Science.gov

Sample records for accretion rate history

  1. Ocean Zircon - constraints on cooling histories, spreading rate, and modes of crustal accretion

    NASA Astrophysics Data System (ADS)

    John, B. E.; Cheadle, M. J.; Baines, G.; Grimes, C. B.; Wooden, J.

    2009-12-01

    Igneous zircon is an ubiquitous component of evolved gabbroic rocks (including gabbro norite, Fe-Ti oxide and/or amphibole-bearing gabbro, quartz diorite, and tonalite) found in oceanic lithosphere. Ion microprobe analysis by SHRIMP-RG has allowed characterization of a large set of trace elements from these zircon, which help define a robust method for discriminating source in provenance studies. U/Yb and Th/Yb vs. Hf, Y, or other HREE reveal distinct chemical fields discriminating between ocean and continental-derived zircon in ancient environments. Decreasing Ti correlates with enrichment in Hf and U, suggesting growth from fractionating melt. Ti-in-zircon temperatures range from ~1000-600°C (corrected for aTiO2=0.7,aSiO2=1.0,P=2 kbar), with intra-sample variation typically ~60-180°C. Individual grains show up to 120°C temperature variation, corresponding to concentric CL zoning, but not to sector zoning. Individual zircons from a single sample can have differing Ti concentrations, suggesting that each zircon may record different parts of the crystallization history over a temperature range of up to ~200°C. This observation is consistent with previous single-grain TIMS dating of zircon from five samples recording an age range up to 90-235ka (Lissenberg et al, 2009). Combining SIMS Ti-in-zircon temperatures with TIMS U-Pb zircon ages can constrain cooling rates over the temperature interval of ~900-700°C. Rare single zircon crystals show distinct cores and rims that record up to 2.5 m.y. of inheritance, testifying to the complexity of crustal growth at slow spreading mid-ocean ridges. U/Pb SHRIMP dating of zircon collected from in-situ ocean lithosphere also constrain plate spreading rates, helps calibrate marine magnetic anomalies, provides constraints on the timing of both magmatism and denudation, and contributes to knowledge of the rates and duration of crustal growth at mid-ocean ridges. Spreading rate estimates based on zircon geochronology from

  2. Volatile accretion history of the Earth.

    PubMed

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  3. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  4. The Criterion of Supernova Explosion Revisited: The Mass Accretion History

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Yamada, Shoichi; Takiwaki, Tomoya; Kotake, Kei

    2016-01-01

    By performing neutrino-radiation hydrodynamic simulations in spherical symmetry (1D) and axial symmetry (2D) with different progenitor models by Woosley & Heger from 12 to 100 M⊙, we find that all 1D runs fail to produce an explosion and several 2D runs succeed. The difference in the shock evolutions for different progenitors can be interpreted by the difference in their mass accretion histories, which are in turn determined by the density structures of progenitors. The mass accretion history has two phases in the majority of the models: the earlier phase, in which the mass accretion rate is high and rapidly decreasing, and the later phase, with a low and almost constant accretion rate. They are separated by the so-called turning point, the origin of which is a change of the accreting layer. We argue that shock revival will most likely occur around the turning point and hence that its location in the \\dot{M}{--}{L}ν plane will be a good measure for the possibility of shock revival: if the turning point lies above the critical curve and the system stays there for a long time, shock revival will obtain. In addition, we develop a phenomenological model to approximately evaluate the trajectories in the \\dot{M}{--}{L}ν plane, which, after calibrating free parameters by a small number of 1D simulations, reproduces the location of the turning point reasonably well by using the initial density structure of progenitor alone. We suggest the application of the phenomenological model to a large collection of progenitors in order to infer without simulations which ones are more likely to explode.

  5. Low Accretion Rate Expected From G2 Gas Cloud

    NASA Astrophysics Data System (ADS)

    Gracey, Brandon; Morsony, Brian; Workman, Jared

    2015-08-01

    We present high-resolution simulations of the encounter of the G2 gas cloud with Sag A*, focusing on the mass that can be accreted onto the supermassive black hole. Even assuming G2 is a gas cloud of a few time the mass of Earth, we find that very little material should be expected to be accreted. From 5 years before to 5 years after pericenter passage, at most 0.1% of the cloud mass is accreted. The total amount of material accreted by Sag A* increases by at most 20% over this period, and in many cases actually decreases due to the passage of G2. Even over very long timescales, out to 30 years after pericenter passage, only a few 10th's of a percent of the cloud will be accreted, with no significant increase in the overall mass accretion rate of Sag A*.We find that the size of the accretion radius in our simulations has a large effect on the accretion rate, with a smaller accretion radius having a smaller accretion rate. Changing the size of the accretion radius has a larger effect than changing the density profile of the cloud or changing the structure of the background material around Sag A*.

  6. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  7. The Accretion Rate Dependence of Burst Oscillation Amplitude

    NASA Astrophysics Data System (ADS)

    Ootes, Laura S.; Watts, Anna L.; Galloway, Duncan K.; Wijnands, Rudy

    2017-01-01

    Neutron stars in low-mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analyzed previously by Muno et al., who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ({A}{{rms}}≤slant 0.10) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes (0.05≤slant {A}{{rms}}≤slant 0.20). In this paper we present the results of our analysis and discuss these in the light of current burst oscillation models. Additionally, we investigate the bursts of two sources without previously detected oscillations. Despite the fact that these sources have been observed at accretion rates where burst oscillations might be expected, we find their behavior not to be anomalous compared to oscillation sources.

  8. Probing AGN Accretion History Through X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Paolillo, Maurizio; Papadakis, I.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F.; Koekemoer, A.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X.

    2016-10-01

    I will present recent results on AGN variability in the CDFS survey. Using over 10 years of X-ray monitoring and comparison with local AGNs we are able to constrain the variability dependence on BH mass and accreton rate, and use it to trace the accretion hisory of the AGN population up to z=3.

  9. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  10. Binary accretion rates: dependence on temperature and mass ratio

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2015-09-01

    We perform a series of 2D smoothed particle hydrodynamics simulations of gas accretion on to binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios (q). We show that increasing the gas temperature increases the accretion rate on to the primary for all values of the binary mass ratio: for example, for q = 0.1 and a fixed binary separation, an increase of normalized sound speed by a factor of 5 (from our `cold' to `hot' simulations) changes the fraction of the accreted gas that flows on to the primary from 10 to ˜40 per cent. We present a simple parametrization for the average accretion rate of each binary component accurate to within a few per cent and argue that this parametrization (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of q during circumbinary disc accretion and argue that the period distribution of stellar `twin' binaries is strong evidence for the importance of circumbinary accretion. We also show that our parametrization of binary accretion increases the minimum mass ratio needed for spin alignment of supermassive black holes to q ˜ 0.4, with potentially important implications for the magnitude of velocity kicks acquired during black hole mergers.

  11. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  12. ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES

    SciTech Connect

    Trump, Jonathan R.; Impey, Christopher D.; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Kelly, Brandon C.; Civano, Francesca; Hao, Heng; Lanzuisi, Giorgio; Merloni, Andrea; Salvato, Mara; Urry, C. Megan; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Liu, Charles; Mainieri, Vincenzo; Scoville, Nick Z.

    2011-05-20

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L{sub int}) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L{sub int}/L{sub Edd} > 10{sup -2}), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L{sub int}/L{sub Edd} < 10{sup -2}) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L{sub int}/L{sub Edd} < 10{sup -2} narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L{sub int}/L{sub Edd} > 10{sup -2} broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L{sub int}/L{sub Edd} < 10{sup -2} AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical 'axis' of AGN unification, as described by a simple model.

  13. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  14. The accretion history of dark matter haloes - I. The physical origin of the universal function

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Wyithe, J. Stuart B.; Schaye, Joop; Duffy, Alan R.

    2015-06-01

    Understanding the universal accretion history of dark matter haloes is the first step towards determining the origin of their structure. We use the extended Press-Schechter formalism to derive the halo mass accretion history from the growth rate of initial density perturbations. We show that the halo mass history is well described by an exponential function of redshift in the high-redshift regime. However, in the low-redshift regime the mass history follows a power law because the growth of density perturbations is halted in the dark energy dominated era due to the accelerated expansion of the Universe. We provide an analytic model that follows the expression {M(z)=M0(1+z)^{af(M0)}e^{-f(M0)z}}, where M0 = M(z = 0), a depends on cosmology and f(M0) depends only on the linear matter power spectrum. The analytic model does not rely on calibration against numerical simulations and is suitable for any cosmology. We compare our model with the latest empirical models for the mass accretion history in the literature and find very good agreement. We provide numerical routines for the model online (available at https://bitbucket.org/astroduff/commah).

  15. Accretion Rate and the Physical Nature of Unobscured Active Galaxies

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, Christopher D.; Kelly, Brandon C.; Civano, Francesca; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Merloni, Andrea; Urry, C. Megan; Hao, Heng; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Lanzuisi, Giorgio; Liu, Charles; Mainieri, Vincenzo; Salvato, Mara; Scoville, Nick Z.

    2011-05-01

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L int) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L int/L Edd > 10-2), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L int/L Edd < 10-2) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L int/L Edd < 10-2 narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L int/L Edd > 10-2 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L int/L Edd < 10-2 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical "axis" of AGN unification, as described by a simple model. Based on observations with the XMM-Newton satellite, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the Magellan telescope, operated by the Carnegie Observatories; the ESO Very Large Telescope; and the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian

  16. Water abundance and accretion history of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Waenke, H.; Dreibus, G.

    1994-01-01

    According to a widespread believe, Earth's water was either added in form of a late volatile-rich veneer or as we have argued repeatedly that of all the water which was added to the Earth only that portion remained which was added towards the end of accretion when the mean oxygen fugacity of the accreting material became so high that metallic iron could not exist any longer. Prior to this moment, all the water in the latter scenario would have been used up for the oxidation of iron. Fe + H2O yields FeO + H2. Huge quantities of hydrogen would continuously be produced in this scenario which escaped. In the same moment the hydrogen on its way to the surface would lead to an efficient degassing of the growing Earth's mantle. The fact that - assuming C1 abundances - the amount of iridium in the Earth's mantle agrees, within a factor of two with the total water inventory of the Earth's mantle and crust is taken as evidence for the validity of such a scenario. In both scenarios, the Earth's mantle would remain dry and devoid of other volatiles. Some species soluble in metallic iron like carbon and hydrogen will probably partly enter the core in some portions. It is generally assumed that today a considerable portion of the earth's total water inventory resides in the mantle. It is also clear that over the history of the Earth the water of the Earth's oceans has been recycled many times through the mantle. This is the consequence of plate subduction. In a similar way mantle convection was probably responsible to being water into the originally dry mantle. As a consequence, today the Earth is wet both inside and outside.

  17. Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  18. ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS

    SciTech Connect

    Ohtsuki, Keiji; Yasui, Yuki; Daisaka, Hiroshi

    2013-08-01

    We examine the gravitational capture probability of colliding particles in circumplanetary particle disks and accretion rates of small particles onto an embedded moonlet, using analytic calculation, three-body orbital integrations, and N-body simulations. Expanding our previous work, we take into account the Rayleigh distribution of particles' orbital eccentricities and inclinations in our analytic calculation and orbital integration and confirm agreement between them when the particle velocity dispersion is comparable to or larger than their mutual escape velocity and the ratio of the sum of the physical radii of colliding particles to their mutual Hill radius (r-tilde{sub p}) is much smaller than unity. As shown by our previous work, the capture probability decreases significantly when the velocity dispersion is larger than the escape velocity and/or r-tilde{sub p}{approx}>0.7. Rough surfaces of particles can enhance the capture probability. We compare the results of three-body calculations with N-body simulations for accretion of small particles by an embedded moonlet and find agreement at the initial stage of accretion. However, when particles forming an aggregate on the moonlet surface nearly fill the Hill sphere, the aggregate reaches a quasi-steady state with a nearly constant number of particles covering the moonlet, and the accretion rate is significantly reduced compared to the three-body results.

  19. Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Machetel, P.; Garrido, C. J.

    2013-10-01

    We designed a thermo-mechanical numerical model for fast-spreading mid-ocean ridge with variable viscosity, hydrothermal cooling, latent heat release, sheeted dyke layer, and variable melt intrusion possibilities. The model allows for modulating several accretion possibilities such as the "gabbro glacier" (G), the "sheeted sills" (S) or the "mixed shallow and MTZ lenses" (M). These three crustal accretion modes have been explored assuming viscosity contrasts of 2 to 3 orders of magnitude between strong and weak phases and various hydrothermal cooling conditions depending on the cracking temperatures value. Mass conservation (stream-function), momentum (vorticity) and temperature equations are solved in 2-D cartesian geometry using 2-D, alternate direction, implicit and semi-implicit finite-difference scheme. In a first step, an Eulerian approach is used solving iteratively the motion and temperature equations until reaching steady states. With this procedure, the temperature patterns and motions that are obtained for the various crustal intrusion modes and hydrothermal cooling hypotheses display significant differences near the mid-ocean ridge axis. In a second step, a Lagrangian approach is used, recording the thermal histories and cooling rates of tracers travelling from the ridge axis to their final emplacements in the crust far from the mid-ocean ridge axis. The results show that the tracer's thermal histories are depending on the temperature patterns and the crustal accretion modes near the mid-ocean ridge axis. The instantaneous cooling rates obtained from these thermal histories betray these discrepancies and might therefore be used to characterize the crustal accretion mode at the ridge axis. These deciphering effects are even more pronounced if we consider the average cooling rates occurring over a prescribed temperature range. Two situations were tested at 1275-1125 °C and 1050-850 °C. The first temperature range covers mainly the crystallization range

  20. Accretion rate of extraterrestrial 41Ca in Antarctic snow samples

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, J. M.; Bishop, S.; Faestermann, T.; Famulok, N.; Fimiani, L.; Hain, K.; Jahn, S.; Korschinek, G.; Ludwig, P.; Rodrigues, D.

    2015-10-01

    Interplanetary Dust Particles (IDPs) are small grains, generally less than a few hundred micrometers in size. Their main source is the Asteroid Belt, located at 3 AU from the Sun, between Mars and Jupiter. During their flight from the Asteroid Belt to the Earth they are irradiated by galactic and solar cosmic rays (GCR and SCR), thus radionuclides are formed, like 41Ca and 53Mn. Therefore, 41Ca (T1/2 = 1.03 × 105 yr) can be used as a key tracer to determine the accretion rate of IDPs onto the Earth because there are no significant terrestrial sources for this radionuclide. The first step of this study consisted to calculate the production rate of 41Ca in IDPs accreted by the Earth during their travel from the Asteroid Belt. This production rate, used in accordance with the 41Ca/40Ca ratios that will be measured in snow samples from the Antarctica will be used to calculate the amount of extraterrestrial material accreted by the Earth per year. There challenges for this project are, at first, the much longer time for the flight needed by the IDPs to travel from the Asteroid Belt to the Earth in comparison with the 41Ca half-life yields an early saturation for the 41Ca/40Ca ratio, and second, the importance of selecting the correct sampling site to avoid a high influx of natural 40Ca, preventing dilution of the 41Ca/40Ca ratio, the quantity measured by AMS.

  1. ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE

    SciTech Connect

    Kim, Dohyeong; Im, Myungshin; Glikman, Eilat; Woo, Jong-Hak; Urrutia, Tanya E-mail: mim@astro.snu.ac.kr

    2015-10-10

    Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, which is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.

  2. Earth and Mars: Water inventories as clues to accretional histories

    USGS Publications Warehouse

    Carr, M.H.; Wanke, H.

    1992-01-01

    The Earth has 2.7 km of water on its surface. Its mantle contains at least 150 ppm water, and probably significantly more depending on the amount of undepleted mantle and subducted crustal water that is present. Geologic evidence suggests that a few hundred meters of water are close to the Martian surface, but evidence from SNC meteorites indicates that the Martian mantle is very dry, containing no more than about 35 ppm water. Part of the difference in water content of the mantles of the two planets is attributed to plate tectonics. However, the Earth's mantle appears to contain at least several times the water content of the Martian mantle, even accounting for plate tectonics. We attribute the difference to two possible causes. The first possibility is that melting of the Earth's surface during accretion, as a result of the development of a steam atmosphere, allowed impact-devolatized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second and preferred possibility is that Mars, like the Earth, acquired a late volatile rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water-rich veneer. The perception of Mars as having a wet surface, but a dry interior, is consistent with what we know of the geologic history of Mars, which can be viewed as the progressive intrusion and overplating of a water-rich crust by dry, mantle-derived volcanic rocks. ?? 1992.

  3. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  4. Planetary Population Synthesis: the importance of the solids accretion rate

    NASA Astrophysics Data System (ADS)

    Fortier, A.; Alibert, Y.; Carron, F.; Mordasini, C.; Benz, W.

    2011-10-01

    In the framework of the nucleated instability model, the formation time-scale of giant planets is very sensitive to the time it takes to build the solid core. The accretion of solids can be described by two different, consecutive regimes: it first proceeds in a very fast fashion, known as runaway growth, and later on in a much slower regime, the so-called oligarchic growth. The transition between the runaway and the oligarchic growth depends on many parameters (e.g. the isolation mass and the size of the accreted planetesimals), but as a general rule we can assume that an embryo of a Lunar mass is already an oligarch. Then, the timescale to build a 10 Earth masses (M⊙) core is regulated by the oligarchic regime, as the previous runaway stage proceeds in a negligible amount of time compared to the oligarchic timescale. In this work we show the results of adopting the oligarchic growth for the core in planetary population synthesis calculations. In previous works (see [1], [2]) a fast solids accretion rate was prescribed, leading to a very fast formation of massive solid embryos. Here we show that when considering the oligarchic growth, the formation of giant planets is more difficult, especially in the outer parts of the disk, where the formation of big planets is almost impossible under these hypothesis. On the other hand, many Earth to Super- Earth sized planets are found in the very innermost parts of the disk. However, if the size of the accreted planetesimals is reduced, the formation of giant planets is more likely, preserving also a large amount of smaller planets. We also consider the formation of planetary systems, including the N-body interaction between the forming planets and the collisions that may occur among them during their migration. In the case of many planets forming in the same disk, we find that the final masses of the planets are smaller (but not too small) than in the case of a single planet per star.

  5. Volatile accretion history of the terrestrial planets and dynamic implications.

    PubMed

    Albarède, Francis

    2009-10-29

    Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon-by a giant impact on the proto-Earth-and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U-Pb and I-Xe chronologies, which show that water delivery peaked approximately 100 million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.

  6. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    SciTech Connect

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-03-20

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  7. Variable protostellar mass accretion rates in cloud cores

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lou, Yu-Qing

    2017-03-01

    Spherical hydrodynamic models with a polytropic equation of state (EoS) for forming protostars are revisited in order to investigate the so-called luminosity conundrum highlighted by observations. For a molecular cloud (MC) core with such an EoS with polytropic index γ > 1, the central mass accretion rate (MAR) decreases with increasing time as a protostar emerges, offering a sensible solution to this luminosity problem. As the MAR decreases, the protostellar luminosity also decreases, meaning that it is invalid to infer the star formation time from the currently observed luminosity using an isothermal model. Furthermore, observations of radial density profiles and the radio continua of numerous MC cores evolving towards protostars also suggest that polytropic dynamic spheres of γ > 1 should be used in physical models.

  8. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  9. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2016-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~ 103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs - precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~ 6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies - and the detailed accretion history of the halo - across cosmic time.

  10. Black hole accretion versus star formation rate: theory confronts observations

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-09-01

    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction (`stochastic' phase), during the `merger' proper, lasting ˜0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bivariate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star-forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bivariate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.

  11. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  12. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  13. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-01-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disk at the pericenter scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 10^{44} {erg s^{-1}}, implies that we observe only ˜1% of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. (2015) suggested that the observed optical TDE emission is powered by shocks at the apocenter between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature, and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the SMBH before circularization. As a result, the efficiency is only ˜1-10% of a standard accretion disk's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  14. Sediment flux and accretion history on the Cascadia and Sumatra margins

    NASA Astrophysics Data System (ADS)

    McNeill, L. C.; Geersen, J.; Springett, J.; Trehu, A. M.; Wilson, D. J.

    2013-12-01

    The growth of accretionary prisms and continental margins, and the properties of the prism interior and plate boundary are a function of input sediment through time and the history of accretion, erosion, and sediment subduction on the margin. Input sediment volumes are affected by changing sediment sources and pathways, climate, oceanic basement topography, and erosion and reworking of material from the forearc itself. Seismic reflection data have been compiled on the Cascadia margin, imaging the oceanic plate structure and stratigraphy, and forearc structure to analyse these processes at several locations along the margin, providing more detail than earlier compilations of sediment flux. These seismic data are integrated with ocean drilling data on the oceanic plate to establish the history of deposition on the oceanic plate and in the trench. Sediment flux into the subduction zone since the late Miocene can then be estimated and compared with the volume of the currently active prism. Several specific factors are considered, including: décollement position; compaction; reaccretion of sediment eroded from the prism into the trench; prism age; reduction in sediment flux prior to Pleistocene glaciation on the margin; mixing of older prism mélange with the modern prism on the Washington margin; potential changes in convergence rate and direction with time; margin-parallel motion of forearc material. In some cases, these parameters or their temporal change generate significant uncertainty. Initial results suggest that on the southern Washington margin, input sediment since late Miocene broadly balances with prism volume, supporting predominant accretion. On the central Oregon margin (where the prism may be younger), the prism volume is similar or slightly less than the sediment input, and on the southern Oregon margin, the prism volume is significantly less than the sediment input. This supports the hypothesis that basal and surface erosion of the prism and sediment

  15. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-06-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions {sup 15}O(α, γ){sup 19}Ne and {sup 18}Ne(α, p){sup 21}Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the {sup 15}O(α, γ){sup 19}Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true {sup 15}O(α, γ){sup 19}Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  16. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  17. Exploring the connection between stellar halo profiles and accretion histories in L * galaxies

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.

    2017-03-01

    I use a library of controlled minor merger N-body simulations, a particle tagging technique and Monte Carlo generated ΛCDM accretion histories to study the highly stochastic process of stellar deposition onto the accreted stellar halos (ASHs) of L * galaxies. I explore the main physical mechanisms that drive the connection between the accretion history and the density profile of the ASH. I find that: i) through dynamical friction, more massive satellites are more effective at delivering their stars deeper into the host; ii) as a consequence, ASHs feature a negative gradient between radius and the local mass-weighed virial satellite-to-host mass ratio; iii) in L * galaxies, most ASHs feature a density profile that steepens towards sharper logarithmic slopes at increasing radii, though with significant halo-to-halo scatter; iv) the ASHs with the largest total ex-situ mass are such because of the chance accretion of a small number of massive satellites (rather than of a large number of low-mass ones).

  18. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  19. ACCRETION RATES FOR T TAURI STARS USING NEARLY SIMULTANEOUS ULTRAVIOLET AND OPTICAL SPECTRA

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Blaty, Alex; Herczeg, Gregory; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander E-mail: ncalvet@umich.edu

    2013-04-20

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, {eta} Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (M-dot ) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of M-dot to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the M-dot estimates, to produce correlations between accretion indicators (H{beta}, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  20. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-04-01

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  1. MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS

    SciTech Connect

    Donehew, Brian; Brittain, Sean E-mail: sbritt@clemson.edu

    2011-02-15

    The accretion rate of young stars is a fundamental characteristic of these systems. While accretion onto T Tauri stars has been studied extensively, little work has been done on measuring the accretion rate of their intermediate-mass analogs, the Herbig Ae/Be stars. Measuring the stellar accretion rate of Herbig Ae/Bes is not straightforward both because of the dearth of metal absorption lines available for veiling measurements and the intrinsic brightness of Herbig Ae/Be stars at ultraviolet wavelengths where the brightness of the accretion shock peaks. Alternative approaches to measuring the accretion rate of young stars by measuring the luminosity of proxies such as the Br {gamma} emission line have not been calibrated. A promising approach is the measurement of the veiling of the Balmer discontinuity. We present measurements of this veiling as well as the luminosity of Br {gamma}. We show that the relationship between the luminosity of Br {gamma} and the stellar accretion rate for classical T Tauri stars is consistent with Herbig Ae stars but not Herbig Be stars. We discuss the implications of this finding for understanding the interaction of the star and disk for Herbig Ae/Be stars.

  2. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs

    PubMed Central

    Vargas-Ángel, Bernardo; Richards, Cristi L.; Vroom, Peter S.; Price, Nichole N.; Schils, Tom; Young, Charles W.; Smith, Jennifer; Johnson, Maggie D.; Brainard, Russell E.

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  3. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    PubMed

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  4. The Influence of Accretion Rate and Metallicity on Thermonuclear Bursts: Predictions from KEPLER Models

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Heger, Alexander; Galloway, Duncan K.

    2016-03-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated light curve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from η =1.1 to 1.24. We identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  5. X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE

    SciTech Connect

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Guenther, H. M.; Wolk, S. J.; Luna, G. J. M.

    2012-12-01

    Diagnostics of electron temperature (T{sub e} ), electron density (n{sub e} ), and hydrogen column density (N{sub H}) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 Multiplication-Sign 10{sup -9} M{sub Sun} yr{sup -1}, for a stellar magnetic field strength of 600 G and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N{sub H}, T{sub e} , and n{sub e} by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.

  6. Peat accretion histories during the past 6,000 years in marshes of the Sacramento-San Joaquin delta, CA, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Brown, Thomas A.

    2009-01-01

    The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento-San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age-depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year-1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.

  7. Perturbation of mass accretion rate, associated acoustic geometry and stability analysis

    NASA Astrophysics Data System (ADS)

    Bollimpalli, Deepika A.; Bhattacharya, Sourav; Das, Tapas K.

    2017-02-01

    We investigate the stability of stationary integral solutions of an ideal irrotational fluid in a general static and spherically symmetric background, by studying the profile of the perturbation of the mass accretion rate. We consider low angular momentum axisymmetric accretion flows for three different accretion disk models and consider time dependent and radial linear perturbation of the mass accretion rate. First we show that the propagation of such perturbation can be determined by an effective 2 × 2 matrix, which has qualitatively similar acoustic causal properties as one obtains via the perturbation of the velocity potential. Next, using this matrix we analytically address the stability issues, for both standing and travelling wave configurations generated by the perturbation. Finally, based on this general formalism we briefly discuss the explicit example of the Schwarzschild spacetime and compare our results of stability with the existing literature, which instead address this problem via the perturbation of the velocity potential.

  8. Tracers of the Extraterrestrial Component in Sediments and Inferences for Earth's Accretion History

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    The study of extraterrestrial matter in sediments began with the discovery of cosmic spherules during the HMS Challenger Expedition (1873-1876), but has evolved into a multidisciplinary study of the chemical, physical, and isotopic study of sediments. Extraterrestrial matter in sediments comes mainly from dust and large impactors from the asteroid belt and comets. What we know of the nature of these source materials comes from the study of stratospheric dust particles, cosmic spherules, micrometeorites, meteorites, and astronomical observations. The most common chemical tracers of extraterrestrial matter in sediments are the siderophile elements, most commonly iridium and other platinum group elements. Physical tracers include cosmic and impact spherules, Ni-rich spinels, meteorites, fossil meteorites, and ocean-impact melt debris. Three types of isotopic systems have been used to trace extraterrestrial matter. Osmium isotopes cannot distinguish chondritic from mantle sources, but provide a useful tool in modeling long-term accretion rates. Helium isotopes can be used to trace the long-term flux of the fine fraction of the interplanetary dust complex. Chromium isotopes can provide unequivocal evidence of an extraterrestrial source for sediments with high concentrations of meteoritic Cr. The terrestrial history of impacts, as recorded in sediments, is still poorly understood. Helium isotopes, multiple Ir anomalies, spherule beds, and craters all indicate a comet shower in the late Eocene. The Cretaceous-Tertiary boundary impact event appears to have been caused by a single carbonaceous chondrite projectile, most likely of asteroid origin. Little is known of the impact record in sediments from the rest of the Phanerozoic. Several impact deposits are known in the Precambrian, including several possible mega-impacts in the Early Archean.

