Science.gov

Sample records for accretion flow models

  1. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  2. Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu

    Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.

  3. MODELING THE STAR-FORMING UNIVERSE AT z = 2: IMPACT OF COLD ACCRETION FLOWS

    SciTech Connect

    Khochfar, Sadegh; Silk, Joseph

    2009-07-20

    We present results of a semianalytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low V/{sigma} seen in various massive disk or disk-like galaxies, if we allow 18% of the accretion energy from cold flows to drive turbulence in gaseous disks at z = 2. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the number density of M-dot{sub *}>120 M{sub odot} yr{sup -1} galaxies in our model. In addition, it is necessary to increase the star formation efficiency. This can be achieved naturally in the porosity model, where star formation efficiency scales {proportional_to}{sigma}, which scales as cloud velocity dispersion. As cold accretion is the main driver for gas velocity dispersion in our model, star formation efficiency parallels cold accretion rates and allows fast conversion into stars. At z {approx} 2, we find a space density 10{sup -4} Mpc{sup -3} in star-forming galaxies with M-dot{sub *}>120 M{sub odot} yr{sup -1}, in better agreement than earlier estimates from SAMs. However, the fundamental relation between M-dot{sub *} and M {sub *} is still offset from the observed relation, indicating the need for possibly more efficient star formation at high-z perhaps associated with a role for active galactic nucleus (AGN) triggering.

  4. Accretion flows govern black hole jet properties

    NASA Astrophysics Data System (ADS)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  5. Modeling Seven Years of Event Horizon Telescope Observations with Radiatively Inefficient Accretion Flow Models

    NASA Astrophysics Data System (ADS)

    Broderick, Avery E.; Fish, Vincent L.; Johnson, Michael D.; Rosenfeld, Katherine; Wang, Carlos; Doeleman, Sheperd S.; Akiyama, Kazunori; Johannsen, Tim; Roy, Alan L.

    2016-04-01

    An initial three-station version of the Event Horizon Telescope, a millimeter-wavelength very-long baseline interferometer, has observed Sagittarius A* (Sgr A*) repeatedly from 2007 to 2013, resulting in the measurement of a variety of interferometric quantities. Of particular importance is that there is now a large set of closure phases measured over a number of independent observing epochs. We analyze these observations within the context of a realization of semi-analytic radiatively inefficient disk models, implicated by the low luminosity of Sgr A*. We find a broad consistency among the various observing epochs and between different interferometric data types, with the latter providing significant support for this class of model of Sgr A*. The new data significantly tighten existing constraints on the spin magnitude and its orientation within this model context, finding a spin magnitude of a={0.10}-0.10-0.10+0.30+0.56, an inclination with respect to the line of sight of θ ={60^\\circ }-{8^\\circ -{13}^\\circ }+{5^\\circ +{10}^\\circ }, and a position angle of ξ ={156^\\circ }-{17^\\circ -{27}^\\circ }+{10^\\circ +{14}^\\circ } east of north. These are in good agreement with previous analyses. Notably, the previous 180° degeneracy in the position angle has now been conclusively broken by the inclusion of the closure-phase measurements. A reflection degeneracy in the inclination remains, permitting two localizations of the spin vector orientation, one of which is in agreement with the orbital angular momentum of the infrared gas cloud G2 and the clockwise disk of young stars. This may support a relationship between Sgr A*'s accretion flow and these larger-scale features.

  6. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxaccretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  7. Asymmetric Accretion Flows within a Common Envelope

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  8. MHD of accretion-disk flows

    NASA Astrophysics Data System (ADS)

    Yankova, Krasimira

    2015-01-01

    Accretion is one of the most important problems of astrophysics concerning the transfer of matter and the transformation of energy into space. Process represents a falling of the substance on a cosmic object from the surrounding area and is a powerful gravitational mechanism for the production of radiation. Accretion disc effectively converts the mass of the substance by viscous friction and released potential energy transformed into radiation by particle collisions. Accretion onto compact object shows high energy efficiency and temporal variability in a broad class of observational data in all ranges. In the disks of these objects are developed a series instabilities and structures that govern the distribution of the energy. They are expressed in many variety non-stationary phenomena that we observe. That is why we propose generalized model of magnetized accretion disk with advection, which preserves the nonlinearity of the problem. We study interaction of the plasmas flow with the magnetic field, and how this affects the self-organizing disk. The aim of the work is to describe the accretion flow in detail, in his quality of the open astrophysical system, to investigate the evolution and to reveal the mechanisms of the structuring the disk-corona system for to interpret correctly the high energy behavior of such sources.

  9. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  10. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  11. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Bidwell, Colin S.

    1990-01-01

    An effort to develop a three-dimensional modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flow fields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane normal to the wing leading edge and compared to 2-D results for the same geometry. It is anticipated that many modifications will be made to this approach, however, this effort will lay the groundwork for future modeling efforts. Results indicate that the flow field over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3-D calculation.

  12. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  13. Mass Outflows from Dissipative Shocks in Hot Accretion Flows

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.

    2007-05-01

    We consider stationary, axisymmetric hydrodynamic accretion flows in Kerr geometry. As a plausible means of efficiently separating small population of nonthermal particles from the bulk accretion flows, we investigate the formation of dissipative standing shocks where energy, angular momentum and mass are partially lost into collimated (jets) or uncollimated (winds) outflows subsequently. Mass loss fraction (at a shock front) is found to vary over a wide range (0% - 95%) depending on flow's angular momentum and energy. On the other hand, energy loss fraction appears to be relatively low (<1%) for a non-rotating black hole case, whereas the fraction could be an order of magnitude higher (<10%) for a rapidly-rotating black hole case. By estimating the escape velocity of the outflowing particles, we find that nearly 10% of the accreting mass (decoupled from the bulk accretion flows) could participate in forming the outflows around a non-rotating black hole, while as much as 50% of the matter may contribute to the outflows around a rapidly-rotating black hole. In the context of disk-jet paradigm, our model suggests that shock-driven outflows from accretion can occur in regions not too far from a central engine (within 2-40 gravitational radii), as observed in some active galaxies (e.g., M87 and 3C120). Slope of radial density profile for upstream flows is found to be -3/2 as in advection-dominated accretion flow (ADAF) solution while that for downstream flows is as steep as -5/2. Our results imply that a shock front under some conditions could serve as a plausible site where seed particles of the outflows (jets/winds) are efficiently decoupled from bulk accretion.

  14. Mass Outflows from Dissipative Shocks in Hot Accretion Flows

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes

    2007-11-01

    We consider stationary, axisymmetric hydrodynamic accretion flows in Kerr geometry. As a plausible means of efficiently separating a small population of nonthermal particles from the bulk accretion flows, we investigate the formation of standing dissipative shocks, i.e., shocks at which fraction of the energy, angular momentum, and mass fluxes do not participate in the shock transition of the flow that accretes onto the compact object but are lost into collimated (jets) or uncollimated (winds) outflows. The mass-loss fraction (at a shock front) is found to vary over a wide range (0%-95%), depending on flow's angular momentum and energy. On the other hand, the associated energy-loss fraction appears to be relatively low (<~1%) for a flow onto a nonrotating black hole case, whereas the fraction could be an order of magnitude higher (<~10%) for a flow onto a rapidly rotating black hole. By estimating the escape velocity of the outflowing particles with a mass-accretion rate relevant for typical active galactic nuclei, we find that nearly 10% of the accreting mass could escape to form an outflow in a disk around a nonrotating black hole, while as much as 50% of the matter may contribute to outflows in a disk around a rapidly rotating black hole. In the context of disk-jet paradigm, our model suggests that shock-driven outflows from accretion can occur in regions not too far from a central engine. Our results imply that a shock front under some conditions could serve as a plausible site where (nonthermal) seed particles of the outflows (jets/winds) are efficiently decoupled from bulk accretion.

  15. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  16. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  17. Dead Zone Accretion Flows in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  18. Viscosity parameter values in accretion flows around black holes.

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip Kumar

    2016-07-01

    Viscosity is responsible for the transport of angular momentum in accretion processes. Assuming mixed stress prescription suitable for flow discontinuities, we draw parameter space of specific angular momentum and specific energy of flow at the inner sonic point for all possible values of viscosity parameter. Then, we identify the region which is capable of producing standard Rankine-Hugoniot shocks. From this analysis, it is found that a large range of values of viscosity parameter (0.0-0.3) is capable of producing shocks. At values larger than this, the parameter space allowing shock formation is negligible. The shock formation causes piling up of matter in the post-shock region which Comptonizes soft X-ray photons coming from the Keplerian accretion disk, creating the hard X-Ray radiation. Since numerical simulations generally produce alpha parameters very smaller as compared to this upper limit, we conclude that the shocks remain essential component to model black hole spectral and timing properties.

  19. Self-Consistent Models of Accretion Disks

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh

    1997-01-01

    The investigations of advection-dominated accretion flows (ADAFs), with emphasis on applications to X-ray binaries containing black holes and neutron stars is presented. This work is now being recognized as the standard paradigm for understanding the various spectral states of black hole X-ray Binaries (BHXBs). Topics discussed include: (1) Problem in BHXBS, namely that several of these binaries have unusually large concentrations of lithium in their companion stars; (2) A novel test to show that black holes have event horizons; (3) Application of the ADAF model to the puzzling X-ray delay in the recent outburst of the BHXB, GRO J1655-40; (4) Description of the various spectral states in BHXBS; (5) Application of the ADAF model to the famous supermassive black hole at the center of our Galaxy, Sgr A(*); (6) Writing down and solving equations describing steady-state, optically thin, advection-dominated accretion onto a Kerr black hole; (7) The effect of "photon bubble" instability on radiation dominated accretion disks; and (8) Dwarf nova disks in quiescence that have rather low magnetic Reynolds number, of order 10(exp 3).

  20. The accretion model of Neandertal evolution.

    PubMed

    Hawks, J D; Wolpoff, M H

    2001-07-01

    The Accretion model of Neandertal evolution specifies that this group of Late Pleistocene hominids evolved in partial or complete genetic isolation from the rest of humanity through the gradual accumulation of distinctive morphological traits in European populations. As they became more common, these traits also became less variable, according to those workers who developed the model. Its supporters propose that genetic drift caused this evolution, resulting from an initial small European population size and either complete isolation or drastic reduction in gene flow between this deme and contemporary human populations elsewhere. Here, we test an evolutionary model of gene flow between regions against fossil data from the European population of the Middle and Late Pleistocene. The results of the analysis clearly show that the European population was not significantly divergent from its contemporaries, even in a subset of traits chosen to show the maximum differences between Europeans and other populations. The pattern of changes, over time within Europe of the traits in this subset, does not support the Accretion model, either because the characters did not change in the manner specified by the model or because the characters did not change at all. From these data, we can conclude that special phenomena such as near-complete isolation of the European population during the Pleistocene are not required to explain the pattern of evolution in this region. PMID:11525469

  1. Accretion Disks in Two-dimensional Hoyle-Lyttleton Flow

    NASA Astrophysics Data System (ADS)

    Blondin, John M.

    2013-04-01

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  2. Going with the flow: using gas clouds to probe the accretion flow feeding Sgr A*

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Madigan, Ann-Marie

    2016-01-01

    The massive black hole in our Galactic centre, Sgr A*, accretes only a small fraction of the gas available at its Bondi radius. The physical processes determining this accretion rate remain unknown, partly due to a lack of observational constraints on the gas at distances between ˜10 and ˜105 Schwarzschild radii (Rs) from the black hole. Recent infrared observations identify low-mass gas clouds, G1 and G2, moving on highly eccentric, nearly co-planar orbits through the accretion flow around Sgr A*. Although it is not yet clear whether these objects contain embedded stars, their extended gaseous envelopes evolve independently as gas clouds. In this paper we attempt to use these gas clouds to constrain the properties of the accretion flow at ˜103 Rs. Assuming that G1 and G2 follow the same trajectory, we model the small differences in their orbital parameters as evolution resulting from interaction with the background flow. We find evolution consistent with the G-clouds originating in the clockwise disc. Our analysis enables the first unique determination of the rotation axis of the accretion flow: we localize the rotation axis to within 20°, finding an orientation consistent with the parsec-scale jet identified in X-ray observations and with the circumnuclear disc, a massive torus of molecular gas ˜1.5 pc from Sgr A*. This suggests that the gas in the accretion flow comes predominantly from the circumnuclear disc, rather than the winds of stars in the young clockwise disc. This result will be tested by the Event-Horizon Telescope within the next year. Our model also makes testable predictions for the orbital evolution of G1 and G2, falsifiable on a 5-10 year time-scale.

  3. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-06-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several super-massive black hole sources and the observational implications of our present analysis are discussed.

  4. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  5. Spherical steady accretion flows: Dependence on the cosmological constant, exact isothermal solutions, and applications to cosmology

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward; Karkowski, Janusz

    2013-10-01

    We investigate spherical, isothermal and polytropic steady accretion models in the presence of the cosmological constant. Exact solutions are found for three classes of isothermal fluids, assuming the test gas approximation. The cosmological constant damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes. A “homoclinic-type” accretion flow of polytropic gas has been discovered in anti-de Sitter spacetimes in the test-gas limit. These results can have cosmological connotation, through the Einstein-Straus vacuole model of embedding local structures into Friedman-Lemaitre-Robertson-Walker spacetimes. In particular, one infers that steady accretion would not exist in the late phases of Penrose’s scenario of the evolution of the Universe, known as the Weyl curvature hypothesis.

  6. Hot accretion flow with ordered magnetic field, outflow, and saturated conduction

    NASA Astrophysics Data System (ADS)

    Faghei, Kazem

    2013-05-01

    The importance of thermal conduction on hot accretion flow is confirmed by observations of hot gas that surrounds Sgr A∗ and a few other nearby galactic nuclei. On the other hand, the existence of outflow in accretion flows is confirmed by observations and magnetohydrodynamic (MHD) simulations. In this research, we study the influence of both thermal conduction and outflow on hot accretion flows with ordered magnetic field. Since the inner regions of hot accretion flows are, in many cases, collisionless with an electron mean free path due to Coulomb collision larger than the radius, we use a saturated form of thermal conduction, as is appropriate for weakly collisional systems. We also consider the influence of outflow on accretion flow as a sink for mass, and the radial and the angular momentum, and energy taken away from or deposited into the inflow by outflow. The magnetic field is assumed to have a toroidal component and a vertical component as well as a stochastic component. We use a radially self-similar method to solve the integrated equations that govern the behavior of such accretion flows. The solutions show that with an ordered magnetic field, both the surface density and the sound speed decrease, while the radial and angular velocities increase. We found that a hot accretion flow with thermal conduction rotates more quickly and accretes more slowly than that without thermal conduction. Moreover, thermal conduction reduces the influences of the ordered magnetic field on the angular velocities and the sound speed. The study of this model with the magnitude of outflow parameters implies that the gas temperature decreases due to mass, angular momentum, and energy loss. This property of outflow decreases for high thermal conduction.

  7. The Influence of Outflow in Supercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Zahra Zeraatgari, Fatemeh; Abbassi, Shahram; Mosallanezhad, Amin

    2016-06-01

    We solve the radiation-hydrodynamic equations of supercritical accretion flows in the presence of radiation force and outflow by using self-similar solutions. Similar to the pioneering works, in this paper we consider a power-law function for mass inflow rate as \\dot{M}\\propto {r}s. We found that s = 1 when the radiative cooling term is included in the energy equation. Correspondingly, the effective temperature profile with respect to the radius was obtained as {T}{eff}\\propto {r}-1/2. In addition, we investigated the influence of the outflow on the dynamics of the accretion flow. We also calculated the continuum spectrum emitted from the disk surface as well as the bolometric luminosity of the accretion flow. Furthermore, our results show that the advection parameter, f, depends strongly on mass inflow rate.

  8. Clumpy Accretion onto Black Holes. I. Clumpy-advection-dominated Accretion Flow Structure and Radiation

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Min; Cheng, Cheng; Li, Yan-Rong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  9. CLUMPY ACCRETION ONTO BLACK HOLES. I. CLUMPY-ADVECTION-DOMINATED ACCRETION FLOW STRUCTURE AND RADIATION

    SciTech Connect

    Wang Jianmin; Cheng Cheng; Li Yanrong

    2012-04-01

    We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

  10. Tilted Accretion Disk Models of Sgr A* Flares

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Fragile, P. C.

    2013-01-01

    Sagittarius A* (Sgr A*), the Galactic center massive black hole candidate, is an unparalleled laboratory for low-luminosity accretion theory. First discovered as a compact radio source, Sgr A* has since been observed to undergo rapid, large amplitude NIR/X-ray flares. The many proposed phenomenological models cannot simultaneously explain both the flaring emission and the peak of the SED in the submillimeter. I will describe flares seen in numerical simulations of black hole accretion flows where the disk angular momentum is misaligned from that of the black hole. Eccentric fluid orbits driven by gravitational torques converge and form strong shocks, which can lead to significant particle heating. The resulting NIR emission can reproduce the observations, and is completely unrelated to the submillimeter emission, which is included in these models and is also in excellent agreement with observations. I will describe the prospects for testing accretion theory and constraining the properties of Sgr A* with exciting ongoing multi-wavelength observations.

  11. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    SciTech Connect

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  12. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  13. Peculiarities of the accretion flow in the system HL CMa

    NASA Astrophysics Data System (ADS)

    Semena, A. N.; Revnivtsev, M. G.; Buckley, D.; Lutovinov, A. A.; Breitenbach, H.

    2016-06-01

    The properties of the aperiodic luminosity variability for the dwarf novaHLCMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above 0.7 × 10-2 Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and Xray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system and the accretion flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics in a wide energy range, from the optical to X-ray ones.

  14. Shocks in the low angular momentum accretion flow

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Janiuk, Agnieszka

    2015-04-01

    We address the variability of low luminous galactic nuclei including the Sgr A* or other transient accreting systems, e.g. the black hole X-ray binaries, such as GX 339-4 or IGR J17091. These sources exhibit bright X-ray flares and quasi-periodical oscillations and are theoretically interpreted as the quasi-spherical accretion flows, formed instead of or around Keplerianaccretion disks. In low angular momentum flows the existence of shocks for some range of leading parameters (energy, angular momentum and adiabatic constant of the gas) was studied semi-analytically. The possible hysteresis effect, caused by the fact that the evolution of the flow and the formation of the shock depends on its own history, was discovered. The presence of the shock in the accreted material is important for the observable properties of the out-coming radiation. In the shocked region the gas is dense and hot, thus much more luminous than in the other case. We study the appearance of standing shocks in low angular momentum gas accreting onto a black hole with numerical hydrodynamicalsimulations, using the ZEUS code with Paczynski-Wiitapseudo-Newtonian potential.

  15. Bondi-Hoyle-Lyttleton accretion flow revisited: Analytic solution

    NASA Astrophysics Data System (ADS)

    Matsuda, Takuya; Isaka, Hiromu; Ohsugi, Yukimasa

    2015-11-01

    The time-steady equation for a 1D wind accretion flow, i.e. the Bondi-Hoyle-Lyttleton (BHL) equation, is investigated analytically. The BHL equation is well known to have infinitely many solutions. Traditionally, the accretion radius has been assumed to be 2textit {GM}/v_{infty }2, but its mathematical foundation has not been clarified because of the non-uniqueness of the solution. Here, we assume that the solution curves possess physically nice characteristics, i.e. velocity and line mass-density increase monotonically with radial distance. This condition restricts the accretion radius to the range left (0.71 - 1.0right ) × 2textit {GM}/v_{infty }2. Further assumptions, specifically, that the solution curves for velocity and line mass-density are convex upward, restrict the accretion radius to (0.84 - 0.94) × 2textit {GM}/v_{infty }2, and 0.90 × 2textit {GM}/v_{infty }2, respectively. Therefore, we conclude that the accretion radius is almost uniquely determined to be 0.90 × 2textit {GM}/v_{infty }2.

  16. Modeling Layered Accretion and the Magnetorotational Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V., III

    2012-05-01

    Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface

  17. Two-dimensional numerical simulations of supercritical accretion flows revisited

    SciTech Connect

    Yang, Xiao-Hong; Yuan, Feng; Bu, De-Fu; Ohsuga, Ken E-mail: fyuan@shao.ac.cn

    2014-01-01

    We study the dynamics of super-Eddington accretion flows by performing two-dimensional radiation-hydrodynamic simulations. Compared with previous works, in this paper we include the T {sub θφ} component of the viscous stress and consider various values of the viscous parameter α. We find that when T {sub θφ} is included, the rotational speed of the high-latitude flow decreases, while the density increases and decreases at the high and low latitudes, respectively. We calculate the radial profiles of inflow and outflow rates. We find that the inflow rate decreases inward, following a power law form of M-dot {sub in}∝r{sup s}. The value of s depends on the magnitude of α and is within the range of ∼0.4-1.0. Correspondingly, the radial profile of density becomes flatter compared with the case of a constant M-dot (r). We find that the density profile can be described by ρ(r)∝r {sup –p} and the value of p is almost same for a wide range of α ranging from α = 0.1 to 0.005. The inward decrease of inflow accretion rate is very similar to hot accretion flows, which is attributed to the mass loss in outflows. To study the origin of outflow, we analyze the convective stability of the slim disk. We find that depending on the value of α, the flow is marginally stable (when α is small) or unstable (when α is large). This is different from the case of hydrodynamical hot accretion flow, where radiation is dynamically unimportant and the flow is always convectively unstable. We speculate that the reason for the difference is because radiation can stabilize convection. The origin of outflow is thus likely because of the joint function of convection and radiation, but further investigation is required.

  18. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  19. Hyper-Eddington accretion flows onto massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-04-01

    We study very-high rate, spherically symmetric accretion flows onto massive black holes (BH; 10^2 ⪉ M_BH ⪉ 10^6~M_⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105~cm-3) > (MBH/104~M⊙)-1(T∞/104~K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000~LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000~K. When the emergent luminosity is limited to ⪉ L_Edd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of T_vir⪆ 10^4~K. Once a seed BH forms at the center of the galaxy, it can grow to a maximum ˜105~(Tvir/104~K)~M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  20. Cross-correlation-aided transport in stochastically driven accretion flows

    NASA Astrophysics Data System (ADS)

    Nath, Sujit Kumar; Chattopadhyay, Amit K.

    2014-12-01

    The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers [Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013), 10.1088/1751-8113/46/3/035501; Nath et al., Phys. Rev. E 88, 013010 (2013), 10.1103/PhysRevE.88.013010] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a "cold" accretion flow at 3000 K is too "hot" in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable

  1. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  2. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  3. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    SciTech Connect

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun; Zhao Bo

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  4. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Ruben; Li, Zhi-Yun; Shang, Hsien; Zhao, Bo

    2012-09-01

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  5. Terrane accretion: Insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Gerya, Taras

    2016-04-01

    The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.

  6. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  7. Numerical Simulations of Viscous Accretion Flow around Black Holes

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-06-01

    We present shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The steady state shocked solution in the inviscid, as well as in the viscous regime, matched theoretical predictions well, but increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in microquasars; and strong shock oscillation induces strong episodic jet emission. The periodicity of jets and shock oscillation are similar. Our simulation shows that the jets for higher viscosity parameter are evidently stronger and faster than that for lower viscosity.

  8. Effects of high-energy particles on accretion flows onto a super massive black hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo

    We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.

  9. RELATIVISTIC GLOBAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Xue Li; Liu Tong; Gu Weimin; Lu Jufu

    2013-08-15

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes are plausible candidates for the central engines of gamma-ray bursts (GRBs). We investigate one-dimensional global solutions of NDAFs, taking into account general relativity in the Kerr metric, neutrino physics, and nucleosynthesis more precisely than previous works. We calculate 16 solutions with different characterized accretion rates and black hole spins to exhibit the radial distributions of various physical properties in NDAFs. We confirm that the electron degeneracy has important effects in NDAFs and we find that the electron fraction is about 0.46 in the outer region for all 16 solutions. From the perspective of the mass fraction, free nucleons, {sup 4}He, and {sup 5}6Fe dominate in the inner, middle, and outer regions, respectively. The influence of neutrino trapping on the annihilation is of importance for the superhigh accretion ( M-dot =10 M{sub sun} s{sup -1}) and most of the 16 solutions have an adequate annihilation luminosity for GRBs.

  10. The lamppost model of accreting black holes

    NASA Astrophysics Data System (ADS)

    Zdziarski, A.

    2016-06-01

    Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.

  11. The Accretion Wind Model of Fermi Bubbles. II. Radiation

    NASA Astrophysics Data System (ADS)

    Mou, Guobin; Yuan, Feng; Gan, Zhaoming; Sun, Mouyuan

    2015-09-01

    In a previous work, we have shown that the formation of Fermi bubbles can be due to the interaction between winds launched from the hot accretion flow in Sgr A* and the interstellar medium (ISM). In that work, we focus only on the morphology. In this paper we continue our study by calculating the gamma-ray radiation. Some cosmic-ray protons (CRp) and electrons (CRe) must be contained in the winds, which are likely formed by physical processes such as magnetic reconnection. We have performed MHD simulations to study the spatial distribution of CRp, considering the advection and diffusion of CRp in the presence of magnetic field. We find that a permeated zone is formed just outside of the contact discontinuity between winds and the ISM, where the collisions between CRp and thermal nuclei mainly occur. The decay of neutral pions generated in the collisions, combined with the inverse Compton scattering of background soft photons by the secondary leptons generated in the collisions and primary CRe, can well explain the observed gamma-ray spectral energy distribution. Other features such as the uniform surface brightness along the latitude and the boundary width of the bubbles are also explained. The advantage of this “accretion wind” model is that the adopted wind properties come from the detailed small-scale MHD numerical simulation of accretion flows and the value of mass accretion rate has independent observational evidences. The success of the model suggests that we may seriously consider the possibility that cavities and bubbles observed in other contexts such as galaxy clusters may be formed by winds rather than jets.

  12. Deterministic multi-zone ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Yamaguchi, K.; Hansman, R. J., Jr.; Kazmierczak, M.

    1991-01-01

    The study focuses on a deterministic model of the surface roughness transition behavior of glaze ice and analyzes the initial smooth/rough transition location, bead formation, and the propagation of the transition location. Based on a hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary-layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.

  13. Deterministic multi-zone ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael

    1991-01-01

    The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.

  14. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.

  15. RESOLVING THE BONDI ACCRETION FLOW TOWARD THE SUPERMASSIVE BLACK HOLE OF NGC 3115 WITH CHANDRA

    SciTech Connect

    Wong, Ka-Wah; Irwin, Jimmy A.; Yukita, Mihoko; Million, Evan T.; Mathews, William G.

    2011-07-20

    Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. Our analysis suggests that we are resolving, for the first time, the accretion flow within the Bondi radius of an SMBH. We show that the temperature is rising toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. There is no hard central point source that could cause such an apparent rise in temperature. The data support that the Bondi radius is at about 4''-5'' (188-235 pc), suggesting an SMBH of 2 x 10{sup 9} M{sub sun} that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power-law index of 1.03{sup +0.23}{sub -0.21}, which is consistent with gas in transition from the ambient medium and the accretion flow. The accretion rate at the Bondi radius is determined to be M-dot{sub B} = 2.2x10{sup -2} M{sub sun} yr{sup -1}. Thus, the accretion luminosity with 10% radiative efficiency at the Bondi radius (10{sup 44} erg s{sup -1}) is about six orders of magnitude higher than the upper limit of the X-ray luminosity of the nucleus.

  16. A wind accretion model for HLX-1

    SciTech Connect

    Miller, M. Coleman; Farrell, Sean A.; Maccarone, Thomas J.

    2014-06-20

    The brightest ultraluminous X-ray source currently known, HLX-1, has been observed to undergo five outburst cycles. The periodicity of these outbursts, and their high inferred maximum accretion rates of ∼few × 10{sup –4} M {sub ☉} yr{sup –1}, naturally suggest Roche lobe overflow at the pericenter of an eccentric orbit. It is, however, difficult for the Roche lobe overflow model to explain the apparent trend of decreasing decay times over the different outbursts while the integrated luminosity also drops. Thus, if the trend is real rather than simply being a reflection of the complex physics of accretion disks, a different scenario may be necessary. We present a speculative model in which, within the last decade, a high-mass giant star had most of its envelope tidally stripped by the ∼10{sup 4–5} M {sub ☉} black hole in HLX-1, and the remaining core plus low-mass hydrogen envelope now feeds the hole with a strong wind. This model can explain the short decay time of the disk, and could explain the fast decrease in decay time if the wind speed changes with time. A key prediction of this model is that there will be excess line absorption due to the wind; our analysis does in fact find a flux deficit in the ∼0.9-1.1 keV range that is consistent with predictions, albeit at low significance. If this idea is correct, we also expect that within years to dacades the bound material from the original disruption will return and will make HLX-1 a persistently bright source.

  17. Universal Accretion Growth Using Sandpile Models

    NASA Astrophysics Data System (ADS)

    Datta, Srabani; McKie, Shane; Spencer, Ralph

    2015-08-01

    The Bak-Tang- Wiesenfeld (BTW) sandpile process is a model of a complex dynamical system with a large collection of particles or grains in a node that sheds load to their neighbours when they reach capacity. The cascades move around thesystem till it reaches stability with a critical point as an attractor. The BTW growth process shows self-organized criticality (SOC) with power-law distribution in cascade sizes having slope -5/3. This self-similarity of structureis synonymous with the fractal structure found in molecular clouds of Kolmogorov dimension 1.67 and by treating cascades as waves, scaling functions are found to be analogous to those observed for velocity structure functions influid turbulence. We apply the BTW sandpile model to study growth on a 2 dimensional rotating lattice in a magnetic field. In this paper, we show that this is a naturally occuring universal process giving rise to scale-freestructures with size limited only by the number of infalling grains. We also compare the BTW process with other sandpile models such as the Manna and Zhang processes. We find that the BTW sandpile model can be applied to a widerange of objects including molecular clouds, accretion disks and perhaps galaxies.

  18. NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. II. NATURE, ORIGIN, AND PROPERTIES OF OUTFLOWS AND THEIR POSSIBLE OBSERVATIONAL APPLICATIONS

    SciTech Connect

    Yuan Feng; Bu Defu; Wu Maochun E-mail: dfbu@shao.ac.cn

    2012-12-20

    Hydrodynamical (HD) and magnetohydrodynamical (MHD) numerical simulations of hot accretion flows have indicated that the inflow accretion rate decreases inward. Two models have been proposed to explain this result. In the adiabatic inflow-outflow solution (ADIOS), this is because of the loss of gas in the outflow. In the alternative convection-dominated accretion flow model, it is thought that the flow is convectively unstable and gas is locked in convective eddies. We investigate the nature of the inward decrease of the accretion rate using HD and MHD simulations. We calculate various properties of the inflow and outflow such as temperature and rotational velocity. Systematic and significant differences are found. These results suggest that the inflow and outflow are not simply convective turbulence; instead, systematic inward and outward motion (i.e., real outflow) must exist. We have also analyzed the convective stability of MHD accretion flows and found that they are stable. These results favor the ADIOS scenario. We suggest that the mechanisms of producing outflow in HD and MHD flows are the buoyancy associated with the convection and the centrifugal force associated with the angular momentum transport mediated by the magnetic field, respectively. The latter is similar to the Blandford and Payne mechanism but no large-scale open magnetic field is required. We discuss some possible observational applications, including the Fermi bubble in the Galactic center and winds in active galactic nuclei and black hole X-ray binaries.

  19. Instability in stratified accretion flows under primary and secondary perturbations

    NASA Astrophysics Data System (ADS)

    Nasraoui, S.; Salhi, A.; Lehner, T.

    2015-04-01

    We consider horizontal linear shear flow (shear rate denoted by Λ ) under vertical uniform rotation (ambient rotation rate denoted by Ω0 ) and vertical stratification (buoyancy frequency denoted by N ) in unbounded domain. We show that, under a primary vertical velocity perturbation and a radial density perturbation consisting of a one-dimensional standing wave with frequency N and amplitude proportional to w0sin(ɛ N x /w0) ≈ɛ N x (≪1 ) , where x denotes the radial coordinate and ɛ a small parameter, a parametric instability can develop in the flow, provided N2>8 Ω0(2 Ω0-Λ ) . For astrophysical accretion flows and under the shearing sheet approximation, this implies N2>8 Ω02(2 -q ) , where q =Λ /Ω0 is the local shear gradient. In the case of a stratified constant angular momentum disk, q =2 , there is a parametric instability with the maximal growth rate (σm/ɛ ) =3 √{3 }/16 for any positive value of the buoyancy frequency N . In contrast, for a stratified Keplerian disk, q =1.5 , the parametric instability appears only for N >2 Ω0 with a maximal growth rate that depends on the ratio Ω0/N and approaches (3 √{3 }/16 )ɛ for large values of N .

  20. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region. PMID:10566989

  1. Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows

    SciTech Connect

    Takahashi, Kazuya; Yamada, Shoichi

    2014-10-20

    We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.

  2. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang

    2016-08-01

    The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, i.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the fundamental plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black-hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when L_X⪆ 1.5 × 10^{42} erg s^{-1}. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.

  3. Vertical Structure of Advection-dominated Accretion Flows

    NASA Astrophysics Data System (ADS)

    Zahra Zeraatgari, Fateme; Abbassi, Shahram

    2015-08-01

    We solve the set of hydrodynamic equations for optically thin advection-dominated accretion flows by assuming a radially self-similar spherical coordinate system (r,θ ,φ ). The disk is considered to be in steady state and axisymmetric. We define the boundary conditions at the pole and the equator of the disk and, to avoid singularity at the rotation axis, the disk is taken to be symmetric with respect to this axis. Moreover, only the {τ }rφ component of the viscous stress tensor is assumed, and we have set {v}θ =0. The main purpose of this study is to investigate the variation of dynamical quantities of the flow in the vertical direction by finding an analytical solution. As a consequence, we found that the advection parameter, {f}{adv}, varies along the θ direction and reaches its maximum near the rotation axis. Our results also show that, in terms of the no-outflow solution, thermal equilibrium still exists and consequently advection cooling can balance viscous heating.

  4. Energy flows in thick accretion discs and their consequences for black hole feedback

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Lasota, Jean-Pierre; Abramowicz, Marek A.; Narayan, Ramesh

    2016-03-01

    We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is 3 per cent - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.

  5. Structure of relativistic accretion disk with non-standard model

    NASA Astrophysics Data System (ADS)

    Khesali, A. R.; Salahshoor, K.

    2016-07-01

    The structure of stationary, axisymmetric advection-dominated accretion disk (ADAF) around rotating black hole, using non-standard model, was examined. In this model, the transport efficiency of the angular momentum α was dependent on the magnetic Prandtl number α ∝ Pm^{δ } . The full relativistic shear stress recently obtained by a new manner, was used. By considering black hole spin and Prandtl number instantaneously, the structure of ADAFs was changed in inner and outer region of the disk. It was discovered that the accretion flow was denser and hotter in the inner region, due to the black hole spin, and in the outer region, due to the presence of Prandtl parameter. Inasmuch as the rotation of the black hole affected the transport efficiency of angular momentum in parts of the disk very close to the even horizon, then in these regions, the viscosity depended on the rotation of black hole. Also, it was discovered that the effect of the black hole spin on the structure of the disk was related to the presence of Prandtl parameter.

  6. Information about accretion flows from X-ray timing of pulsating sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Pines, D.; Shaham, J.

    1976-01-01

    The response was studied of a rotating neutron star to fluctuating torques and it was found that the observed variations in the pulsation periods of the compact X-ray sources Cen X-3 and Her X-1 could be caused by short time scale fluctuations in the accretion torques acting on the neutron stars. The sizes and rates of the required fluctuations are consistent with current accretion models. Such fluctuations can cause period variations either (a) directly, by causing a random walk of the star's angular velocity or (b) indirectly, by exciting a long-period mode of the neutron star, such as the Tkachenko mode of the rotating neutron superfluid. Phenomena in compact X-ray sources and cataclysmic variables which may be caused by fluctuating mass flow rates are also discussed.

  7. Accretion Flow Dynamics of MAXI J1836-194 During Its 2011 Outburst from TCAF Solution

    NASA Astrophysics Data System (ADS)

    Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu; Molla, Aslam Ali

    2016-03-01

    The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti-Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states only during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5-11 M⊙, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ˜10 days.

