}4686 disk emission line shift of {approx}200 km s{sup -1}. We constrain its black hole mass and other parameters by fitting observations to a binary light curve code with accommodations for X-ray heating of the accretion disk and the secondary. Given the dynamical constraints from the observed light curves and the black hole radial motion and the observed stellar environment age, the only acceptable models are those with 40-50 Myr old intermediate-mass secondaries in their helium core and hydrogen shell burning phase filling 40%-80% of their Roche lobes. The black hole can be a massive black hole of a few tens of M{sub Sun} that can be produced from stellar evolution of low-metallicity stars, or an IMBH of a few hundred to above 1000 M{sub Sun} if its true radial velocity 2K' < 40 km s{sup -1}. Further observations are required to better measure the black hole radial motion and the light curves in order to determine whether NGC 1313 X-2 is a stellar-mass black hole or an IMBH.

  19. A soft X-ray spectrometer for diffuse cosmic sources

    NASA Technical Reports Server (NTRS)

    Borken, R. J.; Kraushaar, W. L.

    1976-01-01

    The design of a Bragg crystal spectrometer for the diffuse soft X-ray background is described. The instrument has no moving parts; a 6 degree x 20 degree FWHM field of view; resolution in the range 20-100; and spans wavelength ranges 44-80 A or 13-23 A when lead stearate or KAP crystals are used. If placed on a small spacecraft, integration times of approximately 1000 s will be required to detect the existence of the stronger lines expected in the X-ray background.

  20. An environmental study of the ultraluminous X-ray source population in early-type galaxies

    SciTech Connect

    Plotkin, Richard M.; Gallo, Elena; Miller, Brendan P.; Baldassare, Vivienne F.; Treu, Tommaso; Woo, Jong-Hak

    2014-01-01

    Ultraluminous X-ray sources (ULXs) are some of the brightest phenomena found outside of a galaxy's nucleus, and their explanation typically invokes accretion of material onto a black hole. Here, we perform the largest population study to date of ULXs in early-type galaxies, focusing on whether a galaxy's large-scale environment can affect its ULX content. Using the AMUSE survey, which includes homogeneous X-ray coverage of 100 elliptical galaxies in the Virgo cluster and a similar number of elliptical galaxies in the field (spanning stellar masses of 10{sup 8}-10{sup 12} M {sub ☉}), we identify 37.9 ± 10.1 ULXs in Virgo and 28.1 ± 8.7 ULXs in the field. Across both samples, we constrain the number of ULXs per unit stellar mass, i.e., the ULX specific frequency, to be 0.062 ± 0.013 ULXs per 10{sup 10} M {sub ☉} (or about 1 ULX per 1.6 × 10{sup 11} M {sub ☉} of galaxy stellar mass). We find that the number of ULXs, the specific frequency of ULXs, and the average ULX spectral properties are all similar in both cluster and field environments. Contrary to late-type galaxies, we do not see any trend between specific ULX frequency and host galaxy stellar mass, and we show that dwarf ellipticals host fewer ULXs than later-type dwarf galaxies at a statistically meaningful level. Our results are consistent with ULXs in early-type galaxies probing the luminous tail of the low-mass X-ray binary population, and are briefly discussed in context of the influence of gravitational interactions on the long-term evolution of a galaxy's (older) stellar population.

  1. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    SciTech Connect

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J.; Bachetti, Matteo; Barret, Didier; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Chakrabarty, Deepto; Chenevez, Jerome; Christensen, Finn E.; Hailey, Charles J.; Natalucci, Lorenzo; Pottschmidt, Katja; Stern, Daniel; Wilms, Jörn; and others

    2013-09-20

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

  2. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  3. Dynamic radiography using a carbon-nanotube-based field-emission x-ray source

    SciTech Connect

    Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O.

    2004-10-01

    We report a dynamic radiography system with a carbon nanotube based field-emission microfocus x-ray source. The system can readily generate x-ray radiation with continuous variation of temporal resolution as short as nanoseconds. Its potential applications for dynamic x-ray imaging are demonstrated. The performance characteristics of this compact and versatile system are promising for noninvasive imaging in biomedical research and industrial inspection.

  4. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  5. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  6. Determination of the mass of globular cluster X-ray sources

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Hertz, P.; Steiner, J. E.; Murray, S. S.; Lightman, A. P.

    1984-01-01

    The precise positions of the luminous X-ray sources in eight globular clusters have been measured with the Einstein X-Ray Observatory. When combined with similarly precise measurements of the dynamical centers and core radii of the globular clusters, the distribution of the X-ray source mass is determined to be in the range 0.9-1.9 solar mass. The X-ray source positions and the detailed optical studies indicate that (1) the sources are probably all of similar mass, (2) the gravitational potentials in these high-central density clusters are relatively smooth and isothermal, and (3) the X-ray sources are compact binaries and are probably formed by tidal capture.

  7. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    NASA Astrophysics Data System (ADS)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2015-12-01

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18-20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  8. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  9. Spectral unfolds of PITHON Flash X-ray source.