  9. The Information Content of Stellar Halos: Stellar Population Gradients and Accretion Histories in Early-type Illustris Galaxies

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Conroy, C.; Pillepich, A.; Rodriguez-Gomez, V.; Hernquist, L.

    2016-12-01

    Long dynamical timescales in the outskirts of galaxies preserve the information content of their accretion histories, for example in the form of stellar population gradients. We present a detailed analysis of the stellar halo properties of a statistically representative sample of early-type galaxies from the Illustris simulation, and show that stellar population gradients at large radii can indeed be used to infer basic properties of galactic accretion histories. We measure metallicity, age, and surface-brightness profiles in quiescent Illustris galaxies ranging from {M}\\star = 1010-2 × 1012 {M}⊙ and show that they are in reasonable agreement with observations. At fixed mass, galaxies that accreted little of their stellar halo material tend to have steeper metallicity and surface-brightness profiles, between 2-4 effective radii ({R}e), than those with larger accreted fractions. Profiles of metallicity and surface-brightness in the stellar halo typically flatten from z = 1 to the present. This suggests that the accretion of stars into the stellar halo tends to flatten metallicity and surface-brightness profiles, a picture which is supported by the tight correlation between the two gradients in the stellar halo. We find no statistical evidence of additional information content related to accretion histories in stellar halo metallicity profiles, beyond what is contained in surface-brightness profiles. Age gradients in the stellar halo do not appear to be sensitive to galactic accretion histories, and none of the stellar population gradients studied are strongly correlated with the mean merger mass-ratio. Our findings relate specifically to regions of the stellar halo within 4 {R}e, but suggest that future observations that reach large radii outside galaxies (including to 10 {R}e and beyond) will have the best potential to constrain galactic accretion histories.

  10. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Huang, Ying-Ke; Cheng, Cheng; Qiu, Jie; Li, Yan-Rong; Zhang, Yang-Wei; Fan, Xu-Liang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Kaspi, Shai; Ho, Luis C.; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2015-06-01

    We have completed two years of photometric and spectroscopic monitoring of a large number of active galactic nuclei (AGNs) with very high accretion rates. In this paper, we report on the result of the second phase of the campaign, during 2013-2014, and the measurements of five new Hβ time lags out of eight monitored AGNs. All five objects were identified as super-Eddington accreting massive black holes (SEAMBHs). The highest measured accretion rates for the objects in this campaign are \\mathscr{\\dot{M}} {\\mkern 1mu} ≳ 200, where \\mathscr{\\dot{M}} {\\mkern 1mu} ={{\\dot{M}}\\bullet }/{{L}Edd}{{c}-2}, {{\\dot{M}}\\bullet } is the mass accretion rates, {{L}Edd} is the Eddington luminosity and c is the speed of light. We find that the Hβ time lags in SEAMBHs are significantly shorter than those measured in sub-Eddington AGNs, and the deviations increase with increasing accretion rates. Thus, the relationship between broad-line region size ({{R}_{Hβ }}) and optical luminosity at 5100 Å, {{R}_{Hβ }}-{{L}5100}, requires accretion rate as an additional parameter. We propose that much of the effect may be due to the strong anisotropy of the emitted slim-disk radiation. Scaling {{R}_{Hβ }} by the gravitational radius of the black hole (BH), we define a new radius-mass parameter (Y) and show that it saturates at a critical accretion rate of \\mathscr{\\dot{M}} {\\mkern 1mu} {{}c}=6˜ 30, indicating a transition from thin to slim accretion disk and a saturated luminosity of the slim disks. The parameter Y is a very useful probe for understanding the various types of accretion onto massive BHs. We briefly comment on implications to the general population of super-Eddington AGNs in the universe and applications to cosmology.

  11. The accretion and impact history of the ordinary chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Blackburn, Terrence; Alexander, Conel M. O'D.; Carlson, Richard; Elkins-Tanton, Linda T.

    2017-03-01

    A working timeline for the history of ordinary chondrites includes chondrule formation as early as 0-2 Ma after our Solar System's earliest forming solids (CAIs), followed by rapid accretion into undifferentiated planetesimals that were heated internally by 26Al decay and cooled over a period of tens of millions of years. There remains conflict, however, between metallographic cooling rate (Ni-metal) and radioisotopic thermochronometric data over the sizes and lifetimes of the chondrite parent bodies, as well as the timing of impact related disruptions. The importance of establishing the timing of parent body disruption is heightened by the use of meteorites as recorders of asteroid belt wide disruption events and their use to interpret Solar System dynamical models. Here we attempt to resolve these records by contributing new 207Pb-206Pb data obtained on phosphates isolated from nine previously unstudied ordinary chondrites. These new results, along with previously published Pb-phosphate, Ni-metal and thermometry data, are interpreted with a series of numerical models designed to simulate the thermal evolution for a chondrite parent body that either remains intact or is disrupted by impact prior to forming smaller unsorted "rubble piles". Our thermal model and previously published thermometry data limit accretion time to 2.05-2.25 Ma after CAIs. Measured Pb-phosphate data place minimum estimates on parent body diameters of ∼260-280 km for both the L and H chondrite parent bodies. They also consistently show that petrologic Type 6 (highest thermal metamorphism) chondrites from both the H and L bodies have younger ages and, therefore, cooled more slowly than Type 5 (lesser metamorphism) chondrites. This is interpreted as evidence for Type 5 chondrite origination from shallower depths than Type 6 chondrites within initially concentrically zoned bodies. This contrasts metallographic cooling rate data that are inconsistent with such a simple onion shell scenario. One

  12. Accretion rate of cosmic spherules measured at the South Pole

    NASA Astrophysics Data System (ADS)

    Taylor, Susan; Lever, James H.; Harvey, Ralph P.

    1998-04-01

    Micrometeorites are terrestrially collected, extraterrestrial particles smaller than about 1mm, which account for most of the mass being accreted to the Earth,. Compared with meteorites, micrometeorites more completely represent the Earth-crossing meteoroid complex, and should include fragments of asteroids, comets, Mars and our Moon, as well as pre-solar and interstellar grains,. Previous measurements of the flux of micrometeoroids that survive to the Earth's surface have large uncertainties owing to the destruction of particles by weathering, inefficiencies in magnetic collection or separation techniques, low particle counts,, poor age constraint,, or highly variable concentrating processes,. Here we describe an attempt to circumvent these problems through the collection of thousands of well preserved and dated micrometeorites from the bottom of the South Pole water well, which supplies drinking water for the Scott-Amundsen station. Using this collection, we have determined precise estimates of the flux and mass distribution for 50-700-µm cosmic spherules (melted micrometeorites). Allowing for the expected abundance of unmelted micrometeorites in the samples, our results indicate that about 90% of the incoming mass of submillimetre particles evaporates during atmospheric entry. Our data indicate the loss of glass-rich and small stony spherules from deep-sea deposits,, and they provide constraints for models describing the survival probability of micrometeoroids,.

  13. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  14. Chernobyl {sup 137}Cs used to determine sediment accretion rates at selected northern European coastal wetlands

    SciTech Connect

    Callaway, J.C.; DeLaune, R.D.; Patrick, W.H. Jr.

    1996-05-01

    Sediment cores were collected form five coastal wetlands along the North Sea (England and Netherlands) and Baltic Sea (Poland). {sup 137}Cs dating was used to assess sediment accretion rates, including rates based on the {sup 137}Cs peak from the 1986 accident at Chernobyl. Peaks form the Chernobyl fallout were found in cores from the Oder and Vistula Rivers in Poland, from the Eastern Scheldt in the Netherlands, and in one of the two cores from Stiffkey Marsh, UK. No evidence of Chernobyl fallout was found in cores from Dengie Marsh, UK. The Chernobyl {sup 137}Cs peak serves as an excellent marker for short-term accretion rates because of its high activity. Vertical accretion rates (cm yr{sup {minus}1}) based on 1963 and 1986 peaks were similar at most sites; differences may be due to large inputs of sediment from storms or recent accumulation of organic matter. Large differences in sediment characteristics and accretion rates were found between samples from Poland and western Europe. Vertical accretion rates over the period 1963-1986 ranged from 0.26 to 0.85 cm{sup {minus}1} and from 0.30 to 1.90 cm yr{sup {minus}1} over the 1986-1991 period. Vertical accretion rates for the period these sites are in imminent danger of excessive flooding. The Chernobyl {sup 137}Cs peak will be especially useful for studies of short-term (i.e. very recent) sedimentation in the near future and for comparisons of sediment processes over different time scales. 33 refs., 4 figs., 4 tabs.

  15. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish

    NASA Astrophysics Data System (ADS)

    Cramer, Katie L.; O'Dea, Aaron; Clark, Tara R.; Zhao, Jian-Xin; Norris, Richard D.

    2017-01-01

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence.

  16. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish

    PubMed Central

    Cramer, Katie L.; O'Dea, Aaron; Clark, Tara R.; Zhao, Jian-xin; Norris, Richard D.

    2017-01-01

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence. PMID:28112169

  17. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish.

    PubMed

    Cramer, Katie L; O'Dea, Aaron; Clark, Tara R; Zhao, Jian-Xin; Norris, Richard D

    2017-01-23

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence.

  18. THE LINK BETWEEN THE HIDDEN BROAD LINE REGION AND THE ACCRETION RATE IN SEYFERT 2 GALAXIES

    SciTech Connect

    Marinucci, Andrea; Bianchi, Stefano; Matt, Giorgio; Nicastro, Fabrizio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M{sub BH}-{sigma}{sub *} relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L{sub bol}/L{sub Edd} = -1.9) and in luminosity (log L{sub bol} = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  19. The Link between the Hidden Broad Line Region and the Accretion Rate in Seyfert 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea; Bianchi, Stefano; Nicastro, Fabrizio; Matt, Giorgio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M BH-σsstarf relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L bol/L Edd = -1.9) and in luminosity (log L bol = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  20. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  1. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  2. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  3. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  4. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  5. Formation of a proto-Jovian envelope for various planetary accretion rates

    NASA Astrophysics Data System (ADS)

    Ikoma, M.; Emori, H.; Nakazawa, K.

    1998-12-01

    The formation of a proto-Jovian envelope has been simulated on the basis of a core accretion model and the maximum mass that a proto-Jovian planet can have while keeping its envelope gravitationally stable, called the critical core mass, has also been investigated extensively over a wide range of the core accretion rate. The value of the critical core mass has been found to depend strongly on the core accretion rate; for example, it is less than or equal to 0953-8984/10/49/040/img1 for the typical accretion rates for Uranus and Neptune. Furthermore, through simulations of the quasi-static evolution of the envelope beyond the critical core mass, we have found that the characteristic times of envelope contraction are 0953-8984/10/49/040/img2 and 0953-8984/10/49/040/img3 for the cases where the core accretion rates are 0953-8984/10/49/040/img4 per year, 0953-8984/10/49/040/img5 per year and 0953-8984/10/49/040/img6 per year, respectively. Also, in the last case, the core mass of the Jovian planet can be estimated to be about 0953-8984/10/49/040/img7. We conclude that if a given one of the Jovian planets of our solar system has a core smaller than about 0953-8984/10/49/040/img8, it is very hard to see how the core could have attracted a gaseous envelope from our solar nebula and formed the Jovian envelope. Determination of the sizes of the cores in our Jovian planets should give fruitful information for the theory of the formation of our solar system.

  6. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  7. Modelling the Accretion History of the Galactic Disk (and the Gravitational Lensing of a High-z Galaxy)

    NASA Astrophysics Data System (ADS)

    Meyers, Adrian

    2015-01-01

    Over its long history, the Milky Way is expected to have accreted many dwarf galaxies. The debris from the destruction of most of these dwarf galaxies will by now be fully phase-mixed throughout the Galaxy and hence undetectable as local over-densities in position-space. However, the debris from these systems could have distinct kinematic signatures that may help distinguish these stars from, for example, the Galactic disk. We aim to construct a reliable method of determining the contributions to the Milky Way disk from accreted structures that could be applied to current kinematic data sets, such as SDSS's APOGEE survey. In an effort to mimic the kinematic traits of an accreted satellite, we construct single-orbit models to compare to a cosmologically motivated simulation of satellite accretion. We find that these orbit models adhere to the kinematic signatures of certain types of accreted galaxies better than others, giving us insight on which parameters to trust when searching for accreted populations. As a bonus, we describe a separate project in which we attempt to deduce the intrinsic properties of the 8 o'clock arc, a gravitationally lensed Lyman break galaxy at redshift 2.73. Using the lensmodel code and its pixel-based source reconstruction extension pixsrc, we derive a de-lensed image of the galaxy in the source plane.

  8. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  9. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  10. Helium Ignition on Accreting Neutron Stars with a New Triple-α Reaction Rate

    NASA Astrophysics Data System (ADS)

    Peng, Fang; Ott, Christian D.

    2010-12-01

    We investigate the effect of a new triple-α reaction rate from Ogata et al. on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultracompact X-ray binaries (UCXBs), which are believed to have nearly pure helium donors. For \\dot{m}> 0.001 \\dot{m}_{{Edd}}, the new triple-α reaction rate from Ogata et al. predicts a maximum helium ignition column of ~3 × 109 g cm-2, corresponding to a burst energy of ~4 × 1040 erg. For \\dot{m}˜ 0.01 \\dot{m}_{{Edd}} at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-α reaction rate of Ogata et al. by the low-mass stellar evolution results of Dotter & Paxton.

  11. The Star-formation History and Accretion Disk Fraction of the Scorpius-Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark; Mamajek, E. E.

    2013-01-01

    We present a study of the star-formation history and accretion disk fraction of ~0.6-1.8 Msun stars in the nearest OB Association, Scorpius-Centaurus (Sco-Cen; ~10-20 Myr; 100-200 pc). We have performed a low-resolution spectroscopic survey for new, low-mass K- and M-type members of all three subgroups -- Upper Scorpius (US), Upper Centaurus-Lupus (UCL) and Lower Centaurus-Crux (LCC). We find that young, pre-main sequence stars are generally redder and hotter for a given spectral type than their main-sequence counterparts and therefore main-sequence intrinsic colors and temperatures are unsuitable for de-reddening the low-mass members of Sco-Cen and placing them on an H-R diagram. Using nearby, young moving groups within 75 pc, we derive a spectral type--intrinsic color sequence appropriate for pre-main sequence stars, and use synthetic spectral energy distribution fits to infer the proper temperature scale for these young stars. We use this new pre-main sequence intrinsic color and temperature calibration to place our ~200 newly identified members of Sco-Cen on an H-R diagram. We derive isochronal ages for the F-type members of Upper Centaurus-Lupus (UCL; 16 Myr; =142 pc) and Lower Centaurus-Crux (LCC; 17 Myr; =118 pc) which are consistent with the most recent results from the high-mass stars and the G- and K-type stars. However, our results for Upper Scorpius (US; 11 Myr; =145 pc) indicate it is a factor of two older than previously thought. Finally, we find an accretion disk fraction for UCL and LCC of ~3% for K-type stars decreasing to 2% for F-type stars at ~16-17 Myr, while US has an accretion disk fraction of 5% for K-type stars decreasing to <19% (95% C.L.) for F-type stars at ~11 Myr.

  12. The role of angular momentum transport in establishing the accretion rate-protostellar mass correlation

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2017-02-01

    We model the mass accretion rate M˙ to stellar mass M* correlation that has been inferred from observations of intermediate to upper mass T Tauri stars-that is M˙ ∝ M*1.3±0.3. We explain this correlation within the framework of quiescent disk evolution, in which accretion is driven largely by gravitational torques acting in the bulk of the mass and volume of the disk. Stresses within the disk arise from the action of gravitationally driven torques parameterized in our 1D model in terms of Toomre's Q criterion. We do not model the hot inner sub-AU scale region of the disk that is likely stable according to this criterion, and appeal to other mechanisms to remove or redistribute angular momentum and allow accretion onto the star. Our model has the advantage of agreeing with large-scale angle-averaged values from more complex nonaxisymmetric calculations. The model disk transitions from an early phase (dominated by initial conditions inherited from the burst mode of accretion) into a later self-similar mode characterized by a steeper temporal decline in M˙. The models effectively reproduce the spread in mass accretion rates that have been observed for protostellar objects of 0.2 M⊙ ≤ M* ≤ 3.0 M⊙, such as those found in the ρ Ophiuchus and Taurus star forming regions. We then compare realistically sampled populations of young stellar objects produced by our model to their observational counterparts. We find these populations to be statistically coincident, which we argue is evidence for the role of gravitational torques in the late time evolution of quiescent protostellar disks.

  13. Mass accretion rates from multiband photometry in the Carina Nebula: the case of Trumpler 14

    NASA Astrophysics Data System (ADS)

    Beccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, G.; Romaniello, M.; Zoccali, M.; Weidner, C.

    2015-01-01

    Context. We present a study of the mass accretion rates of pre-main sequence (PMS) stars in the cluster Trumpler 14 (Tr 14) in the Carina Nebula. Using optical multiband photometry we were able to identify 356 PMS stars showing Hα excess emission with equivalent width EW(Hα) > 20 Å. We interpret this observational feature as an indication that these objects are still actively accreting gas from their circumstellar medium. From a comparison of the HR diagram with PMS evolutionary models we derive ages and masses of the PMS stars. We find that most of the PMS objects are younger than 10 Myr with a median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we determine the mass accretion rate (Ṁacc) and discuss its dependence on mass and age. We finally combine the optical photometry with near-IR observations to build the spectral energy distribution (SED) for each PMS star in Tr 14. The analysis of the SEDs suggests the presence of transitional discs in which a large amount of gas is still present and sustains accretion onto the PMS object at ages older than 10 Myr. Our results, discussed in light of recent recent discoveries with Herschel of transitional discs containing a massive gas component around the relatively old PMS stars TW Hydrae, 49 Ceti, and HD 95086, support a new scenario n which old and evolved debris discs still host a significant amount of gas. Aims: Methods: Results:

  14. On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada

    2017-02-01

    We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}ȯ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}ȯ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (∼85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ∼ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (i.e., z≳ 10).

  15. Variations in the accretion rate and luminosity in gravitationally unstable protostellar disks

    NASA Astrophysics Data System (ADS)

    Elbakyan, V. G.; Vorobyov, E. I.; Glebova, G. M.

    2016-10-01

    Self-consistent modeling of a protostar and protostellar disk is carried out for early stages of their evolution. The accretion rate at distances of sevral astronomical units from the protostar is appreciably variable, which is reflected in the protostar's luminosity. The amplitude of the variations in the accretion rate and luminosity grows together with the sampling period, as a consequence of the nature of gravitationally unstable protostellar disks. A comparison of model luminosity variations with those derived from observations of nearby sites of star formation shows that the model variations are appreciably lower than the observed values for sampling periods of less than 10 years, indicating the presence of additional sources of variability on small dynamical distances from the protostar.

  16. NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

    SciTech Connect

    Schaefer, Bradley E.; Collazzi, Andrew C.

    2010-05-15

    We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500 Cyg, V1974 Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500 Cyg. V1500 Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500 Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

  17. On the stream-accretion disk interaction - Response to increased mass transfer rate

    NASA Technical Reports Server (NTRS)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  18. Critical temperature and accretion rate of outbursts in long-period dwarf novae

    NASA Astrophysics Data System (ADS)

    Kim, Soon-Wook

    2015-11-01

    Dwarf nova outbursts are nonlinear phenomena, and a time-dependent disk model is necessary to account for observations in detail. However, it is also necessary to elaborate a simpler steady-state fit to interpret observations. To know in what condition the outburst is initiated, understanding of the dwarf nova outburst is important. The parameterized, steady-state fitting formulae are suggested by Smak (Acta Astron. 52, 429 (2002); ibid 60, 83 (2010)) for the critical disk temperature and mass accretion rate above which the disk becomes thermally unstable. The fits give a single-valued temperature and accretion rate and are radius-independent whereas the observations show that the outbursts are radius-dependent phenomena of the ionizaton propagating in the disk. The fits have been tested to account for the observed outbursts only for systems with orbital periods shorter than a half day. Therefore, we examine the fits for orbital period as long as 2 days and compare the fits to the time-dependent model of a long-period dwarf nova GK Per. The fits are not much different from the time-dependent result for the critical temperature. However, the fits for the critical mass accretion rate above which the disk enters the hot state overestimate the time-dependent model for a long-period system like GK Per. The critical mass accretion rate in the intermediate state is consistent with that from the time-dependent disk model. However, the fit value should be treated as a maximum possible value below which the disk maintains the intermediate state, which is consistent with an interpretation for the observations of the Z Cam stars.

  19. Rapid accretion and hibernation in the preoutburst history of classical novae

    SciTech Connect

    Prialnik, D.; Shara, M.M.

    1986-12-01

    A new nova evolution model is used to resolve the apparent discrepancy between the observed mass accretion rate (MAR) in prenovae and in old novae and the theoretical upper limit to the MAR which yields a thermonuclear runaway. The model offers a plausible disguise state for very old novae as well as unifying links between old novae, novalike variables, and dwarf novae. The model predicts that mass transfer must cease in a cataclysmic binary a few centuries after eruption, remain off for millennia, and then resume. The effects of such long-term variability of MAR on a white dwarf are studied, and the implications of the results for the long-term evolution of novae and related catalysmic binaries are discussed. 32 references.

  20. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  1. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  2. The radial dependence of pebble accretion rates: A source of diversity in planetary systems. I. Analytical formulation

    NASA Astrophysics Data System (ADS)

    Ida, S.; Guillot, T.; Morbidelli, A.

    2016-06-01

    Context. The classical planetesimal accretion scenario for the formation of planets has recently evolved with the idea that pebbles, centimeter- to meter-sized icy grains migrating in protoplanetary disks, can control planetesimal and/or planetary growth. Aims: We investigate how pebble accretion depends on disk properties and affects the formation of planetary systems. Methods: We construct analytical models of pebble accretion onto planetary embryos that consistently account for the mass and orbital evolution of the pebble flow and reflect disk structure. Results: We derive simple formulas for pebble accretion rates in the so-called settling regime for planetary embryos that are more than 100 km in size. For relatively smaller embryos or in outer disk regions, the accretion mode is three-dimensional (3D), meaning that the thickness of the pebble flow must be taken into account, and resulting in an accretion rate that is independent of the embryo mass. For larger embryos or in inner regions, the accretion is in a two-dimensional (2D) mode, i.e., the pebble disk may be considered infinitely thin. We show that the radial dependence of the pebble accretion rate is different (even the sign of the power-law exponent changes) for different disk conditions such as the disk heating source (viscous heating or stellar irradiation), drag law (Stokes or Epstein, and weak or strong coupling), and in the 2D or 3D accretion modes. We also discuss the effect of the sublimation and destruction of icy pebbles inside the snow line. Conclusions: Pebble accretion easily produces a large diversity of planetary systems. In other words, to infer the results of planet formation through pebble accretion correctly, detailed prescriptions of disk evolution and pebble growth, sublimation, destruction and migration are required.

  3. Geomorphology and late Holocene accretion history of Adele Reef: a northwest Australian mid-shelf platform reef

    NASA Astrophysics Data System (ADS)

    Solihuddin, Tubagus; Bufarale, Giada; Blakeway, David; O'Leary, Michael J.

    2016-12-01

    The mid-shelf reefs of the Kimberley Bioregion are one of Australia's more remote tropical reef provinces and such have received little attention from reef researchers. This study describes the geomorphology and late Holocene accretion history of Adele Reef, a mid-shelf platform reef, through remote sensing of contemporary reef habitats, shallow seismic profiling, shallow percussion coring and radiocarbon dating. Seismic profiling indicates that the Holocene reef sequence is 25 to 35 m thick and overlies at least three earlier stages of reef build-up, interpreted as deposited during marine isotope stages 5, 7 and 9 respectively. The cored shallow subsurface facies of Adele Reef are predominantly detrital, comprising small coral colonies and fragments in a sandy matrix. Reef cores indicate a `catch-up' growth pattern, with the reef flat being approximately 5-10 m deep when sea level stabilised at its present elevation 6,500 years BP. The reef flat is rimmed by a broad low-relief reef crest only 10-20 cm high, characterised by anastomosing ridges of rhodoliths and coralliths. The depth of the Holocene/last interglacial contact (25-30 m) suggests a subsidence rate of 0.2 mm/year for Adele Reef since the last interglacial. This value, incorporated with subsidence rates from Cockatoo Island (inshore) and Scott Reefs (offshore), provides the first quantitative estimate of hinge subsidence for the Kimberley coast and adjacent shelf, with progressively greater subsidence across the shelf.

  4. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  5. HALO7D: Disentangling the Milky Way Accretion History with Observations in 7 Dimensions

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis; Guhathakurta, Puragra; Rockosi, Constance M.; Van Der Marel, Roeland P.; Sohn, S. Tony; HSTPROMO, HALO7D

    2016-01-01

    The Milky Way (MW) is shrouded in a faint metal-poor stellar halo. Its structure and kinematics provide a unique archaeological record of the MW's formation, past evolution, and accretion history. These data also help us constrain the dark matter mass out to large radii (50 to 100 kpc). However, studies of the MW stellar halo are hindered by observational constraints. Beyond D~10 kpc, our knowledge of the MW halo is limited to line of sight velocities and rare tracer populations (blue horizontal branch and red giant branch stars). We aim to address these limitations using highly accurate HST-measured proper motions and very deep (8-24 hour integrations) Keck DEIMOS spectroscopy of MW main sequence turn-off stars in the CANDELS fields. By combining these two datasets, we can obtain 6D phase-space information plus chemical abundances (7 "Dimensions") for our halo stars. This survey, which will be unique even in the era of Gaia, will vastly improve our understanding of the Milky Way structure, evolution and mass in a way that neither the HST proper motions nor Keck spectroscopy can do on their own.

  6. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    PubMed

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  7. Accretion history and stratigraphy of mid-Holocene coral reefs from Southeast Florida, USA

    NASA Astrophysics Data System (ADS)

    Stathakopoulos, A.; Riegl, B. M.; Swart, P. K.