  8. Fermi bubbles inflated by winds launched from the hot accretion flow in Sgr A*

    SciTech Connect

    Mou, Guobin; Yuan, Feng; Bu, Defu; Sun, Mouyuan; Su, Meng E-mail: fyuan@shao.ac.cn

    2014-08-01

    A pair of giant gamma-ray Bubbles has been revealed by Fermi-LAT. In this paper we investigate their formation mechanism. Observations have indicated that the activity of the supermassive black hole located at the Galactic center, Sgr A*, was much stronger than at the present time. Specifically, one possibility is that while Sgr A* was also in the hot accretion regime, the accretion rate should be 10{sup 3}-10{sup 4} times higher during the past ∼10{sup 7} yr. On the other hand, recent magnetohydrodynamic numerical simulations of hot accretion flows have unambiguously shown the existence and obtained the properties of strong winds. Based on this knowledge, by performing three-dimensional hydrodynamical simulations, we show in this paper that the Fermi Bubbles could be inflated by winds launched from the 'past' hot accretion flow in Sgr A*. In our model, the active phase of Sgr A* is required to last for about 10 million years and it was quenched no more than 0.2 million years ago. The central molecular zone (CMZ) is included and it collimates the wind orientation toward the Galactic poles. Viscosity suppresses the Rayleigh-Taylor and Kelvin-Helmholtz instabilities and results in the smoothness of the Bubbles edge. The main observational features of the Bubbles can be well explained. Specifically, the ROSAT X-ray features are interpreted by the shocked interstellar medium and the interaction region between the wind and CMZ gas. The thermal pressure and temperature obtained in our model are consistent with recent Suzaku observations.

  9. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  10. The Accretion Flow and Boundary Layer Structure in the Dwarf Nova SS Aur

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Armin; Balman, Solen; Godon, Patrick; Sion, Edward; Hertfelder, Marius

    2016-07-01

    We present X-ray analysis of dwarf novae SS Aur (51 ksec) using XMM-Newton Observatory archival data obtained in quiescence for a better understanding of the accretion flow structure. We find X-ray orbital modulations. We report power spectral analysis for EPIC (X-ray) and OM (UV) light curves suggesting high levels of red noise with no significant QPO or periodicities. We simultaneously fitted EPIC pn, MOS1 and MOS2 data using a model for interstellar medium absorption (tbabs) and a multi-temperature plasma emission model (cevmkl) as expected from low accretion rate quiescent dwarf novae. However, the composite model fit yields unacceptable reduced χ ^{2} values due to the existence of soft excess. The soft excess is well modeled using a blackbody model (kT˜˜24 eV) giving a better reduced χ ^{2} value over 3σ significance level. This may indicate the existence of optically thick boundary layer emission. We will discuss the origin of this excess. The best fitting model is a combination of a blackbody, a cevmkl and a power law with an interstellar absorption which yields a reduced χ ^{2} of 1.05. The fit also shows some oxygen and iron over abundances. SS Aur has a maximum thermal plasma temperature of ˜22 keV. The X-ray luminosity in the 0.1 to 50.0 keV energy band is ˜2.0×10 ^{33} ergs ^{-1}. Finally, we discuss these characteristics in the light of standard disk models and accretion flows and geometry in nonmagnetic cataclysmic variables.

  11. The role of high energy photons and particles in accretion flows in active nuclei

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.

    1988-01-01

    The creation of high energy pairs and photons in the conversion of gravitational to thermal energy is a process common to most accretion models for active galactic nuclei. These are two observational methods designed to explore this process: direct observations of the hot photons, through hard X-ray and gamma-ray data, and indirect observations of the energetic pairs, through their polarized, nonthermal low frequency radiation. However, interpretation of these observations in terms of the conditions in the inner accretion flow requires understanding of the various processes which modify the pair and photon distributions within the hot, dense core. These processes include opacity effects within the pair/photon plasma, Compton losses on external photons, further acceleration of the pairs and further radiation by the pairs, and the dynamic interaction of the pair/photon plasma with the surrounding gas. Current observational and theoretical work is reviewed and new directions are considered in a search for constraints on or tests of accretion models of active nuclei.

  12. How Gas Flows from Star to Compact Star-What Recent Hubble Observations Say about Accretion

    NASA Astrophysics Data System (ADS)

    Boroson, Bram

    2002-12-01

    How does gas flow from a normal star to a neutron star (NS) or black hole? Shouldn't this question have been solved a long time ago? Far enough from the compact object this should be a problem in classical hydrodynamics. In many cases even the boundary conditions should be known (from pulse delay timing and eclipses). Shakura and Sunyaev in fact provided a detailed model of disks 12, while Lubow and Shu described the gas stream feeding the disk from the companion star 9. If the compact object accretes from a stellar wind, the analysis of the capture radius by Bondi and Hoyle applies 2...

  13. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  14. TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS

    SciTech Connect

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N. J.; Henning, Th.

    2011-07-10

    We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.

  15. The relativistic equation of state in accretion and wind flows

    NASA Astrophysics Data System (ADS)

    Basu, Prasad; Mondal, Soumen

    2014-01-01

    In the present study we derive a 4-velocity distribution function for the relativistic ideal gas following the original approach of Maxwell-Boltzmann (MB). Using this distribution function, the relativistic equation of state (EOS): ρ-ρ0=(p, is expressed in the parametric form: ρ=ρ0f(λ), and p=ρ0g(λ), where λ is a parameter related to the kinetic energy, and hence, to the temperature of the gas. In the nonrelativistic limit, this distribution function perfectly reduces to original MB distribution and the EOS reduces to ρ-ρ0=3/2 p, whereas in the extreme ultra-relativistic limit, the EOS becomes ρ=3p correctly. Using these parametric equations the adiabatic index γ=cp/cv and the sound speed as are calculated as a function of λ. They also satisfy the inequalities: 4/3 ⩽γ⩽ 5/3 and as⩽ 1/√{3} perfectly. The computed distribution function, adiabatic index γ, and the sound speed as are compared with the results obtained from the canonical ensemble theory which nicely match with the standard results (Synge, 1957 and Chandrasekhar, 1939). The main advantage in using the EOS is that the probability distribution function can be factorized and therefore, may be helpful to solve complex dynamics of the astrophysical system. Interestingly, in one of the astrophysical application revels that shocks in accretion flows become unlikely and except for the region very nearby the compact object, the EOS remains non-relativistic (Mondal and Basu, 2011). We therefore, conclude that the new form of EOS will be helpful to verify many conventional ideas in many astrophysical problems.

  16. Accretion Flow Properties of MAXI J1543–564 during 2011 Outburst from the TCAF Solution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debjit; Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu; Jana, Arghajit

    2016-08-01

    We derive accretion flow properties of the transient black hole candidate (BHC) MAXI J1543–564 using the RXTE data. We use the two-component advective flow (TCAF) solution to fit the data of the initial rising phase of outburst (from 2011 May 10 to 15). The 2.5–25 keV spectra are fitted using the TCAF solution fits file as a local additive table model in XSPEC. We extract physical flow parameters such as the two-component (Keplerian disk and sub-Keplerian halo) accretion rates and size and the property of the Compton cloud (post-shock region close to a black hole). Similar to other classical transient BHCs, monotonic evolution of low-frequency quasi-periodic oscillations (QPOs) is observed during the rising phase of the outburst, which is fitted with the propagating oscillatory shock (POS) model, which describes how the Compton cloud properties change from day to day. From the nature of variations of TCAF model fitted physical flow parameters and QPOs, we only found hard-intermediate and soft-intermediate spectral states during this phase of the outburst under study. We also calculated the frequency of the dominating QPOs from the TCAF model fitted shock parameters and found that they roughly match with the observed and POS model fitted values. From our spectro-temporal study of the source with TCAF and POS models, the most probable mass of the BHC is found to be 12.6–14.0 M ⊙, or {13}-0.4+1.0 {M}ȯ .

  17. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    SciTech Connect

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  18. On the X-ray spectra of luminous, inhomogeneous accretion flows

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.

    2006-08-01

    We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.

  19. Current Experimental Basis for Modeling Ice Accretions on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2005-01-01

    This work presents a review of the experimental basis for modeling ice accretions on swept wings. Experimental work related to ice accretion physics on swept wings conducted between 1954 and 2004 is reviewed. Proposed models or explanations of scallop formations are singled out and discussed. Special emphasis is placed on reviewing the work done to determine the basic macroscopic mechanisms of scallop formation. The role of feather growth and its connection to scallop growth is discussed. Conceptual steps in modeling scallop formations are presented. Research elements needed for modeling are discussed.

  20. Numerical Simulations of Accretion Flows, Jets, and Winds Around Black Holes

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh

    Accretion flows around black holes in X-ray binaries, active galactic nuclei and gamma- ray bursts are highly relativistic. This is especially true of the inner regions of these flows where the accreting gas comes close to the black hole and from where relativistic jets are launched. Understanding the properties of black holes and the effects of their associated relativistic ejections on their environment is a central goal of NASA's Astrophysics Theory program. We propose to carry out three-dimensional time-dependent numerical simulations, as well as analytical studies, focusing on two main problems: quantitatively studying the feedback effects of winds and jets ejected from AGN accretion flows on their environment, and pinning down the validity of the standard model of thin black-hole accretion disks by Novikov & Thorne (1973, NT). The PI and his team possess general relativistic magnetohydrodynamics (GRMHD) codes which are uniquely suited for simulating fully relativistic highly magnetized flows. These codes will be used to perform the following tasks: (1) To study the validity of the NT model in the region inside the innermost stable circular orbit (ISCO). On the one hand, simulations for a range of black hole spin values will be performed, in order to find the errors in spin estimates, obtained using the NT model, of black holes in X-ray binaries. On the other hand, we will look for an improved disk model using our simulation results. (2) Large-dynamic-range simulations of advection-dominated accretion flows (ADAFs) for a range of black hole spin values, to understand (i) the mass, energy and momentum output of winds and jets, which is important for understanding feedback effects on galaxy formation, and cooling flows; (ii) the relative importance of feedback through a relativistic jet versus a non-relativistic wind; and (iii) the effect of ADAF disk winds on jet collimation. The proposed research will be done by postdoctoral fellow Dr. Akshay Kulkarni and

  1. Hot accretion flows onto binary and single black holes

    NASA Astrophysics Data System (ADS)

    Gold, Roman; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart; Etienne, Zachariah; Pfeiffer, Harald; McKinney, Jonathan

    2015-04-01

    Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. Binary Black Holes are one of the most promising gravitational wave sources for adLIGO and Pulsar Timing Arrays and - if accreting - can provide a strong electromagnetic counterpart. I will present results from global GRMHD simulations of both single and binary BHs embedded in a hot, magnetized disk, highlighting differences in their observational appearance including their gravitational and electromagnetic radiation.

  2. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    NASA Astrophysics Data System (ADS)

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  3. CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2013-07-15

    The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius, respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.

  4. An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio

    2005-01-01

    This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.

  5. Relativistic reverberation in the accretion flow of a tidal disruption event

    NASA Astrophysics Data System (ADS)

    Kara, Erin; Miller, Jon M.; Reynolds, Chris; Dai, Lixin

    2016-07-01

    Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gravitationally redshifted iron Kα photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more. The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought.

  6. Relativistic reverberation in the accretion flow of a tidal disruption event.

    PubMed

    Kara, Erin; Miller, Jon M; Reynolds, Chris; Dai, Lixin

    2016-07-21

    Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gravitationally redshifted iron Kα photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more. The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought. PMID:27338795

  7. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  8. Gas clouds as dynamical probes of the accretion flow around SgrA*

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie

    2016-05-01

    Sgr A* is our closest example of an accreting supermassive black hole. Important aspects of how the gas makes its way to the black hole, and why its so radiatively inefficient, remain unknown however. In this talk, I will discuss how we can use the change in orbital parameters of the G1 and G2 gas clouds as they move through the accretion flow to probe the gas at a critical range of radii.

  9. An analytical model of accretion onto white dwarfs

    NASA Astrophysics Data System (ADS)

    Ospina, N.; Hernanz, M.

    2013-05-01

    The analytical model of Frank et al. (2002) has been used to investigate the structure of the accretion stream onto white dwarfs (WD). In particular, the post-shock region (temperature, density and gas velocity distributions) and X-ray spectrum emitted by this region. We have obtained the temperature, density and gas velocity distributions of the emission region for different masses of white dwarfs and at different positions in the shock coordinate. Also, we calculated the emitted spectrum for different WD masses and at different positions of the shock with the principal objective of study the accretion at different points of the emission region.

  10. Testing General Relativity with Accretion-Flow Imaging of Sgr A^{*}.

    PubMed

    Johannsen, Tim; Wang, Carlos; Broderick, Avery E; Doeleman, Sheperd S; Fish, Vincent L; Loeb, Abraham; Psaltis, Dimitrios

    2016-08-26

    The Event Horizon Telescope is a global, very long baseline interferometer capable of probing potential deviations from the Kerr metric, which is believed to provide the unique description of astrophysical black holes. Here, we report an updated constraint on the quadrupolar deviation of Sagittarius A^{*} within the context of a radiatively inefficient accretion flow model in a quasi-Kerr background. We also simulate near-future constraints obtainable by the forthcoming eight-station array and show that in this model already a one-day observation can measure the spin magnitude to within 0.005, the inclination to within 0.09°, the position angle to within 0.04°, and the quadrupolar deviation to within 0.005 at 3σ confidence. Thus, we are entering an era of high-precision strong gravity measurements. PMID:27610837

  11. Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk

    NASA Astrophysics Data System (ADS)

    Krolik, Julian H.; Hawley, John F.; Hirose, Shigenobu

    2005-04-01

    This paper continues the analysis of a set of general relativistic three-dimensional MHD simulations of accreting tori in the Kerr metric with different black hole spins. We focus on bound matter inside the initial pressure maximum, where the time-averaged motion of gas is inward and an accretion disk forms. We use the flows of mass, angular momentum, and energy in order to understand dynamics in this region. The sharp reduction in accretion rate with increasing black hole spin reported in the first paper of this series is explained by a strongly spin-dependent outward flux of angular momentum conveyed electromagnetically; when a/M>=0.9, this flux can be comparable to the inward angular momentum flux carried by the matter. In all cases, there is outward electromagnetic angular momentum flux throughout the flow; in other words, contrary to the assertions of traditional accretion disk theory, there is in general no ``stress edge,'' no surface within which the stress is zero. The retardation of accretion in the inner disk by electromagnetic torques also alters the radial distribution of surface density, an effect that may have consequences for observable properties, such as Compton reflection. The net accreted angular momentum is sufficiently depressed by electromagnetic effects that in the most rapidly spinning black holes mass growth can lead to spin-down. Spinning black holes also lose energy by Poynting flux; this rate is also a strongly increasing function of black hole spin, rising to >~10% of the rest-mass accretion rate at very high spin. As the black hole spins faster, the path of the Poynting flux changes from being predominantly within the accretion disk to being predominantly within the funnel outflow.

  12. Thermal Evolution of Ceres: Coupled Modelling of Accretion and Compaction by Creep

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2015-08-01

    Ceres with a radius of ~475 km and a mean density of ~2.1 g cm3 likely experienced a complex thermal evolution influenced by the heating of radioactive elements, accretion, and compaction. Short-lived radionuclides can substantially heat a body due to radioactive decay depending on the formation time and the porosity structure of the body. The higher the porosity the smaller is the thermal conductivity and the weaker the cooling (and vice versa). Assuming an initially porous structure, compaction is thus an important process that influenced the temperature but also structure of planetesimals, since it causes a radius decrease. It has been shown that porosity loss by hot pressing is the most efficient compaction process in planetesimals and can be described by the thermally activated creep flow. Furthermore, the size of a body (i.e. the volume to surface ratio) plays an important role in the temperature evolution, therefore accretion (radius increase), its duration and the porosity of the accreting material need to be considered.Here, we investigate the coupled effects of accretion and compaction on the thermal evolution of Ceres. We trace the development of the porosity and density both during and after the accretion that occurs in a late runaway regime to answer following questions. 1. How and at which temperatures does compaction proceed? Is Ceres expected to be partially porous? Is a differentiated interior compatible with a porous outer shell? 2. How does the combination of accretion and compaction influence the temperature? Can accretion reduce the time scale of compaction and differentiation or even prevent them? Can prolonged accretion be approximated adequately by instantaneous formation?We will show that while the temperature evolution varies strongly with the duration of accretion, the final porosity profiles are rather similar due to the heating by the long-lived radiogenic nuclides. Compared to models neglecting porosity, insulating properties of a low

  13. An Accretion Disk-outflow Model for Hysteretic State Transition in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2016-01-01

    We suggest a model of the advection-dominated accretion flow (ADAF) with magnetically driven outflows to explain the hysteretic state transition observed in X-ray binaries (XRBs). The transition from a thin disk to an ADAF occurs when the mass accretion rate is below a critical value. The critical mass accretion rate for the ADAF can be estimated by equating the equilibration timescale to the accretion timescale of the ADAF, which is sensitive to its radial velocity. The radial velocity of thin disks is very small, which leads to the advection of the external field in thin disks becoming very inefficient. ADAFs are present in the low/hard states of XRBs, and their radial velocity is large compared with the thin disk. The external field can be dragged inward efficiently by the ADAF, so a strong large-scale magnetic field threading the ADAF can be formed, which may accelerate a fraction of gas in the ADAF into the outflows. Such outflows may carry away a large amount of angular momentum from the ADAF, which significantly increases the radial velocity of the ADAF. This leads to a high critical mass accretion rate, below which an ADAF with magnetic outflows can survive. Our calculations show that the critical luminosity of the ADAF with magnetic outflows can be one order of magnitude higher than that for a conventional ADAF, if the ratio of gas to magnetic pressure β ∼ 4 in the disk. This can naturally explain the hysteretic state transition observed in XRBs.

  14. Accretion onto Compact Objects Viewed as a Flow in Converging-Diverging Ducts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, K.; Majumdar, M. M.; Chakrabarti, Sandip K.

    Black hole accretion is necessarily transonic and the number of physical sonic points depends on the angular momentum of the flow. We study the properties of such a flow by recasting this idea into an engineering problem in which a flow has a subsonic to supersonic transition when it passes through a de Laval nozzle, i.e. a converging and diverging duct in a flat geometry in the presence of sufficient end pressure difference. Particularly interesting is the case of the centrifugal pressure supported standing shock formation inside an accretion flow, because the flow passes through at least two saddle type sonic points, one before and one after the shock. In this case, the duct itself has two minima and a maximum. We study the properties of such a duct as a function of the inflow parameters and classify all possible types of the flow through this composite nozzle.

  15. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  16. Accretion of Gas onto Gap-opening Planets and Circumplanetary Flow Structure in Magnetized Turbulent Disks

    NASA Astrophysics Data System (ADS)

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an α-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is αMHD = 10-3, we find the accretion rate onto the planet to be \\dot{M}\\approx 2\\times 10^{-6}M_{{J}}\\,yr^{-1} for a gap surface density of 12 g cm-2. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent α parameter.

  17. Raman O VI Spectroscopy of Accretion Flows in the S-type Symbiotic Star V455 Sco

    NASA Astrophysics Data System (ADS)

    Heo, Jeong-Eun; Chang, Seok-Jun; Lee, Hee-Won; Lee, Ho-Gyu

    2015-08-01

    We present the high-resolution spectrum of the S-type symbiotic star V455 Sco obtained with the Dupont telescope in 2014 June. We note that the Raman-scattered O VI λ1032 at 6825 Å exhibits a triple-peak profile. In the rest frame determined by the optical emission line He I 7065, we find that the line center of the Raman-scattered O VI 6825 feature falls on the dip dividing the blue peak and the central peak. Adopting an accretion disk model with an additional contribution from a collimated bipolar outflow, we attempt to fit the profile. We propose that the blue and central peaks are formed via Raman-scattering of O VI line photons from the accretion flow and that the bipolar flow is responsible for the remaining red peak. It is also noted that V455 Sco exhibits the Raman-scattered He II features blueward of H α and H β.

  18. Cloudy intergalactic accretion flows in the outer discs of galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Santillán, A.; Franco, J.

    2007-02-01

    High-resolution two-dimensional magnetohydrodynamical simulations have been carried out to investigate the role of continuing infall of clumpy gas as a driver of turbulence in extended H I galactic discs. We have compared the responses of isothermal gas discs with sound speeds 4 and 8 km/s to infalling, condensed clouds. For mass accretion rates of ˜0.6 M⊙ yr -1, the turbulent motions in the outer disc become slightly faster than transonic. We suggest that the rain of compact high velocity clouds on the disc not only can fuel the Milky Way with fresh material but is a potential source of random motions in outer regions of H I discs.

  19. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  20. Simulations of Accretion Disk Wind Models

    NASA Astrophysics Data System (ADS)

    Brooks, Craig L.; Yong, Suk Yee; O'Dowd, Matthew; Webster, Rachel L.; Bate, Nicholas

    2016-01-01

    The kinematics of the broad emission line region (BELR) in quasars is largely unknown, however there is strong evidence that outflows may be a key component. For example, in approximately 15% of quasars we observe broad, blue-shifted absorption features which may be ubiquitous based on line-of-sight arguments. We use a new mathematical description of an outflowing disk-wind with an initial rotational component to predict surface brightness distributions of this wind at different orientations. These surface brightness distributions will allow us to simulate gravitational microlensing of BELR light, with a view to mapping the structure and better understanding the kinematics of these flows.

  1. ON THE ROLE AND ORIGIN OF NONTHERMAL ELECTRONS IN HOT ACCRETION FLOWS

    SciTech Connect

    Niedźwiecki, Andrzej; Stȩpnik, Agnieszka

    2015-02-01

    We study the X-ray spectra of tenuous, two-temperature accretion flows using a model involving an exact, Monte Carlo computation of the global Comptonization effect as well as a general relativistic description of both the flow structure and radiative processes. In our previous work, we found that in flows surrounding supermassive black holes, thermal synchrotron radiation is not capable of providing a sufficient seed photon flux to explain the X-ray spectral indices as well as the cut-off energies measured in several best-studied active galactic nuclei (AGNs). In this work, we complete the model by including seed photons provided by nonthermal synchrotron radiation and we find that it allows us to reconcile the hot flow model with the AGN data. We take into account two possible sources of nonthermal electrons. First, we consider e {sup ±} produced by charged-pion decay, which should always be present in the innermost part of a two-temperature flow due to proton-proton interactions. We find that for a weak heating of thermal electrons (small δ) the synchrotron emission of pion-decay e {sup ±} is much stronger than the thermal synchrotron emission in the considered range of bolometric luminosities, L ∼ (10{sup –4}-10{sup –2}) L {sub Edd}. The small-δ model including hadronic effects, in general, agrees with the AGN data, except for the case of a slowly rotating black hole and a thermal distribution of protons. For large δ, the pion-decay e {sup ±} have a negligible effect and, in this model, we consider nonthermal electrons produced by direct acceleration. We find an approximate agreement with the AGN data for the fraction of the heating power of electrons, which is used for the nonthermal acceleration η ∼ 0.1. However, for constant η and δ, the model predicts a positive correlation of the X-ray spectral index with the Eddington ratio, and hence a fine tuning of η and/or δ with the accretion rate is required to explain the negative correlation

  2. On the Role and Origin of Nonthermal Electrons in Hot Accretion Flows

    NASA Astrophysics Data System (ADS)

    Niedźwiecki, Andrzej; Stȩpnik, Agnieszka; Xie, Fu-Guo

    2015-02-01

    We study the X-ray spectra of tenuous, two-temperature accretion flows using a model involving an exact, Monte Carlo computation of the global Comptonization effect as well as a general relativistic description of both the flow structure and radiative processes. In our previous work, we found that in flows surrounding supermassive black holes, thermal synchrotron radiation is not capable of providing a sufficient seed photon flux to explain the X-ray spectral indices as well as the cut-off energies measured in several best-studied active galactic nuclei (AGNs). In this work, we complete the model by including seed photons provided by nonthermal synchrotron radiation and we find that it allows us to reconcile the hot flow model with the AGN data. We take into account two possible sources of nonthermal electrons. First, we consider e ± produced by charged-pion decay, which should always be present in the innermost part of a two-temperature flow due to proton-proton interactions. We find that for a weak heating of thermal electrons (small δ) the synchrotron emission of pion-decay e ± is much stronger than the thermal synchrotron emission in the considered range of bolometric luminosities, L ~ (10-4-10-2) L Edd. The small-δ model including hadronic effects, in general, agrees with the AGN data, except for the case of a slowly rotating black hole and a thermal distribution of protons. For large δ, the pion-decay e ± have a negligible effect and, in this model, we consider nonthermal electrons produced by direct acceleration. We find an approximate agreement with the AGN data for the fraction of the heating power of electrons, which is used for the nonthermal acceleration η ~ 0.1. However, for constant η and δ, the model predicts a positive correlation of the X-ray spectral index with the Eddington ratio, and hence a fine tuning of η and/or δ with the accretion rate is required to explain the negative correlation observed at low luminosities. We note a

  3. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  4. Ice accretion modeling for wind turbine rotor blades

    SciTech Connect

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A.

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  5. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2011-12-01

    Results of current 1D models on planetesimal accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV [3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration

  6. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  7. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian; Potapczuk, M.

    1989-01-01

    The cause and effects of roughness on accreting glaze ice surfaces were studied with microvideo observations. Distinct zones of surface water behavior were observed, including a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where roughness elements grow into horn shapes. In addition, a zone where surface water ran back as rivulets and a dry zone where rime feathers formed were observed. The locations and behaviors of these zones are discussed. A simple multizone modification to the glaze ice accretion model is proposed to include spatial variability in surface roughness. Two test cases using the multizone model showed significant improvements for the prediction of glaze ice shapes.

  8. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T. V.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2012-09-01

    accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV[3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron

  9. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  10. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  11. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  12. General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Krolik, Julian H.; Cheng, Roseanne M.; Piran, Tsvi; Noble, Scott C.

    2015-05-01

    We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the subsequent debris motion, we track the evolution of such a system until ≃ 80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly bound debris dissipate orbital energy, but only enough to make its characteristic radius comparable to the semimajor axis of the most bound material, not the tidal radius as previously envisioned. The outer shocks are caused by post-Newtonian relativistic effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is both non-monotonic and slow, requiring several to 10 times the orbital period of the most tightly bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accumulation time. Deflection by shocks does, however, cause some mass to lose both angular momentum and energy, permitting it to move inward even before most of the mass is accumulated into the accretion flow. Although the accretion rate still rises sharply and then decays roughly as a power law, its maximum is ≃ 0.1× the previous expectation, and the timescale of the peak is ≃ 5× longer than previously predicted. The geometric mean of the black hole mass and stellar mass inferred from a measured event timescale is therefore ≃ 0.2× the value given by classical theory.

  13. Numerical parameter survey of non-radiative black hole accretion: flow structure and variability of the rotation measure

    NASA Astrophysics Data System (ADS)

    Pang, Bijia; Pen, Ue-Li; Matzner, Christopher D.; Green, Stephen R.; Liebendörfer, Matthias

    2011-08-01

    We conduct a survey of numerical simulations to probe the structure and appearance of non-radiative black hole accretion flows like the supermassive black hole at the Galactic Centre. We find a generic set of solutions, and make specific predictions for currently feasible rotation measure (RM) observations, which are accessible to current instruments including the Expanded Very Large Array (EVLA), Giant Metrewave Radio Telescope (GMRT) and Atacama Large Millimeter Array (ALMA). The slow time variability of the RM is a key quantitative signature of this accretion flow. The time variability of RM can be used to quantitatively measure the nature of the accretion flow, and to differentiate models. Sensitive measurements of RM can be achieved using RM synthesis or using pulsars. Our energy conserving ideal magnetohydrodynamical simulations, which achieve high dynamical range by means of a deformed-mesh algorithm, stretch from several Bondi radii to about one-thousandth of that radius, and continue for tens of Bondi times. Magnetized flows which lack outward convection possess density slopes around -1, almost independent of physical parameters, and are more consistent with observational constraints than are strongly convective flows. We observe no tendency for the flows to become rotationally supported in their centres, or to develop steady outflow. We support these conclusions with formulae which encapsulate our findings in terms of physical and numerical parameters. We discuss the relation of these solutions to other approaches. The main potential uncertainties are the validity of ideal magnetohydrodynamic and the absence of a fully relativistic inner boundary condition. The RM variability predictions are testable with current and future telescopes.

  14. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  15. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  16. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  17. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. II. ELECTRON HEATING EFFICIENCY AS A FUNCTION OF FLOW CONDITIONS

    SciTech Connect

    Sironi, Lorenzo

    2015-02-20

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma has two temperatures, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is T {sub 0e}/T {sub 0i} ≲ 0.2, the ion cyclotron instability is the dominant mode for ion betas β{sub 0i} ∼ 5-30 (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-luminosity accretion flows. In this work, we employ analytical theory and one-dimensional PIC simulations (with the box aligned with the fastest-growing wave vector of the ion cyclotron mode) to fully characterize how the electron heating efficiency during the growth of the ion cyclotron instability depends on the electron-to-proton temperature ratio, the plasma beta, the Alfvén speed, the amplification rate of the mean field (in units of the ion Larmor frequency), and the proton-to-electron mass ratio. Our findings can be incorporated as a physically grounded subgrid model into global fluid simulations of low-luminosity accretion flows, thus helping to assess the validity of the two-temperature assumption.

  18. Hydrodynamical Numerical Simulation of Wind Production from Black Hole Hot Accretion Flows at Very Large Radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yuan, Feng; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-02-01

    Previous works show that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole, so it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem with hydrodynamical simulations. We take into account the gravities of both the black hole and the nuclear star clusters. For the latter, we assume that the velocity dispersion of stars is a constant and its gravitational potential \\propto {σ }2{ln}(r), where σ is the velocity dispersion of stars, and r is the distance from the center of the galaxy. We focus on the region where the gravitational potential is dominated by the star cluster. We find that, just as for the accretion flow at small radii, the mass inflow rate decreases inward, and the flow is convectively unstable. However, a trajectory analysis shows that there is very little wind launched from the flow. Our result, combined with the results of Yuan et al.’s study from 2015, indicates that the mass flux of wind launched from hot accretion flow {\\dot{M}}{{wind}}={\\dot{M}}{{BH}}(r/20{r}s), with r≲ {R}A\\equiv {{GM}}{{BH}}/{σ }2. Here, {\\dot{M}}{{BH}} is the accretion rate at the black hole horizon, and RA is similar to the Bondi radius. We argue that the inward decrease of inflow rate is not due to mass loss via wind, but to convective motion. The disappearance of wind outside RA must be due to the change of the gravitational potential, but the exact reason remains to be probed.

  19. Relativistic reverberation in the accretion flow of a Tidal Disruption Event

    NASA Astrophysics Data System (ADS)

    Kara, Erin; Miller, Jon M.; Reynolds, Christopher S.; Dai, Lixin J.

    2016-04-01

    Our current understanding of the curved spacetime around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating, however selection biases suggest that these results of a few are not necessarily reflective of the majority of black hole spins in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted on to the black hole, can provide a short, unbiased glimpse at the spacetime around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disc and the onset of an accretion-powered jet, but have failed to reveal gravitational redshifts from innermost regions close to the event horizon, which enable the measurement of black hole spin. Here, we report observations of reverberation arising from photons from highly ionized iron (from K shell electrons) reflected off the accretion flow in a tidal disruption event. The asymmetric iron line profile indicates that we are seeing a region close to the event horizon of the black hole, where gravitational redshifts are strong. From the reverberation time delay, we estimate the mass of the central black hole to be a few million solar masses. Combined with the observed luminosity, we conclude the tidal disruption event is accreting at least 100 times the Eddington limit, which is consistent with predictions of the mass fallback rate of a tidally disrupted star. The detection of reverberation from the relativistic depths of this rare hyper-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought.

  20. Inference on accretion flow dynamics using TCAF solution from the analysis of spectral evolution of H 1743-322 during the 2010 outburst

    SciTech Connect

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip K. E-mail: dipak@csp.res.in

    2014-05-01

    We study accretion flow dynamics of the Galactic transient black hole candidate (BHC) H 1743-322 during its 2010 outburst by analyzing spectral data using the two-component advective flow (TCAF; Keplerian and sub-Keplerian) solution after its inclusion in XSPEC as a local model. We compare our TCAF solution fitted results with combined disk blackbody (DBB) and power-law (PL) model fitted results and find a similar smooth variation of thermal (Keplerian or DBB) and non-thermal (PL or sub-Keplerian) fluxes/rates in two types of model fits. For a spectral analysis, 2.5-25 keV spectral data from the Rossi X-Ray Timing Explorer Proportional Counter Array instrument are used. From the TCAF solution fit, accretion flow parameters, such as Keplerian rate, sub-Keplerian rate, location of centrifugal pressure-supported shock, and strength of the shock, are extracted, providing a deeper understanding of the accretion process and properties of accretion disks around BHC H 1743-322 during its X-ray outburst. Based on the halo to disk accretion rate ratio, shock properties, accretion rates, and the nature of the quasi-periodic oscillations' (if observed) entire outburst is classified into four different spectral states: hard, hard-intermediate, soft-intermediate, and soft. From the time variation of intrinsic flow parameters, it appears that their evolutions in the declining phase do not retrace the path of the rising phase. Since our current model does not include magnetic fields, spectral turnover at energies beyond 500-600 keV cannot be explained.

  1. Inference on Accretion Flow Dynamics Using TCAF Solution from the Analysis of Spectral Evolution of H 1743-322 during the 2010 Outburst

    NASA Astrophysics Data System (ADS)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip K.

    2014-05-01

    We study accretion flow dynamics of the Galactic transient black hole candidate (BHC) H 1743-322 during its 2010 outburst by analyzing spectral data using the two-component advective flow (TCAF; Keplerian and sub-Keplerian) solution after its inclusion in XSPEC as a local model. We compare our TCAF solution fitted results with combined disk blackbody (DBB) and power-law (PL) model fitted results and find a similar smooth variation of thermal (Keplerian or DBB) and non-thermal (PL or sub-Keplerian) fluxes/rates in two types of model fits. For a spectral analysis, 2.5-25 keV spectral data from the Rossi X-Ray Timing Explorer Proportional Counter Array instrument are used. From the TCAF solution fit, accretion flow parameters, such as Keplerian rate, sub-Keplerian rate, location of centrifugal pressure-supported shock, and strength of the shock, are extracted, providing a deeper understanding of the accretion process and properties of accretion disks around BHC H 1743-322 during its X-ray outburst. Based on the halo to disk accretion rate ratio, shock properties, accretion rates, and the nature of the quasi-periodic oscillations' (if observed) entire outburst is classified into four different spectral states: hard, hard-intermediate, soft-intermediate, and soft. From the time variation of intrinsic flow parameters, it appears that their evolutions in the declining phase do not retrace the path of the rising phase. Since our current model does not include magnetic fields, spectral turnover at energies beyond 500-600 keV cannot be explained.

  2. Probing the parsec-scale accretion flow of 3C 84 with millimeter wavelength polarimetry

    SciTech Connect

    Plambeck, R. L.; Bower, G. C.; Rao, Ramprasad; Marrone, D. P.; Jorstad, S. G.; Marscher, A. P.; Doeleman, S. S.; Fish, V. L.; Johnson, M. D.

    2014-12-10

    We report the discovery of Faraday rotation toward radio source 3C 84, the active galactic nucleus in NGC 1275 at the core of the Perseus Cluster. The rotation measure (RM), determined from polarization observations at wavelengths of 1.3 and 0.9 mm, is (8.7 ± 2.3)× 10{sup 5} rad m{sup –2}, among the largest ever measured. The RM remained relatively constant over a 2 yr period even as the intrinsic polarization position angle wrapped through a span of 300°. The Faraday rotation is likely to originate either in the boundary layer of the radio jet from the nucleus or in the accretion flow onto the central black hole. The accretion flow probably is disk-like rather than spherical on scales of less than a parsec, otherwise the RM would be even larger.

  3. AGN UV and X-ray luminosities in clumpy accretion flows

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Courvoisier, T. J.-L.

    2009-02-01

    We consider the fuelling of the central massive black hole in active galactic nuclei (AGN), through an inhomogeneous accretion flow. Performing simple analytical treatments, we show that shocks between elements (clumps) forming the accretion flow may account for the UV and X-ray emission in AGNs. In this picture, a cascade of shocks is expected, where optically thick shocks give rise to optical/UV emission, while optically thin shocks give rise to X-ray emission. The resulting blue bump temperature is found to be quite similar in different AGNs. We obtain that the ratio of X-ray luminosity to UV luminosity is smaller than unity, and that this ratio is smaller in massive objects compared to less massive sources. This is in agreement with the observed L_X/L_UV ratio and suggests a possible interpretation of the α_OX-l_UV anticorrelation.