    SciTech Connect

    Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C.

    2007-11-01

    Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

  10. Course Manual for Machine Sources of X Rays.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This is the first of a series of three instructor manuals in x-ray science and engineering and is produced as part of a project of Oregon State University's Bureau of Radiological Health. This manual, and the two companion manuals, have been tested in courses at Oregon State. These materials have been designed to serve as models for teaching and…

  11. Optical identification of the supersoft X-ray source RX J0439.8-6809.

    NASA Astrophysics Data System (ADS)

    van Teeseling, A.; Reinsch, K.; Beuermann, K.

    1996-03-01

    We have identified RXJ0439.X-6809 with a very blue B=21.5 object. There is no evidence for x-ray or optical variability. The optical spectrum does not show any absorption or emission features. The very blue optical spectrum suggests that the optical flux is the Rayleigh-Jeans tail of the soft X-ray component. The spectral parameters are consistent with a location in the Large Magellanic Cloud. RXJ0439 may be an accreting binary in which a low-mass white dwarf is recurrently burning accreted matter with a very long X-ray on-time. Alternatively, RXJ0439 may be a ~1Msun_ post-AGB star, which may have re-entered the high-luminosity phase due to a late helium shell flash.

  12. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  13. THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY

    SciTech Connect

    DeWitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata; Sellgren, Kris; Blum, Robert; Olsen, Knut; Bauer, Franz E.

    2013-11-01

    We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a γ Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/γ Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

  14. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    SciTech Connect

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Kreykenbohm, Ingo; Caballero, Isabel; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Rothschild, Richard E.; Klochkov, Dmitry; Terada, Yukikatsu; and others

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.

  15. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  16. X-ray source brightness comparison: Rigaku rotating anode source vs. Kevex microfocus tube

    SciTech Connect

    Koch, J A; Dewald, E; Kozioziemski, B

    2010-03-17

    In 2007, we began to explore alternative x-ray sources for application to refraction-enhanced (phase contrast) x-ray radiography of cryogenic NIF ignition capsules containing frozen deuterium-tritium (D-T) ice layers. These radiographs are currently obtained using Kevex microfocus tubes as backlights, and for these sources the x-ray source size is approximately 5 {micro}m. As part of this exploration, we obtained refraction-enhanced radiographs of empty plastic capsules using the Janus laser facility at LLNL, demonstrating that even large ({approx} 100 {micro}m) sources can be utilized in refraction-enhanced radiography provided the source/sample distance is sufficiently large, and provided the final x-ray detector has sufficient spatial resolution. Essentially, in the current geometry, we rely on a small source to provide spatial resolution and on the source/sample distance to provide refraction contrast, but an equally useful alternative geometry is to use a large source and rely on fine detector spatial resolution to provide spatial resolution and on the sample/detector distance to provide refraction contrast.

  17. Obscuration effects in super-soft-source X-ray spectra

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.; Osborne, J. P.; Henze, M.; Dobrotka, A.; Drake, J. J.; Ribeiro, V. A. R. M.; Starrfield, S.; Kuulkers, E.; Behar, E.; Hernanz, M.; Schwarz, G.; Page, K. L.; Beardmore, A. P.; Bode, M. F.

    2013-11-01

    Context. Super-soft-source (SSS) X-ray spectra are blackbody-like spectra with effective temperatures ~3-7 × 105 K and luminosities of 1035-38 erg s-1. Grating spectra of SSS and novae in outburst that show SSS type spectra display atmospheric absorption lines. Radiation transport atmosphere models can be used to derive physical parameters. Blue-shifted absorption lines suggest that hydrostatic equilibrium is an insufficient assumption, and more sophisticated models are required. Aims: In this paper, we bypass the complications of spectral models and concentrate on the data in a comparative, qualitative study. We inspect all available X-ray grating SSS spectra to determine systematic, model-independent trends. Methods: We collected all grating spectra of conventional SSS like Cal 83 and Cal 87 plus observations of novae during their SSS phase. We used comparative plots of spectra of different systems to find common and different features. The results were interpreted in the context of system parameters obtained from the literature. Results: We find two distinct types of SSS spectra that we name SSa and SSe. Their main observational characteristics are either clearly visible absorption lines or emission lines, respectively, while both types contain atmospheric continuum emission. SSa spectra are highly structured with no spectral model currently able to reproduce all details. The emission lines clearly seen in SSe may also be present in SSa, hidden within the forest of complex atmospheric absorption and emission features. This suggests that SSe are in fact obscured SSa systems. Similarities between SSe and SSa with obscured and unobscured AGN, respectively, support this interpretation. We find all known or suspected high-inclination systems to emit permanently in an SSe state. Some sources are found to transition between SSa and SSe states, becoming SSe when fainter. Conclusions: SSS spectra are subject to various occultation processes. In persistent SSS spectra

  18. Development of a multilayer mirror for high-intensity monochromatic x-ray using lab-based x-ray source.

    PubMed

    Nguyen, Thanh-hai; Song, Seonggeun; Jung, Jin-Ho; Jeon, Insu

    2012-09-15

    A parabolic, multilayer x-ray mirror, which can be used with a general lab-based x-ray source, was designed and fabricated. A glass substrate for the mirror was fabricated. Its surface was determined by following the rotation of a parabolic curve and was polished precisely. On the substrate surface, six W/Al bilayers were deposited to form the multilayer mirror. The effects of the mirror on x-ray images were investigated based on the calculated modulation transfer function (MTF) and image intensity values. Higher MTF and intensity values of an x-ray image were obtained using the mirror.