    2013-05-01

    The southeast Florida shelf is a well-studied coral reef region previously used in studies of late Quaternary sea-level, reef geomorphology, and paleoecology in the sub-tropical Atlantic. Situated on the shelf is the southeast Florida continental reef tract; a ~125 km long Holocene fringing/barrier coral reef complex, composed of three shore-parallel linear reefs ('outer', 'middle', and 'inner' reefs) of varying age. Since few detailed stratigraphic descriptions exist, drill cores were extracted to further understand the composition, character, and radiometric ages of reef material in order to reconstruct the accretion history. Sixteen reef cores from the shallow inner reef were collected along and across the reef axes and were combined with lidar bathymetric data for stratigraphic and geomorphologic analyses. Macroscopic and microscopic (petrographic thin sections) examinations of reef clasts were performed to identify coral and reef infauna species compositions, diagenetic facies, and taphonomic features for interpretation of former reef environments/zonation. The southeast Florida continental reef tract was characterized by dynamic reef terminations, backstepping, and re-initiation in response to post-glacial sea-level rise and flooding of topography suitable for reef initiation and growth. Results suggest that the outer reef accreted from ~10.6-8.0 ka cal BP, the middle reef from at least ~5.8-3.7 ka cal BP, and the inner reef from ~7.8-5.5 ka cal BP. The outer reef is the best-developed reef, followed by the inner reef, while the middle reef apparently has relatively little framework buildup. New data from this study and a lack of significant age overlaps confirm that reef backstepping from the outer to the inner reef occurred within a few hundred years after outer reef termination. This is consistent with temporal and spatial scales reported from backstepped reefs in St. Croix and Puerto Rico. The cause of the backstep is still unknown however some studies

  8. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    SciTech Connect

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.; Montesinos, B.; Najita, J. R.; Brittain, S. D.; Van den Ancker, M. E.

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  9. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillations decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.

  10. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Technical Reports Server (NTRS)

    Seifana, Elena; Titarchuk, Lev

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram, We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites, We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and Gaussian component We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keY to 4.5 keY, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by factor four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+ I was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries. This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at

  11. POISSON project. III. Investigating the evolution of the mass accretion rate

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  12. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  13. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    USGS Publications Warehouse

    Krauss, K.W.; Allen, J.A.; Cahoon, D.R.

    2003-01-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types - prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba - on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year-1) more than pneumatophores or bare soil controls (mean, 8.3 mm year-1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year-1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year-1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests. ?? 2003 Elsevier Science B.V. All rights reserved.

  14. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    NASA Astrophysics Data System (ADS)

    Krauss, K. W.; Allen, J. A.; Cahoon, D. R.

    2003-02-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types—prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba—on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year -1) more than pneumatophores or bare soil controls (mean, 8.3 mm year -1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year 1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year -1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests.

  15. A mid-Holocene record of sediment dynamics and high resolution accretion rates in a coastal salt marsh from Northern California

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; Holmquist, J. R.; MacDonald, G. M.

    2013-12-01

    Sediment accretion rates in coastal salt marshes are the critical determining factor in terms of ecosystem stability in the face of accelerated sea level rise (SLR), projected to rise by up to 1.4 m by 2100 in Southern California (National Research Council, 2012). However, high resolution studies of accretion rates in coastal salt marshes over the past several millennia have not yet been conducted for most of the US west coast. We collected multiple sediment records from small salt marshes surrounding Humboldt Bay, California. Due to this unique tectonic setting, many suspect cores from these marshes have evidence of coastal subsidence due to earthquake activity or large tsunami deposits (Jacoby et al., 1995). These records therefore are one of the best proxy measures for how salt marshes in California may respond to accelerated SLR. We analyzed all cores for magnetic susceptibility, % organic matter, and select cores for particle size. High resolution, millennial and centennial scale, radiocarbon dating for these sediment records reveals a detailed history of marsh accretion rates.

  16. Lagoonal reef accretion and holocene sea-level history from three atolls in the Cook Islands, Central South Pacific

    USGS Publications Warehouse

    Gray, S.C.; Hein, J.R.

    2005-01-01

    Radiocarbon ages of corals from cores collected at nine drill sites in the lagoons of three atolls (Pukapuka, Rakahanga, Aitutaki, Cook Islands) provide a history of lagoon sedimentation in response to Holocene sea-level rise and stabilization. Holocene lagoonal reefs were established between 8700 and 7800 years B.P. on 130,000-200,000 year-old reef platforms that are presently 7 to 22 m below the floor of the lagoons. Comparison of radiocarbon ages of the deepest corals to published sea-level curves indicate that Holocene reefs colonized these substrates rapidly (accretion rates for the Holocene in the lagoons varied by location (83 ?? 2 to 278 ?? 8 cm/ka) and decreased through the Holocene in six of seven drill holes as the lagoons shallowed and became enclosed by the outer reef. A sample from an emergent (<0.5 m above present mean tide) reef on Rakahanga is 4610 ?? 100 years old, which may indicate a higher middle Holocene relative sea level on Rakahanga. Coral growth in Rakahanga lagoon ceased less than 2000 years ago, but was prolific in the early to middle Holocene. The timing and pattern of Holocene reef development exhibited in the Cook Islands is consistent with other oceanic islands. An assessment of the response of reef development to sea-level change during the Holocene provides a baseline to predict how future sea-level changes may affect the morphology of modern reefs.

  17. The PISA Pre-Main Sequence accreting models

    NASA Astrophysics Data System (ADS)

    Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla

    2013-07-01

    The poster investigates the effect of accretion processes on the evolution of stellar models computed by means of the well tested and updated PROSECCO evolutionary code, under the hypothesis of thin-disk accretion. We analysed the effect on the evolution of the adoption of different parameters as the accretion rate, accretion history, seed mass, and the fraction of the infalling matter energy (alpha_acc) deposed in to the star (accretion energy). We confirm that the most critical parameter is the accretion energy. We show that, depending on alpha_acc the evolution of accreting and non-accreting objects can be completely different, confirming that the adoption of small alpha_acc value (i.e. small accretion energy, cold accretion) produces fainter and more compact models with respect to the ones predicted from non-accreting structures at the same mass and age, models that can not be reconciled with the data available for young objects (i.e. position in the HR diagram, lithium abundances). On the contrary, if a large part of the accretion luminosity is deposed into the star (alpha_acc = 1, hot accretion), at least during the fisrt stages of the accretion phase or during bursts episodes, large radii and luminosities are achievable, with resulting structures much more similar to the non-accreting ones.

  18. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  19. The pre- and post-accretion irradiation history of cometary ices

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1989-01-01

    Comets Halley and Wilson exhibited similar 3.4 micron emission features at approx. 1 AU from the Sun. A simple model of thermal emission from organic grains fits the feature, provides optical depths in good agreement with spacecraft measurements, and explains the absence of longer-wavelength organic features as due to spectral heliocentric evolution (Chyba and Sagan, 1987). The model utilizes transmission spectra of organics synthesized in the laboratory by irradiation of candidate cometary ices; the authors have long noted that related gas-phase syntheses yield polycyclic aromatic hydrocarbons, among other organic residues (Sagan et al., 1967). The authors previously concluded (Chyba and Sagan, 1987) that Halley's loss of several meters' depth with each perihelion passage, combined with the good fit of the Halley 3.4 micron feature to that of comet Wilson (Allen and Wickramasinghe, 1987), argues for the primordial - but not necessarily interstellar - origin of cometary organics. The authors examine the relative importance to the formation of organics of the variety of radiation environments experienced by comets. They conclude that there is at present no compelling reason to choose any of three contributing mechanisms (pre-accretion UV, pre-accretion cosmic ray, and post-accretion radionuclide processing) as the most important.

  20. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  1. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  2. The Record of Collision and Accretion in the History of a Convergent Margin

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Cayley, R. A.

    2014-12-01

    Convergent margins become congested when they try to swallow buoyant, exotic crust or an oceanic swell associated with anomalously buoyant plume material. Mountain belts (orogens) that form at these convergent plate margins are the sites of significant lateral continental growth. Modern examples of accretionary margins are the North American Cordillera and southwest Pacific. The geologic record is riddled with accretionary orogens, such as the Tasmanides along the eastern margin of the supercontinent Gondwana and the Altaides that formed on the southern margin of Laurasia. In modern and ancient examples of long lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back arc basin development, often related to subduction roll back and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. In previous work, (Mason et al, 2010), we found that buoyant material ingested by a subduction zone produces a relative advance of the local region of the trench (either reduced rollback or absolute advance) naturally leading to the characteristic indentation of the plate boundary by the plateau. Depending on the strength and buoyancy of the incoming anomaly relative to the oceanic lithosphere, it may be subducted or it may be accreted with the associated formation of a slab window. Extending this model to ocean-continent convergent zones (Moresi et al, 2014), we show how the indentation of buoyant exotic material also dominates terrane accretion. When large blocks of material congest a subduction zone, the subduction zone needs to undergo signficiant re-arrangement for convergence to continue. We have modelled this process and observe characteristic patterns in the deformation of the over-riding plate, in the timing of the escape of material from behind the indenter, and in the oroclinal geometry that remains once the collision has completed. References Mason, W. G., Moresi, L., Betts, P. G

  3. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    PubMed

    Abrams, Steven A

    2006-11-01

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailability of calcium between infant formulas are unlikely to have long-term consequences. Long-term studies of the effects of infant feeding type on ultimate bone mass are needed. For now, the vitamin-replete breast-fed infant's rate of calcium accretion during the first year of life should be the standard targeted for infant formulas.

  4. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  5. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  6. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Brennecka, Gregory A.; Symes, Steven J. K.

    2016-02-01

    mantle reservoirs formed during planetary differentiation associated with magma ocean solidification, the age determined here implies that magma ocean solidification occurred several tens of millions of years after the beginning of the Solar System. Recent thermal models, however, suggest that Mars-sized bodies cool rapidly in less than ∼5 Ma after accretion ceases, even in the presence of a thick atmosphere. Assuming these models are correct, an extended period of accretion is necessary to provide a mechanism to keep portions of the martian mantle partially molten until 4504 Ma. Late accretional heating of Mars could either be associated with protracted accretion occurring at a quasi-steady state or alternatively be associated with a late giant impact. If this scenario is correct, then accretion of Mars-sized bodies takes up to 60 Ma and is likely to be contemporaneous with the core formation and possibly the onset of silicate differentiation. This further challenges the concept that isotopic equilibrium is attained during primordial evolution of planets, and may help to account for geochemical evidence implying addition of material into planetary interiors after core formation was completed.

  7. Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States

    USGS Publications Warehouse

    Preston, T.M.; Sojda, R.S.; Gleason, R.A.

    2013-01-01

    Increased sedimentation and nutrient cycle changes in Prairie Pothole Region wetlands associated with agriculture threaten the permanence and ecological functionality of these important resources. To determine the effects of land use on sedimentation and nutrient cycling, soil cores were analyzed for cesium-137 (137Cs), lead-210 (210Pb), and potassium-40 (40K) activities; textural composition; organic and inorganic carbon (C); and total nitrogen (N) from twelve wetlands surrounded by cropland, Conservation Reserve Program (CRP) lands, or native prairie uplands. Separate soil cores from nine of these wetlands were also analyzed for phosphorus (P), nitrate (NO3), and ammonium (NH4) concentrations. Wetlands surrounded by cropland had significantly greater linear sediment accretion rates than wetlands surrounded by CRP or native prairie. Linear sediment accretion rates from wetlands surrounded by cropland were 2.7 and 6 times greater than wetlands surrounded by native prairie when calculated from the initial and peak occurrence of 137Cs, respectively, and 0.15 cm y−1 (0.06 in yr−1) greater when calculated from 210Pb. Relative to wetlands surrounded by CRP, linear sediment accretion rates for wetlands surrounded by cropland were 4.4 times greater when calculated from the peak occurrence of 137Cs. No significant differences existed between the linear sediment accretion rates between wetlands surrounded by native prairie or CRP uplands. Wetlands surrounded by cropland had increased clay, P, NO3, and NH4, and decreased total C and N concentrations compared to wetlands surrounded by native prairie. Wetlands surrounded by CRP had the lowest P and NO3 concentrations and had clay, NH4, C, and N concentrations between those of cropland and native prairie wetlands. We documented increased linear sediment accretion rates and changes in the textural and chemical properties of sediments in wetlands with cultivated uplands relative to wetlands with native prairie uplands. These

  8. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  9. ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS

    SciTech Connect

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L. E-mail: zhouyifan1012@gmail.com

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214–00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10{sup –9}-10{sup –11} M {sub ☉} yr{sup –1} for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  10. Accretion onto Planetary Mass Companions of Low-mass Young Stars

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L.

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10-9-10-11 M ⊙ yr-1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  11. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  12. Onset of oligarchic growth and implication for accretion histories of dwarf planets

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji

    2017-01-01

    We investigate planetary accretion that starts from equal-mass planetesimals using an analytic theory and numerical simulations. We particularly focus on how the planetary mass Moli at the onset of oligarchic growth depends on the initial mass m0 of a planetesimal. Oligarchic growth commences when the velocity dispersion relative to the Hill velocity of the protoplanet takes its minimum. We find that if m0 is small enough, this normalized velocity dispersion becomes as low as unity during the intermediate stage between the runaway and oligarchic growth stages. In this case, Moli is independent of m0. If m0 is large, on the other hand, oligarchic growth commences directly after runaway growth, and Moli ∝ m03/7. The planetary mass Moli for the solid surface density of the Minimum Mass Solar Nebula is close to the masses of the dwarf planets in a reasonable range of m0. This indicates that they are likely to be the largest remnant planetesimals that failed to become planets. The power-law exponent q of the differential mass distribution of remnant planetesimals is typically - 2.0 and - 2.7 to - 2.5 for small and large m0. The slope, q ≃ - 2.7 , and the bump at 1021 g (or 50 km in radius) for the mass distribution of hot Kuiper belt objects are reproduced if m0 is the bump mass. On the other hand, small initial planetesimals with m0 ∼ 1013 g or less are favored to explain the slope of large asteroids, q ≃ - 2.0 , while the bump at 1021 g can be reproduced by introducing a small number of asteroid seeds each with mass of 1019 g.

  13. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Wang, Fang; Qiu, Jie; Li, Yan-Rong; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2014-02-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6^{+1.7}_{-2.9}, 6.4^{+0.8}_{-2.2} and 11.4^{+2.9}_{-1.9} days, respectively. The corresponding BH masses are (8.3_{-3.2}^{+2.6})\\times 10^6\\,M_{\\odot }, (3.4_{-1.2}^{+0.5})\\times 10^6\\,M_{\\odot }, and (7.5_{-4.1}^{+4.3})\\times 10^6\\,M_{\\odot }, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  14. H-chondrite parent asteroid: A multistage cooling, fragmentation and re-accretion history constrained by thermometric studies, diffusion kinetic modeling and geochronological data

    NASA Astrophysics Data System (ADS)

    Ganguly, Jibamitra; Tirone, Massimiliano; Chakraborty, Sumit; Domanik, Kenneth

    2013-03-01

    We present a detailed thermometric study and cooling history analysis of selected H-chondrites from the petrologic types 4-6 on the basis of their mineralogical properties, and integrate these data with other available constraints on the cooling rates to develop a comprehensive model for the cooling, fragmentation and re-accretion history of the parent asteroid. Temperatures have been determined on the basis of two-pyroxene (2-Px) and spinel (Spnl)-orthopyroxene (Opx)/olivine (Ol) thermometers using the average of line scans and distributed spot analysis of coexisting pairs in each set. All of these minerals have been found to be compositionally homogeneous from ˜1 to 2 μm from the interface within the resolution of microprobe analysis. The thermometric results for the H5 (Allegan and Richardton) and H6 (Guarena and Kernouvé) samples are very similar. Also, while the 2-Px temperature increases by ˜90 °C from H4 to H5/6, a reverse trend is observed for the Spnl-Opx/Ol temperatures implying compositional resetting of these pairs during cooling. For the H4 sample (Forest Vale) all thermometric results are similar. The cooling rates calculated from numerical modeling of the compositional profiles in Opx-Cpx pairs in H5 and H6, corrected for the spatial averaging or convolution effect in microprobe analysis, are ˜25-100 °C/ky, which are 3-4 orders of magnitude higher than the cooling rates implied by in situ cooling in an onion-shell parent body model. Similar numerical simulation of the compositional profile in Opx-Spnl pair in H4 yields a cooling rate ˜50 °C/ky, which is in very good agreement with recent metallographic cooling rate of this sample and geochronological constraints on the cooling T-t path. Numerical simulation suggests that the slow cooling of the H5/6 samples at a rate of ˜15 °C/My, as deduced by recent metallographic study, could not have commenced at a temperature above ˜700 °C since, otherwise, the simulated compositional profile fails

  15. Crossing the Eddington Limit: Examining Disk Spectra at High Accretion Rates

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Swartz, Douglas A.; Roberts, Timothy P.; Middleton, Matthew J.; Soria, Roberto; Done, Chris

    2017-02-01

    The faintest ultraluminous X-ray sources (ULXs), those with 0.3–10 keV luminosities 1< {L}{{X}}/{10}39< 3 {erg} {{{s}}}-1, tend to have X-ray spectra that are disk-like but broader than expected for thin accretion disks. These “broadened disk (BD)” spectra are thought to indicate near- or mildly super-Eddington accretion onto stellar remnant black holes. Here we report that a sample of bright thermal-dominant black hole binaries, which have Eddington ratios constrained to moderate values, also show BD spectra in the 0.3–10 keV band at an order of magnitude lower luminosities. This broadening would be missed in studies that only look above ∼ 2 {keV}. While this may suggest that BD ULXs could be powered by accretion onto massive stellar remnant black holes with close to maximal spin, we argue in favor of a scenario where they are at close to the Eddington luminosity, such that radiation pressure would be expected to result in geometrically slim, advective accretion disks. However, this implies that an additional physical mechanism is required to produce the observed broad spectra at low Eddington ratios.

  16. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  17. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  18. Seismic characteristics and accretion history of Halimeda bioherms on Kalukalukuang Bank, eastern Java Sea (Indonesia)

    NASA Astrophysics Data System (ADS)

    Phipps, C. V. G.; Roberts, H. H.

    1988-03-01

    Extensive areas of Halimeda bioherms similar to those described by Orme et al. (1978), Orme (1985), Davies and Marshall (1985), and Phipps et al. (1985) from Australia's Great Barrier Reef have formed on Kalukalukuang Bank (K-Bank) 50 km east of the Sunda Shelf margin in the easter Java Sea. K-Bank is an isolated limestone platform whose top slopes southward from a water depth of about 20 m at the north to about 100 m at the south (≈30 km). It occurs in a bidirectional monsoonal wind regime and a predominantly southerly flowing current from Makassar Strait. The water column around K-Bank has a well developed shallow thermocline (50 m to 150 m). K-Bank has a relatively flat top with marginal banks of suspected Pleistocene origin as interpreted from seismic relationships. A reconnaissancelevel survey grid of high-resolution seismic profiles indicates that Halimeda bioherms are restricted to the bank margins with the exception of the eastern margin. Bioherms either extend to the steep margin of the platforms or are separated from the platform edge by banks of coral and coralline algae. The morphology of the Halimeda bioherms varies from steep-sided, elongate ridges in the northern bank area, through coalescing symmetrical mounds with partly infilled valleys, to broad undulating areas similar to those described by Orme (1985) from the Great Barrier Reef. High-resolution seismic records indicate erosional episodes in the high-relief areas, an interpretation that seems to be supported by accumulation rates calculated from C14 dates of cores. Thicknesses of Halimeda accumulation above a prominent reflector considered as Pleitocene, vary from around 20 m in the north to a maximum of over 50 m in the southwest. Accumulation rates obtained from dating of two cores to-ward the north of K-Bank, average 0.294 m/100 yr for core VC4 and a maximum of 0.59 m/100 yr in a part of core PC12. Dating of material from the top 30 cm of a deep bioherm (≈100 m) in the southwest of K

  19. OT1_sserje01_1: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2010-07-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe.

  20. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  1. 2500 years of changing shoreline accretion rates at the mouths of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Tamura, Toru; Anthony, Edward; Brunier, Guillaume; Saito, Yoshiki; Dussouillez, Philippe; Lap Nguyen, Van; Ta, Oahn

    2016-04-01

    The Mekong River delta prograded rapidly in a relatively sheltered bight in the South China Sea under the influence of high fluvial sediment supply 5300 to 3500 years ago, developing from an estuary into a delta. This >200 km seaward growth resulted in increasing exposure of the delta to ocean waves that led to a more wave-influenced mode of progradation characterized by the construction of numerous sets of beach ridges in the eastern sector of the delta, which shows a system of multiple distributary mouths. The growth pattern of this river-mouth sector over the last 2500 years has been determined from OSL dating of these beach-ridge deposits, while the most up-to-date trends (1950-2014) have been highlighted from the analysis of maps and satellite images. The OSL ages show that the area of the delta in the mouths sector remained nearly constant till about 500 yr BP, following which significant accretion occurred, possibly in response to changes in catchment land-use and monsoon rainfall and attendant river water and sediment discharge. A fine-tuned analysis of changes since 1950 shows dominant but fluctuating accretion, with two periods of erosion. The first (1965-1973) occurred in the course of the second Indochina war, and the second more recently from 2003 to 2011, followed by mild recovery between 2011 and 2014. These fluctuations most likely reflect changes in sediment supply caused by the vicissitudes of war and its effect on vegetation cover, as well as variations in monsoon rainfall and discharge, and, for the most recent period, massive sand mining in the river and deltaic channels. Accretion of the mouths sector has gone apace, over the same recent multi-decadal period, with large-scale erosion of the muddy shores of the delta in the western South China Sea and the Gulf of Thailand, thus suggesting that the mouths sector may be increasingly sequestering sediment to the detriment of the rest of the delta shoreline. The accretion in the mouths sector is

  2. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  3. Magnetostratigraphy of the uplifted former atoll of Niue, South Pacific: implications for accretion history and carbonate diagenesis

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Aharon, Paul; Wheeler, C. W.; McCabe, Chad

    1996-09-01

    Cenozoic carbonate platforms are a potential rich source of information concerning eustasy but their prerequisite dating is fraught with difficulties. Paleomagnetism has long been established as a highly successful tool for dating deep-sea sediments but its applicability to shallow-water reef carbonates has only recently been explored. Here we derive a detailed magnetostratigraphy of the carbonate platform at Niue on the basis of cores drilled into lagoonal facies to a maximum depth of 303 m below surface. The carbonates consist of limestone which has been partially dolomitized and contain 16 zones of meteoric diagenesis caused by a succession of sea-level falls. The paleomagnetic record, spanning Chron C4r (Tortonian) to Chron C2n (late Piacenzian) and covering about 7.1 m.y. of deposition and erosion, was tied to the Geomagnetic Polarity Time Scale (GPTS) using verified control points. Coincidence of high accretion rates (up to 62.1 m/m.y.) and high sea levels caused the Tortonian-early Messinian section to mirror the contemporaneous GPTS polarity reversal intervals. In contrast, decelerated subsidence coupled with frequent eustatic fluctuations yielded compressed and truncated polarity intervals in the younger section. During late Messinian, the accretion rate was anomalously high (114.1 m/m.y.) probably due to a short-lived endogenic heating event. Isothermal remanent magnetization data suggest that magnetite is the dominant magnetic carrier in the Niue carbonates. NRM intensities of limestones (mean 0.126 ± 0.95 mA/m for n = 76) and dolomites (mean 0.121 ± 0.097 mA/m for n = 73) are indistinguishable and their NRM/SIRM ratios are similar (close to 10 -2) suggesting they underwent the same process of remanence acquisition. The NRM at Niue are comparable in their intensities to those reported from San Salvador and Mururoa but much weaker than those of deep-sea sediments. In general, meteoric diagenesis and dolomitization did not overprint the primary

  4. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    SciTech Connect

    De Marchi, Guido; Beccari, Giacomo; Panagia, Nino E-mail: gbeccari@eso.org

    2013-09-20

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dot{sub acc}, as a function of the stellar parameters finding that log M-dot{sub acc}≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

  5. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  6. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  7. Using Multiwavelength Observations to Determine the Black Hole Mass and Accretion Rate in the Type 1 Seyfert Galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Chiang, James; Blaes, Omer

    2002-01-01

    We model the spectral energy distribution of the type 1 Seyfert galaxy NGC 5548, fitting data from simultaneous optical, UV, and X-ray monitoring observations. We assume a geometry consisting of a hot central Comptonizing region surrounded by a thin accretion disk. The properties of the disk and the hot central region are determined by the feedback occurring between the hot Comptonizing region and thermal reprocessing in the disk that, along with viscous dissipation, provides the seed photons for the Comptonization process. The constraints imposed upon this model by the multiwavelength data allow us to derive limits on the central black hole mass, Mu is approximately or less than 2x10(exp 7) solar mass, the accretion rate, Mu is approximately or less than 2.5x10(exp 5) sq solar mass per year/Mu, and the radius of the transition region between the thin outer disk and the geometrically thick, hot inner region, is approximately 2-5x10(exp 14) cm.

  8. Origin of Siletzia, an Accreted Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.; Wooden, J.

    2014-12-01

    Siletzia as named by Irving (1979) is a Paleogene large igneous province forming the oceanic basalt basement of coastal OR, WA and S. BC that was accreted to North America in the early Eocene. U-Pb (magmatic, detrital zircon) and 40Ar/39Ar ages constrained by mapping, global coccolith (CP) zones, and magnetic polarities permit correlation of basalts with the geomagnetic polarity time scale of Gradstein et al. (2012). Siletzia was rapidly erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Magmatism continued until ca. 46 Ma with emplacement of a basalt sill complex during or shortly after accretion. Siletzia's great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms mark the Tillamook magmatic episode in the forearc (41.6 Ma; CP zone 14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in an open source plate modeling program. In most reference frames, the YHS is on or near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS thus could have provided a 56-49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time. Following accretion of Siletzia, the leading edge of North America overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous high-Ti tholeiitic to alkalic magmatism of the 42-34 Ma Tillamook episode and extension in the forearc. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the probable hotspot track on North

  9. OT2_sserje01_2: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2011-09-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe. In OT1 the HOTAC concluded "The science output from the proposed survey will be outstanding [...] The panel was convinced that these observations should be done" but it since became clear that priority 2 time is very unlikely to be executed, so we request reclassification to priority 1.

  10. The Long-term Centimeter Variability of Active Galactic Nuclei: A New Relation between Variability Timescale and Accretion Rate

    NASA Astrophysics Data System (ADS)

    Park, Jongho; Trippe, Sascha

    2017-01-01

    We study the long-term (≈ 30 years) radio variability of 43 radio-bright active galactic nuclei (AGNs) by exploiting the database of the University of Michigan Radio Astronomy Observatory monitoring program. We model the periodograms (temporal power spectra) of the observed light curves as simple power-law noise (red noise, spectral power P(f)\\propto {f}-β ) using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index (β) from ≈1 to ≈3. We fit a Gaussian function to each flare in a given light curve to obtain the flare duration. We discover a correlation between β and the median duration of the flares. We use the derivative of a light curve to obtain a characteristic variability timescale, which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativistic Doppler boosting are corrected for, the variability timescales of our sources are proportional to the accretion rate to the power of 0.25 ± 0.03 over five orders of magnitude in accretion rate, regardless of source type. We further find that modeling the periodograms of four of our sources requires the assumption of broken power-law spectra. From simulating light curves as superpositions of exponential flares, we conclude that strong overlap of flares leads to featureless simple power-law periodograms of AGNs at radio wavelengths in most cases. Based on observations obtained by the University of Michigan Radio Astronomy Observatory (UMRAO).

  11. Mapping the average AGN accretion rate in the SFR-M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5

    NASA Astrophysics Data System (ADS)

    Delvecchio, I.; Lutz, D.; Berta, S.; Rosario, D. J.; Zamorani, G.; Pozzi, F.; Gruppioni, C.; Vignali, C.; Brusa, M.; Cimatti, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Lanzuisi, G.; Oliver, S.; Rodighiero, G.; Santini, P.; Symeonidis, M.