  4. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  5. Spectral Modeling of the Comptonized Continua of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael Thomas; Pottschmidt, Katja; Becker, Peter A.; Marcu, Diana; Wilms, Jörn; Wood, Kent S.

    2015-01-01

    We are undertaking a program to analyze the X-ray spectra of the accretion flows onto strongly magnetic neutron stars in high mass binary systems such as Cen X-3, and XTE J1946+274. These accreting pulsars typically have X-ray spectra consisting of broad Comptonized cutoff power-laws. Current theory suggests these X-ray spectra result from radiation-dominated shocks that develop in the high-velocity magnetically channeled plasma accretion flows onto the surfaces of the neutron stars. These X-ray pulsars often, but not always, show cyclotron resonant scattering features implying neutron star surface magnetic field strengths above 1012 G. Proper fitting of cyclotron line centroids (for example, to investigate how the line centroid varies with X-ray luminosity) requires a robust model for the Comptonized X-ray continuum upon which the cyclotron lines are superposed, and this can be provided by a continuum model based on the physics of the accretion column.We discuss in this presentation our ongoing program for the analysis of the X-ray spectra formed in these systems. Our program consists of two parts. First, we are modeling the X-ray spectra from the Suzaku X-ray satellite of accreting X-ray pulsars Cen X-3 and XTE J1946+274 utilizing the best currently existing empirical models. The second part of our program is building a new analysis tool based on the analytical model of Becker and Wolff (2007). In the high temperature optically thick plasma flows, the processes of bremsstrahlung emission from the hot plasma, black body emission from a thermal mound near the neutron star surface, and cyclotron emission from electrons in the first Landau excited state, all contribute to the total observed X-ray spectrum. We show recent results from our new implementation and its comparison with the Suzaku data for these X-ray pulsars.This research is supported by the NASA Astrophysics Data Analysis Program.

  6. General relativistic radiation hydrodynamics of accretion flows - II. Treating stiff source terms and exploring physical limitations

    NASA Astrophysics Data System (ADS)

    Roedig, C.; Zanotti, O.; Alic, D.

    2012-10-01

    We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in most astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several simple 1D tests, we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in one spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of spherical accretion on to a Schwarzschild black hole and find good agreement with previous work which included more radiation processes than we currently have available. Lastly, we revisit the supersonic Bondi-Hoyle-Lyttleton (BHL) accretion in two dimensions where we can now present simulations of realistic temperatures, down to T ˜ 106 K or less. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching γeff ˜ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure, but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as ηBHL˜10-2; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of

  7. An Accretion Model for the Growth of the Central Black Holes Associated with Ionization Instability in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.

  8. On the Lamppost Model of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Niedźwiecki, Andrzej; Zdziarski, Andrzej A.; Szanecki, Michał

    2016-04-01

    We study the lamppost model, in which the X-ray source in accreting black hole (BH) systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp, e.g., neglecting the redshift of the photons emitted by the lamppost that are directly observed. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, if those results were correct, most of the photons produced in the lamppost would be trapped by the BH, and the luminosity generated in the source as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction also present a problem for active galactic nuclei. Then, those models imply the luminosity measured in the local frame is much higher than that produced in the source and measured at infinity, due to the additional effects of time dilation and redshift, and the electron temperature is significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the e± pair equilibrium. On the other hand, the above issues pose relatively minor problems for sources at large distances from the BH, where relxilllp can still be used.

  9. Numerical simulations of adiabatic axisymmetric accretion flow. I - A new mechanism for the formation of jets

    NASA Technical Reports Server (NTRS)

    Fryxell, B. A.; Taam, Ronald E.; Mcmillan, S. L. W.

    1987-01-01

    Numerical simulations of the uniform axisymmetric flow past a gravitating sphere have been studied. It is found that the structure of the flow is extremely sensitive to the boundary condition at the surface of the gravitating object. For the case in which the boundary is totally absorbing, a steady state flow is reached. However, for a boundary which is not totally absorbing, steady state flows are not obtained. The morphology of the flow is also sensitive to the Mach number at infinity and to the ratio of the free-fall velocity at the surface of the gravitating object to the flow velocity at inifinity. A new mechanism for the formation of jets is identified in which a fraction of the accretion energy is tapped to drive an anisotropic supersonic outflow with collimation provided by a combination of the inertia of matter which surrounds the beam and the development of multiple shock structures.

  10. ELECTRON HEATING AND ACCELERATION BY MAGNETIC RECONNECTION IN HOT ACCRETION FLOWS

    SciTech Connect

    Ding Jian; Yuan Feng; Liang, Edison

    2010-01-10

    Both analytical and numerical works show that magnetic reconnection must occur in hot accretion flows. This process will effectively heat and accelerate electrons. In this paper, we use the numerical hybrid simulation of magnetic reconnection plus the test-electron method to investigate the electron acceleration and heating due to magnetic reconnection in hot accretion flows. We consider fiducial values of density, temperature, and magnetic parameter beta{sub e} (defined as the ratio of the electron pressure to the magnetic pressure) of the accretion flow as n{sub 0} approx 10{sup 6} cm{sup -3}, T {sup 0}{sub e} approx 2 x 10{sup 9} K, and beta{sub e} = 1. We find that electrons are heated to a higher temperature T{sub e} = 5 x 10{sup 9} K, and a fraction eta approx 8% of electrons are accelerated into a broken power-law distribution, dN(gamma) propor to gamma{sup -p}, with p approx 1.5 and 4 below and above approx1 MeV, respectively. We also investigate the effect of varying beta and n{sub 0}. We find that when beta{sub e} is smaller or n{sub 0} is larger, i.e., the magnetic field is stronger, T{sub e} , eta, and p all become larger.

  11. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    SciTech Connect

    Fragile, P. Chris; Olejar, Ally; Anninos, Peter

    2014-11-20

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M {sub 1} closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  12. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  13. Physical properties of the inner shocks in hot, tilted black hole accretion flows

    SciTech Connect

    Generozov, Aleksey; Blaes, Omer; Fragile, P. Chris; Henisey, Ken B.

    2014-01-01

    Simulations of hot, pressure-supported, tilted black hole accretion flows, in which the angular momentum of the flow is misaligned with the black hole spin axis, can exhibit two nonaxisymmetric shock structures in the inner regions of the flow. We analyze the strength and significance of these shock structures in simulations with tilt angles of 10° and 15°. By integrating fluid trajectories in the simulations through the shocks and tracking the variations of fluid quantities along these trajectories, we show that these shocks are strong, with substantial compression ratios, in contrast to earlier claims. However, they are only moderately relativistic. We also show that the two density enhancements resembling flow streams in their shape are in fact merely post-shock compressions, as fluid trajectories cut across, rather than flow along, them. The dissipation associated with the shocks is a substantial fraction (≅ 3%-12%) of the rest mass energy advected into the hole, and therefore comparable to the dissipation expected from turbulence. The shocks should therefore make order unity changes in the observed properties of black hole accretion flows that are tilted.

  14. Collapse and backward motion of axisymmetric toroidal vortices in an accretion flow

    SciTech Connect

    Bannikova, E. Yu.; Kontorovich, V. M.; Poslavsky, S. A.

    2013-08-15

    The problem of the interaction of two coaxial, counter-rotating ring vortices in the presence of a convergent (accretion) flow with a sink at the center of symmetry has been solved. The vortices that would recede from each other in the absence of a flow (the problem inverse to the Helmholtz problem) are shown to be brought closer together by the flow and then ejected with acceleration along the axis of symmetry. The ejection velocity increases with sink strength. However, if the sink strength exceeds some critical value that depends on the initial conditions, then no ejection occurs and the vortices are captured by the flow and collapse. A similar capture and collapse are also possible during the motion of a single vortex in a flow. The difference from the planar case, where no collapse occurs, is significant. The detected phenomenon can be applied when studying nonlinear processes in atmospheric vortices as well as in active galactic nuclei and planetary atmospheres.

  15. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  16. Combining N-body accretion simulations with partitioning experiments in a statistical model of terrestrial planet accretion and core formation

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Ciesla, F.; Campbell, A. J.

    2014-12-01

    The terrestrial planets accreted in a series of increasingly large and violent collisions. Simultaneously, metallic cores segregated from their silicate mantles, acquiring their modern compositions through high pressure (P), high temperature (T) partitioning reactions. Here we present a model that couples these aspects of early planetary evolution, building on recent accretion simulations and experimental results. We have run 100 N-body simulations of terrestrial planet accretion, with Jupiter and Saturn on either circular (CJS) or eccentric (EJS) orbits, to gain insight into the statistics of this highly stochastic process (Fischer and Ciesla, 2014). An Earth (Mars) analogue forms in 84-92% (2-10%) of our simulations. We draw on our recent high P-T metal-silicate partitioning experiments of Ni, Co, V, Cr, Si, and O in a diamond anvil cell to 100 GPa and 5500 K. In our model, N-body simulations describe the delivery, masses, and original locations of planetary building blocks. As planets accrete, their core and mantle compositions are modified by high P-T reactions with each collision (Rubie et al., 2011). By utilizing a large number of N-body simulations, we obtain a statistical view and observe a wide range of outcomes. We use this model to predict the core compositions of Earth-like planets. For partial equilibration of the mantle at 50% of the core-mantle boundary (CMB) pressure, we find that their cores contain 6.9 ± 1.8 wt% Si and 4.8 ± 2.3 wt% O (Figure), with this uncertainty due entirely to variations in accretion history in our 100 simulations. This composition is consistent with the seismologically-inferred density of Earth's core, based on comparisons to high P-T equations of state (Fischer et al., 2011, 2014). Earth analogues experience 0.7 ± 0.1 or 0.9 ± 0.2 log units of oxidation during accretion in EJS or CJS simulations respectively, which is due to both the effects of high P-T partitioning and the temporal evolution of the Earth analogue

  17. Exceptional X-ray Weak Quasars: Implications for Accretion Flows and Emission-Line Formation

    NASA Astrophysics Data System (ADS)

    Brandt, W. Niel; Luo, Bin; Hall, Patrick B.; Wu, Jianfeng; Anderson, Scott F.; Garmire, Gordon; Gibson, Robert; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Shemmer, Ohad; Shen, Yue

    2016-01-01

    Actively accreting supermassive black holes are found, nearly universally, to create luminous X-ray emission, and this point underlies the utility of X-ray surveys for finding active galactic nuclei throughout the Universe. However, there are apparent X-ray weak exceptions to this rule that are now providing novel insights, including weak-line quasars (WLQs) and especially analogs of the extreme WLQ, PHL 1811. We have been systematically studying such X-ray weak quasars with Chandra and near-infrared spectroscopy, and I will report results on their remarkable properties and describe implications for models of the accretion disk/corona and emission-line formation. We have found evidence that many of these quasars may have geometrically thick inner accretion disks, likely due to high accretion rates, that shield the high-ionization broad line region from the relevant ionizing continuum. This model can explain, in a simple and unified manner, their weak lines and diverse X-ray properties. Such shielding may, more generally, play a role in shaping the broad distributions of quasar emission-line equivalent widths and blueshifts.

  18. Neutron Stars Accreting Matter and A Wave Model

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    2000-04-01

    In 1990 I proposed that oscillating stars and planets radiate quantum like standing waves providing for the spacings of planets and satellites. Waves also provide stability for star systems and the universe (see Physics Essays 12(1): 3-10 for a wave equation and solutions). Radii of orbits are given by r=R(exp(kN)) where R is the radius of the star and N is the orbit integer. k is 0.625 for matter free regions apparently becoming less depending on the density of matter present. This equation or similar may provide an incredibly simple explanation of the most often observed QPO's of matter accreting neutron stars if one assumes that the highest amplitude, highest frequency QPO is due to the N=2 orbit. Since incredibly large gravitational fields are involved the equation may be different. In the usual model a second weaker observed lower frequency QPO is explained as the beat frequency of the star spin frequency with the large amplitude QPO. High density neutron stars likely provide particularly strong orbital forces constraining the accreting matter. See the Wagner web site.

  19. Does accretion flow variability drives internal shocks in the compact jet of the black hole binary GX 339-4?

    NASA Astrophysics Data System (ADS)

    Drappeau, Samia

    Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with the compact jet. We assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are then very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. In this talk, I present an internal shock jet model where the PSD of the jet Lorentz factor fluctuations are taken identical to the observed X-ray PSD of GX 339-4. This model successfully reproduces the radio to infrared SED of the source at the time of the observation as well as the strong mid-infrared spectral variability. Our study confirms previous findings and contributes additional evidence that suggests jet physics and properties of the accretion flow in the vicinity of a compact object are deeply connected.

  20. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    SciTech Connect

    Colgate, Stirling A.; Li, Hui; Fowler, T. Kenneth; Pino, Jesse

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  1. Towards Coupled Modelling of Accretion and Water-Rock Differentiation of Icy Worlds

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2015-08-01

    The early Solar system produced a variety of bodies with different properties. Among the small bodies, objects that contain notable amounts of water ice (Ceres, icy satellites) are of particular interest. Water-rock separation on such worlds is probable and has been confirmed in some cases. Heating by 26Al and 60Fe suffices to produce liquid water (T>273 K) even in km-sized seeds during the early accretion of icy worlds.Assuming accretion of ice and dust, the rheology is dominated by one of the two components, depending on their proportions. Two differentiation regimes arise: (a) Upon melting of an icy matrix, the dust grains settle via Stokes flow; (b) Upon melting of ice in a rocky matrix, water ascends through the matrix via Darcy flow. Prior to ice melting, porosity is reduced by creep of ice. However, there are leftover pores filled with gas. For (a) the differentiation scheme is not affected. For (b) ice melting increases the porosity of the matrix. Only a part of the void space will be filled with water. Water will percolate if the matrix (1) deforms sufficiently to close the pores filled with gas and (2) deforms further to squeeze the water out of the matrix. Temperatures of up to 700 K are needed for this. Thus, water will first migrate downwards filling the pores, vacated previously by gas. After that, it will either remain in suspension until the matrix deforms and then percolate, or will vaporise first and then fill the pores with the vapour. Subsequent matrix deformation will mobilise the vapour. On its way to the surface water will form in the cooler layers.The differentiation starts during the accretion. At the end of the accretion, a pre-differentiated structure around the centre is possible, leading to a reallocation of the heat sources and changing the temperature profile. The evolution path varies with the growth rate assumed.We couple porosity loss and water-rock differentiation of an accreting icy object in an adaptive-grid 1D numerical model

  2. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  3. Testing propagating mass accretion rate fluctuations model PROPFLUC on black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2016-05-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of black hole X-ray binaries. However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and a quasi-periodic oscillation (QPO) on the precession frequency. We recently applied systematically for the first time PROPFLUC on a black hole candidate (MAXI J1543-564) in order to compare the results of phenomenological and physical modeling of the source power spectrum and to give a physical interpretation of the rising phase of the source outburst. Here we resume the results of our study on MAXI J1543-564 and we discuss future PROPFLUC implementations.

  4. Quantitative model of the growth of floodplains by vertical accretion

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2000-01-01

    A simple one-dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright (C) 2000 John Wiley and Sons, Ltd.

  5. Bipolar flows, molecular gas disks, and the collapse and accretion of rotating interstellar clouds

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1987-01-01

    Rigorous numerical models of the collapse and accretion of rotating, axisymmetric, isothermal interstellar clouds are studied. The results show that molecular gas disks and evacuated bipolar cavities both appear to be natural consequences of the collapse of rotating interstellar clouds. Dynamically significant magnetic fields may not be necessary for explaining either phenomenon. The models strongly support theoretical models of the type where an isotropic wind from a pre-main sequence star is extrinsically collimated by a rotationally derived molecular gas cloud. The models imply that collimation should be strongest on small scales where rotational effects are most important, i.e., in the dense region of the molecular gas disk.

  6. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  7. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Walker, E.

    1986-01-01

    Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.

  8. Resolving the Bondi Accretion Flow toward the Supermassive Black Hole of NGC 3115 with Chandra

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Irwin, J.; Million, E.; Yukita, M.; Mathews, W.; Bregman, J.

    2011-09-01

    Gas undergoing Bondi accretion on to a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observation show has a very massive SMBH. Our observations show that the gas temperature rises toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. The data support that the Bondi radius is at least about 4-5 arcsec (188-235 pc), suggesting a supermassive blackhole of two billion solar masses that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power law index of 1.03, and we will discuss the interpretations of the results.

  9. Mass accretion flows in the high-mass star forming complex NGC 6334

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Schilke, P.; Zernickel, A.; Schmiedeke, A.; Möller, Th.; Qin, S.-L.

    2016-05-01

    The formation of high-mass stars is one of the major topics of astrophysical research, in particular the process of accretion from large-scale clouds down to small-scale cores. We have selected the nearby, filamentary, high-mass star forming complex NGC 6334 to study the gas velocity at different scales and probe the infall rates onto the protostellar cores embedded in the NGC 6334-I and I(N) clusters. This study makes use of single-dish and interferometric submillimeter observations, complemented with 3D numerical non-LTE radiative transfer modeling. We measure a mass accretion rate of 10-5 M⊙ yr-1 throughout the filament increasing up to 10-3 M⊙ yr-1 towards the densest regions where high-mass stars are forming. At smaller scales, our 3D model is consistent with accretion rates of 10-3 M⊙ yr-1 towards the clusters, and 10-4 M⊙ yr-1 onto the protostars.

  10. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    SciTech Connect

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  11. Numerical Simulation of Hot Accretion Flows. III. Revisiting Wind Properties Using the Trajectory Approach

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Gan, Zhaoming; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning

    2015-05-01

    Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind and the mechanism of wind production. For this aim, we make use of a 3D general relativistic MHD simulation of hot accretion flows around a Schwarzschild black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Lagrangian particles from simulation data. We find two types of real outflows, i.e., a jet and a wind. The mass flux of wind is very significant, and its radial profile can be described by {{\\dot{M}}wind}≈ {{\\dot{M}}BH}≤ft( r/20 {{r}s} \\right), with {{\\dot{M}}BH} being the mass accretion rate at the black hole horizon and rs being the Schwarzschild radius. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows {{v}p,wind}(r)≈ 0.25{{v}k}(r), with vk(r) being the Keplerian speed at radius r. The mass flux of the jet is much lower, but the speed is much higher, {{v}p,jet} ˜ (0.3-0.4)c. Consequently, both the energy and momentum fluxes of the wind are much larger than those of the jet. The wind is produced and accelerated primarily by the combination of centrifugal force and magnetic pressure gradient, while the jet is mainly accelerated by the magnetic pressure gradient. Finally, we find that the wind production efficiency {{ɛ }wind}\\equiv {{\\dot{E}}wind}/{{\\dot{M}}BH}{{c}2}˜ 1/1000 is in good agreement with the value required from large-scale galaxy simulations with active galactic nucleus feedback.

  12. Internal shocks driven by accretion flow variability in the compact jet of the black hole binary GX 339-4

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Belmont, R.; Gandhi, P.; Corbel, S.

    2015-03-01

    In recent years, compact jets have been playing a growing role in the understanding of accreting black hole engines. In the case of X-ray binary systems, compact jets are usually associated with the hard state phase of a source outburst. Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with its compact jet. In the model used in this study, we assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. Taking the PSD of the jet Lorentz factor fluctuations to be identical to the observed X-ray PSD, our study finds that the internal shock model successfully reproduces the radio to infrared SED of the source at the time of the observations as well as the reported strong mid-infrared spectral variability.

  13. Modelling accretion disc and stellar wind interactions: the case of Sgr A*

    NASA Astrophysics Data System (ADS)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ˜108 cm s-1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 1033 erg s-1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of dot{M}_w= 10^{-7} M_{⊙} yr^{-1}, nd = 105 cm-3, and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ˜3000 gravitational radii from the supermassive black hole.

  14. NUCLEAR DOMINATED ACCRETION FLOWS IN TWO DIMENSIONS. I. TORUS EVOLUTION WITH PARAMETRIC MICROPHYSICS

    SciTech Connect

    Fernandez, Rodrigo; Metzger, Brian D.

    2013-02-15

    We explore the evolution of radiatively inefficient accretion disks in which nuclear reactions are dynamically important ('Nuclear Dominated Accretion Flows' or NuDAFs). Examples of such disks are those generated by the merger of a white dwarf with a neutron star or black hole, or by the collapse of a rotating star. Here, we present two-dimensional hydrodynamic simulations that systematically explore the effect of adding a single nuclear reaction to a viscous torus. The equation of state, anomalous shear stress, and nuclear reactions are given parametric forms. Our results point to the existence of two qualitatively different regimes of NuDAF evolution: (1) steady accretion with quiescent burning or (2) detonation of the disk. These outcomes are controlled primarily by the ratio {Psi} of the nuclear energy released to the enthalpy at the burning radius. Disks detonate if {Psi} exceeds a critical value {Psi}{sub crit} {approx} 1, and if burning occurs in regions where neutrino cooling is unimportant. Thermonuclear runaways are seeded by the turbulent mixing of hot ash with cold fuel at the burning front. Disks with {Psi} < {Psi}{sub crit} do not explode, but instead power a persistent collimated outflow of unbound material composed primarily of ash, with a mass-loss rate that increases with {Psi}. We discuss the implications of our results for supernova-like counterparts from astrophysical events in the NuDAF regime. In particular, detonations following a white dwarf-neutron star merger could account for some subluminous Type Ia supernovae, such as the class defined by SN 2002cx.

  15. Period variations in pulsating X-ray sources. I - Accretion flow parameters and neutron star structure from timing observations

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Shaham, J.; Pines, D.

    1978-01-01

    Torque fluctuations which can lead to variations in the periods of pulsating X-ray sources are examined. A description of torque variations in terms of noise processes is developed, and the resulting noise models are applied to observations of several pulsating X-ray sources. It is shown that fluctuations in accretion torque could account for the observed period variations and spindown episodes in Her X-1 and Cen X-3. The values of the torque noise strengths inferred from either a nonresonant response or, in the case of Her X-1, a Tkachenko-mode interpretation of the data are found to be consistent with those expected from processes at the magnetospheric boundary of an accreting neutron star. Ways to distinguish among the various interpretations of the period variations are considered. It is noted that fluctuating mass-flow rates may be responsible for other phenomena observed in compact X-ray sources, such as wobble with zero initial amplitude and binary period variations in close binary systems experiencing mass transfer.

  16. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  17. Accretion shock signatures in the spectrum of two-temperature advective flows around black holes

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Chakrabarti, S. K.

    2005-05-01

    The centrifugal barrier supported boundary layer (CENBOL) of a black hole affects the spectrum exactly in the same way the boundary layer of a neutron star does. The CENBOL is caused by standing or oscillating shock waves that accelerate electrons very efficiently and produce a power-law distribution. The accelerated particles in turn emit synchrotron radiation in the presence of the magnetic field. We study the spectral properties of an accretion disk as a function of shock strength, compression ratio, flow accretion rate and flow geometry. In the absence of a satisfactory description of magnetic fields inside the advective disk, we only consider the stochastic fields and use the ratio of field energy density to gravitational energy density as a parameter. Not surprisingly, stronger fields produce larger humps due to synchrotron radiation. We not only include “conventional” synchrotron emission and Comptonization due to Maxwell-Boltzmann electrons in the gas, but also compute the effects of power-law electrons. For strong shocks, a bump is produced just above the synchrotron self-absorption frequency at ν_bump ˜ ν_inj [1+4/3 {R-1}/{R} {1}/{x_s1/2}]x_s^{1/2}, where, ν_inj is the frequency of the dominant photons from the pre-shock flow, and R the compression ratio of the shock located at x_s. For strong shocks, a bump at a higher frequency appears predominantly due to the power-law electrons formed at the shock front.

  18. Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Bing; Li, Ye; Ma, Ren-Yi; Xue, Li

    2016-06-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/antineutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 1050- 1051 erg s-1 peaking at ˜10 MeV , making NDAFs potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed gamma-ray burst (GRB) event rate in the local universe and requiring that at least three neutrinos are detected to claim a detection, we estimate a detection rate up to ˜(0.10 - 0.25 ) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be ˜(1 - 3 ) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the Universe.

  19. Stability of an accretion disk: nonlinear small-scale analysis of a quasi-Keplerian shear flow

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin; Knobloch, Edgar; Julien, Keith

    2015-11-01

    We model the background flow in the equatorial plane of an accretion disk with a radially stratified, non-magnetic zonal flow in a quasi-Keplerian balance (i.e. small pressure corrections are taken into account in the radial balance). The dynamics of the perturbations around this background flow obey a set of equations which main ingredients are: (i) a radial shear, (ii) a radial stratification, and (iii) a coupling between the flow and the background entropy gradient. The inviscid linear stability of this set of equation is first discussed: perturbations are decomposed into Kelvin modes (also known as the shearing sheet approximation) which amplitudes are determined analytically as a function of the radial stratification. Then, using as well a Kelvin modes decomposition, the viscous linear problem exhibits potentially transient growth, yet features unconditional stability as t --> ∞ . Finally, we demonstrate with 2D simulations of the viscous nonlinear problem that nonlinearities provide an energy transfer mechanism through modes that compensates the transfer induced by the linear shear. This mechanism allows for a sustained instability scenario despite the stability of the linear viscous problem.

  20. Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Jardine, M. M.; Gregory, S. G.; Petit, P.; Bouvier, J.; Dougados, C.; Ménard, F.; Collier Cameron, A.; Harries, T. J.; Jeffers, S. V.; Paletou, F.

    2007-10-01

    From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star (cTTS) V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. This large-scale field geometry is unusually complex compared to those of non-accreting cool active subgiants with moderate rotation rates. As an illustration, we provide a first attempt at modelling the magnetospheric topology and accretion funnels of V2129 Oph using field extrapolation. We find that the magnetosphere of V2129 Oph must extend to about 7R* to ensure that the footpoints of accretion funnels coincide with the high-latitude accretion spots on the stellar surface. It suggests that the stellar magnetic field succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of V2129 Oph. The magnetospheric geometry we derive qualitatively reproduces the modulation of Balmer lines and produces X-ray coronal fluxes typical of those observed in cTTSs. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada

  1. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  2. 3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects

    NASA Astrophysics Data System (ADS)

    Matsakos, T.; Chièze, J.-P.; Stehlé, C.; González, M.; Ibgui, L.; de Sá, L.; Lanz, T.; Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.

    2014-08-01

    The structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas due to the plasma confinement within flux tubes. The corresponding emission is smooth and fully distinguishable from the case of a weak magnetic field (~tenths of Gauss) where the hot slab demonstrates chaotic motion and oscillates periodically.

  3. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    NASA Astrophysics Data System (ADS)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  4. On the development of quasi-periodic oscillations in Bondi-Hoyle accretion flows

    NASA Astrophysics Data System (ADS)

    Dönmez, O.; Zanotti, O.; Rezzolla, L.

    2011-04-01

    The numerical investigation of the Bondi-Hoyle accretion on to a moving black hole has a long history, both in Newtonian and in general-relativistic physics. By performing new two-dimensional and general-relativistic simulations on to a rotating black hole, we point out a novel feature, namely that quasi-periodic oscillations (QPOs) are naturally produced in the shock cone that develops in the downstream part of the flow. Because the shock cone in the downstream part of the flow acts as a cavity trapping pressure perturbations, modes with frequencies in the integer ratios of 2:1 and 3:1 are easily produced. The frequencies of these modes depend on the black hole spin and on the properties of the flow, and scale linearly with the inverse of the black hole mass. Our results may be relevant for explaining the detection of QPOs in Sagittarius A*, once such detection is confirmed by further observations. Finally, we report on the development of the flip-flop instability, which can affect the shock cone under suitable conditions; such an instability has been discussed before in Newtonian simulations but was never found in a relativistic regime.

  5. TIME EVOLUTION OF THE THREE-DIMENSIONAL ACCRETION FLOWS: EFFECTS OF THE ADIABATIC INDEX AND OUTER BOUNDARY CONDITION

    SciTech Connect

    Janiuk, Agnieszka; Sznajder, Maciej; Moscibrodzka, Monika; Proga, Daniel

    2009-11-10

    We study a slightly rotating accretion flow onto a black hole, using the fully three-dimensional (3D) numerical simulations. We consider hydrodynamics of an inviscid flow, assuming a spherically symmetric density distribution at the outer boundary and a small, latitude-dependent angular momentum. We investigate the role of the adiabatic index and gas temperature, and the flow behavior due to non-axisymmetric effects. Our 3D simulations confirm axisymmetric results: the material that has too much angular momentum to be accreted forms a thick torus near the equator, and the mass accretion rate is lower than the Bondi rate. In our previous study of the 3D accretion flows, for gamma = 5/3, we found that the inner torus precessed, even for axisymmetric conditions at large radii. The present study shows that the inner torus precesses also for other values of the adiabatic index: gamma = 4/3, 1.2, and 1.01. However, the time for the precession to set increases with decreasing gamma. In particular, for gamma = 1.01, we find that depending on the outer boundary conditions, the torus may shrink substantially due to the strong inflow of the non-rotating matter, and the precession will have insufficient time to develop. On the other hand, if the torus is supplied by the continuous inflow of the rotating material from the outer radii, its inner parts will eventually tilt and precess, as was for the larger gamma's.

  6. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  7. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  8. The Influence of Accretion Rate and Metallicity on Thermonuclear Bursts: Predictions from KEPLER Models

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Heger, Alexander; Galloway, Duncan K.

    2016-03-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated light curve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from η =1.1 to 1.24. We identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  9. Structure and Stability of Steady Protostellar Accretion Flows - Part Three - Nonlinear Instabilities

    NASA Astrophysics Data System (ADS)

    Balluch, M.

    1991-03-01

    Recently, a global, linear stability analysis of the structure of spherically symmetric steady protostellar accretion flows with a shock discontinuity has been made (Balluch 1990b). A detailed non-linear time-dependent radiation hydrodynamics calculation is presented to complement this study. In the `ideal-case' with constant opacity, the shock front around the second, inner core appears unstable with respect to oscillation due to critical cooling, starting at the instant, when a cooling region occurs in the calculation (due to its resolution in the late stages of accretion) and lasting as long as the mass flow rate is larger than M ≥ 2.8 10-6 Msun yr-1. This is in best agreement with the results of the linear analysis. Next, a detailed calculation of the formation of the first, outer core using quasimolecular artificial viscosity length scales, is presented. In about twice the e-folding time of the unstable mode in the linear analysis, a significant growth of a disturbance can be seen. It appears first in the velocity and the radiation flux in the settling zone, accompanied by an oscillation of the radiation flux in the region upstream from the shock up to r = 1014 cm. Some time later, the shock front starts to move. Again, these characteristics are in best concordance with the linear results. In addition, the calculation shows the growth of these oscillations deep in the non-linear regime until the beginning of a rapid expansion of the whole protostellar core. At last, a calculation of the global evolution of this expansion of the first, outer core is presented. It is shown that the expansion is stopped when about twice the core mass is involved. Then another collapse follows, and the whole scenario of formation and expansion of the outer core starts anew. During this evolution, up to 3 shock fronts were present at the same time in the flow. The largest expansion leads to central physical quantities comparable to the initial ones of the interstellar medium. At

  10. A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-06-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool (T ˜ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 1012 M ⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  11. Truncated disks - advective tori; new solutions of accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Hujeirat, A.; Camenzind, M.

    2000-09-01

    Our quasi-steady 2D numerical radiative hydrodynamical investigations of two-temperature accretion flows around black holes indicate that standard disks are thermally and hydrodynamically stable against transition to optically thin disks at large radii. Optically thin disks cool sufficiently rapid at large radii inducing a vertical collapse and forming thereby a standard disk which truncates close to the last stable orbit. In the absence of soft photons from the adjusting standard disk, we confirm the runaway cooling of the inner optically thin disk. This runaway however terminates if the radial flux of soft photons from the outer standard disk is taken into account. Instead, a cooling-driven front starts to propagates from outside-to-inside continuously extending the thick disk down to the very inner region where it terminates via an oppositely-oriented heating front that forms a hot advective and sub-keplerian torus. The transition between the two configuration occurs where the ratio of the cooling to the heating time attains a minimum value. The transition is found to be rather sharp and gives rise to outwards-oriented motions of very hot plasma that enlarges the combined Compton-Synchrotron cooling regions considerably. While the disk-torus configuration obtained depends weakly on whether the flow is a one or two-temperature plasma, one-temperature tori are hotter and fill larger volumes than their two-temperature counterparts.

  12. Modelling the internal structure of Ceres: Coupling of accretion with compaction by creep and implications for the water-rock differentiation

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2015-12-01

    Aims: We model the compaction of a Ceres-like body that accretes from the protoplanetary dust as a porous aggregate. To do this, we use a comprehensive numerical model in which the accretion starts with a km-size seed and the final radius reaches ≈500 km. Our goal is to investigate the interplay of accretion and loss of porosity by hot pressing. We draw conclusions for the evolution of the porosity profile and the present-day porosity distribution on Ceres. In particular, we test the hypothesis that Ceres' low density can be explained by a porous interior instead of by the presence of ice, and whether compaction occurs due to creep or due to dehydration of hydrated minerals. Methods: We extended our thermal evolution model from previous studies to model compaction of an accreting asteroid that is initially porous. We considered two different compositions of Ceres suggested by other workers. The porosity change was calculated according to the thermally activated creep flow. Depending on the composition, parameters relevant for compaction were changed self-consistently with the mineral phases. Results: We find that compaction of initially porous Ceres is dominated by creep and only slightly perturbed by the dehydration. In particular, dehydration alone cannot lead to compaction because creep can occur before the dehydration. Depending on the accretion duration, timing of the compaction varies from between a few million years and more than one billion years. Thereby, late accretion cannot prevent compaction to an average porosity of <2.5%. We provide the evolution as well as the present-day porosity and temperature profiles for Ceres. The temperature allows for the existence of liquid water in the interior of Ceres at a depths of ≥5-33 km. Depending on the composition, either iron melt is produced regardless of the accretion timing or only for an accretion within the first 4 Ma relative to calcium-aluminium-rich inclusions. This argues for a small metallic core.

  13. Accreting pre-main-sequence models and abundance anomalies in globular clusters

    NASA Astrophysics Data System (ADS)

    Tognelli, E.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2015-12-01

    We investigated the possibility of producing helium-enhanced stars in globular clusters by accreting polluted matter during the pre-main-sequence phase. We followed the evolution of two different classes of pre-main-sequence accreting models, one which neglects and the other that takes into account the protostellar evolution. We analysed the dependence of the final central helium abundance, of the tracks position in the HR diagram and of the surface lithium abundance evolution on the age at which the accretion of polluted material begins and on the main physical parameters that govern the protostellar evolution. The later is the beginning of the late accretion and the lower are both the central helium and the surface lithium abundances at the end of the accretion phase and in Zero Age Main Sequence (ZAMS). In order to produce a relevant increase of the central helium content the accretion of polluted matter should start at ages lower than 1 Myr. The inclusion of the protostellar evolution has a strong impact on the ZAMS models too. The adoption of a very low seed mass (i.e. 0.001 M⊙) results in models with the lowest central helium and surface lithium abundances. The higher is the accretion rate and the lower is the final helium content in the core and the residual surface lithium. In the worst case - i.e. seed mass 0.001 M⊙ and accretion rate ≥10-5 M⊙ yr-1 - the central helium is not increased at all and the surface lithium is fully depleted in the first few million years.

  14. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  15. Modelling accretion disc and stellar wind interactions: the case of Sgr A*

    PubMed Central

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin–Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼108 cm s−1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 1033 erg s−1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot{M}_{\\rm w}= 10^{-7} \\,\\mathrm{M}_{\\odot }\\, {\\rm yr}^{-1}$\\end{document}, nd = 105 cm−3, and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole. PMID:27279781

  16. Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku

    NASA Technical Reports Server (NTRS)

    Brenneman, L. W.; Weaver, K. A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus,A.; Kovalev, Y. Y.; Aller, M.; Aller, H.; Irwin, J.; Kerp, J.; Kaufmann, S.