  19. Bending magnet source: A radiation source for X-ray phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Dhal, B. B.; Peele, A. G.; McMahon, P. J.; De Carlo, F.; Nugent, K. A.

    2006-11-01

    The rapid development of electronic data processing and phase retrieval technique for image reconstruction leads to new opportunities in X-ray phase tomography. A range of radiographic and tomographic demonstrations have now been made, typically utilizing the coherent flux from an insertion device at a synchrotron or a micro-focus laboratory source. In this paper we demonstrate that useful results may be obtained using a bending magnet source at a synchrotron. In particular we show that the same beamline can be used to make and characterize a sample made by X-ray lithographic methods.

  20. S-band linac-based X-ray source with π/2-mode electron linac

    NASA Astrophysics Data System (ADS)

    Deshpande, Abhay; Araki, Sakae; Dixit, Tanuja; Fukuda, Masafumi; Krishnan, R.; Pethe, Sanjay; Sakaue, Kazuyuki; Terunuma, Nobuhiro; Urakawa, Junji; Washio, Masakazu

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the π/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the π/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  1. The 2005 Accretion Outburst in V1118 Ori: Evidence for A Spectral Change in X-rays

    NASA Astrophysics Data System (ADS)

    Audard, M.; Güdel, M.; Skinner, S. L.; Briggs, K. R.; Walter, F. M.; Stringfellow, G.; Hamilton, R. T.; Guinan, E. F.

    2005-12-01

    We present results from our X-ray monitoring campaign of the 2005 accretion outburst in the young low-mass star V1118 Ori. Optical and near-infrared photometry are presented as well. The X-ray data from early 2005 indicate that the X-ray flux and luminosity varied within a factor of two only, and were similar to the pre-outburst values measured in a serendipitous observation in 2002. Similarly, the hydrogen column density showed no evidence for significant excursions from the pre-outburst value of a few times 1021 cm-2. However, we observed a spectral change from a dominant hot plasma ( ˜ 25 MK) in 2002 and in January 2005 to a cooler plasma ( ˜ 8 MK) in February and March 2005. We argue that the closing in of the accretion disk during the outburst disrupted the hot magnetic loops high in the corona, whereas the lower cooler loops were less affected and became the dominant coronal component. We acknowledge support by NASA through Chandra award DD5-6029X and through XMM-Newton award NNG05GI96G to Columbia University. The Chandra X-ray Observatory Center is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA under contract NAS8-03060. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. The PSI group acknowledges support from the Swiss National Science Foundation (grants 20-58827.99 and 20-66875.01). Stony Brook's participation in SMARTS is made possible by support from the offices of the Provost and the Vice President for Research. We thank J. Allyn Smith, P. McGehee, J. Espinoza, and D. Gonzalez for doing the observations with the SMARTS telescopes. We also thank H. Tannanbaum, N. Schartel, and the VLA TOO panel for granting time to observe V1118 Ori.

  2. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Zhang, William W.

    2016-06-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of {29.3}-1.3+1.1 keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 ± 0.1) × 1012 G. The known pulsation period is now observed at 904.0 ± 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of \\dot{P}=-2× {10}-8 s s-1 (-0.6 s per year, or a frequency derivative of \\dot{ν }=3× {10}-14 Hz s-1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 × 108 cm.

  3. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  4. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    NASA Astrophysics Data System (ADS)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N-log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s-1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov-Smirnov (K-S) criterion (P K-S < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (˜2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition

  5. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    NASA Astrophysics Data System (ADS)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N–log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s‑1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion (P K–S < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (˜2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In

  6. MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION

    SciTech Connect

    Bonito, R.; Argiroffi, C.; Peres, G.; Orlando, S.; Miceli, M.; Ibgui, L.; Matsakos, T.; Stehle, C.

    2014-11-10

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues, we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results, we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model, including the effects of local absorption, explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks.

  7. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  8. Evidence for the binary nature of A0535+26. [SAS-3 observation of transient X ray source

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Bradt, H.; Clark, G. W.; Jernigan, J. G.; Joss, P. C.

    1976-01-01

    The transient X-ray source A0535+26 was observed extensively with the SAS-3 satellite on two occasions. Sufficient timing data on the 104-s periodicity were obtained to indicate that the pulse period was changing during both of the observations. The possibility that these period changes are intrinsic to the compact star (e.g., due to accretion torques) cannot be completely excluded. However, it is demonstrated that all of the SAS-3 timing data can be explained by orbital motion of the X-ray star about a companion. Constraints are then placed on the orbital elements of the system. The results indicate a model for this source that consists of a neutron star in a long-period orbit (period of at least 17 days) about an OB star with a variable stellar wind.