    2015-05-01

    We study the relation of AGN accretion, star formation rate (SFR) and stellar mass (M*) using a sample of ≈8600 star-forming galaxies up to z = 2.5 selected with Herschel imaging in the GOODS and COSMOS fields. For each of them we derive SFR and M*, both corrected, when necessary, for emission from an active galactic nucleus (AGN), through the decomposition of their spectral energy distributions (SEDs). About 10 per cent of the sample are detected individually in Chandra observations of the fields. For the rest of the sample, we stack the X-ray maps to get average X-ray properties. After subtracting the X-ray luminosity expected from star formation and correcting for nuclear obscuration, we derive the average AGN accretion rate for both detected sources and stacks, as a function of M*, SFR and redshift. The average accretion rate correlates with SFR and with M*. The dependence on SFR becomes progressively more significant at z > 0.8. This may suggest that SFR is the original driver of these correlations. We find that average AGN accretion and star formation increase in a similar fashion with offset from the star-forming `main-sequence'. Our interpretation is that accretion on to the central black hole and star formation broadly trace each other, irrespective of whether the galaxy is evolving steadily on the main-sequence or bursting.

  12. Macro- and micromineral composition of fetal pigs and their accretion rates during fetal development.

    PubMed

    Mahan, D C; Watts, M R; St-Pierre, N

    2009-09-01

    be an increasing sow mineral requirement particularly with high-producing sows having larger litter sizes. Regression equations developed on an individual fetus basis for each macro- and micromineral from 45 d postcoitum to parturition could be used to model mineral accretions.

  13. Constrains on Crustal Accretion Obtained from Cooling Rate Calculations with a Thermo-Mechanical Model of Fast-Spreading Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2012-12-01

    We have used a thermo-mechanical model designed to find steady-state solutions of motion and temperature with variable viscosity, heat diffusion, heat advection, hydrothermal cooling and latent heat release. Cases analogous to the "gabbro glacier" (G accretion structure), "sheeted sills" (S structure) and "mixed shallow and MTZ lenses" (M structure) were computed with and without sheeted dyke level modeling. The results show that thermal patterns near the ridge mainly depend on hydrothermal cooling. Several hydrothermal cooling cracking temperature have been used in order to illustrate the present scientific debate on the penetration depth and efficiency of hydrothermal flows. Second, higher cooling rates are obtained for the G structures. Third, whereas the subsolidus cooling rates, SCR, decrease monotonically with depth, the igneous cooling rates, ICR, display local minima at the merging levels of the upper and lower lenses. It appears that ICR reveal the near-ridge thermal and mechanical structures, whereas the lower value of the initial-to-closure temperature ranges used for SCR cause shifts farther from the ridge that reduces the ability of SCR to discriminate the ridge thermo-mechanical configuration. It also indicates that the common assumption that ICR and SCR should be similar is probably over-simplified. Finally, the cooling rates obtained bears the clear signature of the three intrusion hypothesis. The results show that numerical modeling of the lower crust's thermo-mechanical properties may provide new insights to discriminate among hypotheses related to G, M and S structures for fast-spreading ridges.; Thermal history obtained for the Gabro Glacier (top panels), Mixed shallow and MTZ zone (middle panels) and Sheeted Sills hypothesis (bottom panels)for the magma intrusion at ridge. Columns corresponds to various hydrothermal cooling and viscosity hypothesis.

  14. Thermal History and Volatile Partitioning between Proto-Atmosphere and Interior of Mars Accreted in a Solar Nebula

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2015-11-01

    Recent precise Hf-W chronometry of Martian meteorites reveals that Mars had likely reached the half of its present mass within 3 Myr from the birth of the solar system (Dauphas and Pourmand, 2011). Hence, the accretion is considered to almost proceed within the solar nebula associated with the capture of nebula gas components. At the same time, the impact degassing may inevitably occur because impact velocity increases high enough for such degassing when a proto-planet gets larger than around lunar size. Thus, we can expect the formation of a hybrid-type proto-atmosphere that consists of nebula gas and degassed one.This study analyzes the thermal structure of this proto-atmosphere sustained by accretional heating by building a 1D radiative-convective equilibrium model. Raw materials of Mars are supposed to be volatile-rich on the basis of the geochemical systematics of Mars meteorites (Dreibus and Wanke, 1988). The composition of degassed component comprised of H2, H2O, CH4, and CO is determined by chemical equilibrium with silicate and metal under the physical condition of locally heated region generated by each impact (Kuramoto, 1997). Degassed component lies beneath the nebula gas atmosphere at altitudes below the compositional boundary height that would change depending on the amount of degassed component. The accretion time is taken to be from 1 to 6 Myr.Our model predicts that the surface temperature exceeds the liquidus temperature of rock when a proto Mars grows larger than 0.7 times of its present mass for the longest accretion time case. In this case, the magma ocean mass just after the end of accretion is 0.2 times of its present mass if heat transfer and heat sources such as short-lived radionuclides are neglected in the interior. The corresponding amount of water dissolved into the magma ocean would be around 1.8 times the present Earth ocean mass. These results suggest that the earliest Mars would be hot enough to form deep magma oceans, which

  15. The Burst Mode of Protostellar Accretion

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.; Basu, Shantanu

    2006-10-01

    We present new numerical simulations in the thin disk approximation that characterize the burst mode of protostellar accretion. The burst mode begins upon the formation of a centrifugally balanced disk around a newly formed protostar. It comprises prolonged quiescent periods of low accretion rate (typically <~10-7 Msolar yr-1) that are punctuated by intense bursts of accretion (typically >~10-4 Msolar yr-1, with duration <~100 yr) during which most of the protostellar mass is accumulated. The accretion bursts are associated with the formation of dense protostellar/protoplanetary embryos, which are later driven onto the protostar by the gravitational torques that develop in the disk. Gravitational instability in the disk, driven by continuing infall from the envelope, is shown to be an effective means of transporting angular momentum outward and mass inward to the protostar. We show that the disk mass always remains significantly less than the central protostar's mass throughout this process. The burst phenomenon is robust enough to occur for a variety of initial values of rotation rate and frozen-in (supercritical) magnetic field and a variety of density-temperature relations. Even in cases where the bursts are nearly entirely suppressed, a moderate increase in cloud size or rotation rate can lead to vigorous burst activity. We conclude that most (if not all) protostars undergo a burst mode of evolution during their early accretion history, as inferred empirically from observations of FU Orionis variables.

  16. Estimation of calcium and phosphorus content in growing and finishing pigs: whole empty body components and relative accretion rates.

    PubMed

    Pettey, L A; Cromwell, G L; Jang, Y D; Lindemann, M D

    2015-01-01

    Two comparative serial-slaughter experiments were conducted to determine whole empty body (WEB) composition and accretion rates of Ca and P in 18 to 109 kg BW pigs to provide information for modeling of these nutrients for growth. Both studies were conducted with 5 sets of 5 littermate barrows which were allotted to 5 slaughter groups in each study (Exp. 1: 18, 27, 36, 45, and 54 kg BW; Exp. 2: 36, 54, 73, 91, and 109 kg BW). Pigs were fed corn-soybean meal-based diets fortified with minerals and vitamins in 2 dietary phases in Exp. 1 (Phase 1: 18 to 36 kg BW; Phase 2: 36 to 54 kg BW) and 3 dietary phases in Exp. 2 (Phase 2: 36 to 54 kg BW; Phase 3: 54 to 78 kg BW; and Phase 4: 78 to 109 kg BW). At the predetermined BW, pigs were slaughtered and separated into body components of hair, hooves, blood, head, viscera, and carcass. The carcass was split along the dorsal midline and the left carcass side was ground for chemical analysis. Whole empty body weight averaged 93.6% and 94.0% of live BW in Exp. 1 and Exp. 2, respectively. As WEB weight increased in both experiments, the percentage carcass of the WEB linearly (P < 0.05) increased, the percentage viscera linearly (P < 0.05) decreased, and the mass (g) of N, ash, Ca, and P in the WEB increased linearly (R(2) = 0.98). The concentration (g/kg) of P in the WEB of 18 to 54 kg pigs increased from 4.30 to 4.57 (linear; P < 0.05) and for Ca increased from 5.13 to 5.66 (linear; P < 0.05). In Exp. 2, P concentration was not related to WEB weight and Ca concentration increased quadratically (P < 0.05). The relative accretion rate of N to P was 1.00 (R(2) = 0.99) in the pigs from 18 to 54 kg. In conclusion, these results indicate that compositional changes as BW increases are strongly related to P retention and that the quantification of WEB P and relationships of WEB P to other chemical components in the body may be useful for modeling purposes in growing and finishing pigs.

  17. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. I. METHOD AND APPLICATION TO THE SN 1987A FIELD

    SciTech Connect

    De Marchi, Guido; Panagia, Nino; Romaniello, Martino E-mail: panagia@stsci.ed

    2010-05-20

    We have developed and successfully tested a new self-consistent method to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion in a resolved stellar population, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to (1) identify all stars with excess H{alpha} emission, (2) convert the excess H{alpha} magnitude into H{alpha} luminosity L(H{alpha}), (3) estimate the H{alpha} emission equivalent width, (4) derive the accretion luminosity L{sub acc} from L(H{alpha}), and finally (5) obtain the mass accretion rate M-dot{sub acc} from L{sub acc} and the stellar parameters (mass and radius). By selecting stars with an accuracy of 15% or better in the H{alpha} photometry, the statistical uncertainty on the derived M-dot{sub acc} is typically {approx_lt}17% and is dictated by the precision of the H{alpha} photometry. Systematic uncertainties, of up to a factor of 3 on the value of M-dot{sub acc}, are caused by our incomplete understanding of the physics of the accretion process and affect all determinations of the mass accretion rate, including those based on a spectroscopic H{alpha} line analysis. As an application of our method, we study the accretion process in a field of 9.16 arcmin{sup 2} around SN 1987A, using existing Hubble Space Telescope photometry. We identify as bona fide PMS stars a total of 133 objects with a H{alpha} excess above the 4{sigma} level and a median age of 13.5 Myr. Their median mass accretion rate of 2.6 x 10{sup -8} M{sub sun} yr{sup -1} is in excellent agreement with previous determinations based on the U-band excess of the stars in the same field, as well as with the value measured for G-type PMS stars in the Milky Way. The accretion luminosity of these PMS objects shows a strong dependence on their distance from a group of hot massive stars in the field and suggests that the ultraviolet radiation of the latter is rapidly

  18. Combining Hf-W Ages, Cooling Rates, and Thermal Models to Estimate the Accretion Time of Iron Meteorite Parent Bodies

    NASA Astrophysics Data System (ADS)

    Qin, L.; Dauphas, N.; Wadhwa, M.; Masarik, J.; Janney, P. E.

    2007-12-01

    The 182Hf-182W short-lived chronometer has been widely used to date metal-silicate differentiation processes in the early Solar System. However the presence of cosmogenic effects from exposure to GCR can potentially hamper the use of this system for chronology purposes (e.g. [1,2]). These effects must be corrected for in order to calculate metal-silicate differentiation ages. In this study, high-precision W isotope measurements are presented for 32 iron meteorites from 8 magmatic and 2 non-magmatic groups. Exposure ages and pre- atmospheric size estimates are available for most of these samples [3]. Our precision is better than or comparable to the currently most precise literature data and our results agree with previous work [4]. All magmatic irons have ɛ182W equal within error to or more negative than the Solar System initial derived from a CAI isochron [5]. Iron meteorites from the same magmatic groups show variations in ɛ182W. These are most easily explained by exposure to cosmic rays in space. A correction method was developed to estimate pre-exposure ɛ182W for individual iron meteorite groups. Metal-silicate differentiation in most iron meteorite parent bodies must have occurred within 2 Myr of formation of refractory inclusions. For the first time, we combine 182Hf-182W ages with parent body sizes inferred from metallographic cooling rates in a thermal model to constrain the accretion time of iron meteorite parent bodies. The estimated accretion ages are within 1.5 Myr for most magmatic groups, and could be as early as 0.2 Myr after CAI formation. This is consistent with the study of Bottke et al. [6] who argued that iron meteorite parent bodies could represent an early generation of planetesimals formed in the inner region of the Solar System. [1] Masarik J. (1997) EPSL 152, 181-185. [2] Markowski A. et al. (2006) EPSL 250,104-115. [3] Voshage H. (1984) EPSL 71, 181-194. [4] Markowski A. et al. (2006) EPSL 242, 1-15. [5] Kleine T. et al. (2005) GCA 69

  19. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  20. An in-depth study of a neutron star accreting at low Eddington rate: on the possibility of a truncated disc and an outflow

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Pinto, C.; Miller, J. M.; Wijnands, R.; Altamirano, D.; Paerels, F.; Fabian, A. C.; Chakrabarty, D.

    2017-01-01

    Due to observational challenges, our knowledge of low-level accretion flows around neutron stars is limited. We present NuSTAR, Swift and Chandra observations of the low-mass X-ray binary IGR J17062-6143, which has been persistently accreting at ≃0.1 per cent of the Eddington limit since 2006. Our simultaneous NuSTAR/Swift observations show that the 0.5-79 keV spectrum can be described by a combination of a power law with a photon index of Γ ≃ 2, a blackbody with a temperature of kTbb ≃ 0.5 keV (presumably arising from the neutron star surface) and disc reflection. Modelling the reflection spectrum suggests that the inner accretion disc was located at Rin ≳ 100 GM/c2 (≳225 km) from the neutron star. The apparent truncation may be due to evaporation of the inner disc into a radiatively-inefficient accretion flow, or due to the pressure of the neutron star magnetic field. Our Chandra gratings data reveal possible narrow emission lines near 1 keV that can be modelled as reflection or collisionally ionized gas, and possible low-energy absorption features that could point to the presence of an outflow. We consider a scenario in which this neutron star has been able to sustain its low accretion rate through magnetic inhibition of the accretion flow, which gives some constraints on its magnetic field strength and spin period. In this configuration, IGR J17062-6143 could exhibit a strong radio jet as well as a (propeller-driven) wind-like outflow.

  1. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. II. NGC 346 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    De Marchi, Guido; Sirianni, Marco; Panagia, Nino; Sabbi, Elena; Romaniello, Martino; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla E-mail: panagia@stsci.edu

    2011-10-10

    We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the Small Magellanic Cloud, using a novel self-consistent method that allows us to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to identify all stars with excess H{alpha} emission and derive the accretion luminosity L{sub acc} and mass accretion rate M-dot{sub acc} for all of them. The application of this method to existing Hubble Space Telescope (HST)/Advanced Camera for Surveys photometry of the NGC 346 field has allowed us to identify and study 680 bona fide PMS stars with masses from {approx}0.4 M{sub sun} to {approx}4 M{sub sun} and ages in the range from {approx}1 Myr to {approx}30 Myr. Previous investigations of this region, based on the same data, had identified young ({approx}3 Myr old) candidate PMS stars on the basis of their broadband colors. In this study, we show that there are at least two, almost equally numerous, young populations with distinct ages of, respectively, {approx}1 and {approx}20 Myr. We provide accurate physical parameters for all of them. We take advantage of the unprecedented size of our PMS sample and of its spread in mass and age to study the evolution of the mass accretion rate as a function of stellar parameters. We find that, regardless of stellar mass, the mass accretion rate decreases with roughly the square root of the age, or about three times slower than predicted by current models of viscous disk evolution, and that more massive stars systematically have a higher mass accretion rate in proportion to their mass. A multivariate linear regression fit reveals that log M-dot{sub acc}{approx_equal}-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a quantity that is higher at lower metallicity. This result is consistent with

  2. Magnetized accretion

    NASA Astrophysics Data System (ADS)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  3. Paleoenvironmental reconstruction of a downslope accretion history: From coralgal-coralline sponge rubble to mud mound deposits (Eocene, Ainsa Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, Marta; Reitner, Joachim

    2015-12-01

    In the Lutetian intraslope Ainsa sub-basin, small, sub-spherical, carbonate mud mounds occur associated with hemipelagic marls and mixed gravity flow deposits. The studied mud mounds consist of a mixture of allochthonous, parautochthonous and autochthonous components that show evidences of reworking, bioerosion, and accretion by different fossil assemblages at different growth stages. The crusts of microbial-lithistid sponges played an important role stabilizing the rubble of coralgal-coralline sponges and formed low-relief small benthic patches in a dominant marly soft slope environment. These accidental hard substrates turned into suitable initiation/nucleation sites for automicrite production (dense and peloidal automicrites) on which the small mud mounds dominated by opportunistic epi- and infaunal heterozoan assemblages grew. A detailed microfacies mapping and paleoenvironmental analysis reveals a multi-episodic downslope accretion history starred by demosponges (coralline and lithistid sponges), agariciid corals, calcareous red algae, putative microbial benthic communities and diverse sclerobionts from the upper slope to the middle slope. The analyzed mud mound microfacies are compared with similar fossil assemblages and growth fabrics described in many fossil mud mounds, and with recent deep-water fore reefs and cave environments.

  4. Magnetospheric accretion in EX Lupi

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  5. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  6. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  7. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  8. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailab...

  9. Rate allocation for spotlight SAR phase history data compression.

    PubMed

    Owens, J W; Marcellin, M W

    1999-01-01

    Complex phase history data in synthetic aperture radar (SAR) systems require extensive processing before useful images can be obtained. In spotlight mode SAR systems, useful images can be obtained by applying aperture weighting and inverse Fourier transform operations to SAR phase history data. In this paper, we are concerned with the compression of the complex phase history data obtained by a spotlight SAR system. We exploit knowledge of the aperture weighting function along with Fourier transform processing to attach a "gain" factor to each complex phase history data sample. This gain factor is then used to efficiently allocate bits to the phase history data during quantization. Performance evaluations are presented for this compression system relative to other existing SAR phase history data compression systems.

  10. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    SciTech Connect

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Jian-Min; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C. E-mail: wangjm@ihep.ac.cn; Collaboration: SEAMBH Collaboration

    2016-03-20

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  11. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  12. Accretion rate of extraterrestrial particles determined from osmium isotope systematics of pacific pelagic clay and manganese nodules

    SciTech Connect

    Esser, B.K.; Turekian, K.K. )

    1988-06-01

    Pelagic clay and Mn nodules from DOMES sites in the North Pacific and a varved glacial lake deposit from Connecticut were analyzed for Os concentration and isotopic composition by isotope-dilution secondary ion mass spectrometry after treatment by NiS fusion of oxalic acid leaching. Bulk pelagic clay from DOMES site C has {sup 187}Os/{sup 186}Os = 6.5 and Os = 0.14 ng/g. Oxalic acid leaches of this same sediment and of Mn nodules for DOMES sites A and C have more radiogenic {sup 187}Os/{sup 186}Os ratios which average 8.3. Bulk glacial Lake Hitchcock sediment has {sup 187}Os/{sup 186}Os = 12.5 and Os = 0.06 ng/g. The total Os flux to North Pacific pelagic clay is 7 to 10 ng Os/cm{sup 2}/10{sup 6} y. Lake Hitchcock sediment provides an integrated value for the local crustal {sup 187}Os/{sup 186}Os ratio. The oxalic acid leaches are assumed to attack hydrogenous phases selectively. A simple model in which the only sources of Os to the ocean are continental crust with the isotopic composition of Lake Hitchcock and extraterrestrial particles with {sup 187}Os/{sup 186}Os = 1.1 results in a cosmic flux of osmium to the sediment of 4.9 ng Os/cm{sup 2}/10{sub 6} y of which 20% is hydrogenous. A model in which the sources of Os to the ocean are continental crust with an {sup 187}Os/{sup 186}Os ratio of 30, oceanic mantle or crust with {sup 187}Os/{sup 186}Os = 1.04 and extraterrestrial particles with {sup 187}Os/{sup 186}Os = 1.1 results in a cosmic flux of Os to the sediment of 5.7 ng Os/cm{sup 2}/10{sup 6} y of which none is hydrogenous. These extraterrestrial Os fluxes correspond to maximum C-1 chondrite accretion rates of between 4.9 {times} 10{sub 4} and 5.6 {times}10{sub 4} tonnes/y.

  13. Self-consistent evolution of accreting low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Baraffe, I.; Elbakyan, V. G.; Vorobyov, E. I.; Chabrier, G.

    2017-01-01

    We present self-consistent calculations coupling numerical hydrodynamics simulations of collapsing pre-stellar cores and stellar evolution models of accreting objects. We analyse the main impact of consistent accretion history on the evolution and lithium depletion of young low-mass stars and brown dwarfs. These consistent models confirm the generation of a luminosity spread in Herzsprung-Russell diagrams at ages 1-10 Myr. They also confirm that early accretion can produce objects with abnormal Li depletion, as found in a previous study that was based on arbitrary accretion rates. The results strengthen that objects with anomalously high level of Li depletion in young clusters should be extremely rare. We also find that early phases of burst accretion can produce coeval models of similar mass with a range of different Li surface abundances, and in particular with Li-excess compared to the predictions of non-accreting counterparts. This result is due to a subtle competition between the effect of burst accretion and its impact on the central stellar temperature, the growth of the stellar radiative core and the accretion of fresh Li from the accretion disk. Only consistent models could reveal such a subtle combination of effects. This new result could explain the recent, puzzling observations of Li-excess of fast rotators in the young cluster NGC 2264. Present self-consistent accreting models are available in electronic form.

  14. Temporal and Spatial Variations in Volcanic Accretion Over the Past Few 100 Years on the EPR Axis at Superfast Spreading rates at 17 to 18 deg S

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Sinton, J. M.; Bergmanis, E. C.

    2008-12-01

    Ridges at fast to superfast spreading rates are excellent locations to study temporal and spatial variations in volcanic construction because magma supply and eruption rates are high, and because much of the volcanic accretion occurs within a narrow (≤1-2 km) zone at the rise axis. This presentation will summarize temporal and spatial variations in volcanic accretion over the past few hundred years at 17.5° to 18.5°S on the East Pacific Rise using geological observations made by submersible and other methods, as well shore-based petrological, geochemical and radiometric analyses of samples recovered from mapped lava flow fields along the ridge axis. Collectively they demonstrate that the styles and rates of volcanic accretion can vary substantially both within and between volcanic segments over relatively short timescales. Mapped lavas indicate that single eruptions can span small structural discontinuities (ridge axis offsets). Compositional shifts accompany these offsets, indicating segmentation or zonation of the magma chamber that fed them. Similar observations have been made in analogous eruption sequences at subaerial rift zone volcanoes. U-series disequilibria, radiogenic isotopes and major and trace element compositions within and between single mapped lava flows indicate that magma chambers are open and poorly mixed over the timescale of volcanic repose (decades to ~1 century). Within flow compositional variations along axis can be used to test for magma emplacement by lateral injection from a central reservoir near inflated segment centers versus near vertical emplacement from magma bodies distributed along the axis. The latter best describes observations of lava flows at both 17.5°S and 18.5°S. Volcanic accretion occurs along a volcanically robust, inflated ridge segment at 17.5°S, whereas at 18.5°S the most recent eruptions have formed small, discontinuous lava shields and pillow mounds on the floor of a deep, few hundred year old graben that

  15. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    SciTech Connect

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  16. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2010-07-01

    We investigate star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the {Lambda} cold dark matter scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars, made available by the recent large-scale surveys and by the follow-up high-resolution spectroscopy. We demonstrate that (1) the hierarchical structure formation can explain the characteristics of the observed metallicity distribution function including a break around [Fe/H] = -4; (2) a high-mass initial mass function (IMF) of peak mass {approx}10 M{sub sun} with the contribution of binaries, derived from the statistics of carbon-enhanced EMP stars, predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4 {approx_lt} [Fe/H] {approx_lt} -2.5; (3) the stars formed from primordial gas before the first supernova (SN) explosions in their host mini-halos are assigned to the hyper metal-poor (HMP) stars with [Fe/H] {approx} -5; and (4) there is no indication of significant changes in the IMF and the binary contribution at metallicities -4 {approx_gt} [Fe/H] {approx_gt} -2.5, or even larger, as far as the field stars of the Galactic halo are concerned. We further study the effects of surface pollution through the accretion of interstellar matter (ISM) along the chemical and dynamical evolution of the Galaxy for low-mass Population III and EMP survivors. Because of the shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos are taken into account. We also study the feedback effect from the very massive Population III stars. The metal pre-pollution by pair-instability SNe is shown to be

  17. The Star-Formation History and Accretion Disk Census of Pre-Main Sequence Stars in the LCC and UCL Subgroups of Sco-Cen

    NASA Astrophysics Data System (ADS)

    Mamajek, E. E.; Meyer, M. R.; Liebert, J. W.

    2002-05-01

    We present results of a spectroscopic survey of an X-ray and proper motion-selected sample of late-type stars in the Lower Centaurus Crux (LCC) and Upper Centaurus Lupus (UCL) subgroups of the nearest OB association: Scorpio-Centaurus. The primary goals of the survey are to determine the star-formation history of the OB subgroups, and to assess the fraction of actively accreting stars in a sample dominated by ``post-T Tauri'' pre-main sequence stars. We identify 110 new pre-MS stars, selected by their strong Li 6707 absorption, subgiant surface gravities, proper motions consistent with subgroup membership, and HRD positions above the ZAMS. We demonstrate that measuring the gravity-sensitive band-ratio of Sr II 4077 to Fe I 4071 is a valuable means of classifying Li-rich stars as either pre-MS or ZAMS in nature. We estimate the mean ages of the pre-MS populations to be 18 Myr (LCC) and 15 Myr (UCL). A reevaluation of the MS turn-off ages for the de Zeeuw et al. (1999; AJ 117, 354) early B-type Hipparcos-selected membership yields mean ages of 16 Myr (LCC) and 17 Myr (UCL). Contrary to previous studies, it appears that LCC is roughly coeval with UCL, or slightly older. The upper limit on the duration of the low-mass star-formation in each OB subgroup is approximately 6 Myr. The kinematic distances to the Sco-Cen pre-MS stars range from 85-215 pc, with 12 of the LCC members lying within 100 pc of the Sun. Only 1 out of 110 pre-MS solar-type stars in our sample shows both enhanced Hα emission and a K-band excess indicative of active accretion from a truncated circumstellar disk: the nearby (85 pc) CTT star PDS 66. The authors acknowledge support through NASA/JPL and a Sigma Xi grant.

  18. Modeling Temperature and Strain Rate History Effects in OFHC Cu

    DTIC Science & Technology

    2007-11-02

    Temperature Histories Many experiments were conducted above room temperature. Three-zone furnaces and induction heaters were used to heat the specimens...ADIABATIC HEATING 338 XI VI.9: PARAMETER MATRIX 342 VI.10: RESPONSE MATRIX 343 VI.11: CORRELATION OF FACTOR AND PARAMETER 346 Xll LIST OF FIGURES...111.15: Hopkinson bar experiment setup at SNL. Induction heater coil and water cooling system are shown 59 111.16: Configuration of the modified

  19. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  20. Diet History Questionnaire: Response Rates/Length of Questionnaire

    Cancer.gov

    Based on pilot study research from about 400 individuals in one study and about 1000 in another, the response rates for the DHQ varied from 70-85%. In both these studies, the DHQ response rates were not statistically different than those from shorter FFQs.

  1. Paleomagnetic and rock magnetic results from lower crustal rocks of IODP Site U1309: Implication for thermal and accretion history of the Atlantis Massif

    NASA Astrophysics Data System (ADS)

    Zhao, Xixi; Tominaga, Masako

    2009-09-01

    accretion history of the Atlantis Massif.