    2008-01-01

    We present an analysis of the 101 ks, 2007 Suzaku spectrum of the LINER galaxy NGC 1052. The 0:3..10 keV continuum is well-modeled by a power-law continuum modified by Galactic and intrinsic absorption, and exhibits a soft, thermal emission component below 1 keV. Both a narrow core and a broader component of Fe-Ka emission are robustly detected at 6:4 keV. While the narrow line is consistent with an origin in material distant from the black hole, the broad line is best fit empirically by a model that describes fluorescent emission from the inner accretion disk around a rapidly rotating black hole. We find no direct evidence for Comptonized reflection of the hard X-ray source by the disk above 10 keV, however, which casts doubt on the hypothesis that the broad iron line is produced in a standard accretion disk. We explore other possible scenarios for producing this spectral feature and conclude that the high equivalent width and full width half maximum velocity of the broad iron line (v greater than or equals 0:37c) necessitate an origin within d approx. 8r(sub g) of the hard X-ray source. Based on the confirmed presence of a strong radio jet in this source, the broad iron line may be produced in dense plasma at the base of the jet, implying that emission mechanisms in the central-most portions of active galactic nuclei are more complex than previously thought.

  17. Ice Accretion Modeling using an Eulerian Approach for Droplet Impingement

    NASA Technical Reports Server (NTRS)

    Kim, Joe Woong; Garza, Dennis P.; Sankar, Lakshmi N.; Kreeger, Richard E.

    2012-01-01

    A three-dimensional Eulerian analysis has been developed for modeling droplet impingement on lifting bodes. The Eulerian model solves the conservation equations of mass and momentum to obtain the droplet flow field properties on the same mesh used in CFD simulations. For complex configurations such as a full rotorcraft, the Eulerian approach is more efficient because the Lagrangian approach would require a significant amount of seeding for accurate estimates of collection efficiency. Simulations are done for various benchmark cases such as NACA0012 airfoil, MS317 airfoil and oscillating SC2110 airfoil to illustrate its use. The present results are compared with results from the Lagrangian approach used in an industry standard analysis called LEWICE.

  18. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-09-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}}˜ 10^{2-3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  19. Compressible turbulent flows: Modeling and similarity considerations

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1991-01-01

    With the recent revitalization of high speed flow research, compressibility presents a new set of challenging problems to turbulence researchers. Questions arise as to what extent compressibility affects turbulence dynamics, structures, the Reynolds stress-mean velocity (constitutive) relation, and the accompanying processes of heat transfer and mixing. In astrophysical applications, compressible turbulence is believed to play an important role in intergalactic gas cloud dynamics and in accretion disk convection. Understanding and modeling of the compressibility effects in free shear flows, boundary layers, and boundary layer/shock interactions is discussed.

  20. Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Fragile, P. Chris

    2013-07-01

    High-resolution, multiwavelength and time-domain observations of the Galactic Centre black hole candidate, Sgr A*, allow for a direct test of contemporary accretion theory. Most models assume alignment between the accretion disc and black hole angular momentum axes, but this is not necessarily the case for geometrically thick accretion flows like that on to Sgr A*. Instead, we calculate images and spectra from a set of numerical simulations of accretion flows misaligned (`tilted') by 15° from the black hole spin axis and compare them with millimetre (mm) to near-infrared (NIR) observations. Non-axisymmetric standing shocks from eccentric fluid orbits dominate the emission, leading to a wide range of possible image morphologies. The strong effects of disc tilt lead to poorly constrained model parameters. These results suggest that previous parameter estimates from fitting aligned models, including estimates of the dimensionless black hole spin, likely only apply for small values of spin or tilt (upper limits of a < 0.3 or β < 15°). At 1.3 mm, the black hole images have crescent morphologies as in the aligned case, and the black hole shadow may still be accessible to future very long baseline interferometry (mm-VLBI) observations. Shock heating leads to multiple populations of electrons, some at high energies (Te > 1012 K). These electrons can naturally produce the observed NIR flux, spectral index and rapid variability (`flaring'). This NIR emission is uncorrelated with that in the mm, which also agrees with observations. These are the first numerical models to explain the time-variable mm to NIR emission of Sgr A*. Predictions of the model include significant structural changes observable with mm-VLBI on both the dynamical (hour) and Lense-Thirring precession (day-year) time-scales, and ≃ 30-50 μas changes in centroid position from extreme gravitational lensing events during NIR flares, detectable with the future VLT instrument GRAVITY. We further predict

  1. Accreting white dwarf models for type 1 supernovae. 1: Presupernova evolution and triggering mechanisms

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.

  2. Probing the effects of a thermonuclear X-ray burst on the neutron star accretion flow with NuSTAR

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Koljonen, K. I. I.; Chakrabarty, D.; Kara, E.; Altamirano, D.; Miller, J. M.; Fabian, A. C.

    2016-03-01

    Observational evidence has been accumulating that thermonuclear X-ray bursts ignited on the surface of neutron stars influence the surrounding accretion flow. Here, we exploit the excellent sensitivity of NuSTAR up to 79 keV to analyse the impact of an X-ray burst on the accretion emission of the neutron star LMXB 4U 1608-52. The ≃200 s long X-ray burst occurred during a hard X-ray spectral state, and had a peak intensity of ≃30-50 per cent of the Eddington limit with no signs of photospheric radius expansion. Spectral analysis suggests that the accretion emission was enhanced up to a factor of ≃5 during the X-ray burst. We also applied a linear unsupervised decomposition method, namely non-negative matrix factorization (NMF), to study this X-ray burst. We find that the NMF performs well in characterizing the evolution of the burst emission and is a promising technique to study changes in the underlying accretion emission in more detail than is possible through conventional spectral fitting. For the burst of 4U 1608-52, the NMF suggests a possible softening of the accretion spectrum during the X-ray burst, which could potentially be ascribed to cooling of a corona. Finally, we report a small (≃3 per cent) but significant rise in the accretion emission ≃0.5 h before the X-ray burst, although it is unclear whether this was related to the X-ray burst ignition.

  3. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    SciTech Connect

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei E-mail: lew@gxu.edu.cn

    2014-07-10

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number P{sub m}=η/ν∼1. The maximal BZ jet power can be ∼10{sup 53}-10{sup 54} erg s{sup –1} for an extreme Kerr black hole, if an external magnetic field with 10{sup 14} Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  4. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  5. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  6. Thermodynamic model of MHD turbulence and some of its applications to accretion disks

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2008-06-01

    Within the framework of the main problem of cosmogony related to the reconstruction of the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence, we have derived a closed system of magnetohydrodynamic equations for the scale of mean motion in the approximation of single-fluid magnetohydrodynamics designed to model the shear and convective turbulent flows of electrically conducting media in the presence of a magnetic field. These equations are designed for schematized formulations and the numerical solution of special problems to interconsistently model intense turbulent flows of cosmic plasma in accretion disks and associated coronas, in which the magnetic field noticeably affects the dynamics of astrophysical processes. In developing the model of a conducting turbulized medium, apart from the conventional probability-theoretical averaging of the MHD equations, we systematically use the weighted Favre averaging. The latter allows us to considerably simplify the writing of the averaged equations of motion for a compressible fluid and the analysis of the mechanisms of macroscopic field amplification by turbulent flows. To clearly interpret the individual components of the plasma and field-energy balance, we derive various energy equations that allow us to trace the possible energy conversions from one form into another, in particular, to understand the transfer mechanisms of the gravitational and kinetic energies of the mean motion into magnetic energy. Special emphasis is placed on the method for obtaining the closure relations for the total (with allowance made for the magnetic field) kinetic turbulent stress tensor in an electrically conducting medium and the turbulent electromotive force (or the so-called magnetic Reynolds tensor). This method also makes it possible to analyze the constraints imposed on the turbulent transport coefficients by the entropy growth condition. As applied to the problem of

  7. Accretion Flow Dynamics of MAXI J1659-152 from the Spectral Evolution Study of its 2010 Outburst using the TCAF Solution

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.; Mondal, Santanu

    2015-04-01

    Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti-Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shock location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.

  8. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  9. A new model for the X-ray continuum of the magnetized accreting pulsars

    NASA Astrophysics Data System (ADS)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  10. Broad bounds on Earth's accretion and core formation constrained by geochemical models

    NASA Astrophysics Data System (ADS)

    Rudge, John F.; Kleine, Thorsten; Bourdon, Bernard

    2010-06-01

    The Earth formed through the accretion of numerous planetary embryos that were already differentiated into a metallic core and silicate mantle. Prevailing models of Earth's formation, constrained by the observed abundances of metal-loving siderophile elements in Earth's mantle, assume full metal-silicate equilibrium, whereby all memory of the planetary embryos' earlier differentiation is lost. Using the hafnium-tungsten (Hf-W) and uranium-lead (U-Pb) isotopic dating systems, these models suggest rapid accretion of Earth's main mass within about 10 million years (Myr) of the formation of the Solar System. Accretion terminated about 30 or 100 Myr after formation of the Solar System, owing to a giant impact that formed the Moon. Here we present geochemical models of Earth's accretion that preserve some memory of the embryos' original differentiation. These disequilibrium models allow some fraction of the embryos' metallic cores to directly enter the Earth's core, without equilibrating with Earth's mantle. We show that disequilibrium models are as compatible with the geochemical observations as equilibrium models, yet still provide bounds on Earth's accretion and core formation. We find that the Hf-W data mainly constrain the degree of equilibration rather than the timing, whereas the U-Pb data confirm that the end of accretion is consistent with recent estimates of the age of the Moon. Our results indicate that only 36% of the Earth's core must have formed in equilibrium with Earth's mantle. This low degree of equilibration is consistent with the siderophile element abundances in Earth's mantle.

  11. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  12. Accretion of rotating fluids by barytropes - Numerical results for white-dwarf models

    NASA Technical Reports Server (NTRS)

    Durisen, R. H.

    1977-01-01

    Numerical sequences of rotating axisymmetric nonmagnetic equilibrium models are constructed which represent the evolution of a barytropic star as it accretes material from a rotating medium. Two accretion geometries are considered - one approximating accretion from a rotating cloud and the other, accretion from a Keplerian disk. It is assumed that some process, such as Ekman spin-up or nonequilibrium oscillations, maintains nearly constant angular velocity along cylinders about the rotation axis. Transport of angular momentum in the cylindrically radial direction by viscosity is included. Fluid instabilities and other physical processes leading to enhancement of this transport are discussed. Particular application is made to zero-temperature white-dwarf models, using the degenerate electron equation of state. An initially nonrotating 0.566-solar-mass white dwarf is followed during the accretion of more than one solar mass of material. Applications to degenerate stellar cores, to mass-transfer binary systems containing white dwarfs, such as novae and dwarf novae, to Type I supernovae, and to galactic X-ray sources are considered.

  13. Fundamental Aspects of Episodic Accretion Chemistry Explored with Single-point Models

    NASA Astrophysics Data System (ADS)

    Visser, Ruud; Bergin, Edwin A.

    2012-07-01

    We explore a set of single-point chemical models to study the fundamental chemical aspects of episodic accretion in low-mass embedded protostars. Our goal is twofold: (1) to understand how the repeated heating and cooling of the envelope affects the abundances of CO and related species; and (2) to identify chemical tracers that can be used as a novel probe of the timescales and other physical aspects of episodic accretion. We develop a set of single-point models that serve as a general prescription for how the chemical composition of a protostellar envelope is altered by episodic accretion. The main effect of each accretion burst is to drive CO ice off the grains in part of the envelope. The duration of the subsequent quiescent stage (before the next burst hits) is similar to or shorter than the freeze-out timescale of CO, allowing the chemical effects of a burst to linger long after the burst has ended. We predict that the resulting excess of gas-phase CO can be observed with single-dish or interferometer facilities as evidence of an accretion burst in the past 103-104 yr.

  14. FUNDAMENTAL ASPECTS OF EPISODIC ACCRETION CHEMISTRY EXPLORED WITH SINGLE-POINT MODELS

    SciTech Connect

    Visser, Ruud; Bergin, Edwin A.

    2012-07-20

    We explore a set of single-point chemical models to study the fundamental chemical aspects of episodic accretion in low-mass embedded protostars. Our goal is twofold: (1) to understand how the repeated heating and cooling of the envelope affects the abundances of CO and related species; and (2) to identify chemical tracers that can be used as a novel probe of the timescales and other physical aspects of episodic accretion. We develop a set of single-point models that serve as a general prescription for how the chemical composition of a protostellar envelope is altered by episodic accretion. The main effect of each accretion burst is to drive CO ice off the grains in part of the envelope. The duration of the subsequent quiescent stage (before the next burst hits) is similar to or shorter than the freeze-out timescale of CO, allowing the chemical effects of a burst to linger long after the burst has ended. We predict that the resulting excess of gas-phase CO can be observed with single-dish or interferometer facilities as evidence of an accretion burst in the past 10{sup 3}-10{sup 4} yr.

  15. Controls on the Geometry of Accretion Reflectors

    NASA Astrophysics Data System (ADS)

    Wolovick, M.; Bell, R. E.; Buck, W. R.; Creyts, T. T.

    2012-12-01

    Basal accretion occurs when meltwater refreezes onto the base of an ice sheet. Thick packages (900-1100m) of accretion ice are identified in radio-echo sounding data as plume-shaped reflectors above the basal reflector and below isochronous layers of meteoric ice. Accretion reflectors have been imaged in both Antarctica and Greenland rising to a height of 1/3-1/2 of the ice sheet thickness and extending in the flow direction as far as 100 km. Here we use a two-dimensional thermomechanical higher order flowline model coupled to a basal hydrology model to investigate the freezing rates and energy budgets of basal accretion processes. Simple order-of-magnitude estimates for the freezing rate based on the observed height of the reflectors and the assumption that all ice under the observed reflector consists of accretion ice indicate very large freezing rates, on the order of 10-100 cm/yr. We test two end-member possibilities for the formation of the basal accretion bodies: high accretion rates and complex basal deformation. The first possibility is that the freezing rates are very large. The second possibility is that the ice under the observed reflector is a mixture of accreted and meteoric ice. If the ice below the accretion reflector is a mixture, the freezing rates can be much smaller than the simple estimates. If the freezing rates are small, then complex basal deformation must be invoked to cause accretion ice to override meteoric ice to a height of 1/3-1/2 the ice thickness. In the basal deformation case, low freezing rates predict a maximum thickness of 100-200m of accretion ice. The remaining ice beneath the reflector will be deformed meteoric ice. Both cases make testable predictions. If the accretion rates are very high and supercooling is the dominant process, accretion cannot use up all of the subglacial water. In this high rate scenario there will be water at the melting point exiting the accretion site. Alternatively if the accretion is part of a complex

  16. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  17. Orbital Circularization of a Planet Accreting Disk Gas: The Formation of Distant Jupiters in Circular Orbits Based on a Core Accretion Model

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru

    2014-12-01

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ~ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at <~ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ~10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  18. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    SciTech Connect

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru E-mail: higuchia@geo.titech.ac.jp

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  19. Accretion disk models for QSOs and active galactic nuclei - The role of magnetic viscosity

    NASA Technical Reports Server (NTRS)

    Sakimoto, P. J.; Coroniti, F. V.

    1981-01-01

    The inner regions of standard accretion disk models are known to be thermally unstable, and when scaled to quasar black hole masses, optically thin. Alternative accretion disk models are constructed under the assumption of a purely magnetic viscosity in the limiting cases of equipartition of gas and magnetic pressures and global flux conservation. The inner regions of these models are considerably denser than the standard model and therefore remain optically thick in all regions. The equipartition model is thermally stable throughout, while flux conservation leads to a localized thermal instability at the gas pressure/radiation pressure boundary and marginal stability as the radial distance approaches zero. The outer regions of quasar scaled accretion disks are strongly self-gravitating, leading to a vertical scale height which is smaller than that found in the inner region. Most of the outer region is gravitationally unstable, implying that the outer parts of galactic nuclei accretion disks are populated by dense self-gravitating gas clouds or possibly by stars.

  20. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  1. Are BL Lac-type objects nearby black holes. [gas accretion model

    NASA Technical Reports Server (NTRS)

    Shapiro, S. L.; Elliot, J. L.

    1974-01-01

    It is pointed out that isolated black holes accreting interstellar gas can account for the characteristic properties of the Lacertids. Emission spectra for various interstellar gas densities and black hole masses are compared with the data plotted by Strittmatter et al. (1972) for the BL Lac-type objects. Rough estimates indicate that there may indeed be a finite number of stellar-mass black holes close to the earth as required by the theory. If it is determined that the BL Lac-type objects lie outside of the galactic disk a black hole accretion model may still apply if certain conditions are satisfied.

  2. Properties of the propagating shock wave in the accretion flow around GX 339-4 in the 2010 outburst

    NASA Astrophysics Data System (ADS)

    Debnath, D.; Chakrabarti, S. K.; Nandi, A.

    2010-09-01

    Context. The black hole candidate GX 339-4 exhibited an X-ray outburst in January 2010, which is still continuing. We here discuss the timing and the spectral properties of the outburst using RXTE data. Aims: Our goal is to study the timing and spectral properties of GX 339-4 using its recent outburst data and extract information about the nature of the accretion flow. Methods: We use RXTE archival data of the recent GX 339-4 outburst and analyze them with the NASA HEAsoft package, version 6.8. We then compare the observed quasi-periodic oscillation (QPO) frequencies with those from existing shock oscillation model and obtain the nature of evolution of the shock locations during the outburst. Results: We found that the QPO frequencies are monotonically increasing from 0.102 Hz to 5.69 Hz within a period of ~26 days. We explain this evolution with the propagating oscillatory shock (POS) solution and find the variation of the initial and final shock locations and strengths. The model fits also give the velocity of the propagating shock wave, which is responsible for the generation of QPOs and their evolutions, at ~10 m s-1. We observe from the spectra that up to 2010 April 10, the object was in a hard state. After that, it went to the hard-intermediate state. On April 18, it had a state transition and went to the soft-intermediate state. On May 15, another state transition was observed and the source moved to the soft state. Conclusions: As in the previously fitted outburst sources, this source also showed the tendency of a rapidly increasing QPO frequency (ν_QPO) on a viscous time scale, which can be modeled quite accurately. In this case, the shock seems to have disappeared at about ~172 Schwarzschild radii, unlike in the 2005 outburst of GRO J1655-40, where the shock disappeared behind the horizon.

  3. Accretion onto magnetized neutron stars - Structure and interchange instability of a model magnetosphere

    NASA Technical Reports Server (NTRS)

    Arons, J.; Lea, S. M.

    1976-01-01

    A self-consistent model is analyzed for the spherical infall of weakly magnetized plasma into the magnetosphere of a slowly rotating, strongly magnetized neutron star. It is shown that spherical infall is probably a good approximation for X-ray sources which accrete from a stellar wind. The location of the standoff shock which halts the hypersonic infall is estimated along with the emission from the shocked layer. The location of the equilibrium magnetopause and the structure of the magnetic field within it are calculated; it is found that the magnetic poles are true cusps and that the entry of gas due to equilibrium flow across a cusp is almost certainly dominated by the interchange instability near the magnetic equator. The energy principle is applied to derive necessary conditions for the occurrence of this instability. The results indicate that the strong magnetic-pressure gradient stabilizes the gas unless moderately strong radiative cooling takes place and that the cooled plasma enters the magnetosphere as long filaments capable of moving between field lines. The rate at which the equilibrium magnetopause can 'absorb' mass and momentum is derived, the validity of the approximations employed is discussed, and the likely evolution of the sinking filaments is outlined to show that the spatial distribution of the plasma is determined mainly by the dynamics and thermodynamics of the filaments rather than the magnetic-field structure.

  4. Modeling blood flow heterogeneity.

    PubMed

    King, R B; Raymond, G M; Bassingthwaighte, J B

    1996-01-01

    It has been known for some time that regional blood flows within an organ are not uniform. Useful measures of heterogeneity of regional blood flows are the standard deviation and coefficient of variation or relative dispersion of the probability density function (PDF) of regional flows obtained from the regional concentrations of tracers that are deposited in proportion to blood flow. When a mathematical model is used to analyze dilution curves after tracer solute administration, for many solutes it is important to account for flow heterogeneity and the wide range of transit times through multiple pathways in parallel. Failure to do so leads to bias in the estimates of volumes of distribution and membrane conductances. Since in practice the number of paths used should be relatively small, the analysis is sensitive to the choice of the individual elements used to approximate the distribution of flows or transit times. Presented here is a method for modeling heterogeneous flow through an organ using a scheme that covers both the high flow and long transit time extremes of the flow distribution. With this method, numerical experiments are performed to determine the errors made in estimating parameters when flow heterogeneity is ignored, in both the absence and presence of noise. The magnitude of the errors in the estimates depends upon the system parameters, the amount of flow heterogeneity present, and whether the shape of the input function is known. In some cases, some parameters may be estimated to within 10% when heterogeneity is ignored (homogeneous model), but errors of 15-20% may result, even when the level of heterogeneity is modest. In repeated trials in the presence of 5% noise, the mean of the estimates was always closer to the true value with the heterogeneous model than when heterogeneity was ignored, but the distributions of the estimates from the homogeneous and heterogeneous models overlapped for some parameters when outflow dilution curves were

  5. Model dependence of the multi-transonic behaviour, stability properties and the corresponding acoustic geometry for accretion onto rotating black holes

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Sen, Sharmistha; Nag, Sankhasubhra; Raychowdhury, Suparna; Das, Tapas K.

    2016-02-01

    Stationary, multi-transonic, integral solutions of hydrodynamic axisymmetric accretion onto a rotating black hole have been compared for different geometrical configurations of the associated accretion disc structures described using the polytropic as well as the isothermal equations of state. Such analysis is performed for accretion under the influence of generalised post Newtonian pseudo Kerr black hole potential. The variations of the stationary shock characteristics with black hole spin have been studied in details for all the disc models and are compared for the flow characterised by the two aforementioned equations of state. Using a novel linear perturbation technique it has been demonstrated that the aforementioned stationary solutions are stable, at least upto an astrophysically relevant time scale. It has been demonstrated that the emergence of the horizon related gravity like phenomena (the analogue gravity effects) is a natural consequence of such stability analysis, and the corresponding acoustic geometry embedded within the transonic accretion can be constructed for the propagation of the linear acoustic perturbation of the mass accretion rate. The analytical expression for the associated sonic surface gravity κ has been obtained self consistently. The variations of κ with the black hole spin parameter for all different geometric configurations of matter and for various thermodynamic equations of state have been demonstrated.

  6. Ice Accretion Prediction for a Typical Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bidwell, C. S.

    1993-01-01

    Ice accretion calculations were made for a modern commercial transport using the NASA Lewis LEWICE3D ice accretion code. The ice accretion calculations were made for the wing and horizontal tail using both isolated flow models and flow models incorporating the entire airplane. The isolated flow model calculations were made to assess the validity of using these simplified models in lieu of the entire model in the ice accretion analysis of full aircraft. Ice shapes typifying a rime and a mixed ice shape were generated for a 30 minute hold condition. In general, the calculated ice shapes looked reasonable and appeared representative of a rime and a mixed ice conditions. The isolated flow model simplification was good for the main wing except at the root where it overpredicted the amount of accreted ice relative to the full aircraft flow model. For the horizontal tail the size and amount of predicted ice compared well for the two flow models, but the position of the accretions were more towards the upper surface for the aircraft flow model relative to the isolated flow model. This was attributed to downwash from the main wing which resulted in a lower effective angle of attack for the aircraft tail.

  7. Ice accretion prediction for a typical commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bidwell, C. S.

    1993-01-01

    Ice accretion calculations were made for a modern commercial transport using the NASA Lewis LEWICE3D ice accretion code. The ice accretion calculations were made for the wing and horizonal tail using both isolated flow models and flow models incorporating the entire airplane. The isolated flow model calculations were made to assess the validity of using these simplified models in lieu of the entire model in the ice accretion analysis for full aircraft. Ice shapes typifying a rime and a mixed ice shape were generated for a 30 minute hold condition. In general, the calculated ice shapes looked reasonable and appeared representative of a rime and a mixed ice conditions. The isolated flow model simplification was good for the main wing except at the root where it overpredicted the amount of accreted ice relative to the full aircraft flow model. For the horizontal tail the size and amount of predicted ice compared well for the two flow models, but the position of the accretions were more towards the upper surface for the aircraft flow model relative to the isolated flow model. This was attributed to downwash from the main wing which resulted in a lower effective angle of attack for the aircraft tail.

  8. Tomography of Accretion Flows in Binary Stars and Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Livio, Mario

    2001-01-01

    Under this project, a variety of accretion problems have been studied, with two in particular. In the first, astrophysical jets are observed in many objects ranging from young stars to Active Galactic Nuclei. A major unsolved problem is how do these jets originate from accretion disks. In a series of works, I have examined the launching of outflows from magnetized disks, the extraction of energy from black holes, and the formation of jets in systems like Cataclysmic Variables and supermassive accreting black holes. The results of these works were published in a number of papers. In the second, I examined the potential role of vortices in accretion disks around Young Stellar Objects, for the formation of planets and for angular momentum transport. I showed that vortices are surprisingly stable, and that they are able to concentrate dust in their cores. I also examined the development of spiral shocks in disks. Finally, I studied the evolution of magnetically layered protoplanetary disks, and showed that they exhibit outbursts which could 'pump' the jets that are observed in Herbig-Haro objects. The results of these works were published in a number of papers as well. Additional information on the published papers is contained in the original abstract.

  9. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. I. COMPRESSION-DRIVEN INSTABILITIES AND THE ELECTRON HEATING MECHANISM

    SciTech Connect

    Sironi, Lorenzo; Narayan, Ramesh E-mail: rnarayan@cfa.harvard.edu

    2015-02-20

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P {sub ∥} because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β{sub 0i} ∼ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T {sub 0e}/T {sub 0i} ≳ 0.2, whereas for T {sub 0e}/T {sub 0i} ≲ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β{sub 0e} ≲ 2 m{sub e} /m{sub i} , where β{sub 0e} is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β{sub 0e} ≳ 2 m{sub e} /m{sub i}

  10. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-driven Instabilities and the Electron Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Narayan, Ramesh

    2015-02-01

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of

  11. Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Shah, Gautam H.; Murphy, Patrick C.

    2012-01-01

    An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5 percent scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from alpha = -5deg to 85deg and beta = -45 deg to 45 deg at a Reynolds number of 0.24 x10(exp 6) and Mach number of 0.06. The 3.5 percent scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5 percent scale GTM. The addition of the large, glaze-horn type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and pitching moment. The lateral-directional characteristics showed mixed results with a small effect of the ice shapes observed in some cases. The flow visualization images revealed the presence and evolution of a spanwise-running vortex on the wing that was the dominant feature of the flowfield for both clean and iced configurations. The lack of ice-induced performance and flowfield effects observed in this effort was likely due to Reynolds number effects for the clean configuration. Estimates of full-scale baseline performance were included in this analysis to illustrate the potential icing effects.

  12. BONDI-HOYLE-LYTTLETON ACCRETION ONTO A PROTOPLANETARY DISK

    SciTech Connect

    Moeckel, Nickolas; Throop, Henry B.

    2009-12-10

    Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star's birth and the dispersal of the cluster's gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this 'tail-end' accretion for planet formation was recently highlighted by Throop and Bally. While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttleton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper, we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such that outer disk migrates inward, increasing the inner disk surface density and reducing the outer radius. The accretion flow also triggers the development of spiral density features, and changes to the disk inclination. The mean accretion rate onto the star remains roughly the same with and without the presence of a disk. We discuss the potential impact of this process on planet formation, including the possibility of triggered gravitational instability, inclination differences between the disk and the star, and the appearance of spiral structure in a gravitationally stable system.

  13. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Walton, Dominic J.; Fabian, Andrew; Roberts, Timothy P.; Heil, Lucy; Pinto, Ciro; Anderson, Gemma; Sutton, Andrew

    2015-12-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or emission and potentially broadened by velocity dispersion could therefore hold the key to understanding much about these enigmatic sources. Here we show for the first time that such residuals are seen in several sources and appear extremely similar in shape, implying a common origin. Via simple arguments we assert that emission from extreme colliding winds, absorption in a shell of material associated with the ULX nebula and thermal plasma emission associated with star formation are all highly unlikely to provide an origin. Whilst CCD spectra lack the energy resolution necessary to directly determine the nature of the features (i.e. formed of a complex of narrow lines or intrinsically broad lines), studying the evolution of the residuals with underlying spectral shape allows for an important, indirect test for their origin. The ULX NGC 1313 X-1 provides the best opportunity to perform such a test due to the dynamic range in spectral hardness provided by archival observations. We show through highly simplified spectral modelling that the strength of the features (in either absorption or emission) appears to anticorrelate with spectral hardness, which would rule out an origin via reflection of a primary continuum and instead supports a picture of atomic transitions in a wind or nearby material associated with such an outflow.

  14. Groundwater Flow Model for Taos, New Mexico

    NASA Astrophysics Data System (ADS)

    Burck, P. W.; Barroll, P. W.; Core, A. B.; Rappuhn, D.

    2003-12-01

    The New Mexico Office of the State Engineer - Hydrology Bureau (OSE) has developed a regional groundwater flow model for Taos, New Mexico. The MODFLOW 2000 model will serve as a tool to evaluate alternatives in settlement negotiations in an on-going water rights adjudication. If current settlement negotiations fail, it is conceivable that the model might be used in support of litigation. OSE produced the model in cooperation with technical representatives of the various parties to the adjudication. Regional hydrogeologic data including well records, aquifer test results, stream flow measurements and seepage studies have been shared relatively freely among the parties. A recent deep drilling program conducted in conjunction with the negotiation effort has added substantially to the hydrogeologic data set. Among the hydrologic processes simulated by the model are mountain front recharge; areal recharge from precipitation; evapotranspiration; discharge from springs; river and stream flow; accretions to groundwater from irrigation return flow, seepage from acequias, canals, and ditches, and deep percolation; and pumping by municipal entities and mutual domestic water users associations. The resulting model files are available for all parties to review and evaluate. Comments are assessed and many have resulted in significant improvements to the model. At this stage, however, it is unclear whether adopting this cooperative approach will increase the likelihood of model acceptance by the parties.

  15. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Hewett, Robert; Calvet, Nuria

    1994-01-01

    We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

  16. Constraints on black hole spins with a general relativistic accretion disk corona model

    NASA Astrophysics Data System (ADS)

    You, Bei; Cao, Xin-Wu; Yuan, Ye-Fei

    2016-04-01

    The peaks in the spectra of the accretion disks surrounding massive black holes in quasars are in the far-UV or soft X-ray band, which are usually not observed. However, in the disk corona model, soft photons from the disk are Comptonized to high energy in the hot corona, and the hard X-ray spectra (luminosity and spectral shape) contain information on the incident spectra from the disk. The values of black hole spin parameter a* are inferred from the spectral fitting, which are spread over a large range, ∼ ‑0.94 to 0.998. We find that the inclination angles and mass accretion rates are well determined by the spectral fitting, but the results are sensitive to the accuracy of black hole mass estimates. No tight constraints on the black hole spins are achieved, if the uncertainties in black hole mass measurements are a factor of four, which are typical for the single-epoch reverberation mapping method. Recently, the accuracy of black hole mass measurement has been significantly improved to 0.2 – 0.4 dex with the velocity resolved reverberation mapping method. The black hole spin can be well constrained if the mass measurement accuracy is ≲ 50%. In the accretion disk corona scenario, a fraction of power dissipated in the disk is transported into the corona, and therefore the accretion disk is thinner than a bare disk for the same mass accretion rate, because the radiation pressure in the disk is reduced. We find that the thin disk approximation, H/R ≲ 0.1, is still valid if 0.3 < ṁ < 0.5, provided half of the dissipated power is radiated in the corona above the disk.

  17. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  18. Tidal marsh accretion processes in the San Francisco Bay-Delta - are our models underestimating the historic and future importance of plant-mediated organic accretion?

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Drexler, J. Z.; Byrd, K. B.; Schile, L. M.

    2012-12-01

    as well as titanium, iron, potassium and manganese. It remains unclear whether the hydrologic conditions associated with mineral inputs or the mineral inputs themselves promote decomposition and favor the accumulation of mineral fractions at the expense of organic fractions. As suspended sediment concentrations are currently decreasing in the SFBay-Delta, organic accretion may be enhanced or at least required for sustaining marsh elevations. These data suggest that a) potential organic accretion may be underestimated during calibration of peat accretion models with recent mineral-rich watershed conditions, and b) plant physiology and biochemistry are significant factors in the future and historic development of coastal peatlands.

  19. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2016-02-01

    Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of

  20. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES

    SciTech Connect

    Garcia, J.; Kallman, T. R. E-mail: timothy.r.kallman@nasa.go

    2010-08-01

    We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent K{alpha} line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  1. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    NASA Technical Reports Server (NTRS)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  2. Graduate Design Education: The Case for an Accretive Model

    ERIC Educational Resources Information Center

    Walliss, Jillian; Greig, Joan

    2009-01-01

    In 2008 the University of Melbourne began implementation of the Melbourne Model, its new vision for higher education in Australia. Six broad undergraduate university degrees have been introduced and graduate schools created. Students may now progress from an undergraduate generalist degree, with major, to a professional Masters. Alternatively,…

  3. Detached-Eddy Simulations of Separated Flow Around Wings With Ice Accretions: Year One Report

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Technical Monitor); Thompson, David; Mogili, Prasad

    2004-01-01

    A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code, a public domain flow solver, was employed to compute solutions for an iced wing configuration using DES and steady Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The configuration was an extruded GLC305/944-ice shape section with a rectangular planform. The model was mounted between two walls so no tip effects were considered. The numerical results were validated by comparison with experimental data for the same configuration. The time-averaged DES computations showed some improvement in lift and drag results near stall when compared to steady RANS results. However, comparisons of the flow field details did not show the level of agreement suggested by the integrated quantities. Based on our results, we believe that DES may prove useful in a limited sense to provide analysis of iced wing configurations when there is significant flow separation, e.g., near stall, where steady RANS computations are demonstrably ineffective. However, more validation is needed to determine what role DES can play as part of an overall icing effects prediction strategy. We conclude the report with an assessment of existing computational tools for application to the iced wing problem and a discussion of issues that merit further study.

  4. Accretion of Ghost Condensate by Black Holes

    SciTech Connect

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  5. Magnetohydrodynamic Numerical Simulation of Wind Production from Hot Accretion Flows around Black Holes at Very Large Radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yuan, Feng; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-06-01

    Numerical simulations of hot accretion flows around black holes have shown the existence of strong wind. Those works focused only on the region close to the black hole and thus it is unknown whether or where the wind production stops at large radii. To address this question, we have recently performed hydrodynamic (HD) simulations by taking into account the gravitational potential of both the black hole and the nuclear star cluster. The latter is assumed to be proportional to {σ }2{ln}(r), with σ being the velocity dispersion of stars and r the distance from the center of the galaxy. It was found that when the gravity is dominated by nuclear stars, i.e., outside a radius {R}A\\equiv {{GM}}{{BH}}/{σ }2, winds can no longer be produced. That work, however, neglects the magnetic field, which is believed to play a crucial dynamical role in the accretion and thus must be taken into account. In this paper, we revisit this problem by performing magnetohydrodynamic (MHD) simulations. We confirm the result of our previous paper, namely that wind cannot be produced in the region R\\gt {R}A. Our result, combined with recent results of Yuan et al., indicates that the formula describing the mass flux of wind, {\\dot{M}}{{wind}}={\\dot{M}}{{BH}}(r/20{r}s), can only be applied to the region where the black hole potential is dominant. Here {\\dot{M}}{{BH}} is the mass accretion rate at the black hole horizon and the value of R A is similar to the Bondi radius.

  6. Accretion flow diagnostics with X-ray spectral timing: the hard state of SWIFT J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Cassatella, P.; Uttley, P.; Maccarone, T. J.