  9. Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography

    SciTech Connect

    Liu Zejian; Yang Guang; Lee, Yueh Z.; Bordelon, David; Lu Jianping; Zhou, Otto

    2006-09-04

    Microcomputed tomography is now widely used for in vivo small animal imaging for cancer studies. Achieving high imaging quality of live objects requires the x-ray source to have both high spatial and temporal resolutions. Preliminary studies have shown that carbon nanotube (CNT) based field emission x-ray source has significant intrinsic advantages over the conventional thermionic x-ray tube including better temporal resolution and programmability. Here we report the design and characterization of a CNT based field emission x-ray source that also affords a high spatial resolution. The device uses modified asymmetric Einzel lenses for electron focusing and an elliptical shaped CNT cathode patterned by photolithography. Stable and small isotropic x-ray focal spot sizes were obtained.

  10. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  11. A fine-focusing x-ray source using carbon-nanofiber field emitter

    NASA Astrophysics Data System (ADS)

    Sugimoto, W.; Sugita, S.; Sakai, Y.; Goto, H.; Watanabe, Y.; Ohga, Y.; Kita, S.; Ohara, T.

    2010-08-01

    A fine-focusing x-ray source has been constructed employing a field electron emitter prepared by growing carbon-nanofibers (CNFs) on a metal tip. The x-ray source is composed of a CNF field electron emitter, an electrostatic lens, two magnetic lenses, and a W-target for generating x-rays by electron impact. The CNFs provided field electrons with a current density of J ˜5×109 A/m2, which was evaluated with the aid of Fowler-Nordheim theory. The electron beam extracted from the CNF emitter was accelerated to the energies of E =10-25 keV, and then focused by the lenses. By recording the x-ray images of test charts, the optimum resolution of the x-ray source was estimated to be approximately Dx=0.5 μm.

  12. Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M 33 X-8

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Wang, Jun-Xian; Gu, Wei-Min; Lu, Ju-Fu

    2009-12-01

    We provide a detailed analysis of 12 XMM observations of the nearest persistent extragalactic ultraluminous X-ray source (ULX), M 33 X-8. No significant spectral evolution has been detected for the period of the observations, and therefore we combine the individual observations to increase the signal-to-noise ratio for a spectral fitting. The combined spectra are best fitted by a self-consistent p-free disk plus power-law component model with p = 0.571+0.032-0.030, kTin (inner disk temperature) = 1.38+0.09-0.08 keV, and the flux ratio of the p-free disk component to the power-law component being 0.63 : 0.37 in the 0.3-10 keV band. The fitting indicates that the black hole in M 33 X-8 is of ˜10odot, and accretes at a super-Eddington rate (˜1.5LEdd); also, the phase of the accretion disk is close to that of a slim disk (p = 0.5). We report, for the first time, that an extra power-law component is required in addition to the p-free disk model for ULXs. In super-Eddington cases, the power-law component may possibly result from an optically thin inner region of the disk or a Comptonized corona, similar to that of a standard thin disk.

  13. The Slim-disk State of the Ultraluminous X-Ray Source in M83

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuntz, K. D.; Long, Knox S.; Blair, William P.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 1039 erg s-1 (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ~ 10-20 M ⊙. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  14. Optical and infrared signatures of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Copperwheat, Christopher; Cropper, Mark; Soria, Roberto; Wu, Kinwah

    2005-09-01

    We have constructed a model to describe the optical emission from ultra-luminous X-ray sources (ULXs). We assume a binary model with a black hole accreting matter from a Roche lobe filling companion star. We consider the effects of radiative transport and radiative equilibrium in the irradiated surfaces of both the star and a thin accretion disc. We have developed this model as a tool with which to positively identify the optical counterparts of ULXs, and subsequently derive parameters such as the black hole mass and the luminosity class and spectral type of the counterpart. We examine the dependence of the optical emission on these and other variables. We extend our model to examine the magnitude variation at infrared wavelengths, and we find that observations at these wavelengths may have more diagnostic power than in the optical. We apply our model to existing HST observations of the candidates for the optical counterpart of ULX X-7 in NGC 4559. All candidates could be consistent with an irradiated star alone, but we find that a number of them are too faint to fit with an irradiated star and disc together. Were one of these the optical counterpart to X-7, it would display a significant temporal variation.

  15. THE SLIM-DISK STATE OF THE ULTRALUMINOUS X-RAY SOURCE IN M83

    SciTech Connect

    Soria, Roberto; Kuntz, K. D.; Blair, William P.; Long, Knox S.; Plucinsky, Paul P.; Winkler, P. Frank

    2015-02-01

    The transient ULX in M83 that went into outburst in, or shortly before, 2010 is still active. Our new XMM-Newton spectra show that it has a curved spectrum typical of the upper end of the high/soft state or slim-disk state. It appears to be spanning the gap between Galactic stellar-mass black holes (BHs) and the ultraluminous state, at X-ray luminosities of ≈1-3 × 10{sup 39} erg s{sup –1} (a factor of two lower than in the 2010 and 2011 Chandra observations). From its broadened disk-like spectral shape at that luminosity, and from the fitted inner-disk radius and temperature, we argue that the accreting object is an ordinary stellar-mass BH with M ∼ 10-20 M {sub ☉}. We suggest that in the 2010 and 2011 Chandra observations, the source was seen at a higher accretion rate, resulting in a power-law-dominated spectrum with a soft excess at large radii.