  2. Modelling the cross-spectral variability of the black hole binary MAXI J1659-152 with propagating accretion rate fluctuations

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; Kalamkar, M.; van der Klis, M.

    2016-11-01

    The power spectrum of the X-ray fluctuations of accreting black holes often consists of two broad humps. We quantitatively investigate the hypothesis that the lower frequency hump originates from variability in a truncated thin accretion disc, propagating into a large scaleheight inner hot flow which, in turn, itself is the origin of the higher frequency hump. We extend the propagating mass accretion rate fluctuations model PROPFLUC to accommodate double-hump power spectra in this way. Furthermore, we extend the model to predict the cross-spectrum between two energy bands in addition to their power spectra, allowing us to constrain the model using the observed time lags, which in the model result from both propagation of fluctuations from the disc to the hot flow, and inside the hot flow. We jointly fit soft and hard power spectrum, and the cross-spectrum between the two bands using this model for five Swift X-ray Telescope observations of MAXI J1659-152. The new double-hump model provides a better fit to the data than the old single-hump model for most of our observations. The data show only a small phase lag associated with the low-frequency hump. We demonstrate quantitatively that this is consistent with the model. We compare the truncation radius measured from our fits with that measured purely by spectral fitting and find agreement within a factor of two. This analysis encompasses the first joint fits of stellar-mass black hole cross-spectra and power spectra with a single self-consistent physical model.

  3. Evolution of accretion disks in tidal disruption events

    SciTech Connect

    Shen, Rong-Feng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  4. Evolution of Accretion Disks in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  5. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  6. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  7. Lunar Accretion and the Moon’s Initial Thermal State

    NASA Astrophysics Data System (ADS)

    Salmon, Julien; Canup, R. M.

    2012-10-01

    Previous models of lunar formation from an impact-generated disk predict the Moon accretes in less than a year (Ida et al. 1997, Kokubo et al. 2000). Such a rapid accretion implies a fully molten initial Moon (e.g., Pritchard & Stevenson 2000). However, the lack of global faults on the Moon has been interpreted as constraining the depth of initial melting to the Moon’s outer few hundred kilometers (Solomon & Chaiken 1976). Depth estimates for the lunar magma ocean (250 to 1000 km; e.g., Shearer et al. 2006) are also typically less than the Moon’s full radius (1738 km). Taken at face value, such observations appear most consistent with a partially molten initial Moon. We have developed a new lunar accretion model that includes a more accurate description of the inner protolunar disk, taking into account thermal processes that limit the disk’s evolution rate (Salmon and Canup 2012). Our model predicts a 3-phase accretion of the Moon, in which material initially orbiting in the outer disk accumulates rapidly, followed by a much slower evolution of the vapor/fluid inner disk and a final phase of accretion of inner disk material onto the Moon. The Moon’s total accretion then occurs over about 100 years, which could be compatible with partial cooling of protolunar material. We have coupled our accretion model to a simple model for the Moon’s initial thermal state. We use a 3D spherical grid to model the forming Moon. We estimate heating due to each accretionary event using the impactor properties predicted by our accretion model, assuming that a fixed fraction ("h") of each impactor’s kinetic energy is retained locally within the Moon’s interior, and include cooling from the Moon’s surface. We use this model to estimate the Moon’s initial thermal state as a function of h and specific accretionary histories.

  8. Rating of Marketing Publications: Impact of Accreditation and Publication History.

    ERIC Educational Resources Information Center

    Heischmidt, Kenneth A.; Gordon, Peter

    1993-01-01

    An examination of the ratings by marketing department chairpersons of publications in marketing (n=36) found that the perceived value of publications appears to be influenced by the accreditation status of the institution. Prior publication experience of individuals also appears to have influenced their perception. (JOW)

  9. PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR

    SciTech Connect

    Gezari, S.; Chornock, R.; Lawrence, A.; Rest, A.; Jones, D. O.; Berger, E.; Challis, P. M.; Narayan, G.

    2015-12-10

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t{sup −5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  10. Accretion and ejection in black-hole X-ray transients

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Belloni, T. M.

    2015-02-01

    Context. A rich phenomenology has been accumulated over the years regarding accretion and ejection in black-hole X-ray transients (BHTs) and it needs an interpretation. Aims: Here we summarize the current observational picture of the outbursts of BHTs, based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson cosmic battery (PRCB), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form, whose characteristic time scale is much longer than the dynamical or the cooling ones. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state, i.e., at very low accretion rate, and that state transitions take place over long time scales (hours to days). The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Last, but not least, we demonstrate that the previous history of the system is absolutely necessary for the interpretation of the HLD. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. Finally, the counterclockwise traversal of the HLD is explained as follows: all outbursts start from the quiescent state, in which the inner part of the accretion flow is ADAF-like, threaded by a poloidal magnetic field. As the

  11. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  12. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  13. Istoriya al'ternativnykh techenij v planetnoj kosmogonii (gomogennaya ili geterogennaya akkretsiya) %t The history of two alternative concepts in planetary cosmogony (homogeneous of heterogeneous accretion)

    NASA Astrophysics Data System (ADS)

    Rezanov, I. A.

    Initially the hypotheses of Kant, Laplace, and other authors implied homogeneous accretion of planets from uniform material. O. Yu. Schmidt shared this idea. The idea of heterogeneous accretion was proposed in the mid-1940s by V. G. Fesenkov, who demonstrated that the iron cores of planets started to form prior to their silicate mantles. The obvious increase in average planet density with decreasing distance from the Sun suggests that the protoplanetary nebula was also heterogeneous - iron concentrated closer to the Sun, probably under the effect of its magnetic field. In the second half of the 20th century, planetary cosmogony developed against the background of continuous dispute between the adherents of homogeneous and heterogeneous planetary accretion. The confrontation still exists, although arguments in favour of heterogeneous accretion increase in weight. The dilemma under discussion is directly related to modern tectonic concepts, because it is necessary to find an answer to the question whether the core originated from the differentiation of the Earth's material or our planet had a core from the beginning.

  14. Chondrule Accretion with a Growing Protoplanet

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yuji; Oshino, Shoichi; Hasegawa, Yasuhiro; Wakita, Shigeru

    2017-03-01

    Chondrules are primitive materials in the solar system. They were formed in about the first 3 Myr of the solar system’s history. This timescale is longer than that of Mars formation, and it is conceivable that protoplanets, planetesimals, and chondrules might have existed simultaneously in the solar nebula. Due to protoplanets’ perturbation on the planetesimal dynamics and chondrule accretion on them, all the formed chondrules are unlikely to be accreted by the planetesimals. We investigate the amount of chondrules accreted by planetesimals in such a condition. We assume that a protoplanet is in oligarchic growth, and we perform analytical calculations of chondrule accretion by both a protoplanet and planetesimals. Through the oligarchic growth stage, planetesimals accrete about half of the formed chondrules. The smallest planetesimals get the largest amount of chondrules, compared with the amount accreted by more massive planetesimals. We perform a parameter study and find that this fraction is not greatly changed for a wide range of parameter sets.

  15. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  16. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von, Huene R.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  17. The Structure and Evolution of an Accretion Flow Interacting with the Central Star

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masayuki Y.

    1995-09-01

    The mechanical and thermal structure of accretion flows interacting with the central stars via viscous stress is studied by modeling the spatial variation of dynamical viscosity with a simple one-parameter function. The latter assumption has the advantage of yielding the analytical solution of rotation laws, and the thermal balance near the disk-star interface is analyzed by means of a one-zone approximation. Based on these results, a general picture of the evolutionary changes in the accretion process is presented with the spin history of central stars taken into account. Under a constant accretion rate, there exists the maximum rotation rate of the central star which allows the structure of accretion flow in hydrostatic and thermal equilibrium; it is smaller for larger accretion rates and occurs when the inflow rate of angular momentum decreases to the critical value Jdottrn, which takes the values around zero or larger, depending on the physical conditions in the flows. The equilibrium configurations with both the positive and negative inflow rate of angular momentum, as discussed by Paczynski and by Popham & Narayan are possible, in which the stellar rotation rate is no longer accelerated, and hence, the structure of accretion flow remains the same. It is shown, however, that these configurations exchange their thermal stability at this maximum rotation rate; in particular, the structures of mass accretion with the inflow rate of angular momentum below Jdottrn is secularly unstable, and hence, they cannot be realized in the course of the evolution. The evolution of the systems differs according to the stellar response to the mass accretion; corresponding to Jdottrn, there exists the critical value, Scri (≃ -3 or larger), for the changing rate of the stellar radius 5 = d log R*(t)/d log M*(t)(M* and R* being the mass and equator radius of the central star, respectively). If the central star expands or shrinks moderately during accreting mass as 5 ≥ Scri, the

  18. Metabolic rate covaries with fitness and the pace of the life history in the field.

    PubMed

    Pettersen, Amanda K; White, Craig R; Marshall, Dustin J

    2016-05-25

    Metabolic rate reflects the 'pace of life' in every organism. Metabolic rate is related to an organism's capacity for essential maintenance, growth and reproduction-all of which interact to affect fitness. Although thousands of measurements of metabolic rate have been made, the microevolutionary forces that shape metabolic rate remain poorly resolved. The relationship between metabolic rate and components of fitness are often inconsistent, possibly because these fitness components incompletely map to actual fitness and often negatively covary with each other. Here we measure metabolic rate across ontogeny and monitor its effects on actual fitness (lifetime reproductive output) for a marine bryozoan in the field. We also measure key components of fitness throughout the entire life history including growth rate, longevity and age at the onset of reproduction. We found that correlational selection favours individuals with higher metabolic rates in one stage and lower metabolic rates in the other-individuals with similar metabolic rates in each developmental stage displayed the lowest fitness. Furthermore, individuals with the lowest metabolic rates lived for longer and reproduced more, but they also grew more slowly and took longer to reproduce initially. That metabolic rate is related to the pace of the life history in nature has long been suggested by macroevolutionary patterns but this study reveals the microevolutionary processes that probably generated these patterns.

  19. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10-20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  20. Hurricane Mountain Formation melange: history of Cambro-Ordovician accretion of the Boundary Mountains terrane within the northern Appalachian orthotectonic zone

    SciTech Connect

    Boone, G.M.; Boudette, E.L.

    1985-01-01

    The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick are lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.

  1. Life-history correlates of maximum population growth rates in marine fishes.

    PubMed Central

    Denney, Nicola H; Jennings, Simon; Reynolds, John D

    2002-01-01

    Theory predicts that populations of animals with late maturity, low fecundity, large body size and low body growth rates will have low potential rates of population increase at low abundance. If this is true, then these traits may be used to predict the intrinsic rate of increase for species or populations, as well as extinction risks. We used life-history and population data for 63 stocks of commercially exploited fish species from the northeast Atlantic to test relationships between life-history parameters and the rate of population increase at low abundance. We used cross-taxonomic analyses among stocks and among species, and analyses that accounted for phylogenetic relationships. These analyses confirmed that large-bodied, slow-growing stocks and species had significantly lower rates of recruitment and adult production per spawning adult at low abundance. Furthermore, high ages at maturity were significantly correlated with low maximum recruit production. Contrary to expectation, fecundity was significantly negatively related to recruit production, due to its positive relationship with maximum body size. Our results support theoretical predictions, and suggest that a simply measured life-history parameter can provide a useful tool for predicting rates of recovery from low population abundance. PMID:12427316

  2. Accretion Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge

    2014-03-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  3. Reviewing the Association between the History of Parental Substance Abuse and the Rate of Child Abuse

    PubMed Central

    Yaghoubi-Doust, Mahmoud

    2013-01-01

    Background Substance abuse is a social, and health problem in Middle Eastern countries such as Iran. One of its most devastating effects is domestic violence against children. This study examined the association between the history of parental substance abuse, and rate of child abuse in Ahvaz, Iran. Methods This was a case-control study. The study population included all parents with high school children in Ahwaz within the academic year 2012-2013. The sample size was 384 people in two groups; with a history of substance abuse (case group) and no history of substance abuse (control group). Multi-stage cluster random sampling method was used through the Cochran formula. The data collection tools included a Childhood Trauma Questionnaire (CTQ) (Bernstein, 1995), a demographic questionnaire, Duncan Socioeconomic Index (DSI), and a researcher-made questionnaire for the history of substance abuse. For data analysis, statistical indicators such as percentage, mean, standard deviation, t-test, and correlation and regression analysis were used. Findings Data analysis showed that there was a significant positive correlation among parents with a history of substance abuse and domestic violence toward children. Mean and standard deviation of the violence level in families with normal parents were 61.34 ± 16.88, and in families with a history of substance abuse were 98.99 ± 32.07. Therefore, the test results showed that there was a significant difference between normal families and families with history of substance abuse and violence toward children (P < 0.001, t = 8.60). Conclusion Based on the findings, the history of domestic violence and parental substance abuse (physical and emotional abuse, emotional and physical neglect) had a significant positive correlation with their behavior toward their children. After matching the two groups we found that the most common types of violence against children by their parents were, respectively, emotional violence (r = 58

  4. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  5. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  6. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  7. Reconciling extreme branch length differences: decoupling time and rate through the evolutionary history of filmy ferns.

    PubMed

    Schuettpelz, Eric; Pryer, Kathleen M

    2006-06-01

    The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.

  8. Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)

    NASA Technical Reports Server (NTRS)

    Magenheim, B.; Rocks, J. K.

    1982-01-01

    The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.

  9. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Heusser, G.

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  10. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Heusser, G.

    1986-01-01

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  11. Rate of head circumference growth as a function of autism diagnosis and history of autistic regression.

    PubMed

    Webb, Sara Jane; Nalty, Theresa; Munson, Jeff; Brock, Catherine; Abbott, Robert; Dawson, Geraldine

    2007-10-01

    Several reports indicate that autism spectrum disorder is associated with increased rate of head growth in early childhood. Increased rate of growth may index aberrant processes during early development, may precede the onset of symptoms, and may predict severity of the disease course. We examined rate of change in occipitofrontal circumference measurements (abstracted from medical records) in 28 boys with autism spectrum disorder and in 8 boys with developmental delay without autism from birth to age 36 months. Only children who had more than 3 occipitofrontal circumference measurements available during this age period were included. All data were converted to z scores based on the Centers for Disease Control and Prevention norms. Rate of growth from birth to age 36 months was statistically significantly higher for the autism spectrum disorder group than the developmental delay group, with children with autism spectrum disorder showing a statistically significant increase in occipitofrontal circumference relative to norms between 7 and 10 months; this group difference in rate of growth was more robust when height was used as a covariate. Rate of growth was not found to be different for children with autism spectrum disorder whose parents reported a history of loss of skills (regression) vs those whose parents reported early onset of autism symptoms. Findings from this study suggest that the aberrant growth is present in the first year of life and precedes the onset and diagnosis in children with autism spectrum disorder with and without a history of autistic regression.

  12. Fueling galaxy growth through gas accretion in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan Rubaloff

    Despite significant advances in the numerical modeling of galaxy formation and evolution, it is clear that a satisfactory theoretical picture of how galaxies acquire their baryons across cosmic time remains elusive. In this thesis we present a computational study which seeks to address the question of how galaxies get their gas. We make use of new, more robust simulation techniques and describe the first investigations of cosmological gas accretion using a moving-mesh approach for solving the equations of continuum hydrodynamics. We focus first on a re-examination of past theoretical conclusions as to the relative importance of different accretion modes for galaxy growth. We study the rates and nature of gas accretion at z=2, comparing our new simulations run with the Arepo code to otherwise identical realizations run with the smoothed particle hydrodynamics code Gadget. We find significant physical differences in the thermodynamic history of accreted gas, explained in terms of numerical inaccuracies in SPH. In contrast to previous results, we conclude that hot mode accretion generally dominates galaxy growth, while cold gas filaments experience increased heating and disruption. Next, we consider the impact of feedback on our results, including models for galactic-scale outflows driven by stars as well as the energy released from supermassive black holes. We find that feedback strongly suppresses the inflow of "smooth" mode gas at all redshifts, regardless of its temperature history. Although the geometry of accretion at the virial radius is largely unmodified, strong galactic-fountain recycling motions dominate the inner halo. We measure a shift in the characteristic timescale of accretion, and discuss implications for semi-analytical models of hot halo gas cooling. To overcome the resolution limitations of cosmological volumes, we simulate a suite of eight individual 1012 solar mass halos down to z=2. We quantify the thermal and dynamical structure of the gas in

  13. Eclipse Mapping of Accretion Discs

    NASA Astrophysics Data System (ADS)

    Baptista, R.

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc throughout its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  14. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  15. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato

    2017-04-01

    The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit

  16. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  17. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  18. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  19. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  20. Reporting success rates in the treatment of vestibular schwannomas: are we accounting for the natural history?

    PubMed

    Miller, Timothy; Lau, Tsz; Vasan, Rohit; Danner, Christopher; Youssef, A Samy; van Loveren, Harry; Agazzi, Siviero

    2014-06-01

    Stereotactic radiosurgery is generally accepted as one of the best treatment options for vestibular schwannomas. We question whether growth control is an accurate measure of success in vestibular schwannoma treatment. We aim to clarify the success rate of stereotactic radiosurgery and adjust the reported results to the benign natural history of untreated tumors. All articles were taken from a PubMed search of the English literature from the years 2000-2011. Inclusion criteria were articles containing the number of patients treated, radiation technique, average tumor size, follow-up time, and percentage of tumors growing during follow-up. Data were extracted from 19 articles. Success rates were adjusted using published data that 17% to 30% of vestibular schwannomas grow. The average reported success rate for stereotactic radiosurgery across all articles was 95.5%. When considering 17% or 30% natural growth without intervention, the adjusted success rates became 78.2% and 86.9% respectively. These rates were obtained by applying the natural history growth percentages to any tumors not reported to be growing before radiosurgical intervention. Success in the treatment of vestibular schwannomas with stereotactic radiosurgery is often defined as lack of further growth. Recent data on the natural growth history of vestibular schwannomas raise the question of whether this is the best definition of success. We have identified a lack of continuity regarding the reporting of success and emphasize the importance of the clarification of the success of radiosurgery to make informed decisions regarding the best treatment options for vestibular schwannoma.

  1. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    USGS Publications Warehouse

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  2. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}⊙ ≲ M * ≲ 103 {M}⊙ . The formation of very massive (≳250 {M}⊙ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}⊙ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}⊙ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  3. Partial accretion regime of accreting millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Eksi, Kazim

    2016-07-01

    The inner parts of the disks around neutron stars in low mass X-ray binaries may become geometrically thick due to inhibition of accretion at the disk mid-plane when the central object is rotating rapidly. In such a case matter inflowing through the disk may keep accreting onto the poles of the neutron star from the parts of the disk away from the disk mid-plane while the matter is propelled at the disk mid-plane. An important ingredient of the evolution of millisecond pulsars is then the fraction of the inflowing matter that can accrete onto the poles in the fast rotation regime depending on the fastness parameter. This ``soft'' propeller regime may be associated with the rapid decay stage observed in the light curves of several accreting millisecond pulsars. To date only a few studies considered the partial accretion regime. By using geometrical arguments we improve the existing studies and test the model by reproducing the lightcurves of millisecond X-ray pulsars via time dependent simulations of disk evolution. We also present analytical solutions that represent disks with partial accretion.

  4. Life history influences rates of climatic niche evolution in flowering plants.

    PubMed

    Smith, Stephen A; Beaulieu, Jeremy M

    2009-12-22

    Across angiosperms, variable rates of molecular substitution are linked with life-history attributes associated with woody and herbaceous growth forms. As the number of generations per unit time is correlated with molecular substitution rates, it is expected that rates of phenotypic evolution would also be influenced by differences in generation times. Here, we make the first broad-scale comparison of growth-form-dependent rates of niche evolution. We examined the climatic niches of species on large time-calibrated phylogenies of five angiosperm clades and found that woody lineages have accumulated fewer changes per million years in climatic niche space than related herbaceous lineages. Also, climate space explored by woody lineages is consistently smaller than sister lineages composed mainly of herbaceous taxa. This pattern is probably linked to differences in the rate of climatic niche evolution. These results have implications for niche conservatism; in particular, the role of niche conservatism in the distribution of plant biodiversity. The consistent differences in the rate of climatic niche evolution also emphasize the need to incorporate models of phenotypic evolution that allow for rate heterogeneity when examining large datasets.

  5. Pulsed accretion in a variable protostar

    NASA Astrophysics Data System (ADS)

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-01

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 105 years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

  6. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

  7. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  8. Social status regulates growth rate: consequences for life-history strategies.

    PubMed

    Hofmann, H A; Benson, M E; Fernald, R D

    1999-11-23

    The life-history strategies of organisms are sculpted over evolutionary time by the relative prospects of present and future reproductive success. As a consequence, animals of many species show flexible behavioral responses to environmental and social change. Here we show that disruption of the habitat of a colony of African cichlid fish, Haplochromis burtoni (Günther) caused males to switch social status more frequently than animals kept in a stable environment. H. burtoni males can be either reproductively active, guarding a territory, or reproductively inactive (nonterritorial). Although on average 25-50% of the males are territorial in both the stable and unstable environments, during the 20-week study, nearly two-thirds of the animals became territorial for at least 1 week. Moreover, many fish changed social status several times. Surprisingly, the induced changes in social status caused changes in somatic growth. Nonterritorial males and animals ascending in social rank showed an increased growth rate whereas territorial males and animals descending in social rank slowed their growth rate or even shrank. Similar behavioral and physiological changes are caused by social change in animals kept in stable environmental conditions, although at a lower rate. This suggests that differential growth, in interaction with environmental conditions, is a central mechanism underlying the changes in social status. Such reversible phenotypic plasticity in a crucial life-history trait may have evolved to enable animals to shift resources from reproduction to growth or vice versa, depending on present and future reproductive prospects.

  9. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth

    USGS Publications Warehouse

    Puchtel, I.S.; Walker, R.J.; James, O.B.; Kring, D.A.

    2008-01-01

    To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically

  10. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    PubMed

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.

  11. Oceanic terranes of S-Central America - 200 Million years of accretion history recorded on the W-edge of the Caribbean Plate.

    NASA Astrophysics Data System (ADS)

    Baumgartner, P. O.; Flores, K.; Bandini, A.; Buchs, D.; Andjic, G.; Baumgartner-Mora, C.

    2012-04-01

    (Chortis Block s. str.), and became exhumed again by the earliest Cretaceous (139 Ma phengite age). A pre-Albian basaltic plateau-like basement is suspected but yet undated in the Matambú Terrane (Central Nicoya Peninsula). It is overlain by the Albian Loma Chumico Formation. A pre-Turonian basement hosting the 90 Ma old Tortugal Picrites and alkaline baselts characterizes the Manzanillo Terrane ( around the Nicoya Gulf, Costa Rica). The overlying Coniacian-Santonian to early Campanian Berrugate Formation represents the first Cretaceous evolved arc activity. It must be located on the edge of the MCOT, since the CLIP is still forming at that time. To the SE of the S-Nicoya fault zone, Turonian-Santonian (~90-85 Ma) oceanic plateaus represent outcrops of the CLIP. These include parts of Herradura (Costa Rica) and the Azuero Plateau (Coiba, Sona and Azuero, Panama). Late Campanian to Paleocene arcs rest on the CLIP: The Golfito Complex (Costa Rica) and the Azuero Arc (Panama), possibly also the San Blas Complex (Panama) and the Serrania de Baudo (W-Colombia). Late Cretaceous to Eocene plateau/seamount basalts and oceanic sediments became accreted during the Early Tertiary: The Tulin Group (Herradura), Quepos, The Osa Igneous Complex, Burica, the Osa Mélange (Costa Rica/Panama), and the Azuero Accretionary Complex (Panama).

  12. Dynamics of continental accretion.

    PubMed

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon.

  13. Dynamics of continental accretion

    NASA Astrophysics Data System (ADS)

    Moresi, L.; Betts, P. G.; Miller, M. S.; Cayley, R. A.

    2014-04-01

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon.

  14. Preserved History of Global Mean Spreading Rate: 83 Ma to Present

    NASA Astrophysics Data System (ADS)

    Rowan, Christopher J.; Rowley, David B.

    2016-07-01

    Using an up-to-date global plate rotation model, applied to the end points of preserved major spreading ridge isochrons, we have calculated the explicitly reconstructable length-weighted mean global half-spreading rate, ridge length, and area production as a function of time since the end of the Cretaceous Normal Superchron at 83.0 Ma. Our calculations integrate uncertainties in rotation parameters and chron boundary ages with the partial sampling uncertainties arising from progressive subduction of older oceanic lithosphere and its preserved spreading record. This record of directly reconstructable oceanic ridge production provides a well-constrained baseline that can be compared to reconstructions that include the largely unconstrained extrapolated histories of entirely subducted oceanic plates. The directly reconstructable global mean half-spreading rate has not varied by more than ± 15% about an average rate of 28.4 ± 4.6 mm/a since 83 Ma. No long-term secular trend is evident: a maximum global mean half-rate of 32 ± 6 mm/a occurred from 33.1 Ma to about 25.8 Ma, with minima of 26 ± 5 mm/a between about 56 Ma and 40.2 Ma, and 24 ± 1 mm/a since 3.2 Ma. Only this most recent interval has a rate that differs significantly (at ± 2σ) from the long-term mean. The global, reconstructable ridge length at 56 Ma decreases by less than 15% relative to the modern ridge system; by 83 Ma it has decreased by 38%. These relatively high preserved ridge fractions mean that the estimated uncertainty due to partial sampling stays roughly equivalent to the estimated rotation model uncertainties, allowing long-term spreading rate variations of > 20% since the Late Cretaceous to be ruled out. In contrast, prior to 83 Ma too little oceanic lithosphere is preserved to reliably reconstruct global spreading rates.

  15. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates

    SciTech Connect

    Kroener, A. ); Eyal, M.; Eyal, Y. )

    1990-06-01

    The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodes elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.

  16. Plastic Deformation of Accreted Planetesimals

    NASA Astrophysics Data System (ADS)

    Kadish, J.

    2005-08-01

    The early stages of planetesimal growth follow an accretion model (Weidenschilling, Icarus 2000), which influences the intrinsic strength of a body and may control how its shape evolves after growth. In previous work we have determined the stress field of an accreted planetesimal accounting for possible variation in the object's spin as it accretes (Kadish et al., IJSS In Press) At the end of growth, these objects are subject to transport mechanisms that can distribute them throughout the solar system. As they are transported these objects can be spun-up by tidal forces (Scheeres et al, Icarus 2000), YORP (Bottke et al., Asteroids III 2002), and collisions (Binzel et al., Asteroids II 1989). Such an increase of spin will cause perturbations to the initial stress field and may lead to failure. We are able to show analytically that failure is initiated on the object's surface and a plastic zone propagates inward as the object's spin is increased. If we model an accreted body as a conglomeration of rocks similar to a gravel or sand, the deformation in the region of failure is characterized using a Mohr-Coulomb failure criterion with negligible cohesion and zero hardening(e.g. Holsapple, Icarus 2001). Such a response is highly non-linear and must be solved using finite elements and iterative methods (Simo and Hughes, Computational Inelasticity 1998). Using the commercial finite element code ABAQUS, we present the shape deformation resulting from an elasto-plastic analysis of a spinning, self-gravitating accreted sphere that is spun-up after growth is complete. The methodology can be extended to model plastic deformation due to local failure for more complex planetesimal shapes, such as for the asteroid Kleopatra. This work has implications for the evolution of planetesimal shapes, the creation of binary and contact binary asteroids, and for the maximum spin rate of small planetary bodies.