    2012-12-01

    Recent XMM-Newton studies of X-ray variability in the hard states of black hole X-ray binaries (BHXRBs) indicate that the variability is generated in the 'standard' optically thick accretion disc that is responsible for the multi-colour blackbody emission. The variability originates in the disc as mass-accretion fluctuations and propagates through the disc to 'light up' inner disc regions, eventually modulating the power-law emission that is produced relatively centrally. Both the covariance spectra and time-lags that cover the soft bands strongly support this scenario. Here, we present a comparative spectral-timing study of XMM-Newton data from the BHXRB SWIFT J1753.5-0127 in a bright 2009 hard state with that from the significantly fainter 2006 hard state to show for the first time the change in disc spectral-timing properties associated with a global increase in both the accretion rate and the relative contribution of the disc emission to the bolometric luminosity. We show that, although there is strong evidence for intrinsic disc variability in the more luminous hard state, the disc variability amplitude is suppressed relative to that of the power-law emission, which contrasts with the behaviour at lower luminosities where the disc variability is slightly enhanced when compared with the power-law variations. Furthermore, in the higher luminosity data the disc variability below 0.6 keV becomes incoherent with the power-law and higher energy disc emission at frequencies below 0.5 Hz, in contrast with the coherent variations seen in the 2006 data. We explain these differences and the associated complex lags in the 2009 data in terms of the fluctuating disc model, where the increase in accretion rate seen in 2009 leads to more pronounced and extended disc emission. If the variable signals are generated at small radii in the disc, the variability of disc emission can be naturally suppressed by the fraction of unmodulated disc emission arising from larger radii

  7. Strong constraints on a super-Eddington accretion flow: XMM-Newton observations of an intermediate-mass black hole

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Done, Chris; Ward, Martin

    2016-01-01

    RX J1140.1+0307 is a Narrow Line Seyfert 1 (NLS1) with one of the lowest black hole masses known in an AGN (M ≤ 106 M⊙). We show results from two new XMM-Newton observations, exhibiting soft 2-10 keV spectra, a strong excess at lower energies, and fast X-ray variability which is typical of this class of AGN. The soft excess can be equally well fit using either low-temperature Comptonization or highly smeared, ionized reflection models, but we additionally consider the fast X-ray variability to produce covariance, lag and coherence spectra to show that the low-temperature Comptonization model gives a better description of the break in variability properties between soft and hard X-rays. Both these models require an additional component at the softest energies, as expected from the accretion disc. However, standard disc models cannot connect this to the optical/UV emission from the outer disc unless the mass is underestimated by an order of magnitude. The variable optical and far UV emission instead suggests that L/LEdd ˜ 10 through the outer disc, in which case advection and/or wind losses are required to explain the observed broad-band spectral energy distribution. This implies that the accretion geometry close to the black hole is unlikely to be a flat disc as assumed in the recent X-ray reverberation mapping techniques.

  8. Hydromagnetic flows from accretion discs and the production of radio jets

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.; Payne, D. G.

    1982-06-01

    The possibility is examined that angular momentum is removed magnetically from an accretion disk by field lines that leave the disk surface, and is eventually carried off in a jet moving perpendicular to the disk. The mechanism is illustrated by a self-similar MHD solution, with the gas being regarded as cold and starting from rest at the equatorial plane, with the disk itself in Keplerian orbit about a black hole. It is shown that a centrifugally driven outflow of matter from the disk is possible if the poloidal component of the magnetic field makes an angle of less than 60 deg with disk surface. At large distances the outflow forms a pair of collimated, antiparallel jets, while close to the disk it is probably driven by gas pressure in a hot, magnetically dominated corona.

  9. GLOBAL SIMULATIONS OF ACCRETION DISKS. I. CONVERGENCE AND COMPARISONS WITH LOCAL MODELS

    SciTech Connect

    Sorathia, Kareem A.; Reynolds, Christopher S.; Stone, James M.; Beckwith, Kris

    2012-04-20

    Grid-based magnetohydrodynamic (MHD) simulations have proven invaluable for the study of astrophysical accretion disks. However, the fact that angular momentum transport in disks is mediated by MHD turbulence (with structure down to very small scales) raises the concern that the properties of the modeled accretion disks are affected by the finite numerical resolution of the simulation. By implementing an orbital advection algorithm into the Athena code in cylindrical geometry, we have performed a set of global (but unstratified) Newtonian disk simulations extending up to resolutions previously unattained. We study the convergence of these models as a function of spatial resolution and initial magnetic field geometry. The usual viscosity parameter ({alpha}) or the ratio of thermal-to-magnetic pressure ({beta}) is found to be a poor diagnostic of convergence, whereas the average tilt angle of the magnetic field in the (r, {phi})-plane is a very good diagnostic of convergence. We suggest that this is related to the saturation of the MHD turbulence via parasitic modes of the magnetorotational instability. Even in the case of zero-net magnetic flux, we conclude that our highest resolution simulations (with 32 zones and 64 zones per vertical scale height) have achieved convergence. Our global simulations reach resolutions comparable to those used in local, shearing-box models of MHD disk turbulence. We find that the saturation predictors derived from local simulations correspond well to the instantaneous correlations between local flux and stress found in our global simulations. However, the conservation of magnetic flux implicit in local models is not realized in our global disks. Thus, the magnetic connectivity of an accretion disk represents physics that is truly global and cannot be captured in any ab initio local model.

  10. A model of an X-ray-illuminated accretion disk and corona

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1993-01-01

    The X-ray-illuminated surface of the accretion disk in a low-mass X-ray Binary (LMXRB) and the X-ray-heated corona above the disk produce optical, UV, and soft X-ray emission lines. This paper presents 1D models of the emission line spectra and the vertical temperature and density structures at different radii. The models include a detailed treatment of the important atomic processes and an escape probability treatment of radiative transfer. Soker and Raymond (1993) use the density structure predicted by these models for a 2D Monte Carlo simulation of the photon scattering in the accretion disk corona (ADC) to examine the effects of the ADC on the angular distribution of X-rays and the flux of X-rays incident on the outer disk. This paper concentrates on the emission line fluxes for various elemental abundances and disk parameters. The UV lines of the classic LMXRBs are consistent with the model predictions. Some CNO processing is necessary to account for the nitrogen and helium abundances in Sco X-1 and other LMXRBs. Comparison of the models with observed spectra also points to a soft X-ray component with luminosity comparable to the hard X-rays. The models predict a substantial luminosity in the group of highly ionized iron lines near 100 A.

  11. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  12. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    SciTech Connect

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-12-10

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass

  13. Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion

    NASA Astrophysics Data System (ADS)

    Henke, S.; Gail, H.-P.; Trieloff, M.; Schwarz, W. H.

    2013-09-01

    We present a model of the thermal evolution of asteroids. Assuming an onion shell model for the H chondrite parent body we obtain constraints for the H chondrite asteroid parameters by fitting empirical H chondrite cooling ages of Estacado, Guareña, Kernouvé, Mt. Browne, Richardton, Allegan, Nadiabondi, Ste. Marguerite, and Forest Vale by using a genetic algorithm for parameter optimisation. The model improves previous calculations on the thermal history calculated in the instantaneous accretion approximation considering sintering and porosity dependent heat conduction. The model is extended to include a finite growth time of the parent body to study whether the meteoritic record constrains the duration of the growth phase of the parent body where it assembles most of its mass. It is found that only short accretion times of up to 0.1 Ma are compatible with the empirical data on H chondrite cooling histories. Best fit models yield excellent agreement with the cooling age data. Particularly, they indicate that (i) 26Al was the major heat source driving metamorphism, while 60Fe contributed rather marginally, (ii) maximum temperatures remained below partial melting temperatures throughout the body, indicating that no partial differentiation occurred on the H chondrite parent asteroid, (iii) the H chondrite asteroid formed 2 Ma after CAIs, briefly after most ordinary chondrite chondrules formed (if 26Al abundance defines a chronological sequence).

  14. Neutrino and Cosmic-Ray Emission and Cumulative Background from Radiatively Inefficient Accretion Flows in Low-luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Murase, Kohta; Toma, Kenji

    2015-06-01

    We study high-energy neutrino and cosmic-ray (CR) emission from the cores of low-luminosity active galactic nuclei (LLAGN). In LLAGN, the thermalization of particles is expected to be incomplete in radiatively inefficient accretion flows (RIAF), allowing the existence of non-thermal particles. In this work, assuming stochastic particle acceleration due to turbulence in RIAFs, we solve the Fokker-Planck equation and calculate spectra of escaping neutrinos and CRs. The RIAF in LLAGN can emit CR protons with ≳ 10 PeV energies and TeV-PeV neutrinos generated via pp and/or pγ reactions. We find that, if ˜1% of the accretion luminosity is carried away by non-thermal ions, the diffuse neutrino intensity from the cores of LLAGN may be as high as {E}ν 2{{Φ }}ν ˜ 3× {10}-8 {GeV} {{cm}}-2 {{s}}-1 {{sr}}-1, which can be compatible with the observed IceCube data. This result does not contradict either of the diffuse gamma-ray background observed by Fermi or observed diffuse CR flux. Our model suggests that, although very-high-energy gamma-rays may not escape, radio-quiet active galactic nuclei with RIAFs can emit GeV gamma-rays, which could be used for testing the model. We also calculate the neutron luminosity from RIAFs of LLAGN, and discuss a strong constraint on the model of jet mass loading mediated by neutrons from the diffuse neutrino observation.

  15. Using Animations to Study the Formation of Gas Giant Planets via the Core Accretion Model

    NASA Astrophysics Data System (ADS)

    Hubickyj, O.; Lissauer, J. J.; Bodemheimer, P.; D'Angelo, G.

    2009-12-01

    With the ever increasing number of extrasolar planets being discovered (373 as of 8/13/09 quoted by The Extrasolar Planets Encyclopedia: exoplanet.eu) and the recognition of their diverse nature it is very important to understand the formation processes of the gas giant planets. The core accretion model has successfully explained many features of the formation of gas giant planets in the Solar System (Pollack et al. 1996, Hubickyj et al. 2005) and it has provided an explanation of the characteristics of exoplanets. One example is the observed frequency of planets around stars with a high metal content (e.g. Kornet et al. 2005, Valenti and Fischer 2008). Improvements to the input physics to our computer model have resulted in the very important result that gas giant planets (i.e. Jupiter) can form via the core accretion model on a timescale that agrees with observations of protoplanetary disks (Hillenbrand 2008). These observations set the formation time to about 3 to 5 million years. We will present our recent results (Hubickyj et al. 2005,Lissauer et al. 2009) in the form of animations. Our models generate a substantial amount of data. Having published plots of the important values of our study: mass and radius growth, luminosity, and accretion rates as a function of time, we are now ready to study the second tier of information from our recorded data. We examine the energy profiles within the envelope as it evolves, the location and changes of the convective layers, and the location of the mass deposited by the planetesimals in the envelope as the protoplanet evolves. We find that by animating the data we can study the internal processes in the growing envelope of the protoplanet. The qualitative nature of the processes in the protoplanetary envelope is easily discerned in these animations and a deeper insight to the core accretion processes in the gas giant planets is gained. Hillenbrand, L. A. 2008. Disk-dispersal and planet-formation timescales. Physica

  16. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.

    2009-01-01

    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  17. Accretion disk dynamics. α-viscosity in self-similar self-gravitating models

    NASA Astrophysics Data System (ADS)

    Kubsch, Marcus; Illenseer, Tobias F.; Duschl, Wolfgang J.

    2016-04-01

    Aims: We investigate the suitability of α-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating α-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary α-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: α-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, considering the involved scales it seems suitable for modelling protoplanetary disks.

  18. Formation of Large Regular Satellites of Giant Planets in an Extended Gaseous Nebula: Subnebula Model and Accretion of Satellites

    NASA Technical Reports Server (NTRS)

    Mosqueira, I.; Estrada, P. R.

    2000-01-01

    We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.

  19. Modelling the Accretion History of the Galactic Disk (and the Gravitational Lensing of a High-z Galaxy)

    NASA Astrophysics Data System (ADS)

    Meyers, Adrian

    2015-01-01

    Over its long history, the Milky Way is expected to have accreted many dwarf galaxies. The debris from the destruction of most of these dwarf galaxies will by now be fully phase-mixed throughout the Galaxy and hence undetectable as local over-densities in position-space. However, the debris from these systems could have distinct kinematic signatures that may help distinguish these stars from, for example, the Galactic disk. We aim to construct a reliable method of determining the contributions to the Milky Way disk from accreted structures that could be applied to current kinematic data sets, such as SDSS's APOGEE survey. In an effort to mimic the kinematic traits of an accreted satellite, we construct single-orbit models to compare to a cosmologically motivated simulation of satellite accretion. We find that these orbit models adhere to the kinematic signatures of certain types of accreted galaxies better than others, giving us insight on which parameters to trust when searching for accreted populations. As a bonus, we describe a separate project in which we attempt to deduce the intrinsic properties of the 8 o'clock arc, a gravitationally lensed Lyman break galaxy at redshift 2.73. Using the lensmodel code and its pixel-based source reconstruction extension pixsrc, we derive a de-lensed image of the galaxy in the source plane.

  20. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  1. Modeling Eclipses in the Classical Nova V Persei: The Role of the Accretion Disk Rim

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.; Misselt, K. A.

    2006-06-01

    Multicolor (BVRI) light curves of the eclipsing classical nova V Per are presented, and a total of 12 new eclipse timings are measured for the system. When combined with previous eclipse timings from the literature, these timings yield a revised ephemeris for the times of mideclipse given by HJD=2,447,442.8260(1)+0.107123474(3)E. The eclipse profiles are analyzed with a parameter-fitting model that assumes four sources of luminosity: a white dwarf primary star, a main-sequence secondary star, a flared accretion disk with a rim, and a bright spot at the intersection of the mass transfer stream and the disk periphery. Model parameters include the temperatures of the white dwarf (T1) and the secondary star (T2), the radius (Rd) and temperature (Td), of the disk periphery, the inner disk radius (Rin), the disk power-law temperature exponent (α) and thickness (hr), and a bright spot temperature enhancement factor (χs). A matrix of model solutions are computed, covering an extensive range of plausible parameter values. The solution matrix is then explored to determine the optimum values for the fitting parameters and their associated errors. For models that treat the accretion disk as a flat structure without a rim, optimum fits require that the disk have a flat temperature profile. Although models with a truncated inner disk (Rin>>R1) result in a steeper temperature profile, steady state models with a temperature profile characterized by T(r)~r-3/4 are found only for models with a significant disk rim. A comparison of the observed brightness and color at mideclipse with the photometric properties of the best-fitting model suggests that V Per lies at a distance of ~1 kpc.

  2. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    NASA Astrophysics Data System (ADS)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  3. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  4. Swirl flow turbulence modeling

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Jackson, T. W.; Lilley, D. G.

    1984-01-01

    Confined turbulent swirling flow data obtained from a single hot-wire using a six-orientation technique are analyzed numerically. The effects of swirl strength and the presence of a strong contraction nozzle further downstream on deduced parameters is also presented and discussed for the case of chamber-to-inlet diameter ratio D/d = 2. Three swirl strengths are considered with inlet swirl vane angles of 0, 45 and 70 deg. A strong contraction nozzle with an area ratio of 4 is located two chamber-diameters downstream of the inlet to the flowfield. It is found that both the swirl strength and the contraction have strong effects on the turbulence parameters. Generally, the most dramatic effect of increase of swirl strength is the considerable increase in values of all the parameters considered, (rx-viscosity, kinetic energy of turbulence, length scales, and degree of nonisotropy). The presence of a strong contraction nozzle tends to increase the turbulence parameter values in regions of acceleration and to reduce them in deceleration regions. Based on similarity of viscosity and length scale profiles, a C sub mu formulation is deduced which is shown to improve the predictive capability of the standard k-epsilon turbulence model in swirling recirculating flows.

  5. UZ Flow Models and Submodels

    SciTech Connect

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  6. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    SciTech Connect

    García, J.; Steiner, J. F.; McClintock, J. E.; Brenneman, L. E-mail: jsteiner@head.cfa.harvard.edu E-mail: lbrenneman@cfa.harvard.edu; and others

    2014-02-20

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  7. Sensitivity analysis of the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER)

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Drexler, J. Z.; Schoellhamer, D. H.; Thorne, K.; Spragens, K.; Takekawa, J.

    2010-12-01

    The San Francisco Estuary contains the largest extent of tidal marsh in the western United States. It is home to several state and federally listed species that are threatened or endangered. Climate change is a potential threat to these tidal marsh habitats through accelerated sea-level rise. The Wetland Accretion Rate Model for Ecosystem Resilience, or WARMER, is a 1-D vertical model of elevation at a point representative of target wetland habitat. WARMER incorporates both biological and physical components of vertical marsh accretion processes based on previous wetland models and is modified to incorporate mechanistic organic matter and inorganic deposition and the predicted SLR curve for San Francisco Estuary. Processes that are currently being modified include relative sea-level rise, inorganic sediment deposition, organic matter production, decomposition, and compaction. The model will be applied to marshes across the San Francisco Estuary and results will be used to evaluate the extent sea-level rise will reduce the functional habitat of the threatened black rail (Laterallus jamaicensis coturniculus), the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris). Here we present a sensitivity analysis of key model parameters. Previous studies have noted that inorganic sediment deposition, initial elevation and pore space are the most sensitive parameters. Consistent with these studies, sensitivity analysis shows that pore space is the most sensitive parameter in the current model and the modified inorganic sediment deposition subroutine is particularly sensitive to the parameterization of settling velocity. Perturbations to initial elevation, the rate of sea level rise, organic matter input rates and percent refractory organic matter had small impacts on the modeled final elevation. Proper characterization of marsh sediment pore space and temporally variable sediment

  8. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  9. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    SciTech Connect

    Matsumoto, R.; Tajima, T.

    1995-01-01

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at {omega}{sub d} = {+-} {omega}{sub A}, where {omega}{sub d} is the Doppler-shifted wave frequency, and {omega}{sub A} = k{parallel}v{sub A} is the Alfven frequency. The radial width of the unstable eigenfunction is {Delta}x {approximately} {omega}{sub A}/(Ak{sub y}), where A is the Oort`s constant, and k{sub y} is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k{sub y}/k{sub z}. The maximum growth rate when k{sub y}/k{sub z} {approximately} 0.1 is {approximately} 0.2{Omega} for the Keplerian disk with local angular velocity {Omega}. It is found that the purely growing mode disappears when k{sub y}/k{sub z} > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity {eta} depends on the instability-induced turbulent magnetic fields {delta}B as {eta}([{delta}B{sup 2}]), the marginal stability condition self-consistently determines the {alpha} parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter {alpha}{sub B} is between 0.001 and 1. The authors` three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the {alpha} parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller {alpha} in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop.

  10. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. Application to a hydrodynamical simulation

    NASA Astrophysics Data System (ADS)

    Sim, S. A.; Proga, D.; Miller, L.; Long, K. S.; Turner, T. J.

    2010-11-01

    We perform multidimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disc wind from an active galactic nucleus. The synthetic spectra confirm expectations from parametrized models that a disc wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disc plane but ultimately falls back. We also confirm that the strong Fe Kα line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disc wind somewhat more challenging and should be considered in future wind simulations.

  11. A Statistical Study of Accretion Disk Model Spectra for Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Puebla, Raúl E.; Diaz, Marcos P.; Hubeny, Ivan

    2007-11-01

    We have performed a statistical test of the currently used accretion disk models for cataclysmic variables (CVs) using a set of 33 CVs with steady disks (10 old novae and 23 nova-like systems). The mass transfer rate () for each system was also calculated. Ultraviolet (UV) data were fitted by model spectra using a multiparametric optimization method, aiming to constrain the values. It was verified that these accretion disk models fail to fit both color and flux simultaneously, as previously noted when composite stellar atmosphere models were fitted to the UV spectra of CVs by Wade. By applying such models to a sample of novae and nova-like CVs, we confirm that the limb-darkening effect must be taken into account when estimating mass transfer rates, especially for high-inclination systems. Important fitting degeneracies of the basic disk parameters are analyzed. Our simulations suggest that to reproduce the observations a revision of the temperature profile, at least in the innermost parts of the disk, seems to be required, and possibly the vertical distribution of the viscosity should be revised. In addition, an optically thin layer or an extended disk component should be considered. This component may be physically represented by a disk wind and/or a chromosphere. A physical description of the emission-line profiles may help to break the degeneracies that appear when only the continuum is analyzed. The average value of found for nova-like systems is ~9.3 × 10-9 Modot yr-1, while ~1.3 × 10-8 Modot yr-1 is found for old classical novae. No clear evidence is found for either the presence or absence of a correlation between and the orbital period. Such correlation analysis was performed for high accretion rate systems (15 nova-like systems and 10 old novae), but we were not able to find a well-defined correlation as found by Patterson. By measuring the equivalent width of the emission lines (C IV λ1550 and He II λ1640) we found a lack of systems with low and

  12. A review of ice accretion data from a model rotor icing test and comparison with theory

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.; Bond, Thomas H.

    1991-01-01

    An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are drawn as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.

  13. A review of ice accretion data from a model rotor icing test and comparison with theory

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.; Bond, Thomas H.

    1991-01-01

    An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are shown as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.

  14. Stochastic power flow modeling

    SciTech Connect

    Not Available

    1980-06-01

    The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  15. EFFECTS OF COMPTON COOLING ON OUTFLOW IN A TWO-COMPONENT ACCRETION FLOW AROUND A BLACK HOLE: RESULTS OF A COUPLED MONTE CARLO TOTAL VARIATION DIMINISHING SIMULATION

    SciTech Connect

    Garain, Sudip K.; Ghosh, Himadri; Chakrabarti, Sandip K. E-mail: himadri@bose.res.in

    2012-10-20

    We investigate the effects of cooling of the Compton cloud on the outflow formation rate in an accretion disk around a black hole. We carry out a time-dependent numerical simulation where both the hydrodynamics and the radiative transfer processes are coupled together. We consider a two-component accretion flow in which the Keplerian disk is immersed into an accreting low-angular momentum flow (halo) around a black hole. The soft photons which originate from the Keplerian disk are inverse-Comptonized by the electrons in the halo and the region between the centrifugal pressure supported shocks and the horizon. We run several cases by changing the rate of the Keplerian disk and see the effects on the shock location and properties of the outflow and the spectrum. We show that as a result of Comptonization of the Compton cloud, the cloud becomes cooler with the increase in the Keplerian disk rate. As the resultant thermal pressure is reduced, the post-shock region collapses and the outflow rate is also reduced. Since the hard radiation is produced from the post-shock region, and the spectral slope increases with the reduction of the electron temperature, the cooling produces softer spectrum. We thus find a direct correlation between the spectral states and the outflow rates of an accreting black hole.

  16. A METHOD FOR THE STUDY OF ACCRETION DISK EMISSION IN CATACLYSMIC VARIABLES. I. THE MODEL

    SciTech Connect

    Puebla, Raul E.; Diaz, Marcos P.; John Hillier, D.; Hubeny, Ivan E-mail: marcos@astro.iag.usp.br E-mail: hubeny@as.arizona.edu

    2011-07-20

    We have developed a spectrum synthesis method for modeling the ultraviolet (UV) emission from the accretion disk from cataclysmic variables (CVs). The disk is separated into concentric rings, with an internal structure from the Wade and Hubeny disk-atmosphere models. For each ring, a wind atmosphere is calculated in the comoving frame with a vertical velocity structure obtained from a solution of the Euler equation. Using simple assumptions, regarding rotation and the wind streamlines, these one-dimensional models are combined into a single 2.5-dimensional model for which we compute synthetic spectra. We find that the resulting line and continuum behavior as a function of the orbital inclination is consistent with the observations, and verify that the accretion rate affects the wind temperature, leading to corresponding trends in the intensity of UV lines. In general, we also find that the primary mass has a strong effect on the P Cygni absorption profiles, the synthetic emission line profiles are strongly sensitive to the wind temperature structure, and an increase in the mass-loss rate enhances the resonance line intensities. Synthetic spectra were compared with UV data for two high orbital inclination nova-like CVs-RW Tri and V347 Pup. We needed to include disk regions with arbitrary enhanced mass loss to reproduce reasonably well widths and line profiles. This fact and a lack of flux in some high ionization lines may be the signature of the presence of density-enhanced regions in the wind, or alternatively, may result from inadequacies in some of our simplifying assumptions.

  17. N-BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY AND COAGULATION. II. ACCRETION MODEL

    SciTech Connect

    Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro E-mail: kokubo@th.nao.ac.j

    2009-10-01

    The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles is replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.

  18. Metal Accretion onto White Dwarfs. II. A Better Approach Based on Time-Dependent Calculations in Static Models

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Dufour, P.; Chayer, P.; Dupuis, J.; Brassard, P.

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Inferences on the process based on diffusion timescale arguments make the implicit assumption that the concentration gradient of a given metal at the base of the convection zone is negligible. This assumption is, in fact, not rigorously valid, but it allows the decoupling of the surface abundance from the evolving distribution of a given metal in deeper layers. A better approach is a full time-dependent calculation of the evolution of the abundance profile of an accreting-diffusing element. We used the same approach as that developed by Dupuis et al. to model accretion episodes involving many more elements than those considered by these authors. Our calculations incorporate the improvements to diffusion physics mentioned in Paper I. The basic assumption in the Dupuis et al. approach is that the accreted metals are trace elements, i.e, that they have no effects on the background (DA or non-DA) stellar structure. This allows us to consider an arbitrary number of accreting elements.

  19. Reduced Order Modeling Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Helenbrook, B. T.

    2010-01-01

    The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models

  20. The structure of protostellar accretion disks and the origin of bipolar flows

    NASA Technical Reports Server (NTRS)

    Wardle, Mark; Koenigl, Arieh

    1993-01-01

    Equations are obtained which govern the disk-wind structure and identify the physical parameters relevant to circumstellar disks. The system of equations is analyzed in the thin-disk approximation, and it is shown that the system can be consistently reduced to a set of ordinary differential equations in z. Representative solutions are presented, and it is shown that the apparent paradox discussed by Shu (1991) is resolved when the finite thickness of the disk is taken into account. Implications of the results for the origin of bipolar flows in young stellar objects and possible application to active galactic nuclei are discussed.

  1. Geometry Modeling and Grid Generation for "Icing Effects" and "Ice Accretion" Simulations on Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung; Vickerman, Mary; Lee, Ki D.; Thompson, David S.

    2000-01-01

    There are two distinct icing-related problems for airfoils that can be simulated. One is predicting the effects of ice on the aerodynamic performance of airfoils when ice geometry is known ("icing effects" study). The other is simulating ice accretion under specified icing conditions ("ice accretion" simulation). This paper will address development of two different software packages for two-dimensional geometry preparation and grid generation for both "icing effects" and "ice accretion" studies.

  2. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  3. Michel accretion of a polytropic fluid with adiabatic index \\gamma \\gt 5/3: global flows versus homoclinic orbits

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Mach, Patryk; Sarbach, Olivier

    2016-05-01

    We analyze the properties of a polytropic fluid that is radially accreted into a Schwarzschild black hole. The case where the adiabatic index γ lies in the range of 1\\lt γ ≤slant 5/3 has been treated in previous work. In this article, we analyze the complementary range of 5/3\\lt γ ≤slant 2. To this purpose, the problem is cast into an appropriate Hamiltonian dynamical system, whose phase flow is analyzed. While, for 1\\lt γ ≤slant 5/3, the solutions are always characterized by the presence of a unique critical saddle point, we show that, when 5/3\\lt γ ≤slant 2, an additional critical point might appear, which is a center point. For the parametrization used in this paper, we prove that, whenever this additional critical point appears, there is a homoclinic orbit. Solutions corresponding to homoclinic orbits differ from standard transonic solutions with vanishing asymptotic velocities in two aspects: they are local (i.e., they cannot be continued to arbitrarily large radii); the dependence of the density or the value of the velocity on the radius is not monotonic.

  4. UZ Flow Models and Submodels

    SciTech Connect

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  5. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1990-01-01

    Based on previous observations of glaze ice accretion, a 'Multi-Zone' model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: to determine the laminar to turbulent transition location and to calculate the turbulent heat transfer coefficient. A two zone version of the Multi-Zone model is implemented in the LEWICE code, and compared with experimental heat transfer coefficient and ice accretin results. The analysis of the boundary layer transition, surface roughness, and viscous flow field effects significantly increased the accuracy in predicting heat transfer coefficients. The Multi-Zone model was found to greatly improve the ice accretion prediction for the cases compared.

  6. Disk accretion by magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Lamb, F. K.

    1978-01-01

    A model for disk accretion by a rotating magnetic neutron star is proposed which includes a detailed description of matter flow in the transition region between the disk and the magnetosphere. It is shown that the disk plasma cannot be completely screened from the stellar magnetic field and that the resulting magnetic coupling between the star and the disk exerts a significant torque on the star. On the assumption that the distortion of the residual stellar field lines threading the disk is limited by reconnection, the total accretion torque on the star is calculated. The calculated torque gives period changes in agreement with those observed in the pulsating X-ray sources and provides a natural explanation of why a fast rotator like Her X-1 has a spin-up rate much below the conventional estimate for slow rotators. It is shown that for such fast rotators, fluctuations in the mass-accretion rate can produce fluctuations in the accretion torque about 100 times larger. For sufficiently fast rotators or, equivalently, for sufficiently low accretion rates, the star experiences a braking torque even while accretion continues and without any mass ejection from its vicinity.

  7. Hot versus Cold: the Dichotomy in Spherical Accretion of Cooling Flows onto Supermassive Black Holes in Elliptical Galaxies, Galaxy Groups, and Clusters

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2014-01-01

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ~100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z ⊙, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R e ~ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  8. Hot versus cold: The dichotomy in spherical accretion of cooling flows onto supermassive black holes in elliptical galaxies, galaxy groups, and clusters

    SciTech Connect

    Guo, Fulai; Mathews, William G.

    2014-01-10

    Feedback heating from active galactic nuclei (AGNs) has been commonly invoked to suppress cooling flows predicted in hot gas in elliptical galaxies, galaxy groups, and clusters. Previous studies have focused on if and how AGN feedback heats the gas but have little paid attention to its triggering mechanism. Using spherically symmetric simulations, we investigate how large-scale cooling flows are accreted by central supermassive black holes (SMBHs) in eight well-observed systems and find an interesting dichotomy. In massive clusters, the gas develops a central cooling catastrophe within about the cooling time (typically ∼100-300 Myr), resulting in cold-mode accretion onto SMBHs. However, in our four simulated systems on group and galaxy scales at a low metallicity Z = 0.3 Z {sub ☉}, the gas quickly settles into a long-term state that has a cuspy central temperature profile extending to several tens to about 100 pc. At the more realistic solar metallicity, two groups (with R {sub e} ∼ 4 kpc) still host the long-term, hot-mode accretion. Both accretion modes naturally appear in our idealized calculations where only cooling, gas inflow, and compressional heating are considered. The long-term, hot-mode accretion is maintained by the quickly established closeness between the timescales of these processes, preferably in systems with low gas densities, low gas metallicities, and importantly, compact central galaxies, which result in strong gravitational acceleration and compressional heating at the intermediate radii. Our calculations predict that central cuspy temperature profiles appear more often in smaller systems than galaxy clusters, which instead often host significant cold gas and star formation.

  9. Three-dimensional Hydrodynamic Simulations of Accretion in High-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Raymer, Eric John

    Wind accretion in high-mass X-ray binaries (HMXBs) often results in highly variable X-ray behavior, the nature of which is not well understood. Most models of wind accretion are based on the analytical predictions of Hoyle-Lyttleton accretion (HLA), which assumes a steady axisymmetric flow. Surprisingly little is known about the structure, stability, and time-evolution of HLA in three dimensions, particularly in the presence of non-uniform winds. This work describes hydrodynamic simulations of idealized HLA in three-dimensions, then applies these simulations to two HMXB subclasses that exhibit unexplained X-ray behavior. Our idealized HLA models show that the accretion flow remains steady and stable in two-dimensional axisymmetric and three dimensional grid geometries, assuming a uniform upstream flow. We test the stability of the model with linear upstream density gradients and find that they are able to induce rotational flow around the accretor that reduces the mass accretion rate by up to an order of magnitude. We apply our 3D model to accretion in the context of Be/X-ray binaries, in which the accreting neutron star is immersed in the dense decretion disk of the Be donor star. These systems have traditionally been described with 2D models that exhibit the flip-flop instability. This instability results in the formation and destruction of transient accretion disks with accompanying bursts of mass accretion. Our 3D models show no sign of the flip-flop instability, but instead display rotation about the neutron star directed primarily out of the plane of the decretion disk. This rotation generates large-scale asymmetries in the bow shock and suppresses mass accretion by up to two orders of magnitude. The accretion of a clumped stellar wind is one of the primary mechanisms proposed to explain the high-luminosity X-ray flares of supergiant fast X-ray transients. We model clump accretion in 3D to determine whether the impact of a clump can produce flares with a

  10. Applying a Hydrodynamical Treatment of Stream Flow and Accretion Disk Formation in WASP-12/b Exoplanetary System

    NASA Astrophysics Data System (ADS)

    Weaver, Ian; Lopez, Aaron; Macias, Phil

    2016-01-01

    WASP-12b is a hot Jupiter orbiting dangerously close to its parent star WASP-12 at a radius 1/44th the distance between the Earth and the Sun, or roughly 16 times closer than Mercury. WASP-12's gravitational influence at this incredibly close proximity generates tidal forces on WASP-12b that distort the planet into an egg-like shape. As a result, the planet's surface overflows its Roche lobe through L1, transferring mass to the host star at a rate of 270 million metric tonnes per second. This mass transferring stream forms an accretion disk that transits the parent star, which aids sensitive instruments, such as the Kepler spacecraft, whose role is to examine the periodic dimming of main sequence stars in order to detect ones with orbiting planets. The quasi-ballistic stream trajectory is approximated by that of a massless point particle released from analogous initial conditions in 2D. The particle dynamics are shown to deviate negligibly across a broad range of initial conditions, indicating applicability of our model to "WASP-like" systems in general. We then apply a comprehensive fluid treatment by way of hydrodynamical code FLASH in order to directly model the behavior of mass transfer in a non-inertial reference frame and subsequent disk formation. We hope to employ this model to generate virtual spectroscopic signatures and compare them against collected light curve data from the Hubble Space Telescope's Cosmic Origins Spectrograph (COS).

  11. Non-LTE modeling of the structure and spectra of hot accretion spots on the surface of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, A. V.

    2015-05-01

    The results of modeling the structure and spectra of hot accretion spots on the surface of young stars with allowance made for the departures from LTE for hydrogen and helium are presented. The existence of ram pressure of the infalling gas at the outer boundary of the hot spot has been found to lead to Stark broadening of the hydrogen line profiles to ˜1000 km s-1 at the accretion parameters considered. It is shown that allowance for the departures from LTE for carbon and oxygen atoms and ions does not lead to noticeable changes in the structure of the hot spot.

  12. Modeling of Turbulent Swirling Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  13. Accreting X-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    This presentation describes the behavior of matter in environments with extreme magnetic and gravitational fields, explains the instability/stability of accretion disks in certain systems, and discusses how emergent radiation affects accretion flow. Magnetic field measurements are obtained by measuring the lowest cyclotron absorption line energy, observing the cutoff of accretion due to centrifugal inhibition and measuring the spin-up rate at high luminosity.

  14. AN ACCRETION MODEL FOR THE ANOMALOUS X-RAY PULSAR 4U 0142+61

    SciTech Connect

    Truemper, J. E.; Dennerl, K.; Kylafis, N. D.; Zezas, A.; Ertan, Ue.

    2013-02-10

    We propose that the quiescent emission of anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs) is powered by accretion from a fallback disk, requiring magnetic dipole fields in the range 10{sup 12}-10{sup 13} G, and that the luminous hard tails of their X-ray spectra are produced by bulk-motion Comptonization in the radiative shock near the bottom of the accretion column. This radiation escapes as a fan beam, which is partly absorbed by the polar cap photosphere, heating it up to relatively high temperatures. The scattered component and the thermal emission from the polar cap form a polar beam. We test our model on the well-studied AXP 4U 0142+61, whose energy-dependent pulse profiles show double peaks, which we ascribe to the fan and polar beams. The temperature of the photosphere (kT {approx} 0.4 keV) is explained by the heating effect. The scattered part forms a hard component in the polar beam. We suggest that the observed high temperatures of the polar caps of AXPs/SGRs, compared with other young neutron stars, are due to the heating by the fan beam. Using beaming functions for the fan beam and the polar beam and taking gravitational bending into account, we fit the energy-dependent pulse profiles and obtain the inclination angle and the angle between the spin axis and the magnetic dipole axis, as well as the height of the radiative shock above the stellar surface. We do not explain the high-luminosity bursts, which may be produced by the classical magnetar mechanism operating in super-strong multipole fields.

  15. Accretion disks in interacting binary stars

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.

    1991-01-01

    Accretion disks have most often been analyzed in cataclysmic variables (CVs); the structure and evolution of accretion disks is defined by angular momentum transfer processes. Detailed atmospheric models indicate that angular momentum transport is efficient, that CV outbursts are regulated by mass transfer variations in the disk, and that they may be initiated either from the inner and outer regions of the disk. Tidal effects on the companion are noted to be capable of inducing a significant departure from Keplerian flow near the outer region of the disk.

  16. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    SciTech Connect

    Miller, J. M.; King, A. L.; Tomsick, J. A.; Boggs, S. E.; Bachetti, M.; Wilkins, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Kara, E.; Grefenstette, B. W.; Harrison, F. A.; Hailey, C. J.; Stern, D. K; Zhang, W. W.