  16. Supersoft X-Ray Source RX J0019.8+2156

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Okugami, M.; Fukue, J.

    RX J0019.8+2156 (RX J0019) is one of supersoft X-ray sources (SSXSs) which were rarely found in the Galaxy. Although their nature are still not perfectly revealed, at present it is considered that a model with nuclear burning on the surface of white dwarfs causing their accreted matter is reasonable in order to explain their luminosities and temperatures. In such system, radiation from white dwarfs (~1036-38erg/s) strongly irradiates accretion disk around the white dwarf, and companion, and reprocessing of the radiation may be generated from irradiated regions. Since calculated spectra of SSXSs led from their luminosities and temperatures can not reproduce observed spectra in UV and optical, it is suggested that there are contributions of the reprocessing to UV and optical flux. We investigated such contributions in RX J0019 with results of time-resolved optical photometric observations, and this study revealed that effects of reprocessing to optical region exist in RX J0019 like the cases of SSXSs in LMC. We also examined the fitting of its optical light curve using the results of the observation.

  17. Recent results from observations of 4U1700-37 using SAS-3. [X-ray source

    NASA Technical Reports Server (NTRS)

    Matilsky, T.

    1978-01-01

    SAS-3 observations of a complete orbital cycle (approximately 3.5 d) of the X-ray source 4U1700-37 are presented. A persistent, approximately sinusoidal modulation of approximately 60% amplitude is present in the data at 97 m. Satellite orbital effects are ruled out by using other detectors pointed away from the source but sampled at the same time. The effect of such a long rotation period (if indeed the period is rotational) on current ideas involving accretion torques and stellar wind is discussed.

  18. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  19. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300

    SciTech Connect

    Binder, B.; Williams, B. F.; Dalcanton, J. J.; Anderson, S. F.; Weisz, D. R.; Eracleous, M.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.; Kong, A. K. H.

    2012-10-10

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers {approx}88% of the D{sub 25} isophote (R Almost-Equal-To 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of {approx}10{sup 36} erg s{sup -1}. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 'X-ray transient candidate' sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 {+-} 0.2 kpc and a recent star formation rate of 0.12 M{sub Sun} yr{sup -1} in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering {approx}32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations ({approx}< 50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.

  20. X-ray microscopy and imaging of Caenorhabditis elegans nematode using a laser-plasma-pulsed x-ray source

    NASA Astrophysics Data System (ADS)

    Poletti, Giulio; Orsini, Franceasco; Ullschmied, Jiri; Skala, Jiri; Kralikova, Bozena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomas; Prag, A. R.; Cotelli, F.; Lora Lamia, C.; Batani, Dimitri; Bernardinello, A.; Desai, Tara; Zullini, A.

    2004-01-01

    An experiment on Soft X-ray Contact Microscopy (SXCM) performed on Caenorhabditis elegans nematodes is discussed. This sample has been selected since it is a well studied case used as model in many biological contexts. The experiment has been performed using the iodine PALS laser source to generate pulsed soft X-rays from laser-plasma interaction, using molybdenum and gold as targets. Typical intensities on the targets exceeded 1014 W/cm2. The SXCM imprints have been recorded on Polymethilmetacrylate (PMMA) photo resists which have been chemically developed and analyzed with an Atomic Force Microscope (AFM) operating in constant force mode. The use of error signal AFM images together with topography AFM images, did allow an easier recognition of biological patterns, and the identification of observed structures with internal organs. Several organs were identified in the SXCM images, including cuticle annuli, alae, pharynx, and three different types of cell nuclei. These are the first SXCM images of multi-cellular complex organisms.

  1. Recollimation boundary layers as X-ray sources in young stellar jets

    SciTech Connect

    Günther, Hans Moritz; Li, Zhi-Yun; Schneider, P. C.

    2014-11-01

    Young stars accrete mass from circumstellar disks and, in many cases, the accretion coincides with a phase of massive outflows, which can be highly collimated. Those jets emit predominantly in the optical and IR wavelength range. However, in several cases, X-ray and UV observations reveal a weak but highly energetic component in those jets. X-rays are observed both from stationary regions close to the star and from knots in the jet several hundred AU from the star. In this article, we show semianalytically that a fast stellar wind that is recollimated by the pressure from a slower, more massive disk wind can have the right properties to power stationary X-ray emission. The size of the shocked regions is compatible with observational constraints. Our calculations support a wind-wind interaction scenario for the high-energy emission near the base of young stellar object jets. For the specific case of DG Tau, a stellar wind with a mass-loss rate of 5 × 10{sup –10} M {sub ☉} yr{sup –1} and a wind speed of 800 km s{sup –1} reproduces the observed X-ray spectrum. We conclude that a stellar wind recollimation shock is a viable scenario to power stationary X-ray emission close to the jet launching point.