  17. Preserved history of global mean spreading rate: 83 Ma to present

    NASA Astrophysics Data System (ADS)

    Rowan, Christopher J.; Rowley, David B.

    2017-02-01

    Using an up-to-date global plate rotation model, applied to the endpoints of preserved major spreading ridge isochrons, we have calculated the explicitly reconstructable length-weighted mean global half-spreading rate (HSR), ridge length and area production as a function of time since the end of the Cretaceous Normal Superchron at 83.0 Ma. Our calculations integrate uncertainties in rotation parameters and chron boundary ages with the partial sampling uncertainties arising from progressive subduction of older oceanic lithosphere and its preserved spreading record. This record of directly reconstructable oceanic ridge production provides a well-constrained baseline that can be compared to reconstructions that include the largely unconstrained extrapolated histories of entirely subducted oceanic plates. The directly reconstructable global mean HSR has not varied by more than ±15 per cent about an average rate of 28.4 ± 4.6 mm a-1 since 83 Ma. No long-term secular trend is evident: a maximum global mean half-rate of 32 ± 6 mm a-1 occurred from 33.1 Ma to about 25.8 Ma, with minima of 26 ± 5 mm a-1 between about 56 and 40.2 Ma, and 24 ± 1 mm a-1 since 3.2 Ma. Only this most recent interval has a rate that differs significantly (at ±2σ) from the long-term mean. The global, reconstructable ridge length at 56 Ma decreases by less than 15 per cent relative to the modern ridge system; by 83 Ma it has decreased by 38 per cent. These relatively high preserved ridge fractions mean that the estimated uncertainty due to partial sampling stays roughly equivalent to the estimated rotation model uncertainties, allowing long-term spreading rate variations of >20 per cent since the Late Cretaceous to be ruled out. In contrast, prior to 83 Ma too little oceanic lithosphere is preserved to reliably reconstruct global spreading rates.

  18. High migration rates shape the postglacial history of amphi-Atlantic bryophytes.

    PubMed

    Désamoré, Aurélie; Patiño, Jairo; Mardulyn, Patrick; Mcdaniel, Stuart F; Zanatta, Florian; Laenen, Benjamin; Vanderpoorten, Alain

    2016-11-01

    Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework.

  19. The star formation history and accretion-disc fraction among the K-type members of the Scorpius-Centaurus OB association

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark J.; Mamajek, Eric E.

    2016-09-01

    We present results of a spectroscopic survey for new K- and M-type members of Scorpius-Centaurus (Sco-Cen), the nearest OB Association (˜100-200 pc). Using an X-ray, proper motion and colour-magnitude selected sample, we obtained spectra for 361 stars, for which we report spectral classifications and Li and Hα equivalent widths. We identified 156 new members of Sco-Cen, and recovered 51 previously published members. We have combined these with previously known members to form a sample of 493 solar-mass (˜0.7-1.3 M⊙) members of Sco-Cen. We investigated the star formation history of this sample, and re-assessed the ages of the massive main-sequence turn-off and the G-type members in all three subgroups. We performed a census for circumstellar discs in our sample using WISE infrared data and find a protoplanetary disc fraction for K-type stars of 4.4^{+1.6}_{-0.9} per cent for Upper Centaurus-Lupus and Lower Centaurus-Crux at ˜16 Myr and 9.0^{+4.0}_{-2.2} per cent for Upper Scorpius at ˜10 Myr. These data are consistent with a protoplanetary disc e-folding time-scale of ˜4-5 Myr for ˜1 M⊙ stars, twice that previously quoted, but consistent with the Bell et al. revised age scale of young clusters. Finally, we construct an age map of Scorpius-Centaurus which clearly reveals substructure consisting of concentrations of younger and older stars. We find evidence for strong age gradients within all three subgroups. None of the subgroups are consistent with being simple, coeval populations which formed in single bursts, but likely represents a multitude of smaller star formation episodes of hundreds to tens of stars each.

  20. Life history characteristics and vital rates of Yellowstone Cutthroat Trout in two headwater basins

    USGS Publications Warehouse

    Uthe, Patrick; Al-Chokhachy, Robert K.; Zale, Alexander V.; Shepard, Bradley B.; McMahon, Thomas E.; Stephens, Tracy

    2016-01-01

    The Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri is native to the Rocky Mountains and has declined in abundance and distribution as a result of habitat degradation and introduced salmonid species. Many of its remaining strongholds are in headwater basins with minimal human disturbances. Understanding the life histories, vital rates, and behaviors of Yellowstone Cutthroat Trout within headwater stream networks remains limited yet is critical for effective management and conservation. We estimated annual relative growth in length and weight, annual survival rates, and movement patterns of Yellowstone Cutthroat Trout from three tributaries of Spread Creek, Wyoming, and two tributaries of Shields River, Montana, from 2011 through 2013 using PIT tag antennas within a mark–recapture framework. Mean annual growth rates varied among tributaries and size-classes, but were slow compared with populations of Yellowstone Cutthroat Trout from large, low-elevation streams. Survival rates were relatively high compared with those of other Cutthroat Trout subspecies, but we found an inverse relationship between survival and size, a pattern contrary to what has been reported for Cutthroat Trout in large streams. Mean annual survival rates ranged from 0.32 (SE = 0.04) to 0.68 (SE = 0.05) in the Spread Creek basin and from 0.30 (SE = 0.07) to 0.69 (SE = 0.10) in the Shields River basin. Downstream movements from tributaries were substantial, with as much as 26.5% of a tagging cohort leaving over the course of the study. Integrating our growth, survival, and movement results demonstrates the importance of considering strategies to enhance headwater stream habitats and highlights the importance of connectivity with larger stream networks.

  1. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied.

    PubMed

    Bai, Shirong; Davis, Michael J; Skodje, Rex T

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of how that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux.

  2. The Sensitivity of Earth's Climate History To Changes In The Rates of Biological And Geological Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.

    2014-12-01

    The faint young Sun paradox (early Earth had surface liquid water despite solar luminosity 70% of the modern value) implies that our planet's albedo has increased through time and/or greenhouse warming has fallen. The obvious explanation is that negative feedback processes stabilized temperatures. However, the limited temperature data available does not exhibit the expected residual temperature rise and, at least for the Phanerozoic, estimates of climate sensitivity exceed the Planck sensitivity (the zero net-feedback value). The alternate explanation is that biological and geological evolution have tended to cool Earth through time hence countering solar-driven warming. The coincidence that Earth-evolution has roughly cancelled Solar-evolution can then be explained as an emergent property of a complex system (the Gaia hypothesis) or the result of the unavoidable observational bias that Earth's climate history must be compatible with our existence (the anthropic principle). Here, I use a simple climate model to investigate the sensitivity of Earth's climate to changes in the rate of Earth-evolution. Earth-evolution is represented by an effective emissivity which has an intrinsic variation through time (due to continental growth, the evolution of cyanobacteria, orbital fluctuations etc) plus a linear feedback term which enhances emissivity variations. An important feature of this model is a predicted maximum in the radiated-flux versus temperature function. If the increasing solar flux through time had exceeded this value then runaway warming would have occurred. For the best-guess temperature history and climate sensitivity, the Earth has always been within a few percent of this maximum. There is no obvious Gaian explanation for this flux-coincidence but the anthropic principle naturally explains it: If the rate of biological/geological evolution is naturally slow then Earth is a fortunate outlier which evolved just fast enough to avoid solar-induced over

  3. The genome as a life-history character: why rate of molecular evolution varies between mammal species

    PubMed Central

    Bromham, Lindell

    2011-01-01

    DNA sequences evolve at different rates in different species. This rate variation has been most closely examined in mammals, revealing a large number of characteristics that can shape the rate of molecular evolution. Many of these traits are part of the mammalian life-history continuum: species with small body size, rapid generation turnover, high fecundity and short lifespans tend to have faster rates of molecular evolution. In addition, rate of molecular evolution in mammals might be influenced by behaviour (such as mating system), ecological factors (such as range restriction) and evolutionary history (such as diversification rate). I discuss the evidence for these patterns of rate variation, and the possible explanations of these correlations. I also consider the impact of these systematic patterns of rate variation on the reliability of the molecular date estimates that have been used to suggest a Cretaceous radiation of modern mammals, before the final extinction of the dinosaurs. PMID:21807731

  4. ASYMMETRIC ACCRETION FLOWS WITHIN A COMMON ENVELOPE

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-10

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  5. The Eddington limit and supercritical accretion. I - Time-independent calculations. [on neutron star

    NASA Technical Reports Server (NTRS)

    Burger, H. L.; Katz, J. I.

    1980-01-01

    Spherically symmetric, steady state accretion of an ionized hydrogen plasma onto a neutron star is considered for accretion rates which exceed a critical rate at which the Eddington limiting luminosity is produced. The coupled hydrodynamic and frequency integrated, radiative transfer equations are solved for accretion rates up to 10 times the nominal limit. Steady state solutions are presented that imply a multiplicity of different luminosity solutions for a single accretion rate in this 'supercritical' regime.

  6. Terrestrial Planets Accreted Dry

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  7. Giant planet formation via pebble accretion

    NASA Astrophysics Data System (ADS)

    Guilera, O. M.

    2016-08-01

    In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than ) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in the giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.

  8. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  9. Jet production in super-Eddington accretion disks

    NASA Technical Reports Server (NTRS)

    Eggum, G. E.; Coroniti, F. V.; Katz, J. I.

    1985-01-01

    A two-dimensional, radiation-coupled, Newtonian hydrodynamic simulation is reported for a super-Eddington, mass accretion rate, M = 4 M(E) disk accretion flow onto a 3-solar mass pseudoblack hole. Near the disk midplane, convection cells effectively block the accretion flow, even though viscous heating maximizes there. Accretion predominantly occurs in a supersonic inflow which follows streamlines of approximately constant angular momentum. The optically thick inflow traps radiation so that 80 percent of the luminosity is absorbed by the black hole; the emergent power is sub-Eddington. An axial jet self consistently forms just outside a conical photosphere which bounds the accretion zone; radiation pressure accelerates the jet to about 10 to the 10th cm/s. The jet's mass efflux is only 0.4 percent of the total mass accretion rate.

  10. The Western Sierras Pampeanas: Protracted Grenville-age history (1330-1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Rapela, C. W.; Pankhurst, R. J.; Casquet, C.; Baldo, E.; Galindo, C.; Fanning, C. M.; Dahlquist, J. M.

    2010-01-01

    basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.

  11. Promises and Problems of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2013-10-01

    Despite the large number of exoplanets indicating that giant planets are a common outcome of the star formation process, theoretical models still struggle to explain how ~10 Earth mass rocky/icy embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of ``pebbles,'' particles ranging from millimeters to decimeters in size, has been suggested as a potential solution to this long-standing problem. Local simulations, simulations which look at the detailed behavior of these pebbles in the vicinity of a planetary embryo, have shown that the potential planetary growth rates can be surprisingly fast. If one assumes that most of the mass in a protoplanetary disk resides in these pebble-sized particles, a Mars mass core could grow to 10 Earth masses in only a few thousand years. However, these local studies cannot investigate how this accretion process behaves in the more complicated, multi-planet environment. We have incorporated the local accretion physics into LIPAD, a Lagrangian code which can follow the collisional / accretional / dynamical evolution of a planetary system, to investigate the how this pebble accretion will manifest itself in the larger planet formation picture. We present how these more comprehensive models raise challenges to using pebble accretion to form observed planetary systems.

  12. Problems and Promises of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2013-05-01

    Abstract (2,250 Maximum Characters): Despite the large number of exoplanets indicating that planets are a common outcome of the star formation process, theoretical models still struggle to explain how ~10 Earth mass rocky/icy embryos can form within the lifetimes of gaseous circumstellar disks. Recently, aerodynamic-aided accretion of ``pebbles,'' particles ranging from millimeters to decimeters in size, has been suggested as a potential solution to this long-standing problem. Local simulations, simulations which look at the detailed behavior of these pebbles in the vicinity of a planetary embryo, have shown that the potential planetary growth rates can be surprisingly fast. If one assumes that most of the mass in a protoplanetary disk resides in these pebble-sized particles, a Mars mass core could grow to 10 Earth masses in only a few thousand years. However, these local studies cannot investigate how this accretion process behaves in the more complicated, multi-planet environment. We have incorporated a prescription of this pebble accretion into LIPAD, a Lagrangian code which can follow the collisional/accretional/dynamical evolution of a planetary system, to investigate the how this pebble accretion will manifest itself in the larger planet formation picture. We discuss how these more comprehensive models present challenges for using pebble accretion to form observed planetary systems.

  13. Accretion onto Fast X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Rappaport, S. A.; Fregeau, J. M.; Spruit, H.

    2004-01-01

    The recent emergence of a new class of accretion-powered, transient, millisecond X-ray pulsars presents some difficulties for the conventional picture of accretion onto rapidly rotating magnetized neutron stars and their spin behavior during outbursts. In particular, it is not clear that the standard paradigm can accommodate the wide range in M(i.e., approx. greater than a factor of 50) over which these systems manage to accrete and the high rate of spindown that the neutron stars exhibit in at least a number of cases. When the accretion rate drops sufficiently, the X-ray pulsar is said to become a "fast rotator," and in the conventional view, this is accompanied by a transition from accretion to "propellering," in which accretion ceases and the matter is ejected from the system. On the theoretical side, we note that this scenario for the onset of propellering cannot be entirely correct because it is not energetically self-consistent. We show that, instead, the transition is likely to take place through disks that combine accretion with spindown and terminate at the corotation radius. We demonstrate the existence of such disk solutions by modifying the Shakura-Sunyaev equations with a simple magnetic torque prescription. The solutions are completely analytic and have the same dependence on M and a (the viscosity parameter) as the original Shakura-Sunyaev solutions, but the radial profiles can be considerably modified, depending on the degree of fastness. We apply these results to compute the torques expected during the outbursts of the transient millisecond pulsars and find that we can explain the large spin-down rates that are observed for quite plausible surface magnetic fields of approx. 10(exp 90 G.

  14. The Eddington limit and supercritical accretion. II - Time-dependent calculations

    NASA Technical Reports Server (NTRS)

    Burger, H. L.; Katz, J. I.

    1983-01-01

    Spherically symmetric, time-dependent accretion of an ionized hydrogen plasma onto a neutron star is calculated for accretion rates in excess of the Eddington limit. The coupled hydrodynamic and frequency integrated radiative transfer equations are solved on an Eulerian grid for these supercritical accretion flows. Our results indicate that steady state flows are limited to rates at or below the critical rate, with emergent luminosities equal to or less than the Eddington luminosity. Initially supercritical accretion rates generate a large pulse of radiation which reduces the accretion rate to the critical value and produces an extended quasi-static envelope.

  15. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies.

    PubMed

    Auer, Sonya K; Lopez-Sepulcre, Andrés; Heatherly, Thomas; Kohler, Tyler J; Bassar, Ronald D; Thomas, Steven A; Reznick, David N

    2012-07-01

    1. Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2. We examined the influence of food availability at the time of sampling, 2 months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3. We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2 months prior to growth measurements had positive effects on adult growth rate; though, food levels 2 months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2 months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2 months prior such that the effects of juvenile food level diminished as the food level experienced 2 months prior increased. 4. These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5. A simultaneous consideration of past events in both the

  16. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  17. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  18. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  19. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  20. Strong Role of Non-stationary Accretion in Spectral Transitions of X-ray Binaries and Implications for Revealing the Accretion Geometry and Broadband Radiation Mechanisms

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Yan, Zhen; Tang, Jing; Wu, Yuxiang

    Observations of spectral transitions from the hard state to the soft state in bright X-ray binaries show strong evidence that the rate-of-change of the mass accretion rate plays a dominant role in determining the luminosity at which the spectral transition occurs. This indicates that in many cases, especially accretion in transients during outbursts, the rate-of-change of the mass accretion rate is the primary parameter driving high energy phenomena. Although this goes beyond the scope of current stationary model of disk and jet, it tells us that it is the rate-of-change of the mass accretion rate that we need to trace observationally. Since state transition is a broadband phenomenon, multi-wavelength observations of spectral transitions of different rate-of-changes of mass accretion rate are expect to reveal the accretion geometry and broadband radiation mechanisms.

  1. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  2. Accretion onto Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Herczeg, Gregory; Calvet, Nuria

    2016-09-01

    Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2-3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ˜3 Myr is modest in terms of stellar evolution, but is comparable to total disk reservoirs as estimated from millimeter-wave dust emission (˜10-2 M⊙). Pre-main-sequence accretion is not steady, encompassing timescales ranging from approximately hours to a century, with longer-timescale variations tending to be the largest. Accretion during the protostellar phase—while the protostellar envelope is still falling onto the disk—is much less well understood, mostly because the properties of the central obscured protostar are difficult to estimate. Kinematic measurements of protostellar masses with new interfometric facilities should improve estimates of accretion rates during the earliest phases of star formation.

  3. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  4. Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta

    2015-08-01

    Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion

  5. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  6. The Final Fates of Accreting Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Umeda, Hideyuki; Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki

    2016-10-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have a less concentrated structure than a fully convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit ≳105 M ⊙ derived for the fully convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with \\dot{M}≲ 0.1 {M}⊙ {{{yr}}}-1. With \\dot{M}≃ 0.3{--}1 {M}⊙ {{{yr}}}-1, the star becomes GR unstable during the helium-burning stage at M ≃ 2-3.5 × 105 M ⊙. In an extreme case with 10 {M}⊙ {{{yr}}}-1, the star does not collapse until the mass reaches ≃8.0 × 105 M ⊙, where it is still in the hydrogen-burning stage. We expect that BHs with roughly the same mass will be left behind after the collapse in all the cases.

  7. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  8. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana

    SciTech Connect

    Hatton, R.S.; DeLaune, R.D.; Patrick, W.H. Jr.

    1983-05-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in cores collected from fresh water, intermediate, brackish, and salt marshes in the Barataria Basin, Louisiana. Vertical accretion rates vary from about 1.3 cm.yr/sup -1/ in levee areas to 0.7 in backmarshes. Mineral sediment content of the marsh soil profile decreased with distance from the coast. Except in natural levee areas, marsh accretion rates are less than subsidence measured by water level data, however this alone cannot account for observed land-loss patterns in the basin area.

  9. The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: extreme substitution rates and rate heterogeneity.

    PubMed

    Korall, Petra; Kenrick, Paul

    2004-06-01

    Molecular phylogenetic research on Selaginellaceae has focused on the plastid gene rbcL, which in this family has unusually high substitution rates. Here we develop a molecular data set from the nuclear 26S ribosomal DNA gene with the aim of evaluating and extending the results of previous phylogenetic research. The 26S rDNA and the rbcL regions were sequenced for a sample of 23 species, which represent the main elements of species diversity in the family. The data were analysed independently and in combination using both maximum parsimony and Bayesian inference. Although several between genome differences were found, the general pattern of relationships uncovered by all analyses was very similar. Results corroborate the previous study supporting new groupings not previously recognised on morphological grounds. Substitution rates in the 26S rDNA were also found to be high (26% informative) for the region analysed, but lower than for rbcL (37% informative). These data indicate that high substitution rates might be widespread in all three genomes (i.e., plastid, mitochondrion, and nucleus).

  10. Effects of Reinforcement History on Response Rate and Response Pattern in Periodic Reinforcement

    ERIC Educational Resources Information Center

    Lopez, Florente; Menez, Marina

    2005-01-01

    Several researchers have suggested that conditioning history may have long-term effects on fixed-interval performances of rats. To test this idea and to identify possible factors involved in temporal control development, groups of rats initially were exposed to different reinforcement schedules: continuous, fixed-time, and random-interval.…

  11. Rates of sexual history taking and screening in HIV-positive men who have sex with men.

    PubMed

    MacRae, Alasdair; Lord, Emily; Forsythe, Annabel; Sherrard, Jackie

    2017-03-01

    A case note audit was undertaken of HIV-positive men who have sex with men (MSM) to ascertain whether national guidelines for taking sexual histories, including recreational drug use and sexually transmitted infection (STI) screening were being met. The notes of 142 HIV-positive men seen in 2015 were available, of whom 85 were MSM. Information was collected regarding sexual history, recreational drug use documentation, sexually transmitted infection screen offer and test results. Seventy-seven (91%) of the MSM had a sexual history documented, of whom 60 (78%) were sexually active. STI screens were offered to 58/60 (97%) of those who were sexually active and accepted by 53 (91%). Twelve (23%) of these had an STI. A recreational drug history was taken in 63 (74%) with 17 (27%) reporting use and 3 (5%) chemsex. The high rate of STIs highlights that regular screening in this group is essential. Additionally, the fact that over a quarter reported recreational drug use and given the increasing concern around chemsex, questions about this should be incorporated into the sexual history proforma.

  12. Bondi-Hoyle Accretion in an Isothermal Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Lee, Aaron T.; Cunningham, Andrew J.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β <~ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to {\\cal M}\\approx 45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and {\\cal M} for the parallel and perpendicular orientations. Using typical molecular cloud values of {\\cal M}\\sim 5 and β ~ 0.04 from the literature, our fits suggest that a 0.4 M ⊙ star accretes ~4 × 10-9 M ⊙ yr-1, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  13. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  14. Establishing the Natural History and Growth Rate of Ameloblastoma with Implications for Management: Systematic Review and Meta-Analysis

    PubMed Central

    Chae, Michael P.; Smoll, Nicolas R.; Hunter-Smith, David J.; Rozen, Warren Matthew

    2015-01-01

    Background Ameloblastoma is the second most common odontogenic tumor, known to be slow-growing, persistent, and locally aggressive. Recent data suggests that ameloblastoma is best treated with wide resection and adequate margins. Following primary excision, bony reconstruction is often necessary for a functional and aesthetically satisfactory outcome, making early diagnosis paramount. Despite earlier diagnosis potentially limiting the extent of resection and reconstruction, an understanding of the growth rate and natural history of ameloblastoma has been notably lacking from the literature. Method A systematic review of the literature was conducted by reviewing relevant articles from PubMed and Web of Science databases. Each article’s level of evidence was formally appraised according to the Centre of Evidence Based Medicine (CEBM), with data from each utilized in a meta-analysis of growth rates for ameloblastoma. Results Literature regarding the natural history of ameloblastoma is limited since the tumor is immediately acted upon at its initial detection, unless the patient voluntarily refuses a surgical intervention. From the limited data, it is derived that the highest estimated growth rate is associated with solid, multicystic type and the lowest rate with peripheral ameloblastomas. After meta-analysis, the calculated mean specific grow rate is 87.84% per year. Conclusion The growth rate of ameloblastoma has been demonstrated, offering prognostic and management information, particularly in cases where a delay in management is envisaged. PMID:25706407

  15. Clump Accretion in Supergiant Fast X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Chase, Eve; Raymer, E.; Blondin, J. M.

    2014-01-01

    Supergiant Fast X-Ray Transients (SFXTs) are a subclass of High-Mass X-Ray Binaries that consist of a neutron star and OB supergiant donor star. These systems display short, bright x-ray flares lasting a few minutes to a few hours with luminosities reaching 1036 erg/s, several orders of magnitude larger than the quiescent luminosities of 1032 erg/s. The clumpy wind hypothesis has been proposed as a possible mechanism for these transient flares; in this model, a portion of the stellar wind from the donor star forms into clumps and is accreted onto the neutron star, inducing flares. We use high-resolution 3D hydrodynamic simulations to test the clumpy wind hypothesis, tracking the mass and angular momentum accretion rates to infer properties of the resulting x-ray flare and secular evolution of the neutron star rotation. Our results are significantly different from the predictions of Hoyle-Lyttleton Accretion (HLA) theory, which assume steady, laminar, axisymmetric flow. For example, an off-axis clump initiated with an impact parameter greater than the clump radius (for which HLA predicts no effect) produces a small spike in mass accretion and induces a long period of disk-like flow that dramatically reduces the accretion rate below the steady HLA value. The result is a brief, weak flare with a net decrease in total accreted mass compared with steady wind accretion accompanied by a substantial accretion of angular momentum.

  16. Phenylthiocarbamide tasting and family history of depression, revisited: low rates of depression in families of supertasters.

    PubMed

    Joiner, Thomas E; Perez, Marisol

    2004-04-15

    Past studies suggest that phenylthiocarbamide (PTC) taste status is related to vulnerability to depression, such that those sensitive to PTC are more vulnerable. We questioned this, reasoning that those insensitive to PTC may be more vulnerable (because they may have lower hedonic tone and higher risk for alcohol abuse). Forty-two volunteers responded to questionnaires regarding family history of depression, and were assigned to supertaster, taster, or non-taster categories based on taste reactions to a 3.80 x 1.43 cm piece of commercially prepared paper treated with PTC. Supertasters were significantly less likely to report first-degree relatives with a history of depression than were tasters and non-tasters. Supertasters may be afforded some protection from depression; elucidating the mechanisms of this protection is a potentially interesting avenue for future research.

  17. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  18. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations.

    PubMed

    Rutledge, W Caleb; Ko, Nerissa U; Lawton, Michael T; Kim, Helen

    2014-10-01

    Brain arteriovenous malformations (AVMs) are abnormal connections of arteries and veins, resulting in arteriovenous shunting of blood. Primary medical therapy is lacking; treatment options include surgery, radiosurgery, and embolization, often in combination. Judicious selection of AVM patients for treatment requires balancing risk of treatment complications against the risk of hemorrhage in the natural history course. This review focuses on the epidemiology, hemorrhage risk, and factors influencing risk of hemorrhage in the untreated natural course associated with sporadic brain AVM.

  19. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  20. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  1. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  2. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  3. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate

    USGS Publications Warehouse

    Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.

    2016-01-01

    There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.

  4. Hoyle-Lyttleton Accretion from a Planar Wind

    NASA Astrophysics Data System (ADS)

    Raymer, Eric

    2014-01-01

    Two-dimensional hydrodynamic simulations of Hoyle-Lyttleton accretion have informed predictions about the evolution of wind-driven accretion systems for over two decades. These simulations frequently exhibit dramatic nonlinear behavior such as the flip-flop instability and the formation of transient accretion disks. During disk accretion, the mass accretion rate is suppressed and angular momentum accretion occurs at quasi-Keplerian rates. These results have been used to interpret neutron star accretion from the equatorially enhanced wind of a Be star in Be/X-ray Binaries. We employ large-scale hydrodynamic simulations to investigate whether the flip-flop instability is possible in three dimensions or is simply a consequence of the restrictions on a 2D flow. We do not observe the flip-flop instability in 3D for any values of the wind scale height or density. Moreover, the angular momentum vector of the accreting gas is typically found to be in the plane of the disk wind rather than perpendicular to it as one might expect based on the results of 2D planar simulations. We measure large-scale asymmetries about the plane of the disk wind that arise due to rotational flow near the accretor. Gas is driven above and below the plane, where it interacts with the bow shock and results in a time-varying shock structure. Winds with scale heights of 0.25 Ra enter locked rotation modes that remain stable for the duration of our computational runs. During this phase, the mass accretion rate is suppressed by up to two orders of magnitude below the analytical prediction and angular momentum accretion occurs at sub-Keplerian values.

  5. Fingering Convection and its Consequences for Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vauclair, Sylvie; Vauclair, Gérard; Deal, Morgan; Wachlin, F. C.