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  17. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    SciTech Connect

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  18. Centrifuge modelling of granular flows

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  19. Simple models for embayment flows

    NASA Astrophysics Data System (ADS)

    Gibson, F.; Dalziel, S.

    2003-04-01

    The flow structure in an embayment with a mean external flow has been investigated. The embayment is a relatively quiescent environment separated from the external mean flow by a mixing layer, in a manner analogous to the ventilation of a street canyon in an urban environment. This study aims to improve our knowledge of the exchange between the embayment and the external flow, which is an important mechanism for the transport and dispersion of substances such as nutrients, sediments, heat and pollutants. Understanding of flow in an embayment is therefore vital to the explanation and preservation of its ecology. In an experimental study, a model rectangular embayment was placed in a recirculating flume tank. The aspect ratio and bathymetry of the embayment was varied and the effect on the flow and mixing layer recorded. A neutrally buoyant tracer was added to the flow at various locations to visualise the eddies and the mixing layer. Field experiments in a coastal embayment used an accoustic Doppler current profiler to measure the flow velocities. These measurements demonstrate the existance of a gyre within the bay and support a shear-driven cavity model. In parallel with the experiments and fieldwork, a hierarchy of computer models was used to gain further understanding of the flow. Results from these models are presented alongside the experimental measurements.

  20. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  1. Turbulence modeling for separated flow

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1994-01-01

    Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.

  2. Modeling Size Polydisperse Granular Flows

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  3. A nonlinear investigation of corrugation instabilities in magnetic accretion shocks

    NASA Astrophysics Data System (ADS)

    Ernst, Scott

    2011-05-01

    Accretion shock waves are present in many important astrophysical systems and have been a focus of research for decades. These investigations provide a large body of understanding as to the nature, characteristics, and evolutionary behaviors of accretion shock waves over a wide range of conditions. However, largely absent are investigations into the properties of accretion shock waves in the presence of strong magnetic fields. In such cases these strong magnetic fields can significantly alter the stability behaviors and evolution of the accretion shock wave through the production and propagation of magnetic waves as well as magnetically constrained advection. With strong magnetic fields likely found in a number of accretion shock systems, such as compact binary and protostellar systems, a better understanding of the behaviors of magnetic accretion shock waves is needed. A new magnetohydrodynamics simulation tool, IMOGEN, was developed to carry out an investigation of instabilities in strong, slow magnetic accretion shocks by modelling their long-term, nonlinear evolution. IMOGEN implements a relaxed, second-order, total variation diminishing, monotonic upwind scheme for conservation laws and incorporates a staggered-grid constrained transport scheme for magnetic advection. Through the simulated evolution of magnetic accretion shocks over a wide range of initial conditions, it has been shown, for sufficiently high magnetic field strengths, that magnetic accretion shocks are generally susceptible to corrugation instabilities, which arise in the presence of perturbations of the initial shock front. As these corrugation instabilities grow, they manifestas magnetic wave propagation in the upstream region of the accretion column, which propagate away from the accretion shock front, and as density columns, or fingers, that grow into the higher density downstream flow, defined and constrained by current loops created during the early evolution of the instability.

  4. Accretion of a ghost condensate by black holes

    SciTech Connect

    Frolov, Andrei V.

    2004-09-15

    The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  5. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, L.F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  6. HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL

    SciTech Connect

    Shadday, M

    2006-09-28

    The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design of flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.

  7. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  8. Application of Pressure-Sensitive Paint to Ice-Accreted Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Pressure-sensitive paint (PSP) has been successfully used to measure global surface pressures on an ice-accreted model in an icing wind tunnel at NASA Glenn Research Center. Until now, the PSP technique has been limited to use in normal wind tunnels and clear flight environments. This is the first known application of PSP directly to ice in subfreezing conditions. Several major objectives were achieved in these tests. The procedure for applying the coating in the subfreezing tunnel environment was verified. Inspection of the painted ice surface revealed that the paint did not alter the original ice shape and adhered well over the entire coated area. Several procedures were used to show that the paint responded to changes in air pressure and that a repeatable pressure-dependent calibration could be achieved on the PSP-coated surfaces. Differences in pressure measurements made simultaneously on the ice and the metal test model are not yet fully understood, and techniques to minimize or correct them are being investigated.

  9. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts

    NASA Astrophysics Data System (ADS)

    Belliard, J.-P.; Toffolon, M.; Carniello, L.; D'Alpaos, A.

    2015-06-01

    The formation and evolution of tidal networks have been described through various theories which mostly assume that tidal network development results from erosional processes, therefore emphasizing the chief role of external forcing triggering channel net erosion such as tidal currents. In contrast, in the present contribution we explore the influence of sediment supply in governing tidal channel initiation and further elaboration using an ecogeomorphic modeling framework. This deliberate choice of environmental conditions allows for the investigation of tidal network growth and development in different sedimentary contexts and provides evidences for the occurrence of both erosional and depositional channel-forming processes. Results show that these two mechanisms in reality coexist but act at different time scales: channel initiation stems from erosional processes, while channel elaboration mostly results from depositional processes. Furthermore, analyses suggest that tidal network ontogeny is accelerated as the marsh accretional activity increases, revealing the high magnitude and prevalence of the depositional processes in governing the morphodynamic evolution of the tidal network. On a second stage, we analyze the role of different initial topographic configurations in driving the development of tidal networks. Results point out an increase in network complexity over highly perturbed initial topographic surfaces, highlighting the legacy of initial conditions on channel morphological properties. Lastly, the consideration that landscape evolution depends significantly on the parameterization of the vegetation biomass distribution suggests that the claim to use uncalibrated models for vegetation dynamics is still questionable when studying real cases.

  10. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  11. Turbulence modeling for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.; Coakley, T. J.

    1989-01-01

    Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.

  12. A Stochastic Model for the Luminosity Fluctuations of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon C.; Sobolewska, Małgorzata; Siemiginowska, Aneta

    2011-03-01

    In this work, we have developed a new stochastic model for the fluctuations in light curves of accreting black holes. The model is based on a linear combination of stochastic processes and is also the solution to the linear diffusion equation perturbed by a spatially correlated noise field. This allows flexible modeling of the power spectral density (PSD), and we derive the likelihood function for the process, enabling one to estimate the parameters of the process, including break frequencies in the PSD. Our statistical technique is computationally efficient, unbiased by aliasing and red noise leak, and fully accounts for irregular sampling and measurement errors. We show that our stochastic model provides a good approximation to the X-ray light curves of galactic black holes, and the optical and X-ray light curves of active galactic nuclei (AGNs). We use the estimated timescales of our stochastic model to recover the correlation between characteristic timescale of the high-frequency X-ray fluctuations and black hole mass for AGNs, including two new "detections" of the timescale for Fairall 9 and NGC 5548. We find a tight anti-correlation between the black hole mass and the amplitude of the driving noise field, which is proportional to the amplitude of the high-frequency X-ray PSD, and we estimate that this parameter gives black hole mass estimates to within ~0.2 dex precision, potentially the most accurate method for AGNs yet. We also find evidence that ≈13% of AGN optical PSDs fall off flatter than 1/f 2 and, similar to previous work, find that the optical fluctuations are more suppressed on short timescales compared to the X-rays, but are larger on long timescales, suggesting that the optical fluctuations are not solely due to reprocessing of X-rays.

  13. Modeling jets in cross flow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1994-01-01

    Various approaches to the modeling of jets in cross flow are reviewed. These are grouped into four classes, namely: empirical models, integral models, perturbation models, and numerical models. Empirical models depend largely on the correlation of experimental data and are mostly useful for first-order estimates of global properties such as jet trajectory and velocity and temperature decay rates. Integral models are based on some ordinary-differential form of the conservation laws, but require substantial empirical calibration. They allow more details of the flow field to be obtained; simpler versions have to assume similarity of velocity and temperature profiles, but more sophisticated ones can actually calculate these profiles. Perturbation models require little empirical input, but the need for small parameters to ensure convergent expansions limits their application to either the near-field or the far-field. Therefore, they are mostly useful for the study of flow physics. Numerical models are based on conservation laws in partial-differential form. They require little empirical input and have the widest range of applicability. They also require the most computational resources. Although many qualitative and quantitative features of jets in cross flow have been predicted with numerical models, many issues affecting accuracy such as grid resolution and turbulence model are not completely resolved.

  14. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  15. Modelling galaxy and AGN evolution in the infrared: black hole accretion versus star formation activity

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Pozzi, F.; Zamorani, G.; Vignali, C.

    2011-09-01

    We present a new backward evolution model for galaxies and active galactic nuclei (AGNs) in the infrared (IR). What is new in this model is the separate study of the evolutionary properties of different IR populations (i.e. spiral galaxies, starburst galaxies, low-luminosity AGNs, 'unobscured' type 1 AGNs and 'obscured' type 2 AGNs) defined through a detailed analysis of the spectral energy distributions (SEDs) of large samples of IR-selected sources. The evolutionary parameters have been constrained by means of all the available observables from surveys in the mid- and far-IR (source counts, redshift and luminosity distributions, luminosity functions). By decomposing the SEDs representative of the three AGN classes into three distinct components (a stellar component emitting most of its power in the optical/near-IR, an AGN component due to the hot dust heated by the central black hole peaking in the mid-IR, and a starburst component dominating the far-IR spectrum), we have disentangled the AGN contribution to the monochromatic and total IR luminosity emitted by different populations considered in our model from that due to star formation activity. We have then obtained an estimate of the total IR luminosity density [and star formation density (SFD) produced by IR galaxies] and the first ever estimate of the black hole mass accretion density (BHAR) from the IR. The derived evolution of the BHAR is in agreement with estimates from X-rays, though the BHAR values we derive from the IR are slightly higher than the X-ray ones. Finally, we have simulated source counts, redshift distributions, and SFD and BHAR that we expect to obtain with the future cosmological surveys in the mid-/far-IR that will be performed with the JWST-MIRI and SPICA-SAFARI. Outputs of the model are available online.1

  16. ACCRETION ONTO INTERMEDIATE-MASS BLACK HOLES REGULATED BY RADIATIVE FEEDBACK. I. PARAMETRIC STUDY FOR SPHERICALLY SYMMETRIC ACCRETION

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2011-09-20

    We study the effect of radiative feedback on accretion onto intermediate-mass black holes (IMBHs) using the hydrodynamical code ZEUS-MP with a radiative transfer algorithm. In this paper, the first of a series, we assume accretion from a uniformly dense gas with zero angular momentum and extremely low metallicity. Our one-dimensional (1D) and 2D simulations explore how X-ray and UV radiation emitted near the black hole regulates the gas supply from large scales. Both 1D and 2D simulations show similar accretion rates and periods between peaks in accretion, meaning that the hydro-instabilities that develop in 2D simulations do not affect the mean flow properties. We present a suite of simulations exploring accretion across a large parameter space, including different radiative efficiencies and radiation spectra, black hole masses, density, and temperature, T{sub {infinity}}, of the neighboring gas. In agreement with previous studies, we find regular oscillatory behavior of the accretion rate, with duty cycle {approx}6%, mean accretion rate 3% (T{sub {infinity}}/10{sup 4} K){sup 2.5} of the Bondi rate and peak accretion {approx}10 times the mean for T{sub {infinity}} ranging between 3000 K and 15, 000 K. We derive parametric formulae for the period between bursts, the mean accretion rate, and the peak luminosity of the bursts and thus provide a formulation of how feedback-regulated accretion operates. The temperature profile of the hot ionized gas is crucial in determining the accretion rate, while the period of the bursts is proportional to the mean size of the Stroemgren sphere, and we find qualitatively different modes of accretion in the high versus low density regimes. We also find that a softer radiation spectrum produces a higher mean accretion rate. However, it is still unclear what the effect of a significant time delay is between the accretion rate at our inner boundary and the output luminosity. Such a delay is expected in realistic cases with non

  17. Evidence of Two Component Accretion Flows as revealed by time lag properties: Results of Long-Term RXTE/ASM Data Analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam; Chakrabarti, Sandip Kumar

    2016-07-01

    Long-term RXTE/ASM X-ray data of several Galactic black hole candidates (BHCs) are analyzed. The results of this analysis show the existence of two component accretion flow (TCAF) in both low-mass and high-mass X-ray binaries (LMXBs & HMXBs). Large disks with long viscous timescales in the accreting matter with high angular momentum are prevalent in LMXBs due to processes like Roche lobe overflow, while small disks with little viscous delays are observed in HMXBs, primarily because of wind accretion. Two parameters are defined as photon indices, independent of the choice of a BHC, in order to find correlation between the two components, namely, the Keplerian disk component and the sub-Keplerian component, thereby estimating the time lag between two aforesaid timescales. Fluxes of hard and soft photons are observed to be anti-correlated with respect to these photon indices. The time lags give us an idea of the viscosity in the Keplerian component.

  18. MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION

    SciTech Connect

    Bonito, R.; Argiroffi, C.; Peres, G.; Orlando, S.; Miceli, M.; Ibgui, L.; Matsakos, T.; Stehle, C.

    2014-11-10

    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues, we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results, we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model, including the effects of local absorption, explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks.

  19. YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission

    NASA Astrophysics Data System (ADS)

    Matsakos, T.; Chièze, J.-P.; Stehlé, C.; González, M.; Ibgui, L.; de Sá, L.; Lanz, T.; Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.

    2013-09-01

    Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims: We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods: We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of several perturbation types, such as clumps in the accretion stream or chromospheric fluctuations, and also explored a wide range of plasma-β values. Results: In the case of a weak magnetic field, the post-shock region shows chaotic motion and mixing, smoothing out the perturbations and retaining a global periodic signature. On the other hand, a strong magnetic field confines the plasma in flux tubes, which leads to the formation of fibrils that oscillate independently. Realistic values for the amplitude, length, and time scales of the perturbation are capable of bringing the fibril oscillations out of phase, suppressing the periodicity of the emission. Conclusions: The strength of a locally uniform magnetic field in YSO accretion shocks determines the structure of the post-shock region, namely, whether it will be somewhat homogeneous or if it will split up to form a collection of fibrils. In the second case, the size and shape of the fibrils is found to depend strongly on the plasma-β value but not on the perturbation type. Therefore, the actual value of the protostellar magnetic field is expected to play a critical role in the time dependence of the observable emission.

  20. Modeling Combustion in Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  1. PHYSICAL MODELING OF CONTRACTED FLOW.

    USGS Publications Warehouse

    Lee, Jonathan K.

    1987-01-01

    Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.

  2. Debris flows: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Turnbull, Barbara; Bowman, Elisabeth T.; McElwaine, Jim N.

    2015-01-01

    Debris flows and debris avalanches are complex, gravity-driven currents of rock, water and sediments that can be highly mobile. This combination of component materials leads to a rich morphology and unusual dynamics, exhibiting features of both granular materials and viscous gravity currents. Although extreme events such as those at Kolka Karmadon in North Ossetia (2002) [1] and Huascarán (1970) [2] strongly motivate us to understand how such high levels of mobility can occur, smaller events are ubiquitous and capable of endangering infrastructure and life, requiring mitigation. Recent progress in modelling debris flows has seen the development of multiphase models that can start to provide clues of the origins of the unique phenomenology of debris flows. However, the spatial and temporal variations that debris flows exhibit make this task challenging and laboratory experiments, where boundary and initial conditions can be controlled and reproduced, are crucial both to validate models and to inspire new modelling approaches. This paper discusses recent laboratory experiments on debris flows and the state of the art in numerical models.

  3. Preserving Flow Variability in Watershed Model Calibrations

    EPA Science Inventory

    Background/Question/Methods Although watershed modeling flow calibration techniques often emphasize a specific flow mode, ecological conditions that depend on flow-ecology relationships often emphasize a range of flow conditions. We used informal likelihood methods to investig...

  4. Looking into the inner black hole accretion disc with relativistic models of iron line

    NASA Astrophysics Data System (ADS)

    Svoboda, Jiri

    2010-07-01

    We discuss black hole spin measurements employing the relativistic iron line profiles in the X-ray domain. We investigate the iron line band for two representative sources -- MCG -6-30-15 (active galaxy) and GX 339-4 (X-ray binary). We compare two models of the broad iron line, LAOR and KYRLINE. We realise that the spin is currently determined entirely from the position of the marginally stable orbit while the effect of the spin on the overall line shape would be resolvable with higher resolution X-ray missions. We show that the precision of the spin measurements depends on an unknown angular distribution of the disc emission. We study how sensitive the spin determination is to the assumptions about the intrinsic angular distribution of the emitted photons. We find that the uncertainty of the directional emission distribution translates to 20% uncertainty in the determination of the radius of marginally stable orbit. We perform radiation transfer computations of an X-ray irradiated disc atmosphere (NOAR code) to determine the directionality of outgoing X-rays in the 2-10 keV energy band. Based on these computations, we find that from the simple formulae for the directionality, the isotropic case reproduces the simulated data with the best accuracy. The most frequently used limb-darkening law favours higher values of spin and, in addition, a steeper radial emissivity profile. Furthermore, we present a spectral analysis of an XMM-Newton observation of a Seyfert 1.5 galaxy IRAS 05078+1626 being the first X-ray spectroscopic study of this source. The lack of the significant relativistic blurring of the reflection model component suggests the accretion disc to be truncated at a farther radius.

  5. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  6. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  7. Experimental Modelling of Debris Flows

    NASA Astrophysics Data System (ADS)

    Paleo Cageao, P.; Turnbull, B.; Bartelt, P.

    2012-04-01

    Debris flows are gravity-driven mass movements typically containing water, sediments, soil and rocks. These elements combine to give a flow complex phenomenology that exhibits characteristics common to diverse geophysical flows from dry granular media (e.g. levee formation) to viscous gravity currents (viscous fingering and surge instabilities). The exceptional speeds and range debris flows can achieve motivate the need for a co-ordinated modelling approach that can provide insight into the key physical processes that dictate the hazard associated with the flows. There has been recent progress in theoretical modelling approaches that capture the details of the multi-component nature of debris flows. The promise of such models is underlined by their qualitatively successful comparison with field-scale experimental data. The aim of the present work is to address the technical difficulties in achieving a controlled and repeatable laboratory-scale experiment for robust testing of these multi-component models. A laboratory experiment has been designed and tested that can provide detailed information of the internal structure of debris flows. This constitutes a narrow Perspex chute that can be tilted to any angle between 0° and ≈ 60°. A mixture of glycerine and glass balls was initially held behind a lock-gate, before being released down the chute. The evolving flow was captured through high speed video, analysed with a Particle Image Velocimetry algorithm to provide the changing velocity field. A wide parameter space has been tested, allowing variations in particle size, dispersity, surface roughness, fluid viscosity, slope angle and solid volume fraction. While matching key similarity criteria, such as Froude number, with a typical field event, these experiments allow close examination of a wide range of physical scenarios for the robust testing of new multi-component flow models. Further diagnostics include force plate and pore pressure measurements, with a view

  8. Numerical modeling of the subduction initiation after accretion of oceanic island.

    NASA Astrophysics Data System (ADS)

    Simakin, A.

    2012-04-01

    Accretion of the large terrains leads to the temporal blockage of subduction and accumulation of the oceanic slab material. New subduction front started in the thickened contact zone. This process is modeled numerically in 2D. We apply constant velocity condition at the inlet vertical boundary. Another vertical boundary is treated as a free slide one, Winkler boundary condition is applied to the lower boundary. Sticky air used to represent stress free upper boundary. Scenario of the new front initiation depends on the assumed rheology of oceanic slab and docked island. At the application of the purely viscous rheology of all components of the system: island viscosity 1023 Pas, upper mantle viscosity 3·1019 Pas and slab viscosity in the range 6·1020-6·1022 Pas, we find a variety of dynamic styles. At low slab viscosity in the time scale of several millions years plate is thickened and experienced RTI instability. New subduction front is started after plate break up near the island edge. At the more realistic η=6·1022 Pas oceanic slab is folded before plunging into the mantle. In the intermediate range thickening of the oceanic slab takes place with low angle subduction followed by accelerated submergence of the widen slab tip. Too large time of the transient process and too large scale of oceanic slab accumulation contradict to the observations. Visco-plastic rheology of the crustal rocks brings model closer to the real world. At the early stage of deformation conjugate "viscous faults" form in the oceanic slab in respond to the shortening. Later on sliding along these faults doubles oceanic plate thickness at the contact with docked island. Permanent fault (with dip away from island) was created to accommodate bending of oceanic plate. Thickened plate tip starts to descend with low angle of ca 35o. The most important observation is breakage of island edge that is carried downward with subducted oceanic plate. We compare our results with data on the current

  9. The physical properties of z > 2 Lyman limit systems: new constraints for feedback and accretion models

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; O'Meara, John M.; Prochaska, J. Xavier

    2016-02-01

    We study the physical properties of a homogeneous sample of 157 optically thick absorption line systems at redshifts ˜1.8-4.4, selected from a high-dispersion spectroscopic survey of Lyman limit systems (LLSs). By means of multiple ionization models and Bayesian techniques, we derive the posterior probability distribution functions for the density, metallicity, temperature and dust content of the absorbing gas. We find that z > 2 LLSs are highly ionized with ionization parameters between -3 ≲ log U ≲ -2, depending on the H I column density. LLSs are characterized by low temperatures (T < 5 × 104K) and reside in dust-poor environments. Between z ˜ 2.5-3.5, ˜80 per cent of the LLSs have physical densities between nH ˜ 10- 3.5-10- 2 cm- 3 for the assumed UV background, but we caution that a degeneracy between the ionization parameter and the intensity of the radiation field prevents robust inference on the density and sizes of LLSs. Conversely, metallicity estimates are less sensitive to the assumptions behind ionization corrections. LLSs at z > 2 are characterized by a broad unimodal distribution over > 4 orders of magnitude, with a peak at log Z/Z⊙ ˜ -2. LLSs are metal poor, significantly less enriched than DLAs, with ˜70 per cent of the metallicity PDF below log Z/Z⊙ ≤ -1.5. The median metallicity of super LLSs with log N_{H I}≥ 19 rapidly evolves with redshift, with a 10-fold increase between z ˜ 2.1-3.6 (˜1.5 Gyr). Based on this sample, we find that LLSs at z = 2.5-3.5 account for ˜15 per cent of all the metals produced by UV-selected galaxies. The implications for theories of cold gas accretion and metal ejection from galaxies are also discussed.

  10. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  11. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling

    NASA Astrophysics Data System (ADS)

    Qin, Liping; Dauphas, Nicolas; Wadhwa, Meenakshi; Masarik, Jozef; Janney, Philip E.

    2008-08-01

    New high-precision W isotope measurements are presented for 33 iron meteorites from 8 magmatic groups (IC, IIAB, IID, IIIAB, IIIE, IIIF, I VA and IVB), 2 non-magmatic groups (IAB-IIICD and IIE), and one ungrouped iron (Deep Springs). All magmatic irons have ɛ182W values that are, within errors, equal to, or less radiogenic than, the Solar System initial of - 3.47 ± 0.20. A method was developed to correct the measured ɛ182W values of magmatic iron meteorites for the presence of cosmogenic effects produced during space exposure to galactic cosmic rays. The corrected data provide new constraints on the timing of metal-silicate differentiation in iron meteorite parent bodies, which must have taken place within a few million years (< 2 to 6 My) of condensation of calcium-aluminum-rich inclusions (CAIs). Metal-silicate differentiation ages (from 182Hf-182W systematics) were combined with parent body sizes (from metallographic cooling rates) into a model of planetesimal heating by 26Al-decay, to constrain the accretion timescale of iron meteorite parent bodies. Accretion of iron meteorite parent bodies most likely occurred within 1.5 My of the formation of CAIs. The fast accretion times of iron meteorite parent bodies are consistent with dynamical models indicating that these objects may have originated in the terrestrial planet-forming region, where the accretion rates were high. Our W isotopic data for non-magmatic IAB-IIICD and IIE irons provide new constraints for their formation mechanisms. In particular, they support formation of IAB-IIICD iron meteorites by melting during a single collision event dated at 4-7 My after formation of the Solar System.

  12. Oscillating shocks in the low angular momentum flows as a source of variability of accreting black holes

    NASA Astrophysics Data System (ADS)

    Suková, P.; Janiuk, A.

    2015-02-01

    We derive the conditions for shock formation in a quasi-spherical, slightly rotating flows. We verify the results of semi-analytical, stationary calculations with the time evolution studied by numerical hydrosimulations, and we study the oscillations of the shock position. We also study the behaviour of flows with varying specific angular momentum, where the `hysteresis' type of loop is found when passing through the multiple sonic points region. Our results are in agreement with the time-scales and shapes of the luminosity flares observed in Sgr A*. These models may also be applicable for the Galactic stellar-mass black holes, like GX 339-4 or GRS 1915+105, where periodic oscillations of X-ray luminosity are detected.

  13. Towards Bayesian Machine Learning for Estimating Parameters of Accretion Disk Models for SPH Simulations

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele; Wiegand, Paul

    2016-01-01

    Accretion disks are ubiquitous in Active Galactic Nuclei, in protostellar systems forming protoplanets, and in close binary star systems such as X-ray binaries, Cataclysmic Variables, and Algols, for example. Observations such as disk tilt are found in all of these different accreting system types, suggesting a common physics must be present. To understand the common connections between these different system types, which can help us understand their unique evolutions, we need to better understand the physics of accretion. For example, viscosity is typically a constant value in the disk of a system that is in a specific state such as a quiescent state. However, viscosity can't be constant throughout the disk, especially at the boundaries. To learn more about viscosity and other common parameters in these disk, we use Bayesian Inference and Markov Chain Monte Carlo techniques to make predictions of events to come in the numerical simulations of these accreting disks. In this work, we present our techniques and initial findings.

  14. ON THE DISAPPEARANCE OF THE BROAD-LINE REGION IN LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI: THE ROLE OF THE OUTFLOWS FROM ADVECTION DOMINATED ACCRETION FLOWS

    SciTech Connect

    Cao Xinwu

    2010-12-01

    The broad-line region (BLR) disappears in many low-luminosity active galactic nuclei (AGNs), the reason of which is still controversial. The BLRs in AGNs are believed to be associated with the outflows from the accretion disks. Most of the low-luminosity AGNs contain advection-dominated accretion flows (ADAFs) which are very hot and have a positive Bernoulli parameter. ADAFs are therefore associated with strong outflows. We estimate the cooling of the outflows from the ADAFs and find that the gases in such hot outflows cannot always be cooled efficiently by bremsstrahlung radiation. The ADAF may co-exist with the standard disk, i.e., the inner ADAF connects to the outer thin accretion disk at radius R{sub d,tr} in the sources accreting at slightly lower than the critical rate m-dot{sub crit} (m-dot = M-dot / M-dot{sub Edd}). For the ADAFs with L{sub bol}/L{sub Edd} {approx}> 0.001, a secondary small inner cold disk is suggested to co-exist with the ADAF due to the condensation process. We estimate the Compton cooling of the outflow, of which the soft seed photons either come from the outer cold disk or the secondary inner cold disk. It is found that the gas in the outflow far from the ADAF may be efficiently cooled to form BLR clouds due to the soft seed photons emitted from the cold disks, provided the transition radius of the ADAF to the outer cold disk is small [r{sub d,tr} = R{sub d,tr}/(2GM/c {sup 2}) {approx}< 20] or/and the secondary small cold disk has a luminosity L{sub sd} {approx}> 0.003 L{sub Edd}. The BLR clouds can still be formed in the outflows from the outer cold thin disks, if the transition radius r{sub tr} is not very large. For the sources with L{sub bol}/L{sub Edd} {approx}< 0.001, the inner small cold disk is evaporated completely in the ADAF and the outer thin accretion disk may be suppressed by the ADAF, which leads to the disappearance of the BLR. The physical implications of this scenario on the double-peaked broad-line emitters are also

  15. Modeling groundwater flow on MPPs

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.

    1993-10-01

    The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code`s scalability.

  16. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. II; Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Maisack, Michael; Begelman, Mitchell C.

    1997-01-01

    We apply our self-consistent accretion disk corona (ADC) model, with two different geometries, to the broadband X-ray spectrum of the black hole candidate Cygnus X-1. As shown in a companion paper, models in which the Comptonizing medium is a slab surrounding the cold accretion disk cannot have a temperature higher than about 140 keV for optical depths greater than 0.2, resulting in spectra that are much softer than the observed 10-30 keV spectrum of Cyg X-1. In addition, the slab-geometry models predict a substantial "soft excess" at low energies, a feature not observed for Cyg X-1, and Fe K-alpha fluorescence lines that are stronger than observed. Previous Comptonization models in the literature have invoked a slab geometry with optical depth tau(sub T) approx. greater than 0.3 and coronal temperature T(sub c) approx. 150 keV, but they are not self-consistent. Therefore, ADC models with a slab geometry are not appropriate for explaining the X-ray spectrum of Cyg X-1. Models with a spherical corona and an exterior disk, however, predict much higher self-consistent coronal temperatures than the slab-geometry models. The higher coronal temperatures are due to the lower amount of reprocessing of coronal radiation in the accretion disk, giving rise to a lower Compton cooling rate. Therefore, for the sphere-plus-disk geometry, the predicted spectrum can be hard enough to describe the observed X-ray continuum of Cyg X-1 while predicting Fe fluorescence lines having an equivalent width of approx. 40 eV. Our best-fit parameter values for the sphere-plus-disk geometry are tau(sub T) approx. equal to 1.5 and T(sub c) approx. equal to 90 keV.

  17. Turbulence modeling for compressible flows

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.

    1977-01-01

    Material prepared for a course on Applications and Fundamentals of Turbulence given at the University of Tennessee Space Institute, January 10 and 11, 1977, is presented. A complete concept of turbulence modeling is described, and examples of progess for its use in computational aerodynimics are given. Modeling concepts, experiments, and computations using the concepts are reviewed in a manner that provides an up-to-date statement on the status of this problem for compressible flows.

  18. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  19. Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory

    NASA Astrophysics Data System (ADS)

    Bennett, M. J.; Lebedev, S. V.; Hall, G. N.; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2015-12-01

    We present data from the first Z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a supersonically (M ∼ 2) rotating hollow plasma cylinder of height ∼4 mm and radius 2 mm. Using a combination of diagnostics we measure the rotation speed (∼60 kms-1), electron density (1019 cm-3), ion temperature (Ti ∼ 60 eV) and the product of electron temperature and average ionisation (ZTe ∼ 150 to 200 eV). Using these parameters we calculate the Reynolds number for the plasma on the order 105 and magnetic Reynolds number as 10 - 100. The plasma flow is maintained for 150 ns, corresponding to one rotation period, which should allow for studying fast instabilities which develop on this time-scale.

  20. Materietransport in Akkretionsscheiben %t Transport of matter in accretion discs

    NASA Astrophysics Data System (ADS)

    Keller, Christof Martin

    2003-07-01

    Time-scales that need to be considered in time-dependent computations of accretion discs are many orders of magnitude larger than stable time-step sizes of common numerical codes. Therefore, theoretical investigation of these objects is severely limited by present-day computational resources, unless more efficient algorithms are found. Due to large differences in the underlying physics of cosmic accretion discs, algorithms need to be adjusted to the particular problem. During the course of this thesis, several algorithms have been implemented and tested. One of the implemented splitting-methods could efficiently be employed to 1D-simulations of supersonic accretion flows onto black holes. Another splitting method and a pressure correction scheme were applied to simulate two-dimensional protostellar accretion flows, which have been investigated more elaborately in this thesis. With these methods, performance in simulating protostellar discs could be improved in at least some cases. Numerical simulations of flow-structures in protostellar discs could thus be conducted and compared to higher order analytical approximations. Disc models using an α-description of the viscosity produced meridional flow-structures that have already been observed by several authors. Unlike flow-structures resulting from stationary one-zone-approximations, meridional flows exhibit outward directed velocities in the midplane of the disc. Test cases showed, that meridional flows can play an important role in the mixing processes of protostellar disc material that is reflected in the composition of cometary and meteorite material.

  1. Image-Based Flow Modeling

    NASA Astrophysics Data System (ADS)

    Dillard, Seth; Mousel, John; Buchholz, James; Udaykumar, H. S.

    2009-11-01

    A preliminary method has been developed to model complex moving boundaries interacting with fluids in two dimensions using video files. Image segmentation techniques are employed to generate sharp object interfaces which are cast as level sets embedded in a Cartesian flow domain. In this way, boundary evolution is effected directly through imagery rather than by way of functional approximation. Videos of an American eel swimming in a water tunnel apparatus and a guinea pig duodenum undergoing peristaltic contractions in vitro serve as external and internal flow examples, which are evaluated for wake structure and mixing efficacy, respectively.

  2. Ringed Accretion Disks: Instabilities

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  3. ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES

    SciTech Connect

    Trump, Jonathan R.; Impey, Christopher D.; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Kelly, Brandon C.; Civano, Francesca; Hao, Heng; Lanzuisi, Giorgio; Merloni, Andrea; Salvato, Mara; Urry, C. Megan; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Liu, Charles; Mainieri, Vincenzo; Scoville, Nick Z.

    2011-05-20

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L{sub int}) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L{sub int}/L{sub Edd} > 10{sup -2}), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L{sub int}/L{sub Edd} < 10{sup -2}) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L{sub int}/L{sub Edd} < 10{sup -2} narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L{sub int}/L{sub Edd} > 10{sup -2} broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L{sub int}/L{sub Edd} < 10{sup -2} AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical 'axis' of AGN unification, as described by a simple model.

  4. Flows In Model Human Femoral Arteries

    NASA Technical Reports Server (NTRS)

    Back, Lloyd H.; Kwack, Eug Y.; Crawford, Donald W.

    1990-01-01

    Flow is visualized with dye traces, and pressure measurements made. Report describes experimental study of flow in models of human femoral artery. Conducted to examine effect of slight curvature of artery on flow paths and distribution of pressure.

  5. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    mechanisms for stopping this accretion involve either disk dispersal or gap formation. Although mass accretion may eventually be quenched by a global depletion of gas, as in the ease of Uranus and Neptune, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Similarly, the formation of a gap cannot fully explain the decrease in mass accretion. Several groups have shown that, even in the presence of a gap, diffusion allows rapid gas accretion to continue. Here I explore the effect of the growing tidal barrier on the flow within the protoplanetary disk. Using both analytic and numerical approaches I show that accretion rates increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Mass accretion timescales become comparable to observed disk lifetimes. In regions with loco geometric aspect ratios gas accretion is efficiently quenched with relatively low protoplanetary masses. This mechanism is important for determining the gas- giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars. The final section explores the atmospheric dynamics of short-period gas-giant planets. Ubiquitous among currently observed extrasolar planetary systems these planets receive intense irradiation from their host stars that dominates the energy input into their atmospheres. Characterization of several of these planets through transit observations have revealed information on temperature, structure, and composition. Here we present three-dimensional radiative hydrodynamical simulations of atmospheric circulation on close-in gas giant planets. In contrast to previous Global Climate Models and shallow water algorithms, this method does not assume quasi hydrostatic equilibrium

  6. Numerical modeling of protocore destabilization during planetary accretion: Methodology and results

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Ren; Gerya, Taras V.; Tackley, Paul J.; Yuen, David A.; Golabek, Gregor J.

    2009-12-01

    We developed and tested an efficient 2D numerical methodology for modeling gravitational redistribution processes in a quasi spherical planetary body based on a simple Cartesian grid. This methodology allows one to implement large viscosity contrasts and to handle properly a free surface and self-gravitation. With this novel method we investigated in a simplified way the evolution of gravitationally unstable global three-layer structures in the interiors of large metal-silicate planetary bodies like those suggested by previous models of cold accretion [Sasaki, S., Nakazawa, K., 1986. J. Geophys. Res. 91, 9231-9238; Karato, S., Murthy, V.R., 1997. Phys. Earth Planet Interios 100, 61-79; Senshu, H., Kuramoto, K., Matsui, T., 2002. J. Geophys. Res. 107 (E12), 5118. 10.1029/2001JE001819]: an innermost solid protocore (either undifferentiated or partly differentiated), an intermediate metal-rich layer (either continuous or disrupted), and an outermost silicate-rich layer. Long-wavelength (degree-one) instability of this three-layer structure may strongly contribute to core formation dynamics by triggering planetary-scale gravitational redistribution processes. We studied possible geometrical modes of the resulting planetary reshaping using scaled 2D numerical experiments for self-gravitating planetary bodies with Mercury-, Mars- and Earth-size. In our simplified model the viscosity of each material remains constant during the experiment and rheological effects of gravitational energy dissipation are not taken into account. However, in contrast to a previously conducted numerical study [Honda, R., Mizutani, H., Yamamoto, T., 1993. J. Geophys. Res. 98, 2075-2089] we explored a freely deformable planetary surface and a broad range of viscosity ratios between the metallic layer and the protocore (0.001-1000) as well as between the silicate layer and the protocore (0.001-1000). An important new prediction from our study is that realistic modes of planetary reshaping

  7. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  8. ICEG2D (v2.0) - An Integrated Software Package for Automated Prediction of Flow Fields for Single-Element Airfoils With Ice Accretion

    NASA Technical Reports Server (NTRS)

    Thompson David S.; Soni, Bharat K.