  2. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  3. VLA observations of a complete sample of extragalactic X-ray sources. II

    NASA Technical Reports Server (NTRS)

    Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.

    1983-01-01

    A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.

  4. Numerical simulation for all-optical Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Zhu, Bin; Han, Dan; Xin, Jian-Ting; Zhao, Zong-Qing; Cao, Lei-Feng; Gu, Yu-Qiu; Zhang, Bao-Han

    2014-03-01

    Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scattering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser—electron interaction.

  5. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  6. Tomography of human trabecular bone with a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Parker, S.; Symes, D. R.; Sandholzer, M. A.; Mangles, S. P. D.; Najmudin, Z.

    2016-01-01

    A laser-wakefield driven x-ray source is used for the radiography of human bone. The betatron motion of accelerated electrons generates x-rays which are hard (critical energy {{E}\\text{crit}}>30 keV), have small source size (<3 μm) and high average brightness. The x-rays are generated from a helium gas cell which is near-instantly replenishable, and thus the average photon flux is limited by the repetition rate of the driving laser rather than the breakdown of the x-ray source. A tomograph of a human bone sample was recorded with a resolution down to 50 μm. The photon flux was sufficiently high that a radiograph could be taken with each laser shot, and the fact that x-ray beams were produced on 97% of shots minimised failed shots and facilitated full micro-computed tomography in a reasonable time scale of several hours, limited only by the laser repetition rate. The x-ray imaging beamline length (not including the laser) is shorter than that of a synchrotron source due to the high accelerating fields and small source size. Hence this interesting laboratory-based source may one day bridge the gap between small microfocus x-ray tubes and large synchrotron facilities.

  7. DISCOVERY OF ECLIPSES FROM THE ACCRETING MILLISECOND X-RAY PULSAR SWIFT J1749.4-2807

    SciTech Connect

    Markwardt, C. B.; Strohmayer, T. E.

    2010-07-10

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 M{sub sun} for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90{sup 0} longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172 {+-} 13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of 'Shapiro' delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 M{sub sun}.

  8. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  9. X-ray Spectral Measurements of the JMAR High-Power Laser-plasma Source

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Turcu, I. C. Edmond; Gaeta, Celestino J.; Cassidy, Kelly L.; Powers, Michael F.; Kleindolph, Thomas; Morris, James H.; Forber, Richard A.

    2002-10-01

    X-ray spectra of Cu plasmas at the focus of a four-beam, solid-state diode-pumped laser have been recorded. This laser-plasma X-ray source is being developed for JMAR's lithography systems aimed at high- performance semiconductor integrated circuits. The unique simultaneous overlay of the four sub-nanosecond laser beams at 300 Hertz produces a bright, point-plasma X-ray source. PIN diode measurements of the X-ray output indicate that the conversion efficiency (ratio of X-ray emission energy into 2π steradians to incident laser energy) was approximately 9 percent with average X-ray power yields of greater than 10 Watts. Spectra were recorded on calibrated Kodak DEF film in a curved-crystal spectrograph. A KAP crystal (2d = 26.6 Angstroms) was used to disperse the 900 eV to 3000 eV spectral energies onto the film. Preliminary examination of the films indicated the existence of Cu and Cu XX ionization states. Additional spectra as a function of laser input power were also recorded to investigate potential changes in X-ray yields. These films are currently being analyzed. The analysis of the spectra provide absolute line and continuum intensities, and total X-ray output in the measured spectral range.

  10. Host galaxy colour gradients and accretion disc obscuration in AEGIS z ~ 1 X-ray-selected active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Pierce, C. M.; Lotz, J. M.; Salim, S.; Laird, E. S.; Coil, A. L.; Bundy, K.; Willmer, C. N. A.; Rosario, D. J. V.; Primack, J. R.; Faber, S. M.

    2010-10-01

    We describe the effect of active galactic nucleus (AGN) light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z ~ 1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both redshift and stellar mass. We identify as X-ray-selected AGNs 8.7+4-3 per cent of the red-sequence control galaxies, 9.8 +/- 3 per cent of the blue-cloud control galaxies and 14.7+4-3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. A second class of models involving radiative instabilities in hot gas is more promising for red-sequence AGNs but predicts a larger number of point sources in red-sequence AGNs than is observed. Regardless, it appears that multiple AGN models are necessary to explain the

  11. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and <1.0" from X-ray sources, and an additional 6 ``possible'' IR counterparts between 1.0'' and 1.5'' from X-ray sources. Based on a detailed study of the surface density of IR sources near the X-ray sources, we expect only ~2 of the ``strong'' counterparts and ~3 of the ``possible'' counterparts to be chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 IR clusters in the Antennae, we find with a >99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  12. Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, Chris

    2004-01-01

    A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.