    2015-06-01

    A number of white dwarf stars show absoption lines of heavy elements in their spectra. Many of them also exhibit infra-red excess in their spectral energy distribution. These observations prove that these white dwarfs are surrounded by an orbiting debris disk resulting from the disruption of rocky planetesimals, remnants of the primordial planetary system. Part of the material from the debris disk is accreted onto the white dwarfs, explaining the presence of heavy elements in their outer layers. Previous attempts to estimate the accretion rates have overlooked the importance of the fingering convection. The fingering convection is an instability triggered by the accumulation in the white dwarf outer layers of material heavier than the underlying H-rich (for the DA) or the He-rich (for the DB) composition. The fingering convection induces a deep mixing of the accreted material. Our preliminary simulations of the fingering convection show that the effect may be important in DA white dwarfs. The accretion rates needed in order to reproduce the observed heavy element abundances exceed by order of magnitudes the accretion rates estimated when this extra-mixing is ignored. By contrast, in the cases of the DB white dwarfs that we have considered in our simulations the fingering convection either does not occur or has very little effects on the derived accretion rates. We have undertaken a systematic exploration of the consequences of the fingering convection in accreting white dwarfs.

  6. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    USGS Publications Warehouse

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  7. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate.

    PubMed

    Martin, Thomas E; Ton, Riccardo; Niklison, Alina

    2013-06-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  8. Marine reserve recovery rates towards a baseline are slower for reef fish community life histories than biomass

    PubMed Central

    McClanahan, T. R.; Graham, N. A. J.

    2015-01-01

    Ecological baselines are disappearing and it is uncertain how marine reserves, here called fisheries closures, simulate pristine communities. We tested the influence of fisheries closure age, size and compliance on recovery of community biomass and life-history metrics towards a baseline. We used census data from 324 coral reefs, including 41 protected areas ranging between 1 and 45 years of age and 0.28 and 1430 km2, and 36 sites in a remote baseline, the Chagos Archipelago. Fish community-level life histories changed towards larger and later maturing fauna with increasing closure age, size and compliance. In high compliance closures, community biomass levelled at approximately 20 years and 10 km2 but was still only at approximately 30% of the baseline and community growth rates were projected to slowly decline for more than 100 years. In low compliance and young closures, biomass levelled at half the value and time as high compliance closures and life-history metrics were not predicted to reach the baseline. Biomass does not adequately reflect the long-time scales for full recovery of life-history characteristics, with implications for coral reef management. PMID:26702040

  9. Strain Rate Effects and Temperature History Effects for Three Different Tempers of 4340 VAR Steel

    DTIC Science & Technology

    1984-07-01

    45, pp 60-66 March, 1978. 17. C.F. Hickey, Jr. and A. A. Anctil, "Split Heat Mechanical Property Comparison of ESR and VAR 4340 Steel ", A•MMRC...Embrittlement in High Hardness ESR 4340 Steel Forgings", ANMRC Technical Report 82-1, Army Materials and Mechanics Research Center, Watertown, Mass, January, 1982...Effects and Temperature History Effects for Three Different Tempers of 4340 VAR Steel . 0 by S. Tanimura and J. Duffy DTICr:fti Army Research Office . . 1

  10. Inception of ice accretion by ice crystal impact

    NASA Astrophysics Data System (ADS)

    Löwe, Jens; Kintea, Daniel; Baumert, Arne; Bansmer, Stephan; Roisman, Ilia V.; Tropea, Cameron

    2016-09-01

    In this experimental and theoretical study the ice accretion phenomena on a heated cylinder in Braunschweig Icing Wind Tunnel are investigated. The ice crystal size, velocity, the liquid-to-total mass ratio are accurately controlled. The evolution of the cylinder temperature, the time required for the inception of the ice accretion, and the ice accretion rate are measured for various operating conditions. The surface temperature of the solid target is determined by balancing the heating power in the wall and the cooling effect of the stream of ice particles. We have discovered that the inception of the ice crystal accretion is determined by the instant when the surface temperature of the heated target reduces to the freezing temperature. This result will help to model the phenomena of ice crystal accretion.

  11. An Analysis of Foster Care Placement History and Post-Secondary Graduation Rates

    ERIC Educational Resources Information Center

    Day, Angelique; Dworsky, Amy; Feng, Wenning

    2013-01-01

    Prior research has document significant disparities in post-secondary educational attainment between young adults who had been in foster care and their peers in the general population. This study uses survival analysis to compare the four-year college graduation rate of students who had been in foster care to the graduation rate of first…

  12. Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth

    PubMed Central

    Dean, M. Christopher; Cole, Tim J.

    2013-01-01

    We explored the relationship between growth in tooth root length and the modern human extended period of childhood. Tooth roots provide support to counter chewing forces and so it is advantageous to grow roots quickly to allow teeth to erupt into function as early as possible. Growth in tooth root length occurs with a characteristic spurt or peak in rate sometime between tooth crown completion and root apex closure. Here we show that in Pan troglodytes the peak in root growth rate coincides with the period of time teeth are erupting into function. However, the timing of peak root velocity in modern humans occurs earlier than expected and coincides better with estimates for tooth eruption times in Homo erectus. With more time to grow longer roots prior to eruption and smaller teeth that now require less support at the time they come into function, the root growth spurt no longer confers any advantage in modern humans. We suggest that a prolonged life history schedule eventually neutralised this adaptation some time after the appearance of Homo erectus. The root spurt persists in modern humans as an intrinsic marker event that shows selection operated, not primarily on tooth tissue growth, but on the process of tooth eruption. This demonstrates the overarching influence of life history evolution on several aspects of dental development. These new insights into tooth root growth now provide an additional line of enquiry that may contribute to future studies of more recent life history and dietary adaptations within the genus Homo. PMID:23342167

  13. Spiral-driven accretion in protoplanetary discs . III. Tridimensional simulations

    NASA Astrophysics Data System (ADS)

    Hennebelle, Patrick; Lesur, Geoffroy; Fromang, Sébastien

    2017-03-01

    Context. Understanding how accretion proceeds in proto-planetary discs, and more generally, understanding their dynamics, is a crucial questions that needs to be answered to explain the conditions in which planets form. Aims: The role that accretion of gas from the surrounding molecular cloud onto the disc may have on its structure needs to be quantified. Methods: We performed tridimensional simulations using the Cartesian AMR code RAMSES of an accretion disc that is subject to infalling material. Results: For the aspect ratio of H/R ≃ 0.15 and disc mass Md ≃ 10-2M⊙ used in our study, we find that for typical accretion rates of the order of a few 10-7M⊙ yr-1, values of the α parameter as high as a few 10-3 are inferred. The mass that is accreted in the inner part of the disc is typically at least 50% of the total mass that has been accreted onto the disc. Conclusions: Our results suggest that external accretion of gas at moderate values onto circumstellar discs may trigger prominent spiral arms that are reminiscent of recent observations made with various instruments, and may lead to significant transport through the disc. If confirmed from observational studies, such accretion may therefore influence disc evolution.

  14. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    NASA Astrophysics Data System (ADS)

    Robinson, C. E.; Owen, J. E.; Espaillat, C. C.; Adams, F. C.

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  15. Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements

    PubMed Central

    Nikolaev, Sergey I.; Montoya-Burgos, Juan I.; Popadin, Konstantin; Parand, Leila; Margulies, Elliott H.; Antonarakis, Stylianos E.

    2007-01-01

    A comprehensive phylogenetic framework is indispensable for investigating the evolution of genomic features in mammals as a whole, and particularly in humans. Using the ENCODE sequence data, we estimated mammalian neutral evolutionary rates and selective pressures acting on conserved coding and noncoding elements. We show that neutral evolutionary rates can be explained by the generation time (GT) hypothesis. Accordingly, primates (especially humans), having longer GTs than other mammals, display slower rates of neutral evolution. The evolution of constrained elements, particularly of nonsynonymous sites, is in agreement with the expectations of the nearly neutral theory of molecular evolution. We show that rates of nonsynonymous substitutions (dN) depend on the population size of a species. The results are robust to the exclusion of hypermutable CpG prone sites. The average rate of evolution in conserved noncoding sequences (CNCs) is 1.7 times higher than in nonsynonymous sites. Despite this, CNCs evolve at similar or even lower rates than nonsynonymous sites in the majority of basal branches of the eutherian tree. This observation could be the result of an overall gradual or, alternatively, lineage-specific relaxation of CNCs. The latter hypothesis was supported by the finding that 3 of the 20 longest CNCs displayed significant relaxation of individual branches. This observation may explain why the evolution of CNCs fits the expectations of the nearly neutral theory less well than the evolution of nonsynonymous sites. PMID:18077382

  16. Ataxia rating scales--psychometric profiles, natural history and their application in clinical trials.

    PubMed

    Saute, Jonas Alex Morales; Donis, Karina Carvalho; Serrano-Munuera, Carmen; Genis, David; Ramirez, Luís Torres; Mazzetti, Pilar; Pérez, Luis Velázquez; Latorre, Pilar; Sequeiros, Jorge; Matilla-Dueñas, Antoni; Jardim, Laura Bannach

    2012-06-01

    We aimed to perform a comprehensive systematic review of the existing ataxia scales. We described the disorders for which the instruments have been validated and used, the time spent in its application, its validated psychometric properties, and their use in studies of natural history and clinical trials. A search from 1997 onwards was performed in the MEDLINE, LILACS, and Cochrane databases. The web sites ClinicalTrials.gov and Orpha.net were also used to identify the endpoints used in ongoing randomized clinical trials. We identified and described the semiquantitative ataxia scales (ICARS, SARA, MICARS, BARS); semiquantitative ataxia and non-ataxia scales (UMSARS, FARS, NESSCA); a semiquantitative non-ataxia scale (INAS); quantitative ataxia scales (CATSYS 2000, AFCS, CCFS and CCFSw, and SCAFI); and the self-performed ataxia scale (FAIS). SARA and ICARS were the best studied and validated so far, and their reliability sustain their use. Ataxia and non-ataxia scores will probably provide a better view of the overall disability in long-term trials and studies of natural history. Up to now, no clear advantage has been disclosed for any of them; however, we recommend the use of specific measurements of gait since gait ataxia is the first significant manifestation in the majority of ataxia disorders and comment on the best scales to be used in specific ataxia forms. Quantitative ataxia scales will be needed to speed up evidence from phase II clinical trials, from trials focused on the early phase of diseases, and for secondary endpoints in phase III trials. Finally, it is worth remembering that estimation of the actual minimal clinically relevant difference is still lacking; this, together with changes in quality of life, will probably be the main endpoints to measure in future therapeutic studies.

  17. Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.

  18. Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories, these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the VLBI observations.

  19. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Black, Benjamin; Zhong, Shijie; Manga, Michael; Rudolph, Maxwell L.; Olson, Peter

    2016-07-01

    The Earth's surface volcanism exerts first-order controls on the composition of the atmosphere and the climate. On Earth, the majority of surface volcanism occurs at mid-ocean ridges. In this study, based on the dependence of melt fraction on temperature, pressure, and composition, we compute melt production and degassing rate at mid-ocean ridges from three-dimensional global mantle convection models with plate motion history as the surface velocity boundary condition. By incorporating melting in global mantle convection models, we connect deep mantle convection to surface volcanism, with deep and shallow mantle processes internally consistent. We compare two methods to compute melt production: a tracer method and an Eulerian method. Our results show that melt production at mid-ocean ridges is mainly controlled by surface plate motion history, and that changes in plate tectonic motion, including plate reorganizations, may lead to significant deviation of melt production from the expected scaling with seafloor production rate. We also find a good correlation between melt production and degassing rate beneath mid-ocean ridges. The calculated global melt production and CO2 degassing rate at mid-ocean ridges varies by as much as a factor of 3 over the past 200 Myr. We show that mid-ocean ridge melt production and degassing rate would be much larger in the Cretaceous, and reached maximum values at ˜150-120 Ma. Our results raise the possibility that warmer climate in the Cretaceous could be due in part to high magmatic productivity and correspondingly high outgassing rates at mid-ocean ridges during that time.

  20. Quantitative evaluation of efficiency of the methods for a posteriori filtration of the slip-rate time histories

    NASA Astrophysics Data System (ADS)

    Kristekova, M.; Galis, M.; Moczo, P.; Kristek, J.

    2012-04-01

    Simulated slip-rate time histories often are not free from spurious high-frequency oscillations. This is because the used spatial grid is not fine enough to properly discretize possibly broad-spectrum slip-rate and stress variations and the spatial breakdown zone of the propagating rupture. In order to reduce the oscillations some numerical modelers apply the artificial damping. An alternative way is the application of the adaptive smoothing algorithm (ASA, Galis et al. 2010). The other modelers, however, rely on the a posteriori filtration. If the oscillations do not affect (change) development and propagation of the rupture during simulations, it is possible to apply a posteriori filtration to reduce the oscillations. Often, however, the a posteriori filtration is a problematic trade-off between suppression of oscillations and distortion of a true slip rate. We present quantitative comparison of efficiency of several methods. We have analyzed slip-rate time histories simulated by the FEM-TSN method. Signals containing spurious high-frequency oscillations and signals after application of a posteriori filtering have been compared to the reference signal. The reference signal was created by application of a careful iterative and adjusted denoising of the slip rate simulated using the finest (technically possible) spatial grid. We performed extensive numerical simulations in order to test efficiency of a posteriori filtration for slip rates with different level and nature of spurious oscillations. We show that the time-frequency analysis and time-frequency misfit criteria (Kristekova et al. 2006, 2009) are suitable tools for evaluation of efficiency of a posteriori filtration methods and also clear indicators of possible distortions introduced by a posteriori filtration.

  1. Crystallization history of lunar picritic basalt sample 12002 - Phase-equilibria and cooling-rate studies

    NASA Technical Reports Server (NTRS)

    Walker, D.; Kirkpatrick, R. J.; Longhi, J.; Hays, J. F.

    1976-01-01

    Experimental crystallization of a lunar picrite composition (sample 12002) at controlled linear cooling rates produces systematic changes in the temperature at which crystalline phases appear, in the texture, and in crystal morphology as a function of cooling rate. Phases crystallize in the order olivine, chromium spinel, pyroxene, plagioclase, and ilmenite during equilibrium crystallization, but ilmenite and plagioclase reverse their order of appearance and silica crystallizes in the groundmass during controlled cooling experiments. The partition of iron and magnesium between olivine and liquid is independent of cooling rate, temperature, and pressure. Comparison of the olivine nucleation densities in the lunar sample and in the experiments indicates that the sample began cooling at about 1 deg C/hr. Pyroxene size, chemistry, and growth instability spacings, as well as groundmass coarseness, all suggest that the cooling rate subsequently decreased by as much as a factor of 10 or more. The porphyritic texture of this sample, then, is produced at a decreasing, rather than a discontinuously increasing, cooling rate.

  2. Sedimentation rates and pollution history of a dried lake: Al-Oteibeh Lake.

    PubMed

    Al-Masri, M S; Aba, A; Khalil, H; Al-Hares, Z

    2002-07-03

    Sediment accumulation rates as well as the distribution of selected elements in a dried Syrian lake (Al-Oteibeh Lake), near Damascus City, are reported. Five core samples from different locations of the lake were collected, and four major elements (Fe, K, Mg and Na) and six trace metals (Co, Ni, Cr, Pb, Zn, U and Cu) were analyzed. Sedimentation rates were determined applying the 210Pb dating method and found to vary between 0.100 and 0.793 cm year(-1). The results showed that the constant flux constant sedimentation rate (CF:CS) simple dating model is applicable for dating recent dried sediment and recording the past historical pollution of the last 100 years. However, the method was found to be only applicable for dating trace and major elements, which cannot be leached to deeper layers by rainwater. In addition, the obtained records can be used to verify the date of water level declining.

  3. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  4. Accretion and star formation in RQQs

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Häußler, Boris; Maddox, Natasha; Kalfountzou, Eleni; Hardcastle, Martin

    2016-06-01

    Active Galactic Nuclei (AGN) and star-forming galaxies are well-traced in the radio part of the electromagnetic spectrum, due to emission at these wavelengths being unaffected by dust obscuration. The key processes involved in producing the radio emission are black-hole accretion and star formation, both of which are thought to be crucial in determining how galaxies evolve. Disentangling the two contributions requires multi-wavelength data, and this is the approach we use for our work on radio-quiet quasars (RQQs). In contrast to previous studies, we find that accretion-connected radio emission dominates over that due to star formation, even at very low radio flux-densities. The first sample we describe is selected from the VISTA Deep Extragalactic Observations (VIDEO) survey, whose depth allows the study of very low accretion rates and/or lower-mass black holes. A second sample is obtained from the Spitzer-Herschel Active Galaxy Survey, spanning a factor of ~100 in optical luminosity over a narrow redshift range at z ~ 1. This enables evolutionary effects to be decoupled when comparisons are made with the VIDEO sample. Using radio data from the Karl G. Jansky Very Large Array (JVLA), we find further support that the AGN makes a significant contribution to the radio emission in RQQs. In addition, the levels of accretion and star formation appear to be weakly correlated with each other, and with optical luminosity.

  5. RECONCILING THE GAMMA-RAY BURST RATE AND STAR FORMATION HISTORIES

    SciTech Connect

    Jimenez, Raul; Piran, Tsvi E-mail: tsvi.piran@huji.ac.il

    2013-08-20

    While there are numerous indications that gamma-ray bursts (GRBs) arise from the deaths of massive stars, the GRB rate does not follow the global cosmic star formation rate and, within their hosts, GRBs are more concentrated in regions of very high star formation. We explain both puzzles here. Using the publicly available VESPA database of the Sloan Digital Sky Survey (SDSS) Data Release 7 spectra, we explore a multi-parameter space in galaxy properties such as stellar mass, metallicity, and dust to find the subset of galaxies that reproduces the GRB rate recently obtained by Wanderman and Piran. We find that only galaxies with present stellar masses below <10{sup 10} M{sub Sun} and low metallicity reproduce the observed GRB rate. This is consistent with direct observations of GRB hosts and provides an independent confirmation of the nature of GRB hosts. Because of the significantly larger sample of SDSS galaxies, we compute their correlation function and show that they are anti-biased with respect to dark matter: they are in filaments and voids. Using recent observations of massive stars in local dwarfs we show how the fact that GRB host galaxies are dwarfs can explain the observation that GRBs are more concentrated in regions of high star formation than are supernovae. Finally, we explain these results using new theoretical advances in the field of star formation.

  6. Life-history Constraints on the Mechanisms that Control the Rate of ROS Production

    PubMed Central

    Aledo, Juan Carlos

    2014-01-01

    The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects. PMID:24955029

  7. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  8. The environmental dependence of gas accretion on to galaxies: quenching satellites through starvation

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Bahé, Yannick M.; Bower, Richard G.; Correa, Camila A.; Crain, Robert A.; Schaye, Joop; Theuns, Tom

    2017-04-01

    Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings: a process referred to as 'starvation' or 'strangulation' of satellites. We study the environmental dependence of gas accretion on to galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, of many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in the halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and satellites show similar behaviour to their gas accretion rates. The relatively small differences between gas accretion and star formation rates demonstrate that galaxies generally exhaust their gas reservoir somewhat faster at higher stellar mass, lower redshift, and in denser environments. We conclude that the environmental suppression of gas accretion could directly result in the quenching of star formation.

  9. Mergers of accreting stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Tagawa, H.; Umemura, M.; Gouda, N.

    2016-11-01

    We present post-Newtonian N-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericentre shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of 10 BHs with initial mass of 30 M⊙. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three-body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is ˜10 Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate (dot{m}_c), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce dot{m}_c especially in gas number density higher than 108 cm-3, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a ˜30 M⊙ BH binary has been detected. Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few M⊙ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.

  10. Accumulation Rates of Trace Elements in the Cariaco Basin-A 20-kyr History of Seawater Chemistry and Global Climate

    NASA Astrophysics Data System (ADS)

    Piper, D. Z.; Dean, W. E.

    2002-12-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which collected sediment as old as 20 kyr, was analyzed for its major-element-oxide and trace-element concen-trations. The elements can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly by phytoplankton in the photic zone, and (2) a hydroge-nous fraction derived from bottom water via adsorption and precipitation reactions. The present-day export of organic matter from the photic zone, redox conditions and advection of bottom water, and the flux of terrigenous debris into the basin are used to calculate current trace-element accu-mulation rates. The sums of calculated accumulation rates of Cd, Cu, Mo, Ni, V, and Zn show excellent agreement with their measured bulk rates of accumulation in the uppermost surface sediment. This agreement between current measured and calculated accumulation rates of trace elements supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone, bottom-water advection, and sediment provenance. Extrema in the trace-element accumulation rates and interpreted hydrographic properties of the water column correspond to changes in eustatic sea level and global climate.

  11. ACCRETION DISK TEMPERATURES OF QSOs: CONSTRAINTS FROM THE EMISSION LINES

    SciTech Connect

    Bonning, E. W.; Shields, G. A.; Stevens, A. C.; Salviander, S. E-mail: shields@astro.as.utexas.edu E-mail: triples@astro.as.utexas.edu

    2013-06-10

    We compare QSO emission-line spectra to predictions based on theoretical ionizing continua of accretion disks. The observed line intensities do not show the expected trend of higher ionization with theoretical accretion disk temperature as predicted from the black hole mass and accretion rate. Consistent with earlier studies, this suggests that the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. The emission lines of radio-detected and radio-undetected sources show different trends as a function of the theoretically predicted disk temperature.

  12. LAMBDA BOO ABUNDANCE PATTERNS: ACCRETION FROM ORBITING SOURCES

    SciTech Connect

    Jura, M.

    2015-12-15

    The abundance anomalies in λ Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically inferred bounds for interstellar accretion. Therefore, a λ Boo star’s thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some λ Boo stars accrete from the winds of hot Jupiters.

  13. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  14. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  15. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  16. Accretion Disk Emission Around Kerr Black Holes

    NASA Astrophysics Data System (ADS)

    Campitiello, Samuele; Sbarrato, T.; Ghisellini, G.

    2016-10-01

    Measuring the spin of supermassive Black holes in Active Galactic Nuclei is a further step towards a better understanding of the evolution of their physics. We proposed a new method to estimate the Black hole spin, based on data-fitting. We consider a numerical model called KERRBB, including all relativistic effects (i.e. light-bending, gravitational redshift and Doppler beaming). We found that the same spectrum can be produced by different masses, accretion rates and spins, but that these three quantities are related. In other words, having a robust indipendent estimate on one of these three quantities fixes the other two. By using the Black hole mass, estimated by the virial method, we can pinpoint a narrow range of possible spins and accretion rates for the 32 blazars we have studied. For these objects, we found a lower limit of the spin, that must be a/M > 0.6-0.7

  17. Recent heart rate history affects QT interval duration in atrial fibrillation

    PubMed Central

    Riad, Fady S.; Razak, Eathar; Saba, Samir; Shalaby, Alaa; Nemec, Jan

    2017-01-01

    QT interval prolongation is associated with a risk of polymorphic ventricular tachycardia. QT interval shortens with increasing heart rate and correction for this effect is necessary for meaningful QT interval assessment. We aim to improve current methods of correcting the QT interval during atrial fibrillation (AF). Digitized Holter recordings were analyzed from patients with AF. Models of QT interval dependence on RR intervals were tested by sorting the beats into 20 bins based on corrected RR interval and assessing ST-T variability within the bins. Signal-averaging within bins was performed to determine QT/RR dependence. Data from 30 patients (29 men, 69.3±7.3 years) were evaluated. QT behavior in AF is well described by a linear function (slope ~0.19) of steady-state corrected RR interval. Corrected RR is calculated as a combination of an exponential weight function with time-constant of 2 minutes and a smaller “immediate response” component (weight ~ 0.18). This model performs significantly (p<0.0001) better than models based on instantaneous RR interval only including Bazett and Fridericia. It also outperforms models based on shorter time-constants and other previously proposed models. This model may improve detection of repolarization delay in AF. QT response to heart rate changes in AF is similar to previously published QT dynamics during atrial pacing and in sinus rhythm. PMID:28273109

  18. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    SciTech Connect

    Montgomery, M. M.

    2009-11-01

    accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.

  19. Pouring 'Cold Water' on Hot Accretion

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1995-09-01

    was concluded that the textures must have formed during cooling after hot accretion. However, because spinodal decomposition textures develop over the temperature range 1400-1100 K [14,15] and type-4 and -5 OC were probably not heated above 1000 K and 1050 K, respectively [16], these textures are probably relicts of chondrule formation. It was also suggested [14] that compositional zoning in pyroxenes indicates that type-3 OC cooled more rapidly than type-4 to -5 OC. However, OC metallographic cooling rates are not correlated with petrologic type [17]. Furthermore, experimental data [13] show that rare thick opx lamellae in H4 Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid cooling (1700 to 1000 K within days to weeks) [18]; by analogy, it was proposed that all H3-6 chondrites containing polycrystalline taenite cooled rapidly from 1700 K [4], an idea inconsistent with prograde metamorphism. However, cooling rates in equilibrated chondrites that were slow enough to permit significant growth of kamacite would erase prior solidification zoning in taenite by solid-state diffusion [19,20]. This hypothesis, confirmed by computer modeling [21], invalidates the assumption that equilibrated OC containing polycrystalline taenite cooled rapidly. Polycrystalline taenite is most likely a pre-metamorphic relict. Heterogeneous metal grains. Compositionally and texturally heterogeneous metal grains in L6 Bruderheim are unlikely to have survived solid-state diffusion during prograde metamorphism [22]; these authors favored hot accretion followed by low-temperature annealing. However, Bruderheim is a fragmental breccia of shock

  20. Impact-induced melting during accretion of the Earth

    NASA Astrophysics Data System (ADS)

    de Vries, Jellie; Nimmo, Francis; Melosh, H. Jay; Jacobson, Seth A.; Morbidelli, Alessandro; Rubie, David C.

    2016-12-01

    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parameterised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's accretion depends strongly on the lifetime of impact-generated magma oceans compared to the time interval between large impacts. In addition, such results depend on starting parameters in the N-body simulations, such as the number and initial mass of embryos. Thus, there is the potential for combining the results, such as those presented here, with multistage core formation models to better constrain the accretional history of the Earth.

  1. Accreting planets as dust dams in 'transition' disks

    SciTech Connect

    Owen, James E.

    2014-07-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10{sup –9}-10{sup –8} M {sub ☉} yr{sup –1}), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M{sub J} ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  2. Fighting for accretion: the origing of low states in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Long, Knox; Rodriguez-Gil, Pablo; Schmidtobreick, Linda; Gaensicke, Boris

    2010-02-01

    SW Sextantis stars are fundamental to understanding how cataclysmic variables evolve. Their maverick behavior and unexplained accumulation in the orbital period range 3-4 h, about to enter the ``period gap'' where mass transfer is predicted to cease until a period of 2 h is reached, challenge the current evolution theory. To characterize these systems better, we need to determine the nature of the accreting white dwarf and the more normal donor star. But they are usually invisible due to the extreme accretion luminosity these systems normally show. The only chances of characterizing the stars in the system are during rare ``low states'', when the mass transfer rate reaches a minimum for months and the stars are exposed to observations and, therefore, binary parameters measurement. Only dynamical mass measurements can address the evolutionary status. This is a proposal to continue to monitor the brightness of a select group of SW Sextantis stars begun when STScI was a member of the SMARTS consortium to determine their long-term accretion history and, to provide warning when they are entering faint states. The data are essential to characterize the recurrence and duration of these states (likely related to magnetic cycles in the donor star), and trigger our TOO programs in 8-m class telescopes.