    2001-01-01

    An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.

  9. Properties of optically thick coronae around accreting black holes

    NASA Astrophysics Data System (ADS)

    Belmont, R.; Różańska, A.; Malzac, J.; Czerny, B.; Petrucci, P.-O.

    2015-12-01

    Accreting black holes are complex sources exhibiting several spectral components (disc, jet, hot corona etc). The exact nature and the interplay between these components is still uncertain, and constraining the accretion flow in the vicinity of the compact object has become a key problem to understand the general physics of accretion and ejection. In the past years, the X-ray spectra of several X-ray binaries and AGN have suggested the existence of a new type of coronae in the inner part of their accretion disk. These coronae are warm (about 1 keV) and have Thomson optical depths of about τ ≈ 10, much larger than the standard comptonizing medium inferred in black hole systems. However, simple radiative models based on the diffusion approximation are unable to sustain a large temperature over such high optical depths, therefore questioning existence of these thick coronae. Here we investigate the radiative and hydrostatic properties of slabs, thick coronae covering a standard accretion disc. A precise modelling of the radiation transfer shows that the observed temperature inversion can be reproduced, provided that most of the accretion power is dissipated in this upper layer and that the medium is strongly magnetised.

  10. ReefSAM - Reef Sedimentary Accretion Model: A new 3D coral reef evolution model/simulator

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Webster, Jody

    2013-04-01

    Coral reefs show characteristic morphological patterns (e.g. coral dominated margins with detrital carbonate dominated lagoons/back-reef) and temporal development (e.g. Hopley et al. 2007). While the processes which lead to predictable patterns on a range of scales have been discussed qualitatively, a full quantitative understanding of the range of processes and parameters involved requires modelling. Previous attempts to model complex Holocene reef systems (i.e. One Tree Reef, GBR - Barrett and Webster 2012) using a carbonate stratigraphic forward model (Carbonate3D - Warrlich et al. 2002) identified a number of important but unsimulated processes and potential model improvements. ReefSAM has been written from scratch in Matlab using these findings and experiences from using Carbonate3D. It simulates coralgal accretion and carbonate sand production and transport. Specific improvements include: 1. a more complex hydrodynamic model based on wave refraction and incorporating vertical (depth) and lateral (substrate dependent) variations in transport energy and erosion. 2. a complex reef growth model incorporating depth, wave energy/turbidity and substrate composition. 3. Paleo-water depth, paleo-wave energy and bio-zone (combination of paleo-water depth and wave energy) model outputs allowing coralgal habitat changes through time and space to be simulated and compared to observational data. The model is compared to the well studied One Tree Reef - tests similar to those undertaken in Barrett and Webster 2012 with Carbonate3D are presented. Model development coincides with plans for further intensive drilling at One Tree Reef (mid 2013) providing an opportunity to test the model predictively. The model is still in active development. References: Barrett, S.J., Webster, J.M.,2012. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling. Sedimentary Geology 265-266, 56-71. Warrlich, G.M.D., Waltham, D.A., Bosence D.W.J., 2002. Quantifying the

  11. The Spectral Signature of Accretion in Low-Mass Protostars: Observations and Non-LTE Modelling

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, Helmut

    1997-06-01

    This work demonstrates the feasibility of a study bringing together theoretical concepts of the earliest phase of low-mass star formation and its observational evidence. Thus, two aspects have been considered: Observational evidence: In order to detect protostellar collapse by virtue of kinematical features in spectral line profiles, both optically thick and optically thin tracers are needed. According to Leung & Brown (1977, ApJ 214, L73), a protostellar envelope undergoing collapse exhibits a red-shifted self-absorption in a molecular line transition if the excitation gradient is negative. Optically thin emission (e.g. from the corresponding isotopomere's line) corroborates the conclusions by ruling out the case of independent components filling the observing beam. The nearby (d~200 pc) globular filament L 1082 (no. 9 from a catalog assembled by Schneider & Elmegreen, 1979, ApJS 41, 87) provides at least three candidates showing unambigeous footprints of protostellar collapse. By means of millimeter-interferometry (with the iram and bima interferometers Asz well as single dish spectroscopy and continuum imaging (using the iram 30 m telescope), these candidates were identified and characterized. As moderately optically thick high-density tracers, the CS (2,1), (3,2) and (5,4) transitions have been observed. The optically thin (2,1) lines of C34S and C18O were measured to confirm the evidence for collapse. Preliminary results from observations with isophot and isocam were used to better constrain the luminosity of one of the collapse candidates, which subsequently has been classified as an extreme Class 0 protostar. Theoretical concepts: For reasons evidenced by the observed column density distributions and by systematic shifts of the molecular line emission across the sources, spherically-symmetric collapse has to be ruled out. Instead, scenarios such as core formation in sheet-like clouds (as proposed by Hartmann et al., 1994, ApJ 430, L49) and magnetic accretion

  12. Stochastic models for turbulent reacting flows

    SciTech Connect

    Kerstein, A.

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  13. Flow dynamics and sedimentation of lateral accretion packages in sinuous deep-water channels: A 3D seismic case study from the northwestern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Gong, Chenglin

    2016-07-01

    The current study uses 3D seismic data to document architectural styles and flow dynamics of lateral accretion packages (LAPs) associated with sinuous deep-water channels, contributing to a better understanding of flow processes and sedimentation associated with LAPs. The documented LAPs underwent three main stages of architectural evolution, including the early incision stages characterized by intense downcutting, active migration stages characterized by active migration and avulsion of the individual channels, and late abandonment stages characterized by the termination of sediment gravity-flows and LAP growth. These three stages of LAP growth repeated through time, yielding a fining-upward pattern from sandy channel-fill turbidites, into sand-mud couplets, all capped by muddy turbidites. A river-reversed helical flow circulation was created by an imbalance, through the flow depth, of inwardly directed pressure gradient forces near the bed and outwardly directed centrifugal forces near the surface. It consists of low-velocity cores near the outer banks and low-velocity cores along the inner banks. Such river-reversed helical flow pattern is evidenced by volumetrically extensive LAPs and toplap and downlap terminations along the gentle banks and by aerially restricted, seismically unresolvable levees and truncation terminations near the steep banks. This river-reversed helical flow circulation favors asymmetric intra-channel deposition characterized by inner bank deposition versus outer bank erosion, and which, in turn, forced individual channels to consistently migrate towards outer banks, resulting in significant asymmetric cross-channel profiles with aerially extensive LAPs along inner banks.

  14. The Incidence of Low-metallicity Lyman-limit Systems at z ~ 3.5: Implications for the Cold-flow Hypothesis of Baryonic Accretion

    NASA Astrophysics Data System (ADS)

    Cooper, Thomas J.; Simcoe, Robert A.; Cooksey, Kathy L.; O'Meara, John M.; Torrey, Paul

    2015-10-01

    Cold accretion is a primary growth mechanism of simulated galaxies, yet observational evidence of “cold flows” at redshifts where they should be most efficient (z = 2-4) is scarce. In simulations, cold streams manifest as Lyman-limit absorption systems (LLSs) with low heavy-element abundances similar to those of the diffuse intergalactic medium (IGM). Here we report on an abundance survey of 17 H i-selected LLSs at z = 3.2-4.4 which exhibits no metal absorption in Sloan Digital Sky Survey spectra. Using medium-resolution spectra obtained at Magellan, we derive ionization-corrected metallicities (or limits) with a Markov-chain Monte Carlo sampling that accounts for the large uncertainty in NH i measurements typical of LLSs. The metal-poor LLS sample overlaps with the IGM in metallicity and can be described by a model where {71}-11+13% are drawn from the IGM chemical abundance distribution. These represent roughly half of all LLSs at these redshifts, suggesting that 28%-40% of the general LLS population at z ˜ 3.7 could trace accreting gas. An ancillary sample of ten LLSs without any a priori metal-line selection is fit by a model having {48}-12+14% of metallicities drawn from the IGM. We compare these results with regions of a moving-mesh simulation. The observed and simulated LLS metallicity distributions are in good agreement, after accounting for known uncertainties in both, with the fraction of simulated baryons in IGM-metallicity LLSs within a factor of two of the observed value. A statistically significant fraction of all LLSs have low metallicity and therefore represent candidates for accreting gas; large-volume simulations can establish what fraction of these candidates actually lie near galaxies and the observational prospects for detecting the presumed hosts in emission. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Can the Subsonic Accretion Model Explain the Spin Period Distribution of Wind-fed X-Ray Pulsars?

    NASA Astrophysics Data System (ADS)

    Li, Tao; Shao, Yong; Li, Xiang-Dong

    2016-06-01

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 1036 erg s‑1), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 km s‑1). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 1036 erg s‑1 is about 1:10.

  16. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  17. Parsec-scale Accretion and Winds Irradiated by a Quasar

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-03-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L\\gt 0.01 {L}{{Edd}}, where LEdd is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10-4-10-1{M}⊙ {{{yr}}}-1 through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L/{L}{{edd}} increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  18. Oman Ophiolite Structural Constraints Complement Models of Crustal Accretion at the EAST Pacific RISE

    NASA Astrophysics Data System (ADS)

    Nicolas, A. A.; Jousselin, D.; Boudier, F. I.

    2014-12-01

    This review documents significant similarities between East Pacific Rise (EPR), especially EPR at 9°-10°N and the Oman ophiolites. Both share comparable fast spreading rates, size and their dominant source of information that is mainly geophysical in EPR and structural in Oman. In these respects, they are remarkably complementary. Mantle upwelling zones at the EPR and mantle diapirs in Oman have a similar size and spacing. They punctually introduce basaltic melt and heat in the accreting crust, thus controlling elementary segments structure and activity. A tent-shaped magma chamber fits onto the diapir head, the top of which is a Mantle Transition Zone (MTZ) that stores, modifies, and injects the modified melt into the upper Axial Melt Lens (AML) beneath the lid. This MTZ-AML connection is central in crustal accretion, as documented in Oman. Heat from the diapir is captured above the Moho by the magma chamber and escapes through its walls, into a thin thermal boundary layer that bounds the chamber. Beyond, seawater at lower temperatures feeds smokers on the seafloor.

  19. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  20. Application of the relativistic precession model to the accreting millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Stefanov, I. Zh.

    2016-03-01

    The observation of a pair of simultaneous twin kHz QPOs in the power density spectrum of a neutron star or a black hole allows its mass-angular-momentum relation to be constrained. Situations in which the observed simultaneous pairs are more than one allow the different models of the kHz QPOs to be falsified. Discrepancy between the estimates coming from the different pairs would call the used model into question. In the current paper, the relativistic precession model is applied to the twin kHz QPOs that appear in the light curves of three groups of observations of the accreting millisecond X-ray pulsar IGR J17511-3057. It was found that the predictions of one of the groups are practically in conflict with the other two. Another interesting result is that the region in which the kHz QPOs have been born is rather broad and extends quite far from the ISCO.

  1. Magnetohydrodynamic Accretion Around Supermassive Black Holes : Short-Length Disc for Stronger Field

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    Thin accretion flow, i.e., geometrically thin accretion disc was first studied by Shakura and Sunyaev. Relativistic fluid flows around a black hole produce enormous energy on the cost of permanent lost of the gravitational potential due to the fall into a infinitely sloped gravitational well or to be specific, into a space time singularity. This energy is actually observed in different wavelengths and we specify the source as Active Galactic Nuclei, quasars, Gamma-ray burst sources etc. Eventually, two popular kind of accretion disc models are there. The first one is advection dominated, known as geometrically thin optically thick accretion disc. The other is geometrically thick but optically thin as it does not capture photons inside! The jets formed by accretion phenomena are still not well explained. Size of the accretion disc, power of the jets can be powered by magnetic fields generated by the ionized particles of the accretion flow. We show the exact dependency of the disc size upon the magnetic field present along with the quantity of the central gravitating mass.

  2. Formation of Continuous and Episodic Relativistic Outflows in Regions of Stability and Instability in Advection-Dominated Accretion Flows

    NASA Astrophysics Data System (ADS)

    Le, Truong V.; Wood, Kent S.; Wolff, Michael Thomas; Becker, Peter A.; Putney, Joy; Edge, Elizabeth

    2016-01-01

    Previously, we have demonstrated that particle acceleration in the vicinity of a shock in an advection-dominated accretion disk can extract enough energy to power a relativistic jet from a supermassive black hole at the center of a radio-loud active galaxy. However, to maintain a steady jet, a stable shock location is required. By employing the Chevalier & Imamura linearization method and the Nakayama instability boundary conditions, we have also shown that there is a region of the energy and angular momentum parameter space in which disk/shocks with outflows can be either stable or unstable. In a region of instability, the velocity profiles that exhibit pre-shock deceleration and pre-shock acceleration are always unstable to the zeroth mode with zero frequency of oscillation. However, in a region of stability, the zeroth mode, the fundamental, and the overtones are all stable for both pre-shock deceleration as well as pre-shock acceleration. Building on this new insight, in this paper, we explore new parameter values in the regions of stability and instability to explain the production of the observed continuous and episodic relativistic outflows (jets) in M87 and Sgr A*, respectively.

  3. Pressure gradient torque in highly supersonic nonaxisymmetric accretion

    NASA Technical Reports Server (NTRS)

    Ho, Cheng; Taam, Ronald E.; Fryxell, Bruce A.; Matsuda, Takuya; Koide, Hiroshi

    1989-01-01

    The contribution of a pressure gradient torque to the angular momentum transfer rate in highly supersonic nonaxisymmetric accretion flows is considered. This study takes into account the contribution due to the pressure variation in the postaccretion-shock region which is significant for high Mach number accretion. For the case of accretion flow with Mach (infinity) of not less than 5, the overall accretion torque is shown to approach a constant value.

  4. Turbulence modeling for complex hypersonic flows

    NASA Technical Reports Server (NTRS)

    Huang, P. G.; Coakley, T. J.

    1993-01-01

    The paper presents results of calculations for a range of 2D turbulent hypersonic flows using two-equation models. The baseline models and the model corrections required for good hypersonic-flow predictions will be illustrated. Three experimental data sets were chosen for comparison. They are: (1) the hypersonic flare flows of Kussoy and Horstman, (2) a 2D hypersonic compression corner flow of Coleman and Stollery, and (3) the ogive-cylinder impinging shock-expansion flows of Kussoy and Horstman. Comparisons with the experimental data have shown that baseline models under-predict the extent of flow separation but over-predict the heat transfer rate near flow reattachment. Modifications to the models are described which remove the above-mentioned deficiencies. Although we have restricted the discussion only to the selected baseline models in this paper, the modifications proposed are universal and can in principle be transferred to any existing two-equation model formulation.

  5. Properties of accretion disk coronae

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Staubert, R.; Begelman, M. C.

    1997-01-01

    The properties of accretion disk corona in a parameter regime suitable for Galactic black hole candidates are considered and the results of an analysis of these properties using a self-consistent Monte Carlo code are presented. Examples of the coronal temperature structure, the shape and angular dependency of the spectrum and the maximum temperature allowed for each optical depth of the corona are presented. It is shown that the observed spectrum of the Galactic black hole candidate Cygnus X-1 cannot be explained by accreting disk corona models with a slab geometry, where the accretion disk is sandwiched by the comptonizing medium.

  6. X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  7. Extracting flow parameters of H 1743-322 during early phase of its 2010 outburst using two component advective flow model

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu

    We study the spectral properties of Galactic transient black hole candidate H~1743-322 during its early phase of 2010 outburst with Two Component Advective Flow (TCAF) model, after its inclusion in spectral analysis software package XSPEC as a local model. For the analysis, spectral data from RXTE/PCA instrument in 2.5-25 keV energy band are used. From the spectral fit, accretion flow parameters such as Keplerian (disk) rate, sub-Keplerian (halo) rate, location of the shock and strength of the shock are directly extracted. QPO frequencies are predicted from the TCAF model spectral fitted shock parameters, `closely' matches with the observed frequencies.

  8. West Maui Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  9. Hawaii Island Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  10. East Maui Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  11. Active Flow Control (AFC) and Insect Accretion and Mitigation (IAM) System Design and Integration on the Boeing 757 ecoDemonstrator

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.

    2016-01-01

    This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.

  12. Characterization of Turbulent Flows for Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Reynolds, W. C.; Haire, S. L.

    1998-11-01

    A diagram for the characterization of turbulent flows using the invariants of the mean velocity gradient tensor is introduced. All mean flows, from irrotationally strained flows to shearing flows, to purely rotational flows, can be identified on this diagram. Different flow fields which occupy the same region on the diagram are said to be comprised of the same topological features. The current state of turbulence modeling can be identified on the diagram based on the type of mean flow fields which can be accurately computed. Regions on the diagram can be shown for which current capabilities in turbulence modeling fail to accurately resolve the turbulent structures. Relevant mean field topology is identified for future work in turbulence modeling. Using this analysis, we suggest a number of flows to be computed by DNS or LES and used as testing cases for new models.

  13. Spherical Accretion in a Uniformly Expanding Universe

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  14. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  15. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion

    PubMed Central

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María del Mar; Fernández-López, José Antonio; Alemany, Marià

    2016-01-01

    Background. A “cafeteria” diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to “cafeteria” diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal. PMID:27547590

  16. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion.

    PubMed

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María Del Mar; Fernández-López, José Antonio; Alemany, Marià; Remesar, Xavier

    2016-01-01

    Background. A "cafeteria" diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to "cafeteria" diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal. PMID:27547590

  17. A toy terrestrial carbon flow model

    NASA Technical Reports Server (NTRS)

    Parton, William J.; Running, Steven W.; Walker, Brian

    1992-01-01

    A generalized carbon flow model for the major terrestrial ecosystems of the world is reported. The model is a simplification of the Century model and the Forest-Biogeochemical model. Topics covered include plant production, decomposition and nutrient cycling, biomes, the utility of the carbon flow model for predicting carbon dynamics under global change, and possible applications to state-and-transition models and environmentally driven global vegetation models.

  18. Comparisons and connections between mean field dynamo theory and accretion disc theory

    NASA Astrophysics Data System (ADS)

    Blackman, E. G.

    2010-01-01

    The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.

  19. The Event Horizon Telescope: exploring strong gravity and accretion physics

    NASA Astrophysics Data System (ADS)

    Ricarte, Angelo; Dexter, Jason

    2015-01-01

    The Event Horizon Telescope (EHT), a global sub-millimetre wavelength very long baseline interferometry array, is now resolving the innermost regions around the supermassive black holes Sgr A* and M87. Using black hole images from both simple geometric models and relativistic magnetohydrodynamical accretion flow simulations, we perform a variety of experiments to assess the promise of the EHT for studying strong gravity and accretion physics during the stages of its development. We find that (1) the addition of the Large Millimeter Telescope (LMT) and Atacama Large Millimeter/submillimeter Array along with upgraded instrumentation in the `Complete' stage of the EHT allow detection of the photon ring, a signature of Kerr strong gravity, for predicted values of its total flux; (2) the inclusion of coherently averaged closure phases in our analysis dramatically improves the precision of even the current array, allowing (3) significantly tighter constraints on plausible accretion models and (4) detections of structural variability at the levels predicted by the models. While observations at 345 GHz circumvent problems due to interstellar electron scattering in line of sight to the galactic centre, short baselines provided by CARMA (Combined Array for Research in Millimeter-wave Astronomy) and/or the LMT could be required in order to constrain the overall shape of the accretion flow. Given the systematic uncertainties in the underlying models, using the full complement of two observing frequencies (230 and 345 GHz) and sources (Sgr A* and M87) may be critical for achieving transformative science with the EHT experiment.

  20. Time-dependent spherically symmetric accretion onto compact X-ray sources

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Ostriker, J. P.; Stark, A. A.

    1978-01-01

    Analytical arguments and a numerical hydrodynamic code are used to investigate spherically symmetric accretion onto a compact object, in an attempt to provide some insight into gas flows heated by an outgoing X-ray flux. It is shown that preheating of spherically symmetric accretion flows by energetic radiation from an X-ray source results in time-dependent behavior for a much wider range of source parameters than was determined previously and that there are two distinct types of instability. The results are compared with observations of X-ray bursters and transients as well as with theories on quasars and active galactic nuclei that involve quasi-spherically symmetric accretion onto massive black holes. Models based on spherically symmetric accretion are found to be inconsistent with observations of bursters and transients.

  1. The Behavior of Accretion Disks in Low Mass X-ray Binaries: Disk Winds and Alpha Model

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.

    2010-01-01

    This dissertation presents research on two low mass X-ray binaries. The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy with the ACS/SBC on the Hubble Space Telescope and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s as determined from the Doppler width of the C IV emission line. The broad and shallow eclipse indicates that the disk has a vertically-extended, optically-thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to 50% of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of the disk wind. V1408 Aql (=4U 1957+115) is a low mass X-ray binary which continues to be a black hole candidate. We have new photometric data of this system from the Otto Struve 2.1-m telescope's high speed CCD photometer at McDonald Observatory. The light curve is largely sinusoidal which we model with two components: a constant light source from the disk and a sinusoidal modulation at the orbital period from the irradiated face of the companion star. This is a radical re-interpretation of the orbital light curve. We do not require a large or asymmetric disk rim to account for the modulation in the light curve. Thus, the orbital inclination is unconstrained in our new model, removing the foundation for any claims of the compact object being a black hole.

  2. Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  3. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  4. Models for water steam condensing flows

    NASA Astrophysics Data System (ADS)

    Wróblewski, Włodzimierz; Dykas, Sławomir; Chmielniak, Tadeusz

    2012-08-01

    The paper presents a description of selected models dedicated to steam condensing flow modelling. The models are implemented into an in-house computational fluid dynamics code that has been successfully applied to wet steam flow calculation for many years now. All models use the same condensation model that has been validated against the majority of available experimental data. The state equations for vapour and liquid water, the physical model as well as the numerical techniques of solution to flow governing equations have been presented. For the single-fluid model, the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture are solved, whereas the two-fluid model solves separate flow governing equations for the compressible, viscous and turbulent vapour phase and for the compressible and inviscid liquid phase. All described models have been compared with relation to the flow through the Laval nozzle.

  5. A stochastic index flow model of flow duration curves

    NASA Astrophysics Data System (ADS)

    Castellarin, Attilio; Vogel, Richard M.; Brath, Armando

    2004-03-01

    Annual flow duration curves (AFDCs) are used increasingly because unlike traditional period of record flow duration curves (FDCs), they provide confidence intervals for the median AFDC, they enable one to assign return periods to individual AFDCs, and they offer opportunities for developing a generalized stochastic model of daily streamflow. Previous stochastic models of FDCs and AFDCs were unable to reproduce the variance of AFDCs. We introduce an index flow approach to modeling the relationship between an FDC and AFDCs of daily streamflow series, which is able to reproduce the FDC, as well as the mean, median, and variance of the AFDCs without resorting to assumptions regarding the seasonal or persistence structure of daily streamflow series. Our approach offers additional opportunities for the regionalization of flow duration curves and for the generation of time series of daily streamflows at ungauged sites. Our approach is tested on three river basins in eastern central Italy.

  6. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  7. SIGNS OF MAGNETIC ACCRETION IN THE X-RAY PULSAR BINARY GX 301-2

    SciTech Connect

    Ikhsanov, Nazar R.; Finger, Mark H.

    2012-07-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B{sub CRSF} {approx} 4 Multiplication-Sign 10{sup 12} G. The same value has been derived in modeling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 B{sub CRSF} or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar can be explained in terms of the magnetically controlled accretion flow scenario provided the surface field of the neutron star is {approx}B{sub CRSF}.

  8. Site-Scale Saturated Zone Flow Model

    SciTech Connect

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  9. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  10. Implicit integrations for SPH in semi-Lagrangian approach: Application to the accretion disc modeling in a microquasar

    NASA Astrophysics Data System (ADS)

    Lanzafame, G.

    2013-03-01

    Current explicit integration techniques in fluid dynamics are deeply limited by the Courant-Friedrichs-Lewy condition of the time step progression, based on the adopted spatial resolution coupled with the maximum value between the kinetic velocity or the signal transmission speed in the computational domain. Eulerian implicit integration techniques, even though more time consuming, can allow us to perform stable computational fluid dynamics paying the price of a relatively larger inaccuracy in the calculations, without suffering such a strict temporal limitation. In this paper, we present a simple and effective scheme to perform free Lagrangian Smooth Particle Hydrodynamics (SPH) implicit integrations in the semi-Lagrangian approach without any Jacobian matrix inversion operations for viscous Navier-Stokes flows. Applications to SPH accretion disc simulation around a massive black hole (MBH) in a binary stellar system are shown, together with the comparison to the same results obtained according to the traditional explicit integration techniques. Some 1D and 2D critical tests are also discussed to check the validity of the technique.

  11. He-accreting white dwarfs: accretion regimes and final outcomes

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Tornambé, A.; Yungelson, L. R.

    2014-12-01

    The behaviour of carbon-oxygen (CO) white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyse the thermal response of an accreting WD to mass deposition at different timescales. The analysis has been performed for initial WD masses and accretion rates in the range 0.60-1.02 M⊙ and 10-9-10-5 M⊙ yr-1, respectively. Thermal regimes in the parameter space MWD-dot{M}_He leading to formation of red-giant-like structures, steady burning of He, and mild, strong and dynamical flashes have been identified and the transition between these regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building up of a He-rich layer via H burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomial fits to the obtained results are provided for use in binary population synthesis computations. Several applications for close binary systems with He-rich donors and CO WD accretors are considered and the relevance of the results for interpreting He novae is discussed.

  12. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  13. Numerical modeling of fluidic flow meters

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Patel, B. R.

    1992-05-01

    The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.

  14. Performance testing of the Silo Flow Model

    SciTech Connect

    Stadler, S.P.; O`Connor, D.; Gould, A.F.

    1994-12-31

    Several instruments are commercially available for on-line analysis of coal properties such as total moisture, ash, sulfur, and mineral matter content. These instruments have found use in coal cleaning and coal-fired utility applications. However, in many instances, the coal is stored in large bunkers or silos after on-line analysis, making the data gathered from on-line analysis a poor predictor of short-term coal quality due to the flow pattern and mixing within the silo. A computerized model, the Silo Flow Model, has been developed to model the flow of coal through a silo or bunker thus providing a prediction of the output coal quality based on on-line measurements of the quality of coal entering the silo. A test procedure was developed and demonstrated to test the performance of the Silo Flow Model. The testing was performed using controlled addition of silver nitrate to the coal, in conjunction with surface profile measurements using an array of ultrasonic gauges and data acquired from plant instrumentation. Results obtained from initial testing provided estimates of flow-related parameters used in the Silo flow Model. Similar test techniques are also used to compare predicted and actual silver content at the silo outlet as a measure of model performance. This paper describes test procedures used to validate the Silo Flow Model, the testing program, and the results obtained to data. The Silo Flow Model performance is discussed and compared against other modeling approaches.

  15. Experimental Flow Models for SSME Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Abel, L. C.; Ramsey, P. E.

    1989-01-01

    Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.

  16. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  17. Finite element modeling of nonisothermal polymer flows

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1981-01-01

    A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.

  18. Properties of the Propagating Oscillatory Shock Wave in the Accretion Flows around Few Transient Black Hole Candidates during Their Outbursts

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip. K.

    2015-01-01

    In our study of the timing properties of few Galactic black hole candidates evolutions of the low and intermediate frequency quasi-periodic oscillations (LIFQPOs) are observed. In 2005, for explaining evolution of QPO frequency during rising phase of 2005 GRO J1655-40 outburst, Chakrabarti and his students introduced a new model, namely propagating oscillatory shock (POS) model. Here we present the results obtained from the same POS model fitted QPO evolutions during both the rising and declining phases of the outbursts of 2005 GRO J165540, 2010-11 GX 339-4, and 2010 & 2011 H 1743-322.

  19. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  20. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular

  1. The radial dependence of pebble accretion rates: A source of diversity in planetary systems. I. Analytical formulation

    NASA Astrophysics Data System (ADS)

    Ida, S.; Guillot, T.; Morbidelli, A.

    2016-06-01

    Context. The classical planetesimal accretion scenario for the formation of planets has recently evolved with the idea that pebbles, centimeter- to meter-sized icy grains migrating in protoplanetary disks, can control planetesimal and/or planetary growth. Aims: We investigate how pebble accretion depends on disk properties and affects the formation of planetary systems. Methods: We construct analytical models of pebble accretion onto planetary embryos that consistently account for the mass and orbital evolution of the pebble flow and reflect disk structure. Results: We derive simple formulas for pebble accretion rates in the so-called settling regime for planetary embryos that are more than 100 km in size. For relatively smaller embryos or in outer disk regions, the accretion mode is three-dimensional (3D), meaning that the thickness of the pebble flow must be taken into account, and resulting in an accretion rate that is independent of the embryo mass. For larger embryos or in inner regions, the accretion is in a two-dimensional (2D) mode, i.e., the pebble disk may be considered infinitely thin. We show that the radial dependence of the pebble accretion rate is different (even the sign of the power-law exponent changes) for different disk conditions such as the disk heating source (viscous heating or stellar irradiation), drag law (Stokes or Epstein, and weak or strong coupling), and in the 2D or 3D accretion modes. We also discuss the effect of the sublimation and destruction of icy pebbles inside the snow line. Conclusions: Pebble accretion easily produces a large diversity of planetary systems. In other words, to infer the results of planet formation through pebble accretion correctly, detailed prescriptions of disk evolution and pebble growth, sublimation, destruction and migration are required.

  2. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  3. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  4. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS

    SciTech Connect

    Garcia, J.; McClintock, J. E.; Dauser, T.; Wilms, J.; Eikmann, W.; Reynolds, C. S.; Kallman, T. R. E-mail: jem@cfa.harvard.edu E-mail: thomas.dauser@sternwarte.uni-erlangen.de E-mail: wiebke.eikmann@sternwarte.uni-erlangen.de

    2013-05-10

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  5. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  6. Kinetic model for dilute traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana A.

    The flow of traffic represents a many-particle non-equilibrium problem with important practical consequences. Traffic behavior has been studied using a variety of approaches, including fluid dynamics models, Boltzmann equation, and recently cellular automata (CA). The CA model for traffic flow that Nagel and Schreckenberg (NS) introduced can successfully mimic many of the known features of the traffic flow. We show that in the dilute limit of the NS model, where vehicles exhibit free flow, cars show significant nearest neighbor correlation primarily via a short-range repulsion. introduce an approximate analytic model to describe this dilute limit. We show that the distribution of the distance between consecutive vehicles obeys a drift-diffusion equation. We compared this model with direct simulations. The steady state solution and relaxation of this model agrees well with direct simulations. We explore how this model breaks down as the transition to jams occurs.

  7. Long-term nonlinear behaviour of the magnetorotational instability in a localized model of an accretion disc

    NASA Astrophysics Data System (ADS)

    Silvers, L. J.

    2008-04-01

    For more than a decade, the so-called shearing-box model has been used to study the fundamental local dynamics of accretion discs. This approach has proved to be very useful because it allows high-resolution and long-term studies to be carried out, studies that would not be possible for a global disc. Localized disc studies have largely focused on examining the rate of enhanced transport of angular momentum, essentially a sum of the Reynolds and Maxwell stresses. The dominant radial-azimuthal component of this stress tensor is, in the classic Shakura-Sunyaev model, expressed as a constant α times the pressure. Previous studies have estimated α based on a modest number of orbital times. Here we use much longer baselines, and perform a cumulative average for α. Great care must be exercised when trying to extract numerical α values from simulations: dissipation scales, computational box aspect ratio, and even numerical algorithms can all affect the result. This study suggests that estimating α becomes more, not less, difficult as computational power increases.

  8. Mathematical and computational models of plasma flows

    NASA Astrophysics Data System (ADS)

    Brushlinsky, K. V.

    Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.

  9. On the magnetic viscosity in Keplerian accretion disks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1981-01-01

    The paper develops a model for the anomalous viscosity in accretion disks based on the hypothesis that the hydrodynamic turbulence within the disk takes the form of spatially localized magnetic flux cells. The local shear flow due to Keplerian differential rotation distorts the flux cell topology, converting shear flow energy into magnetic energy. In the radial diffusion approximation, the kinematic viscosity is estimated from the radial displacement and is shown to maximize at flux cell scale lengths for which the shear flow stopping and reconnection times are equal.

  10. Analytical models for complex swirling flows

    NASA Astrophysics Data System (ADS)

    Borissov, A.; Hussain, V.

    1996-11-01

    We develops a new class of analytical solutions of the Navier-Stokes equations for swirling flows, and suggests ways to predict and control such flows occurring in various technological applications. We view momentum accumulation on the axis as a key feature of swirling flows and consider vortex-sink flows on curved axisymmetric surfaces with an axial flow. We show that these solutions model swirling flows in a cylindrical can, whirlpools, tornadoes, and cosmic swirling jets. The singularity of these solutions on the flow axis is removed by matching them with near-axis Schlichting and Long's swirling jets. The matched solutions model flows with very complex patterns, consisting of up to seven separation regions with recirculatory 'bubbles' and vortex rings. We apply the matched solutions for computing flows in the Ranque-Hilsch tube, in the meniscus of electrosprays, in vortex breakdown, and in an industrial vortex burner. The simple analytical solutions allow a clear understanding of how different control parameters affect the flow and guide selection of optimal parameter values for desired flow features. These solutions permit extension to other problems (such as heat transfer and chemical reaction) and have the potential of being significantly useful for further detailed investigation by direct or large-eddy numerical simulations as well as laboratory experimentation.

  11. SRMAFTE facility checkout model flow field analysis

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.

  12. Black hole accretion disc impacts

    NASA Astrophysics Data System (ADS)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  13. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  14. The accretion history of dark matter haloes - III. A physical model for the concentration-mass relation

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Wyithe, J. Stuart B.; Schaye, Joop; Duffy, Alan R.

    2015-09-01

    We present a semi-analytic, physically motivated model for dark matter halo concentration as a function of halo mass and redshift. The semi-analytic model combines an analytic model for the halo mass accretion history (MAH), based on extended Press-Schechter (EPS) theory, with an empirical relation between concentration and formation time obtained through fits to the results of numerical simulations. Because the semi-analytic model is based on EPS theory, it can be applied to wide ranges in mass, redshift and cosmology. The resulting concentration-mass (c-M) relations are found to agree with the simulations, and because the model applies only to relaxed haloes, they do not exhibit the upturn at high masses or high redshifts found by some recent works. We predict a change of slope in the z ˜ 0 c-M relation at a mass-scale of 1011 M⊙. We find that this is due to the change in the functional form of the halo MAH, which goes from being dominated by an exponential (for high-mass haloes) to a power law (for low-mass haloes). During the latter phase, the core radius remains approximately constant, and the concentration grows due to the drop of the background density. We also analyse how the c-M relation predicted by this work affects the power produced by dark matter annihilation, finding that at z = 0 the power is two orders of magnitude lower than that obtained from extrapolating best-fitting c-M relations. We provide fits to the c-M relations as well as numerical routines to compute concentrations and MAHs.†

  15. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  16. Modelling Canopy Flows over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-06-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  17. Combining Hf-W Ages, Cooling Rates, and Thermal Models to Estimate the Accretion Time of Iron Meteorite Parent Bodies

    NASA Astrophysics Data System (ADS)

    Qin, L.; Dauphas, N.; Wadhwa, M.; Masarik, J.; Janney, P. E.