  13. Probing cluster potentials through gravitational lensing of background X-ray sources

    NASA Technical Reports Server (NTRS)

    Refregier, A.; Loeb, A.

    1996-01-01

    The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.

  14. Tailoring a plasma focus as hard x-ray source for imaging

    SciTech Connect

    Hussain, S.; Shafiq, M.; Zakaullah, M.

    2010-01-18

    An investigation on temporal and spatial properties of hard x-rays (15-88 keV) emitted in a 5.3 kJ plasma focus using Si pin diodes and a pinhole camera is reported. The maximum yield of hard x-rays of 15-88 keV range is estimated about 4.7 J and corresponding efficiency for x-ray generation is 0.09%. The x-rays with energy >15 keV have 15-20 ns pulse duration and approx1 mm source size. This radiation is used for contact x-ray imaging of biological and compound objects and spatial resolution of approx50 mum is demonstrated.

  15. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  16. Tailoring a plasma focus as hard x-ray source for imaging

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Shafiq, M.; Zakaullah, M.

    2010-01-01

    An investigation on temporal and spatial properties of hard x-rays (15-88 keV) emitted in a 5.3 kJ plasma focus using Si pin diodes and a pinhole camera is reported. The maximum yield of hard x-rays of 15-88 keV range is estimated about 4.7 J and corresponding efficiency for x-ray generation is 0.09%. The x-rays with energy >15 keV have 15-20 ns pulse duration and ˜1 mm source size. This radiation is used for contact x-ray imaging of biological and compound objects and spatial resolution of ˜50 μm is demonstrated.

  17. The fate of accreted CNO elements in neutron star atmospheres - X-ray bursts and gamma-ray lines

    NASA Technical Reports Server (NTRS)

    Bildstein, Lars; Salpeter, Edwin E.; Wasserman, Ira

    1992-01-01

    The fate of incident C-12, N-14, and O-16 in accreting neutron star atmospheres is described. When the accreting material is stopped by Coulomb collisions with atmospheric electrons, all incoming elements heavier than helium thermalize at higher altitudes in the atmosphere than the accreting protons. The incoming protons and helium then destroy the elements via nuclear spallation reactions. A small fraction of the nuclear reactions cause nuclear excitation and subsequent gamma-ray emission. The probability for a nucleus to survive this bombardment depends on how long it spends in the hazardous region of the atmosphere. The fractions of incident C-12, N-14, and O-16 that survive proton bombardment are calculated as a function of the accretion rate, and the mass and radius of the neutron star. The subsequent paucity of CNO nuclei decreases hydrogen-burning rates in the deep regions of the atmosphere, thereby reducing the amount of helium available for the unstable nuclear flashes that cause type I X-ray bursts. The gamma-ray line emission from this collisional deceleration scenario is determined.

  18. The XMM-Newton Bright Survey sample of absorbed quasars: X-ray and accretion properties

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Severgnini, P.; Della Ceca, R.; Caccianiga, A.; Vignali, C.; Carrera, F. J.; Corral, A.; Mateos, S.

    2014-11-01

    Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work, we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH > 4 × 1021 cm-2 and X-ray luminosity L 2-10 keV > 1044 ergs-1; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution, we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, λ Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, up to λ Edd ˜ 0.5; this implies that our XQSO2s populate the `forbidden region' in the so-called `effective Eddington limit paradigm'. A combination of low grain abundance, presence of stars inwards of the absorber, and/or anisotropy of the disc emission can explain this result.

  19. Catalytic action of β source on x-ray emission from plasma focus

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-01

    The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.

  20. On the large scale structure of X-ray background sources

    NASA Technical Reports Server (NTRS)

    Bi, H. G.; Meszaros, A.; Meszaros, P.

    1991-01-01

    The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.

  1. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Weber, F. A.; Dewald, E. L.; Glenzer, S. H.; Landen, O. L.; Turner, R. E.; Waide, P. A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  2. Highly charged ion X-rays from Electron Cyclotron Resonance Ion Sources

    NASA Astrophysics Data System (ADS)

    Indelicato, P.; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A.; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J.; Wasser, A.; Zmeskal, J.

    2007-09-01

    Radiation from the highly charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources (ECRISs) constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (≈1 eV) transitions can be very narrow, containing only a small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16-18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms.

  3. Fresnel zone plates for Achromatic Imaging Survey of X-ray sources

    SciTech Connect

    Palit, Sourav; Chakrabarti, S. K.; Debnath, D.; Yadav, Vipin; Nandi, Anuj

    2008-10-08

    A telescope with Fresnel Zone Plates has been contemplated to be an excellent imaging mask in X-rays and gamma-rays for quite some time. With a proper choice of zone plate material, spacing and an appropriate readout system it is possible to achieve any theoretical angular resolution. We provide the results of numerical simulations of how a large number of X-ray sources could be imaged at a high resolution. We believe that such an imager would be an excellent tool for a future survey mission for X-ray and gamma-ray sources which we propose.