    2007-12-01

    The 182Hf-182W short-lived chronometer has been widely used to date metal-silicate differentiation processes in the early Solar System. However the presence of cosmogenic effects from exposure to GCR can potentially hamper the use of this system for chronology purposes (e.g. [1,2]). These effects must be corrected for in order to calculate metal-silicate differentiation ages. In this study, high-precision W isotope measurements are presented for 32 iron meteorites from 8 magmatic and 2 non-magmatic groups. Exposure ages and pre- atmospheric size estimates are available for most of these samples [3]. Our precision is better than or comparable to the currently most precise literature data and our results agree with previous work [4]. All magmatic irons have ɛ182W equal within error to or more negative than the Solar System initial derived from a CAI isochron [5]. Iron meteorites from the same magmatic groups show variations in ɛ182W. These are most easily explained by exposure to cosmic rays in space. A correction method was developed to estimate pre-exposure ɛ182W for individual iron meteorite groups. Metal-silicate differentiation in most iron meteorite parent bodies must have occurred within 2 Myr of formation of refractory inclusions. For the first time, we combine 182Hf-182W ages with parent body sizes inferred from metallographic cooling rates in a thermal model to constrain the accretion time of iron meteorite parent bodies. The estimated accretion ages are within 1.5 Myr for most magmatic groups, and could be as early as 0.2 Myr after CAI formation. This is consistent with the study of Bottke et al. [6] who argued that iron meteorite parent bodies could represent an early generation of planetesimals formed in the inner region of the Solar System. [1] Masarik J. (1997) EPSL 152, 181-185. [2] Markowski A. et al. (2006) EPSL 250,104-115. [3] Voshage H. (1984) EPSL 71, 181-194. [4] Markowski A. et al. (2006) EPSL 242, 1-15. [5] Kleine T. et al. (2005) GCA 69

  18. Hard apex transition in quasi-periodic oscillators - Closing of the accretion gap

    NASA Technical Reports Server (NTRS)

    Biehle, Garrett T.; Blandford, Roger D.

    1993-01-01

    We propose that the 'hard apex' transition in the X-ray two-color diagrams for low-mass X-ray binaries exhibiting quasi-periodic oscillation is associated with closure of a gap between the accretion disk and the star. At low accretion rates, gas crosses this gap intermittently. However, when the mass accretion rate increases, the disk thickens and its inner edge touches the star, thus forming a boundary layer through which the gas flows steadily. This explanation is viable provided that the equation of state of nuclear matter is not significantly harder than the Bethe-Johnson I prescription. Accretion gap scenarios are possibly distinguishable from models which invoke a small magnetosphere around the neutron star, in that they preclude large stellar magnetic fields and associate the high-frequency (horizontal-branch) oscillations with different sites.

  19. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  20. Modeling information flow in biological networks

    NASA Astrophysics Data System (ADS)

    Kim, Yoo-Ah; Przytycki, Jozef H.; Wuchty, Stefan; Przytycka, Teresa M.

    2011-06-01

    Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.

  1. The Physics of Wind-Fed Accretion

    SciTech Connect

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka

    2008-09-30

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  2. The Physics of Wind-Fed Accretion

    SciTech Connect

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-05-27

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-1. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  3. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  4. Modeling the Effect of Kick Velocity during the Accretion Induced Collapse of White Dwarfs on Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Taani, Ali

    2016-07-01

    The kick velocity which arises during the binary interaction plays an important role in disruption or surviving the binary systems. This paper attempts to draw an evolutionary connection of the long-period (Porb ≥ 2 d) millisecond pulsars (MSPs) with orbits of low eccentricity (e ≤ 0.2). We propose that a kick velocity caused by dynamical effects of asymmetric collapse imparted to the companion star through an accretion induced collapse (AIC) of white dwarfs-that become unstable once they approach the Chandrasekhar limit-can account for the differences in their orbital period distributions. Furthermore, in some cases, an appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. In this case only the binding energy equivalent (0.2M⊙) of mass is lost and the system remains intact in a symmetric collapse. Consequently, the AIC decreases the mass of the neutron star and increases the orbital period leading to orbit circularization. We present the results of our model and discuss the possible implications for the binary MSPs in galactic disk and globular clusters.

  5. Modeling MHD accretion-ejection: episodic ejections of jets triggered by a mean-field disk dynamo

    SciTech Connect

    Stepanovs, Deniss; Fendt, Christian; Sheikhnezami, Somayeh E-mail: fendt@mpia.de

    2014-11-20

    We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the self-generation of the magnetic field by an α{sup 2}Ω mean-field dynamo. The disk magnetization remains on a rather low level, which helps to evolve the simulations for T > 10, 000 dynamical time steps on a domain extending 1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field structure, favoring magneto-centrifugal launching. The outer disk field is highly inclined and predominantly radial. Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.

  6. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  7. Impact of black hole's spin to power the accretion/outflow phenomena

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata

    2016-07-01

    I plan to address how important role the spin of black hole is playing to determine various features of accretion and outflow/jet. I will also attempt to explore the relative importance among magnetic fields, viscous and cooling processes of accretion flows and the Kerr parameter of black holes to determine observed features. This will be done based on magnetohydrodynamical modelling of the flow in the pseudo-Newtonian framework. Finally, I will attempt to predict the spin of black holes in observed sources.

  8. Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions

    NASA Astrophysics Data System (ADS)

    Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; Mezzacappa, A.

    2016-02-01

    We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominated and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.

  9. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  10. Compressor Flow Control Concepts. 2; UEET Compressor Flow Control Modeling

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2001-01-01

    Several passive flow control devices have been modeled computationally in the Swift CFD code. The models were applied to the first stage rotor and stator of the baseline UEET compressor in an attempt to improve efficiency and/or stall margin. The devices included suction surface bleed, tip injection, self-aspirated rotors, area-ruled casing, and vortex generators. The models and computed results will be described in the presentation. None of the results have shown significant gains in efficiency; however, casing vortex generators have shown potential improvements in stall margin.

  11. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.

    2015-12-01

    Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.

  12. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  13. Active states and structure transformations in accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  14. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  15. Transient Wellbore Fluid Flow Model

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  16. Neural network model for extracting optic flow.

    PubMed

    Tohyama, Kazuya; Fukushima, Kunihiko

    2005-01-01

    When we travel in an environment, we have an optic flow on the retina. Neurons in the area MST of macaque monkeys are reported to have a very large receptive field and analyze optic flows on the retina. Many MST-cells respond selectively to rotation, expansion/contraction and planar motion of the optic flow. Many of them show position-invariant responses to optic flow, that is, their responses are maintained during the shift of the center of the optic flow. It has long been suggested mathematically that vector-field calculus is useful for analyzing optic flow field. Biologically, plausible neural network models based on this idea, however, have little been proposed so far. This paper, based on vector-field hypothesis, proposes a neural network model for extracting optic flows. Our model consists of hierarchically connected layers: retina, V1, MT and MST. V1-cells measure local velocity. There are two kinds of MT-cell: one is for extracting absolute velocities, the other for extracting relative velocities with their antagonistic inputs. Collecting signals from MT-cells, MST-cells respond selectively to various types of optic flows. We demonstrate through a computer simulation that this simple network is enough to explain a variety of results of neurophysiological experiments. PMID:16112546

  17. Optimization of solver for gas flow modeling

    NASA Astrophysics Data System (ADS)

    Savichkin, D.; Dodulad, O.; Kloss, Yu

    2014-05-01

    The main purpose of the work is optimization of the solver for rarefied gas flow modeling based on the Boltzmann equation. Optimization method is based on SIMD extensions for ×86 processors. Computational code is profiled and manually optimized with SSE instructions. Heat flow, shock waves and Knudsen pump are modeled with optimized solver. Dependencies of computational time from mesh sizes and CPU capabilities are provided.

  18. Holistic Flow Model of Spiritual Wellness

    ERIC Educational Resources Information Center

    Purdy, Melanie; Dupey, Peggy

    2005-01-01

    The Holistic Flow Model of Spiritual Wellness is a conceptualization of spiritual health and well-being that has implications for clinical practice and research. The model is unique in its placement of the spirit at the center of Life and in its fluid vision of the spirit. The authors present the model after a discussion of spirituality and the…

  19. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  20. A compendium of fracture flow models, 1994

    SciTech Connect

    Diodato, D.M.

    1994-11-01

    The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.

  1. ITG sideband coupling models for zonal flows

    SciTech Connect

    Stransky, M.

    2011-05-15

    Four-wave interaction model between ITG mode and zonal flow was derived using fluid equations. In this model, the zonal flow is excited non-linearly by ITG turbulence via Reynolds stress. Numerical simulations show that the system allows for a small range above the ITG threshold where the zonal flow can stabilize an unstable ITG mode, effectively increasing {eta}{sub i} threshold, an effect which has been called the Dimits shift. However, the shift is smaller than in known cases such that in the Cyclone base.

  2. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  3. Accreting Neutron Stars as Astrophysical Laboratories

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2004-01-01

    In the last year, we have made an extremely important breakthrough in establishing the relationship between thermonuclear burst oscillations in accreting neutron stars and the stellar spin. More broadly, we have continued t o make significant scientific progress in all four of the key focus areas identified in our original proposal: (1) the disk-magnetosphere interaction in neutron stars, (2) rapid variability in accreting neutron stars, (3) physics of accretion flows, and (4) fundamental properties of neutron stars. A list of all publications that have arising from this work since the start of our program is given.

  4. Modes of crustal accretion and their implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.; Hasenclever, Jörg

    2016-02-01

    Hydrothermal convection at mid-ocean ridges links the ocean's long-term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast-spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal-scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.

  5. Testing the cooling flow model in the intermediate polar EX Hydrae

    NASA Astrophysics Data System (ADS)

    Luna, G. J. M.; Raymond, J. C.; Brickhouse, N. S.; Mauche, C. W.; Suleimanov, V.

    2015-06-01

    We use the best available X-ray data from the intermediate polar EX Hydrae to study the cooling-flow model often applied to interpret the X-ray spectra of these accreting magnetic white dwarf binaries. First, we resolve a long-standing discrepancy between the X-ray and optical determinations of the mass of the white dwarf in EX Hya by applying new models of the inner disk truncation radius. Our fits to the X-ray spectrum now agree with the white dwarf mass of 0.79 M⊙ determined using dynamical methods through spectroscopic observations of the secondary. We use a simple isobaric cooling flow model to derive the emission line fluxes, emission measure distribution, and H-like to He-like line ratios for comparison with the 496 ks Chandra High Energy Transmission Grating observation of EX Hydrae. We find that the H/He ratios are not well reproduced by this simple isobaric cooling flow model and show that while H-like line fluxes can be accurately predicted, fluxes of lower-Z He-like lines are significantly underestimated. This discrepancy suggests that an extra heating mechanism plays an important role at the base of the accretion column, where cooler ions form. We thus explored more complex cooling models, including the change of gravitational potential with height in the accretion column and a magnetic dipole geometry. None of these modifications to the standard cooling flow model are able to reproduce the observed line ratios. While a cooling flow model with subsolar (0.1 ⊙) abundances is able to reproduce the line ratios by reducing the cooling rate at temperatures lower than ~107.3 K, the predicted line-to-continuum ratios are much lower than observed. We discuss and discard mechanisms, such as photoionization, departures from constant pressure, resonant scattering, different electron-ion temperatures, and Compton cooling. Thermal conduction transfers energy from the region above 107 K, where the H-like lines are mostly formed, to the cooler regions where the

  6. A model for insect tracheolar flow

    NASA Astrophysics Data System (ADS)

    Staples, Anne; Chatterjee, Krishnashis

    2015-11-01

    Tracheoles are the terminal ends of the microscale tracheal channels present in most insect respiratory systems that transport air directly to the tissue. From a fluid dynamics perspective, tracheolar flow is notable because it lies at the intersection of several specialized fluid flow regimes. The flow through tracheoles is creeping, microscale gas flow in the rarefied regime. Here, we use lubrication theory to model the flow through a single microscale tracheole and take into account fluid-structure interactions through an imposed periodic wall deformation corresponding to the rhythmic abdominal compression found in insects, and rarefaction effects using slip boundary conditions. We compare the pressure, axial pressure gradient, and axial and radial velocities in the channel, and the volumetric flow rate through the channel for no-slip, low slip, and high slip conditions under two different channel deformation regimes. We find that the presence of slip tends to reduce the flow rate through the model tracheole and hypothesize that one of the mechanical functions of tracheoles is to act as a diffuser to decelerate the flow, enhance mixing, and increase the residency time of freshly oxygenated air at the surface of the tissue. This work was funded by the NSF under grant no. 1437387.

  7. Modeling flow and sedimention of slurries

    NASA Astrophysics Data System (ADS)

    Mondy, L.; Rao, R.; Altobelli, S.; Ingber, M.; Graham, A.

    2002-12-01

    Many natural processes involve flows of sediments at high particle concentrations. The equations describing such two-phase flows are highly nonlinear. We will give an overview of the performance of a continuum constitutive model of suspensions of particles in liquid for low Reynolds number flows. The diffusive flux model (Leighton and Acrivos, J. Fluid Mech., 1987, and Phillips et al., Phys. Fluids A, 1992) is implemented in a general purpose finite element computational program. This constitutive description couples a Newtonian stress/shear-rate relationship (where the local viscosity of the suspension is dependent on the local volume fraction of solids) with a shear-induced migration model of the suspended particles. The momentum transport, continuity, and diffusive flux equations are solved simultaneously. The formulation is fully three-dimensional and can be run on a parallel computer platform. Recent work introducing a flow-aligned tensor correction to this model has had success in representing the anisotropic force that is seen in curvilinear flows. Gravity effects are added in an approach similar to that of Zhang and Acrivos (Int. J. Multiphase Flow, 1994). The model results are compared with laboratory data obtained with Nuclear Magnetic Resonance (NMR) of evolving particle concentration profiles in complex flows, as well as in batch sedimentation. Interesting secondary flows appear both in the experiment and model. Overall, good agreement is found between the experiments and the simulations. This work was supported by the United States Department of Energy under Contract DE-AC04- 94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. The authors would like to acknowledge support for this work by the U.S. Department of Energy, Division of Engineering and Geosciences, Office of Basic Energy Sciences.

  8. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  9. Flow field mapping in data rack model

    NASA Astrophysics Data System (ADS)

    Manoch, L.; Matěcha, J.; Pohan, P.

    2013-04-01

    The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry) method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.

  10. Viscosity in spherically symmetric accretion

    NASA Astrophysics Data System (ADS)

    Ray, Arnab K.

    2003-10-01

    The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.

  11. Reduced order model of draft tube flow

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.

    2014-03-01

    Swirling flow with compact coherent structures is very good candidate for proper orthogonal decomposition (POD), i.e. for decomposition into eigenmodes, which are the cornerstones of the flow field. Present paper focuses on POD of steady flows, which correspond to different operating points of Francis turbine draft tube flow. Set of eigenmodes is built using a limited number of snapshots from computational simulations. Resulting reduced order model (ROM) describes whole operating range of the draft tube. ROM enables to interpolate in between the operating points exploiting the knowledge about significance of particular eigenmodes and thus reconstruct the velocity field in any operating point within the given range. Practical example, which employs axisymmetric simulations of the draft tube flow, illustrates accuracy of ROM in regions without vortex breakdown together with need for higher resolution of the snapshot database close to location of sudden flow changes (e.g. vortex breakdown). ROM based on POD interpolation is very suitable tool for insight into flow physics of the draft tube flows (especially energy transfers in between different operating points), for supply of data for subsequent stability analysis or as an initialization database for advanced flow simulations.

  12. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  13. Supersonic boundary-layer flow turbulence modeling

    NASA Technical Reports Server (NTRS)

    Wang, Chi-Rong

    1993-01-01

    Baldwin-Lomax and kappa-epsilon turbulence models were modified for use in Navier-Stokes numerical computations of Mach 2.9 supersonic turbulent boundary layer flows along compression ramps. The computational results of Reynolds shear stress profiles were compared with experimental data. The Baldwin-Lomax model was modified to account for the Reynolds shear stress amplification within the flow field. A hybrid kappa-epsilon model with viscous sublayer turbulence treatment was constructed to predict the Reynolds shear stress profiles within the entire flow field. These modified turbulence models were effective for the computations of the surface pressure and the skin friction factor variations along an 8 deg ramp surface. The hybrid kappa-epsilon model could improve the predictions of the Reynolds shear stress profile and the skin friction factor near the corner of a 16 deg ramp.

  14. Winds and accretion in delta Sagittae

    NASA Astrophysics Data System (ADS)

    Eaton, Joel A.; Hartkopf, William I.; McAlister, Harold A.; Mason, Brian D.

    1995-04-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; MB = 2.9 solar mass and MM = 3.8 solar mass; and RB = 2.6 solar radius and RM = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 -8 solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized metals. This emission seems to be

  15. Winds and accretion in delta Sagittae

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Hartkopf, William I.; Mcalister, Harold A.; Mason, Brian D.

    1995-01-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; M(sub B) = 2.9 solar mass and M(sub M) = 3.8 solar mass; and R(sub B) = 2.6 solar radius and R(sub M) = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 (exp -8) solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized

  16. Modeling depth distributions of overland flows

    NASA Astrophysics Data System (ADS)

    Smith, Mark W.; Cox, Nicholas J.; Bracken, Louise J.

    2011-02-01

    Hydrological and erosion models use water depth to estimate routing velocity and resultant erosion at each spatial element. Yet the shear stress distribution imposed on the soil surface and any resulting flow detachment and rill incision is controlled by the full probability distribution of depths of overland flow. Terrestrial Laser Scanning (TLS) is used in conjunction with simple field-flume experiments to provide high-resolution measures of overland flow depth-distributions for three semi-arid hillslope transects with differing soil properties. A two-parameter gamma distribution is proposed as the optimum model for depths of both interrill and rill flows. The shape and scale parameters are shown to vary consistently with distance downslope reflecting the morphological signature of runoff processes. The scale parameter is related to the general increase of depths with discharge ( P < 0.0001) as flows gradually concentrate; the shape parameter is more related to the soil surface roughness and potentially provides a control on the rate of depth, but also velocity increase with discharge. Such interactions between surface roughness and overland flows are of crucial importance for flow hydraulics and modeling sediment transport.

  17. DETECTION OF ACCRETION X-RAYS FROM QS Vir: CATACLYSMIC OR A LOT OF HOT AIR?

    SciTech Connect

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny

    2012-03-10

    An XMM-Newton observation of the nearby 'pre-cataclysmic' short-period (P{sub orb} = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of M-dot = 1.7 Multiplication-Sign 10{sup -13} M{sub sun} yr{sup -1}. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of M-dot {approx}2 Multiplication-Sign 10{sup -12} M{sub sun} yr{sup -1} if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is L{sub X} = 3 Multiplication-Sign 10{sup 28} erg s{sup -1}, which is consistent with that of rapidly rotating 'saturated' K and M dwarfs.

  18. GENERALIZED VISCOPLASTIC MODELING OF DEBRIS FLOW.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    The earliest model developed by R. A. Bagnold was based on the concept of the 'dispersive' pressure generated by grain collisions. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold's concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical for general use in debris-flow modeling. In fact, Bagnold's model is found to be only a particular case of the GVF model. analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold's simplified assumption of constant grain concentration.

  19. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.; Nelemans, Gijs

    2015-04-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate ˜5× {{10}-9}{{M}⊙ } y{{r}-1}{{({{P}orb}/1000 s)}-5.2}. We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  20. Towards a new modelling of gas flows in a semi-analytical model of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Cousin, M.; Lagache, G.; Bethermin, M.; Guiderdoni, B.

    2015-03-01

    We present an extended version of the semi-analytical model, GalICS. Like its predecessor, eGalICS applies a post-treatment of the baryonic physics on pre-computed dark-matter merger trees extracted from an N-body simulation. We review all the mechanisms that affect, at any given time, the formation and evolution of a galaxy in its host dark-matter halo. We mainly focus on the gas cycle from the smooth cosmological accretion to feedback processes. To follow this cycle with a high accuracy, we introduce some novel prescriptions: i) a smooth baryonic accretion with two phases: a cold mode and a hot mode built on the continuous dark-matter accretion. In parallel to this smooth accretion, we implement the standard photoionisation modelling to reduce the input gas flow on the smallest structures. ii) a complete monitoring of the hot gas phase. We compute the evolution of the core density, the mean temperature and the instantaneous escape fraction of the hot atmosphere by considering that the hot gas is in hydrostatic equilibrium in the dark-matter potential well, and by applying a principle of conservation of energy on the treatment of gas accretion, supernovae and super massive black hole feedback iii) a new treatment for disc instabilities based on the formation, the migration and the disruption of giant clumps. The migration of such clumps in gas-rich galaxies allows to form pseudo-bulges. The different processes in the gas cycle act on different time scales, and we thus build an adaptive time-step scheme to solve the evolution equations. The model presented here is compared in detail to the observations of stellar-mass functions, star formation rates, and luminosity functions, in a companion paper. Model outputs are available at the CDS. Model outputs are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A33

  1. Numerical flow modeling of power plant windboxes

    SciTech Connect

    LaRose, J.A.; Hopkins, M.W.

    1995-12-31

    Numerical flow modeling has become an increasingly important design and analysis tool for improving the air distribution to power plant burners. Uniform air distribution allows the burners to perform as designed to achieve the lowest possible emissions and best fuel burn-out. Modifications can be made internal to the existing windbox to improve the burner-to-burner and burner peripheral air distributions. These modifications can include turning vanes, flow splitters, perforated plate, and burner shrouding. Numerical modeling allows the analysis of design trade-offs between adding flow resistance, fan power, and windbox modification construction cost. Numerical modeling has advantages over physical modeling in that actual geometric scales and air temperatures are used. Advantages over a field data based study include the ability to quickly and cheaply analyze a variety of design options without actually modifying the windbox, and the availability of significantly more data with which to interpret the results. Costs to perform a numerical study are generally one-half to one-third of the cost to perform a physical flow model and can be one-forth of the cost to perform a field study. The continued development of affordable, high speed, large memory workstations and reliable, commercially available computation fluid dynamics (CFD) software allows practical analyses of power plant windboxes. This paper discusses (1) the impact of air distribution on burner performance, (2) the methodology used to perform numerical flow modeling of power plant windboxes, and (3) the results from several windbox analyses including available post-modification observations.

  2. Review and selection of unsaturated flow models

    SciTech Connect

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  3. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  4. Analytic Model of Reactive Flow

    SciTech Connect

    Souers, P C; Vitello, P

    2004-11-15

    A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.

  5. Analytic Model of Reactive Flow

    SciTech Connect

    Souers, P C; Vitello, P

    2004-08-02

    A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.

  6. A model for transonic plasma flow

    SciTech Connect

    Guazzotto, Luca; Hameiri, Eliezer

    2014-02-15

    A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.

  7. Advanced Numerical Modeling of Turbulent Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Dörnbrack, Andreas; Gerz, Thomas

    The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.

  8. Nonlocal modeling of granular flows down inclines.

    PubMed

    Kamrin, Ken; Henann, David L

    2015-01-01

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response. PMID:25376561

  9. Unsaturated zone flow modeling for GWTT-95

    SciTech Connect

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-12-31

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  10. ON THE STRUCTURE OF ACCRETION DISKS WITH OUTFLOWS

    SciTech Connect

    Jiao Chengliang; Wu Xuebing E-mail: wuxb@pku.edu.cn

    2011-06-01

    To study the outflows from accretion disks, we solve the set of hydrodynamic equations for accretion disks in spherical coordinates (r{theta}{phi}) to obtain the explicit structure along the {theta}-direction. Using self-similar assumptions in the radial direction, we change the equations to a set of ordinary differential equations about the {theta}-coordinate, which are then solved with symmetrical boundary conditions in the equatorial plane; the velocity field is then obtained. The {alpha} viscosity prescription is applied and an advective factor f is used to simplify the energy equation. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev disks; thicker, sub-Keplerian disks for advection-dominated accretion flows; and slim disks which are consistent with previous popular analytical models. However, an inflow region and an outflow region always exist, except when the viscosity parameter {alpha} is too large, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and may be stronger in slim disks, where both advection and radiation pressure are dominant. We also present the structure's dependence on the input parameters and discuss their physical meanings. The caveats of this work and possible improvements for the future are discussed.

  11. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  12. Lyman edges - Signatures of accretion disks

    NASA Astrophysics Data System (ADS)

    Kinney, A. L.

    1992-05-01

    Accretion disks are thought to provide the ultraviolet emission seen in the big blue bump of quasars. However, observations of the UV spectra of quasars do not show the additional signatures predicted by the accretion disk models. This paper will concentrate on just one of those signatures - the Lyman edge. Two studies are briefly discussed which explore the Lyman edge region of both high and low redshift quasars (Antonucci, Kinney, and Ford 1989 and Koratkar, Kinney, and Bohlin 1992). Both studies find that Lyman edges are not present in quasar spectra as frequently as predicted by the models or at the strength predicted by accretion disk models.

  13. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    SciTech Connect

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-04-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  14. Thin accretion discs are stabilized by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander

    2016-07-01

    By studying three-dimensional, radiative, global simulations of sub-Eddington, geometrically thin (H/R ≈ 0.15) black hole accretion flows we show that thin discs which are dominated by magnetic pressure are stable against thermal instability. Such discs are thicker than predicted by the standard model and show significant amount of dissipation inside the marginally stable orbit. Radiation released in this region, however, does not escape to infinity but is advected into the black hole. We find that the resulting accretion efficiency (5.5 ± 0.5 per cent for the simulated 0.8dot{M}_Edd disc) is very close to the predicted by the standard model (5.7 per cent).

  15. Preliminary Saturated-Zone Flow Model

    SciTech Connect

    1997-06-10

    This milestone consists of an updated fully 3D model of ground-water flow within the saturated zone at Yucca Mountain, Nevada. All electronic files pertaining to this deliverable have been transferred via ftp transmission to Steve Bodnar (M and O) and the technical data base. The model was developed using a flow and transport simulator, FEHMN, developed at Los Alamos National Laboratory, and represents a collaborative effort between staff from the US Geological Survey and Los Alamos National Laboratory. The model contained in this deliverable is minimally calibrated and represents work in progress. The flow model developed for this milestone is designed to feed subsequent transport modeling studies at Los Alamos which also use the FEHMN software. In addition, a general-application parameter estimation routine, PEST, was used in conjunction with FEHMN to reduce the difference between observed and simulated values of hydraulic head through the adjustment of model variables. This deliverable in large part consists of the electronic files for Yucca Mountain Site saturated-zone flow model as it existed as of 6/6/97, including the executable version of FEHMN (accession no. MOL.19970610.0204) used to run the code on a Sun Ultrasparc I workstation. It is expected that users of the contents of this deliverable be knowledgeable about the oration of FEHMN.

  16. Numerical modeling of laser thermal propulsion flows

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Thoenes, J.

    1984-01-01

    An review of the problems associated with modeling laser thermal propulsion flows, a synopsis of the status of such models, and the attributes of a successful model are presented. The continuous gaseous hydrogen laser-supported combustion wave (LSCW) thruster, for which a high-energy laser system (preferably space-based) should exist by the time the propulsion technology is developed, is considered in particular. The model proposed by Raizer (1970) is based on the assumptions of one-dimensional flow at constant pressure with heat conduction as the principal heat transfer mechanism. Consideration is given to subsequent models which account for radiative transfer into the ambient gas; provide a two-dimensional generalization of Raizer's analysis for the subsonic propagation of laser sparks in air; include the effect of forward plasma radiation in a one-dimensional model; and attempt a time-dependent (elliptic) solution of the full Navier-Stokes equations for the flow in a simple axisymmetric thruster. Attention is also given to thruster and nozzle flow models and thermodynamic and transport properties.

  17. Rarefied-flow Shuttle aerodynamics model

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.

    1993-01-01

    A rarefied-flow shuttle aerodynamic model spanning the hypersonic continuum to the free molecule-flow regime was formulated. The model development has evolved from the High Resolution Accelerometer Package (HiRAP) experiment conducted on the Orbiter since 1983. The complete model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as functions of angle-of-attack, body flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle-of-attack are presented, along with flight derived rarefied-flow transition bridging formulae. Comparisons are made with data from the Operational Aerodynamic Design Data Book (OADDB), applicable wind-tunnel data, and recent flight data from STS-35 and STS-40. The flight-derived model aerodynamic force coefficient ratio is in good agreement with the wind-tunnel data and predicts the flight measured force coefficient ratios on STS-35 and STS-40. The model is not, however, in good agreement with the OADDB. But, the current OADDB does not predict the flight data force coefficient ratios of either STS-35 or STS-40 as accurately as the flight-derived model. Also, the OADDB differs with the wind-tunnel force coefficient ratio data.

  18. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  19. A void distribution model-flashing flow

    SciTech Connect

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A new model for flashing flow based on wall nucleations is proposed here and the model predictions are compared with some experimental data. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites was used. Thus it was possible to avoid the usual assumption of a constant bubble number density. Comparisons of the model with the data shows that the model based on the nucleation site density correlation appears to be acceptable to describe the vapor generation in the flashing flow. For the limited data examined, the comparisons show rather satisfactory agreement without using a floating parameter to adjust the model. This result indicated that, at least for the experimental conditions considered here, the mechanistic predictions of the flashing phenomenon is possible on the present wall nucleation based model.

  20. Ribosome flow model with positive feedback

    PubMed Central

    Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

  1. Diagnosing the Black Hole Accretion Physics of Sgr A*

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  2. Model flocks in a steady vortical flow.

    PubMed

    Baggaley, A W

    2015-05-01

    We modify the standard Vicsek model to clearly distinguish between intrinsic noise due to imperfect alignment between organisms and extrinsic noise due to fluid motion. We then consider the effect of a steady vortical flow, the Taylor-Green vortex, on the dynamics of the flock, for various flow speeds, with a fixed intrinsic particle speed. We pay particular attention to the morphology of the flow, and quantify its filamentarity. Strikingly, above a critical flow speed there is a pronounced increase in the filamentarity of the flock, when compared to the zero-flow case. This is due to the fact that particles appear confined to areas of low vorticity; a familiar phenomena, commonly seen in the clustering of inertial particles in vortical flows. Hence, the cooperative motion of the particles gives them an effective inertia, which is seen to have a profound effect on the morphology of the flock, in the presence of external fluid motion. Finally, we investigate the angle between the flow and the particles direction of movement and find it follows a power-law distribution. PMID:26066260

  3. Model flocks in a steady vortical flow

    NASA Astrophysics Data System (ADS)

    Baggaley, A. W.

    2015-05-01

    We modify the standard Vicsek model to clearly distinguish between intrinsic noise due to imperfect alignment between organisms and extrinsic noise due to fluid motion. We then consider the effect of a steady vortical flow, the Taylor-Green vortex, on the dynamics of the flock, for various flow speeds, with a fixed intrinsic particle speed. We pay particular attention to the morphology of the flow, and quantify its filamentarity. Strikingly, above a critical flow speed there is a pronounced increase in the filamentarity of the flock, when compared to the zero-flow case. This is due to the fact that particles appear confined to areas of low vorticity; a familiar phenomena, commonly seen in the clustering of inertial particles in vortical flows. Hence, the cooperative motion of the particles gives them an effective inertia, which is seen to have a profound effect on the morphology of the flock, in the presence of external fluid motion. Finally, we investigate the angle between the flow and the particles direction of movement and find it follows a power-law distribution.

  4. Modeling magnetically insulated devices using flow impedance

    SciTech Connect

    Mendel, C.W. Jr.; Rosenthal, S.E. )

    1995-04-01

    In modern pulsed power systems the electric field stresses at metal surfaces in vacuum transmission lines are so high that negative surfaces are space-charge-limited electron emitters. These electrons do not cause unacceptable losses because magnetic fields due to system currents result in net motion parallel to the electrodes. It has been known for several years that a parameter known as flow impedance is useful for describing these flows. Flow impedance is a measure of the separation between the anode and the mean position of the electron cloud, and it will be shown in this paper that in many situations flow impedance depends upon the geometry of the transmission line upstream of the point of interest. It can be remarkably independent of other considerations such as line currents and voltage. For this reason flow impedance is a valuable design parameter. Models of impedance transitions and voltage adders using flow impedance will be developed. Results of these models will be compared to two-dimensional, time-dependent, particle-in-cell simulations.

  5. Steady flow in abdominal aortic aneurysm models.

    PubMed

    Budwig, R; Elger, D; Hooper, H; Slippy, J

    1993-11-01

    Steady flow in abdominal aortic aneurysm models has been examined for four aneurysm sizes over Reynolds numbers from 500 to 2600. The Reynolds number is based on entrance tube diameter, and the inlet condition is fully developed flow. Experimental and numerical methods have been used to determine: (i) the overall features of the flow, (ii) the stresses on the aneurysm walls in laminar flow, and (iii) the onset and characteristics of turbulent flow. The laminar flow field is characterized by a jet of fluid (passing directly through the aneurysm) surrounded by a recirculating vortex. The wall shear stress magnitude in the recirculation zone is about ten times less than in the entrance tube. Both wall shear stress and wall normal stress profiles exhibit large magnitude peaks near the reattachment point at the distal end of the aneurysm. The onset of turbulence in the model is intermittent for 2000 < Re < 2500. The results demonstrate that a slug of turbulence in the entrance tube grows much more rapidly in the aneurysm than in a corresponding length of uniform cross section pipe. When turbulence is present in the aneurysm the recirculation zone breaks down and the wall shear stress returns to a magnitude comparable to that in the entrance tube. PMID:8309237

  6. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  7. Modelling fluid flow in a reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav

    2015-05-01

    Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  8. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  9. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  10. A hyperbolic model for viscous Newtonian flows

    NASA Astrophysics Data System (ADS)

    Peshkov, Ilya; Romenski, Evgeniy

    2016-03-01

    We discuss a pure hyperbolic alternative to the Navier-Stokes equations, which are of parabolic type. As a result of the substitution of the concept of the viscosity coefficient by a microphysics-based temporal characteristic, particle settled life (PSL) time, it becomes possible to formulate a model for viscous fluids in a form of first-order hyperbolic partial differential equations. Moreover, the concept of PSL time allows the use of the same model for flows of viscous fluids (Newtonian or non-Newtonian) as well as irreversible deformation of solids. In the theory presented, a continuum is interpreted as a system of material particles connected by bonds; the internal resistance to flow is interpreted as elastic stretching of the particle bonds; and a flow is a result of bond destructions and rearrangements of particles. Finally, we examine the model for simple shear flows, arbitrary incompressible and compressible flows of Newtonian fluids and demonstrate that Newton's viscous law can be obtained in the framework of the developed hyperbolic theory as a steady-state limit. A basic relation between the viscosity coefficient, PSL time, and the shear sound velocity is also obtained.

  11. Modeling Stromatolite Growth Under Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Patel, H. J.; Gong, J.; Tice, M. M.

    2014-12-01

    Stromatolite growth models based on diffusion limited aggregation (DLA) has been fairly successful at producing features commonly recognized in stromatolitic structures in the rock record. These models generally require slow mixing of solutes at time scales comparable to the growth of organisms and largely ignore fluid erosions. Recent research on microbial mats suggests that fluid flow might have a dominant control on the formation, deformation and erosion of surface microbial structures, raising the possibility that different styles of fluid flow may influence the morphology of stromatolites. Many stromatolites formed in relatively high energy, shallow water environments under oscillatory currents driven by wind-induced waves. In order to investigate the potential role of oscillatory flows in shaping stromatolites, we are constructing a numerical model of stromatolite growth parameterized by flume experiments with cyanobacterial biofilms. The model explicitly incorporates reaction-diffusion processes, surface deformation and erosion, biomass growth, sedimentation and mineral precipitation. A Lattice-Boltzmann numerical scheme was applied to the reaction-diffusion equations in order to boost computational efficiency. A basic finite element method was employed to compute surface deformation and erosion. Growth of biomass, sedimentation and carbonate precipitation was based on a modified discrete cellular automata scheme. This model will be used to test an alternative hypothesis for the formation of stromatolites in higher energy, shallow and oscillatory flow environments.

  12. Doppler tomography of accretion in binaries

    NASA Astrophysics Data System (ADS)

    Steeghs, D.

    2004-03-01

    Since its conception, Doppler tomography has matured into a versatile and widely used tool. It exploits the information contained in the highly-structured spectral line-profiles typically observed in mass-transferring binaries. Using inversion techniques akin to medical imaging, it permits the reconstruction of Doppler maps that image the accretion flow on micro-arcsecond scales. I summarise the basic concepts behind the technique and highlight two recent results; the use of donor star emission as a means to system parameter determination, and the real-time movies of the evolving accretion flow in the cataclysmic variable WZ Sge during its 2001 outburst. I conclude with future opportunities in Doppler tomography by exploiting the combination of superior data sets, second generation reconstruction codes and simulated theoretical tomograms to delve deeper into the physics of accretion flows.

  13. A new integrated tectonic model for the Mesozoic-Early Cenozoic subduction, spreading, accretion and collision history of Tethys adjacent to the southern margin of Eurasia (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Parlak, Osman; Ustaömer, Timur; Taslı, Kemal; İnan, Nurdan; Dumitrica, Paulian; Karaoǧlan, F