  4. Is the DA white dwarf 1910 + 047 a soft X-ray source?

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1990-01-01

    The possibility that the recently discovered DA white dwarf WD 1910 + 047 might be an Einstein soft X-ray source is studied, applying a complete model atmosphere analyis to both the optical and the soft X-ray data. It is found that the X-ray source in question is at least one order of magnitude too strong to be compatible with the estimated atmospheric parameters of the possible optical counterpart. The spatial coincidence between the two, however, remains extremely intriguing and has left us with the dilemma of accepting the relatively improbable coincidence of two unrelated objects or rejoicing over the discovery of a highly unusual one.

  5. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  6. Design and characterization of a pulsed x-ray source for fluorescent lifetime measurements

    SciTech Connect

    Blankespoor, S.C. |

    1993-12-01

    To search for new, fast, inorganic scintillators, the author and his colleagues have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 HA maximum average cathode current. The laser produces 3 {times} 10{sup 7} photons at 650 nm per {approximately}100 ps pulse, with up to 10{sup 7} pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray photon energy, at tube biases of 20, 25, and 30 kV, is 9.4, 10.3, and 11.1 keV, respectively. They measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 {times} 10{sup 6} and 3 {times} 10{sup 6} photons/sec/steradian at tube biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented.

  7. What dominates the X-ray emission of Andromeda at E>20 keV? New constraints from NuSTAR and Swift on a very bright, hard X-ray source

    NASA Astrophysics Data System (ADS)

    Yukita, Mihoko; Ptak, Andrew; Maccarone, Thomas J.; Hornschemeier, Ann E.; Wik, Daniel R.; Pottschmidt, Katja; Antoniou, Vallia; Baganoff, Frederick K.; Lehmer, Bret; Zezas, Andreas; Boyd, Patricia T.; Kennea, Jamie; Page, Kim L.

    2016-04-01

    Thanks to its better sensitivity and spatial resolution, NuSTAR allows us to investigate the E>10 keV properties of nearby galaxies. We now know that starburst galaxies, containing very young stellar populations, have X-ray spectra which drop quickly above 10 keV. We extend our investigation of hard X-ray properties to an older stellar population system, the bulge of M31. The NuSTAR and Swift simultaneous observations reveal a bright hard source dominating the M31 bulge above 20 keV, which is likely to be a counterpart of Swift J0042.6+4112 previously detected (but not classified) in the Swift BAT All-sky Hard X-ray Survey. This source had been classified as an XRB candidate in various Chandra and XMM-Newton studies; however, since it was not clear that it is the counterpart to the strong Swift J0042.6+4112 source at higher energies, the previous E < 10 keV observations did not generate much attention. The NuSTAR and Swift spectra of this source drop quickly at harder energies as observed in sources in starburst galaxies. The X-ray spectral properties of this source are very similar to those of an accreting pulsar; yet, we do not find a pulsation in the NuSTAR data. The existing deep HST images indicate no high mass donors at the location of this source, further suggesting that this source has an intermediate or low mass companion. The most likely scenario for the nature of this source is an X-ray pulsar with an intermediate/low mass companion similar to the Galactic Her X-1 system. We will also discuss other possibilities in more detail.

  8. RF photoinjector development for a short-pulse, hard x-ray Thomson scattering source

    NASA Astrophysics Data System (ADS)

    Le Sage, G. P.; Anderson, S. G.; Cowan, T. E.; Crane, J. K.; Ditmire, T.; Rosenzweig, J. B.

    2001-05-01

    An important motivation in the development of the next generation x-ray light sources is to achieve picosecond and sub-ps pulses of hard x-rays for dynamic studies of a variety of physical, chemical, and biological processes. Present hard x-ray sources are either pulse-width or intensity limited, which allows ps-scale temporal resolution only for signal averaging of highly repetitive processes. A much faster and brighter hard x-ray source is being developed at LLNL, based on Thomson scattering of fs-laser pulses by a relativistic electron beam, which will enable x-ray characterization of the transient structure of a sample in a single shot. Experimental and diagnostic techniques relevant to the development of next generation sources including the Linac Coherent Light Source can be tested with the Thomson scattering hard x-ray source. This source will combine an RF photoinjector with a 100 MeV S-band linac. The photoinjector and linac also provide an ideal test-bed for examining space-charge induced emittance growth effects. A program of beam dynamics and diagnostic experiments are planned in parallel with Thomson source development. Our experimental progress and future plans will be discussed.

  9. Optical identification of the supersoft X-ray source 1E 0035.4 in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Orio, M.; Della Valle, M.; Massone, G.; Ogelman, H.

    1994-01-01

    We report the identification of the optical counterpart of the Small Magellanic Cloud (SMC) super-soft X-ray source 1E0035.4- 7230 with a variable star of the magnitude B = 19.9-20.2 within the 40 arcsecs Einstein error box. The star shows strong UV excess, a hot, blue continuum and weak lines of high ionization. The lines are red-shifted by 3-4 A, indicating SMC membership. This object appears similar to CAL 83 and CAL 87 and is probably a binary system hosting an accreting, hydrogen burning white dwarf.

  10. Prosp