  3. Reaction rates, depositional history and sources of indium in sediments from Appalachian and Canadian Shield lakes

    NASA Astrophysics Data System (ADS)

    Tessier, André; Gobeil, Charles; Laforte, Lucie

    2014-07-01

    Sediment cores were collected at the deepest site of twelve headwater lakes from the Province of Québec, Canada that receive contaminants only from atmospheric deposition, either directly to the lake surface or indirectly from the watershed. Several of the lakes are located within relatively short distance (<40 km) and others at more than 200 km from potential sources of contamination. The sediments were dated and analyzed for In and other elements including Fe, Mn, Al and organic C. Fe-rich authigenic material was collected on Teflon sheets inserted vertically into the sediments at the only study site whose hypolimnion remains perennially oxic. Porewater samples collected at the coring site of four of the lakes were also analyzed for In and other solutes including sulfide, sulfate, Fe, Mn, inorganic and organic C and major ions. The porewater In profiles display concentration gradients at or below the sediment-water interface. Modeling these profiles with a one-dimensional transport-reaction equation assuming steady state allows definition of depth intervals (zones) where In is either released to or removed from porewater and quantification of net In reactions rates in each zone. The position of the In consumption zones, the shape of the vertical profiles of dissolved In, sulfide and iron, as well as thermodynamic calculations of saturation states collectively suggest that In(OH)3(s) and In2S3(s) do not precipitate in the sediments and that adsorption of In onto sedimentary FeS(s) does not occur. However, similarities in the In and Fe porewater profiles, and the presence of In in the authigenic Fe-rich solids, reveal that part of the In becomes associated with authigenic Fe oxyhydroxides in the perennially oxic lake and is coupled to the Fe redox cycling. Comparison of the In/Corg and In/Fe molar ratios in the authigenic Fe-rich material and in surface sediments (0-0.5 cm) of this lake suggests that most non-lithogenic In was bound to humic substances. From the

  4. Chaotic cold accretion on to black holes in rotating atmospheres

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat< 1. Extended multiphase filaments condense out of the hot phase via thermal instability (TI) and rain toward the black hole, boosting the accretion rate up to 100 times the Bondi rate (Ṁ• ~ Ṁcool). Initially, turbulence broadens the angular momentum distribution of the hot gas, allowing the cold phase to condense with prograde or retrograde motion. Subsequent chaotic collisions between the cold filaments, clouds, and a clumpy variable torus promote the cancellation of angular momentum, leading to high accretion rates. As turbulence weakens (Tat > 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images

  5. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  6. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  7. Forsterite dissolution rates in Mg-sulfate-rich Mars-analog brines and implications of the aqueous history of Mars

    NASA Astrophysics Data System (ADS)

    Albright Olsen, Amanda; Hausrath, Elisabeth M.; Rimstidt, J. Donald

    2015-03-01

    High salinity brines, although rare on Earth's surface, may have been important in the geologic history of Mars. Increasing evidence suggests the importance of liquid brines in multiple locations on Mars. In order to interpret the effect of high ionic strength brines on olivine dissolution, which is widely present on Mars, 47 new batch reactor experiments combined with 35 results from a previous study conducted at 25°C from 1 < pH < 4 in magnesium sulfate, sodium sulfate, magnesium nitrate, and potassium nitrate solutions with ionic strengths as high as 12 m show that very high ionic strength brines have an inhibitory effect of forsterite dissolution rates. Multiple linear regression analysis of the data suggests that the inhibition in dissolution rates is due to decreased water activity at high ionic strengths. Regression models also show that mMg up to 4 m and mSO4 up to 3 m have no effect on forsterite dissolution rates. The effect of decreasing dissolution rates with decreasing aH2O is consistent with the idea that water acts as a ligand that participates in the dissolution process. Less available water to participate in the dissolution reaction results in a slower dissolution rate. Multiple linear regression analysis of the data produces the rate equation log r = -6.81 - 0.52pH + 3.26log aH2O. Forsterite in dilute solutions with a water activity of one dissolves twice as fast as those in brines with a water activity of 0.8.

  8. Meta-stable low-level accretion rate states or neutron star crust cooling in the Be/X-ray transients V0332+53 and 4U 0115+63

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Degenaar, N.

    2016-11-01

    The Be/X-ray transients V0332+53 and 4U 0115+63 exhibited giant, type-II outbursts in 2015. Here we present Swift/XRT follow-up observations at the end of those outbursts. Surprisingly, the sources did not decay back to their known quiescent levels but stalled at a (slowly decaying) meta-stable state with luminosities a factor ˜10 above that observed in quiescence. The spectra in these states are considerably softer than the outburst spectra and appear to soften in time when the luminosity decreases. The physical mechanism behind these meta-stable states is unclear and they could be due to low-level accretion (either directly on to the neutron stars or on to their magnetospheres) or due to cooling of the accretion-heated neutron star crusts. Based on the spectra, the slowly decreasing luminosities, and the spectral softening, we favour the crust cooling hypothesis but we cannot exclude the accretion scenarios. On top of this meta-stable state, weak accretion events were observed that occurred at periastron passage and may thus be related to regular type-I outbursts.

  9. Modeling Anomalous Crustal Accretion at Spreading Zones

    NASA Astrophysics Data System (ADS)

    Schmeling, H.; Marquart, G.

    2003-12-01

    The thermal and seismic structure of normal oceanic crust or anomalous crust such as Iceland depends on the mode of melt extraction from the mantle and its emplacement within or on top of the crust. We model crustal accretion by a two fold approach. In a 2D spreading model with anomalous mantle temperature beneath the ridge we solve the Navier-Stokes-, the heat tansport, the mass conservation and the melting equations to determine the enhanced melt production beneath the ridge. This melt is extracted and emplaced on top of the model to form the crust. Two cases are distinguished: a) Extruded crustal material is taken out of the model and is only advected according to the spreading of the plate, b) extruded material is fed back into the model from the top to mimic isostatic subsidence of extruded crust. We find that the feed back of case b) is only moderate. For example, if extruded crustal material as thick as 40 km is fed back into the model, the melting region is depressed downward only by as much as 10km, and the total amount of generated melt is reduced by about 20 %. On the other hand, the upper 30 km of the model is cooled considerably by several 100 degrees. A second set of models focuses on the details of crustal accretion without explicitly solving for the melting and extraction. Knowing the spreading rate, the rate of crustal production can be estimated, but the site of emplacement is not obvious. For an anomalous crust such as Iceland we define four source regions of crustal accretion: surface extrusion, intrusion in fissure swarms at shallow depth connected to volcanic centres, magma chambers at shallow to mid-crustal level, and a deep accretion zone, where crust is produced by widespread dyke and sill emplacement and underplating. We solve the Navier-Stokes-, the heat tansport and the mass conservation equations and prescribe different functions in space and time for crustal production in the four defined regions. The temperature of the imposed

  10. X-ray Measurements of Variable Accretion onto the Young Star TW Hydrae

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.; Cranmer, S. R.; Dupree, A. K.; Wolk, S. J.; Guenther, H. M.

    2013-06-01

    We report X-ray line ratio diagnostics of the electron temperature, electron density and hydrogen column density observed from the classical T Tauri star (CTTS) TW Hydrae using the High Energy Transmission Grating (HETG) spectrometer onboard Chandra. Applying a classical model of magnetically channeled flow from an accretion disk onto the stellar surface, and making the assumption that the absorber of the X-ray shock is the accreting stream itself, we are able to determine all the properties of the accretion, namely the mass accretion rate, stellar magnetic field strength, disk truncation radius, and surface filling factor. We find that the diagnostic ratios, and thus the accretion parameters, are variable, lending support to the absorption assumption. We also report X-ray and optical signatures that respond to the variable accretion, with timescales suggesting the response of the stellar atmosphere to the impact of accretion.

  11. Wind-accretion Disks in Wide Binaries, Second-generation Protoplanetary Disks, and Accretion onto White Dwarfs

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-02-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10-5-10-3 M ⊙, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ⊙. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  12. AGN Accretion Physics: Insights from K2

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    We propose to use Kepler K2 mission observations of 1800 supermassive black holes at the centers of galaxies (Active Galactic Nuclei; AGN) to test models for accretion physics, to study the relationship between variability and other AGN properties such as accretion rate, and to guide methods for detecting and classifying AGN in future time-domain surveys. AGN exhibit optical brightness fluctuations on timescales from below an hour up to many years. These fluctuations are determined by the physics of accretion of matter onto black holes from their galactic environment. By observing variability on timescales down to below an hour, Kepler probes the accretion region on length scales that are too small to be directly imaged using conventional telescopes. These data allow us to test competing models for accretion physics that make different predictions for the statistics of variability. Our previous work provides strong evidence that models of AGN variability that work on long timescale data are not adequate to describe the full range of fluctuation timescales probed by Kepler. We will analyze the light curves of 1800 AGN that have been monitored by Kepler during recent and ongoing K2 campaigns. These objects span a large range of luminosity and AGN type, thus allowing study of the relationship between variability and other physical properties. We will characterize the statistics of AGN variability using state-of-the-art methods of time series analysis that are appropriate for quantifying the stochastic behavior of AGN. This analysis builds on our previous work in which we developed and tested new analysis software that extracts the full information content of these light curves and will enable several key outcomes: (1) Measurement of the relationship between types of AGN and their variability. (2) Tests for dependence of variability on accretion rate. (3) Investigation of changes in variability behavior that point to changes in the mode of accretion. (4) Correlations

  13. FITDisk: Cataclysmic Variable Accretion Disk Demonstration Tool

    NASA Astrophysics Data System (ADS)

    Wood, Matthew A.; Dolence, J.

    2013-05-01

    FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra.

  14. Dynamics of core accretion

    DOE PAGES

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providing spatial resolutionmore » on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as

  15. Dynamics of core accretion

    SciTech Connect

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling

  16. High-Dimensional Coexistence of Temperate Tree Species: Functional Traits, Demographic Rates, Life-History Stages, and Their Physical Context

    PubMed Central

    McMahon, Sean M.; Metcalf, Charlotte J. E.; Woodall, Christopher W.

    2011-01-01

    Theoretical models indicate that trade-offs between growth and survival strategies of tree species can lead to coexistence across life history stages (ontogeny) and physical conditions experienced by individuals. There exist predicted physiological mechanisms regulating these trade-offs, such as an investment in leaf characters that may increase survival in stressful environments at the expense of investment in bole or root growth. Confirming these mechanisms, however, requires that potential environmental, ontogenetic, and trait influences are analyzed together. Here, we infer growth and mortality of tree species given size, site, and light characteristics from forest inventory data from Wisconsin to test hypotheses about growth-survival trade-offs given species functional trait values under different ontogenetic and environmental states. A series of regression analyses including traits and rates their interactions with environmental and ontogenetic stages supported the relationships between traits and vital rates expected from the expectations from tree physiology. A combined model including interactions between all variables indicated that relationships between demographic rates and functional traits supports growth-survival trade-offs and their differences across species in high-dimensional niche space. The combined model explained 65% of the variation in tree growth and supports a concept of community coexistence similar to Hutchinson's n-dimensional hypervolume and not a low-dimensional niche model or neutral model. PMID:21305020

  17. Gas accretion from halos to disks: observations, curiosities, and problems

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-08-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  18. Fate of accreting white dwarfs: Type I supernovae vs collapse

    SciTech Connect

    Nomoto, Ken'ichi

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs.

  19. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  20. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  1. Freddi: Fast Rise Exponential Decay accretion Disk model Implementation

    NASA Astrophysics Data System (ADS)

    Malanchev, K. L.; Lipunova, G. V.

    2016-10-01

    Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

  2. TURBULENT MIXING ON HELIUM-ACCRETING WHITE DWARFS

    SciTech Connect

    Piro, Anthony L.

    2015-03-10

    An attractive scenario for producing Type Ia supernovae (SNe Ia) is a double detonation, where detonation of an accreted helium layer triggers ignition of a C/O core. Whether or not such a mechanism can explain some or most SNe Ia depends on the properties of the helium burning, which in turn is set by the composition of the surface material. Using a combination of semi-analytic and simple numerical models, I explore when turbulent mixing due to hydrodynamic instabilities during the accretion process can mix C/O core material up into the accreted helium. Mixing is strongest at high accretion rates, large white dwarf (WD) masses, and slow spin rates. The mixing would result in subsequent helium burning that better matches the observed properties of SNe Ia. In some cases, there is considerable mixing that can lead to more than 50% C/O in the accreted layer at the time of ignition. These results will hopefully motivate future theoretical studies of such strongly mixed conditions. Mixing also has implications for other types of WD surface explosions, including the so-called .Ia supernovae, the calcium-rich transients (if they arise from accreting WDs), and metal-enriched classical novae.

  3. Observational Tests of the Picture of Disk Accretion

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.

    2014-09-01

    In this chapter, I present a summary of observational tests of the basic picture of disk accretion. An emphasis is placed on tests relevant to black holes, but many of the fundamental results are drawn from studies of other classes of systems. Evidence is discussed for the basic structures of accretion flows. The cases of systems with and without accretion disks are discussed, as is the evidence that disks actually form. Also discussed are the hot spots where accretion streams impact the disks, and the boundary layers in the inner parts of systems where the accretors are not black holes. The nature of slow, large amplitude variability is discussed. It is shown that some of the key predictions of the classical thermal-viscous ionization instability model for producing outbursts are in excellent agreement with observational results. It is also show that there are systems whose outbursts are extremely difficult to explain without invoking variations in the rate of mass transfer from the donor star into the outer accretion disk, or tidally induced variations in the mass transfer rates. Finally, I briefly discuss recent quasar microlensing measurements which give truly independent constraints on the inner accretion geometry around black holes.

  4. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    NASA Astrophysics Data System (ADS)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  5. Giant planet formation with pebble accretion

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2014-05-01

    In the core accretion model for giant planet formation, a solid core forms by coagulation of dust grains in a protoplanetary disk and then accretes gas from the disk when the core reaches a critical mass. Both stages must be completed in a few million years before the disk gas disperses. The slowest stage of this process may be oligarchic growth in which a giant-planet core grows by sweeping up smaller, asteroid-size planetesimals. Here, we describe new numerical simulations of oligarchic growth using a particle-in-a-box model. The simulations include several processes that can effect oligarchic growth: (i) planetesimal fragmentation due to mutual collisions, (ii) the modified capture rate of planetesimals due to a core’s atmosphere, (iii) drag with the disk gas during encounters with the core (so-called “pebble accretion”), (iv) modification of particle velocities by turbulence and drift caused by gas drag, (v) the presence of a population of mm-to-m size “pebbles” that represent the transition point between disruptive collisions between larger particles, and mergers between dust grains, and (vi) radial drift of small objects due to gas drag. Collisions between planetesimals rapidly generate a population of pebbles. The rate at which a core sweeps up pebbles is controlled by pebble accretion dynamics. Metre-size pebbles lose energy during an encounter with a core due to drag, and settle towards the core, greatly increasing the capture probability during a single encounter. Millimetre-size pebbles are tightly coupled to the gas and most are swept past the core during an encounter rather than being captured. Accretion efficiency per encounter increases with pebble size in this size range. However, radial drift rates also increase with size, so metre-size objects encounter a core on many fewer occasions than mm-size pebbles before they drift out of a region. The net result is that core growth rates vary weakly with pebble size, with the optimal diameter

  6. The Effect of Transient Accretion on the Spin-up of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip; Chakrabarty, Deepto

    2017-01-01

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  7. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    SciTech Connect

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  8. Do variations in substitution rates and male mutation bias correlate with life-history traits? A study of 32 mammalian genomes.

    PubMed

    Wilson Sayres, Melissa A; Venditti, Chris; Pagel, Mark; Makova, Kateryna D

    2011-10-01

    Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genome-wide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life-history traits on substitution rates.

  9. Energy budgets, growth rates, and thermal constraints: toward an integrative approach to the study of life-history variation.

    PubMed

    Niewiarowski, P H

    2001-04-01

    Variation in thermal constraints on activity has been hypothesized to be an important ecological source of geographic variation in growth rates of juvenile eastern fence lizards Sceloporus undulatus. However, most of the evidence to support this hypothesis is either inferential or indirect. In this study, I quantitatively compared thermal constraints on activity and their relationship to growth rates of free-ranging juvenile fence lizards from two extremes of the range of variation in growth rate (Nebraska and New Jersey) used in a reciprocal transplant experiment. I also examined energy allocation made to growth and storage by yearling lizards. Reduced growth rates in New Jersey of normally fast-growing hatchlings from Nebraska were associated with a more stringent thermal constraint on activity corresponding to a 2-3-h shorter predicted daily activity period in New Jersey compared to Nebraska. The thermal constraint on activity was particularly strong (24% less time available in New Jersey compared to Nebraska) during the period when hatchling lizards emerge (August-October). An 8% reduction in total activity time available over the course of a single year was associated with a 7% reduction in the total amount of energy accumulated by lizards in New Jersey. Differences in the total amount of energy available for allocation were also accompanied by differences in how energy was allocated. Lizards from New Jersey had an allocatable energy pool of approximately 40.34 kJ (88% to growth, 12% to storage, and 0% to reproduction). Lizards from Nebraska had an allocatable pool of 43.44 kJ (22% to growth, 18% to storage, and 60% to reproduction). This study joins others in advocating and illustrating an integrative approach to determining the causes and consequences of life-history variation by combining experimental, comparative, and phylogenetic methods in a single system.

  10. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  11. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  12. Diskoseismology: Probing relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Nowak, Michael Allen

    1992-08-01

    Helioseismology has provided a wealth of information about the structure of the solar atmosphere. Little is known, however, about the structure of accretion disks that are thought to exist around black holes and neutron stars. In this thesis we present calculations of modes that are trapped in thin Keplerian accretion disks. We hope to use observations of thes modes to elucidate the structure of the inner relativistic regions of accretion disks. Our calculations assume that the thin disk is terminated by an innermost stable orbit, as would occur around a slowly rotating black hole or weakly magnetized compact neutron star. The dominant relativistic effects, which allow modes to be trapped within the inner region of the disk, are approximated via a modified Newtonian potential. Using the Lagrangian formulation of Friedman and Schutz, we develop a general formalism for investigating the adiabatic oscillations of arbitrary unperturbed disk models. First we consider the special case of acoustic waves in disks with isothermal atmospheres. Next we describe the Lagrangian perturbation vectors in terms of the derivatives of a scalar potential, as has been done by Ipser and Lindblom. Using this potential, we derive a single partial differential equation governing the oscillations of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically we use the potential formalism to compute the g-modes for disks with isothermal atmospheres. Physical arguments show that both the p-modes and g-modes belong to the same family of modes as the p-modes and g-modes in the sun, just viewed in a different parameter regime. With the aid of the Lagrangian formalism we consider possible growth or damping mechanisms and compute the (assumed) relatively small rates of growth or damping of the modes. Specifically, we consider gravitational radiation reaction and

  13. The Standing Accretion Shock Instability: Enhanced Growth in Rotating Progenitors

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Gipson, Emily; Harris, Sawyer; Mezzacappa, Anthony

    2017-02-01

    We investigate the effect of progenitor rotation on the standing accretion shock instability (SASI) using two- and three-dimensional hydrodynamic simulations. We find that the growth rate of the SASI is a near-linearly increasing function of the specific angular momentum in the accreting gas. Both the growth rate and the angular frequency in the two-dimensional model with cylindrical geometry agree well with previous linear stability analyses. When excited by very small random perturbations, a one-armed spiral mode dominates the small rotation rates predicted by current stellar evolution models, while progressively higher-order modes are seen as the specific angular momentum increases.

  14. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  15. X-ray and UV radiation from accreting nonmagnetic degenerate dwarfs. II

    NASA Technical Reports Server (NTRS)

    Kylafis, N. D.; Lamb, D. Q.

    1982-01-01

    Numerical calculations of X-ray and UV emission from accreting nonmagnetic degenerate dwarfs are reported, which span the entire range of accretion rates and stellar masses. Calculations include the effects of bremsstrahlung, Compton cooling, radiation pressure, albedo of the stellar surface, Compton degradation and free-free abscription of the X-ray spectrum by the accreting matter. Maximum X-ray luminosity for degenerate dwarfs undergoing spherical accretion is found to be 2.2 x 10 to the 36th ergs/s, which is little changed if accretion occurs radially over only a fraction of the stellar surface, so that the emitted radiation escapes without significant scattering. The temperature characterizing the X-ray spectra produced by degenerate dwarfs strongly depends on the stellar mass and the accretion rate, and it is suggested that the correlation between spectral temperature and luminosity is an important signature of degenerate X-ray sources.

  16. Modifying two-body relaxation in N-body systems by gas accretion

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan; Sills, Alison; Böker, Torsten

    2013-08-01

    We consider the effects that accretion from the interstellar medium on to the particles of an N-body system has on the rate of two-body relaxation. To this end, we derive an accretion-modified relaxation time by adapting Spitzer's two-component model to include the damping effects of accretion. We consider several different mass- dependences and efficiency factors for the accretion rate, as well as different mass ratios for the two components of the model. The net effect of accretion is to accelerate mass segregation by increasing the average mass bar{m}, since the relaxation time is inversely proportional to bar{m}. Under the assumption that the accretion rate increases with the accretor mass, there are two additional effects that accelerate mass segregation. First, accretion acts to increase the range of any initial mass spectrum, quickly driving the heaviest members to even higher masses. Secondly, accretion acts to reduce the velocities of the accretors due to conservation of momentum, and it is the heaviest members that are affected the most. Using our two-component model, we quantify these effects as a function of the accretion rate, the total cluster mass and the component masses. We conclude by discussing the implications of our results for the dynamical evolution of primordial globular clusters, primarily in the context of black holes formed from the most massive stellar progenitors.

  17. MODELING THE ACCRETION STRUCTURE OF AU Mon

    SciTech Connect

    Atwood-Stone, Corwin; Miller, Brendan P.; Richards, Mercedes T.; Budaj, Jan; Peters, Geraldine J. E-mail: mbrendan@umich.edu E-mail: budaj@ta3.sk

    2012-12-01

    AU Mon is a long-period (11.113 days) Algol-type binary system with a persistent accretion disk that is apparent as double-peaked H{alpha} emission. We present previously unpublished optical spectra of AU Mon which were obtained over 20 years from 1991-2011 with dense orbital phase coverage. We utilize these data, along with archival UV spectra, to model the temperature and structure of the accretion disk and the gas stream. Synthetic spectral profiles for lines including H{alpha}, H{beta}, and the Al III and Si IV doublets were computed with the Shellspec program. The best match between the model spectra and the observations is obtained for an accretion disk of inner/outer radius 5.1/23 R {sub Sun }, thickness of 5.2 R {sub Sun }, density of 1.0 Multiplication-Sign 10{sup -13} g cm{sup -3}, and maximum temperature of 14,000 K, along with a gas stream at a temperature of {approx}8000 K transferring {approx}2.4 Multiplication-Sign 10{sup -9} M {sub Sun} yr{sup -1}. We show H{alpha} Doppler tomograms of the velocity structure of the gas, constructed from difference profiles calculated through sequentially subtracting contributions from the stars and accretion structures. The tomograms provide independent support for the Shellspec modeling, while also illustrating that residual emission at sub-Keplerian velocities persists even after subtracting the disk and stream emission. Spectral variability in the H{alpha} profile beyond that expected from either the orbital or the long-period cycle is present on both multi-week and multi-year timescales, and may reflect quasi-random changes in the mass transfer rate or the disk structure. Finally, a transient UV spectral absorption feature may be modeled as an occasional outflow launched from the vicinity of the disk-stream interaction region.

  18. ELECTROMAGNETIC SPINDOWN OF A TRANSIENT ACCRETING MILLISECOND PULSAR DURING QUIESCENCE

    SciTech Connect

    Melatos, A.; Mastrano, A. E-mail: alpham@unimelb.edu.au

    2016-02-10

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751–305, SAX J1808.4–3658, and Swift J1756.9–2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  19. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  20. Life history as a predictor of salamander recovery rate from timber harvest in southern appalachian forests, USA.

    PubMed

    Connette, Grant M; Semlitsch, Raymond D

    2013-12-01

    Forest management often represents a balance between social, economic, and ecological objectives. In the eastern United States, numerous studies have established that terrestrial salamander populations initially decline in abundance following timber harvest, yet the large-scale and long-term consequences are relatively unknown. We used count data from terrestrial survey points to examine the relation between salamander abundance and historic timber harvest while accounting for imperfect detection of individuals. Overall, stream- and terrestrial-breeding salamanders appeared to differ by magnitude of population decline, rate of population recovery, and extent of recolonization from surrounding forest. Specifically, estimated abundance of both species groups was positively associated with stand age and recovery rates were predicted to increase over time for red-legged salamanders (Plethodon shermani) and decrease in stream-breeding species. Abundance of stream-breeding salamanders was predicted to reach a peak by 100 years after timber harvest, and the population growth rate of red-legged salamanders was predicted to undergo a significant increase 100 years after harvest. Estimated abundance of stream-breeding salamanders in young forest stands was also negatively associated with the distance to adjacent forest, a result that suggests immigration has a role in the recovery of these species. Our results indicate that salamander abundance in young forest stands may be only modestly lower than in more mature forest but that full recovery from timber harvest may take a substantial amount of time and that species life history may affect patterns of recovery. Historia de Vida como un Vaticinador de la Tasa de Recuperación de una Salamandra a la Colecta de Madera en los Bosques del Sur de los Apalaches, E.U.A.

  1. The Orbital Period of the Accreting Pulsar GX 1+4.

    PubMed

    Pereira; Braga; Jablonski

    1999-12-01

    We report strong evidence for a approximately 304 day periodicity in the spin history of the accretion-powered pulsar GX 1+4 that is most probably associated with the orbital period of the system. We have used data from the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to show a clear periodic modulation of the pulsar frequency from 1991 to date, in excellent agreement with the ephemeris proposed by Cutler, Dennis, & Dolan in 1986. Our results indicate that the orbital period of GX 1+4 is 303.8+/-1.1 days, making it the widest known low-mass X-ray binary system by more than 1 order of magnitude and putting this long-standing question to rest. A likely scenario for this system is an elliptical orbit in which the neutron star decreases its spin-down rate (or even exhibits a momentary spin-up behavior) at periastron passages due to the higher torque exerted by the accretion disk onto the magnetosphere of the neutron star. These results are not inconsistent with either the X-ray pulsed flux light curve measured by BATSE during the same epoch or the X-ray flux history from the All-Sky Monitor on board the Rossi X-Ray Timing Explorer.

  2. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  3. Black hole growth and AGN feedback under clumpy accretion

    NASA Astrophysics Data System (ADS)

    DeGraf, C.; Dekel, A.; Gabor, J.; Bournaud, F.

    2017-04-01

    High-resolution simulations of supermassive black holes in isolated galaxies have suggested the importance of short (∼10 Myr) episodes of rapid accretion caused by interactions between the black hole and massive dense clouds within the host. Accretion of such clouds could potentially provide the dominant source for black hole growth in high-z galaxies, but it remains unresolved in cosmological simulations. Using a stochastic subgrid model calibrated by high-resolution isolated galaxy simulations, we investigate the impact that variability in black hole accretion rates has on black hole growth and the evolution of the host galaxy. We find this clumpy accretion to more efficiently fuel high-redshift black hole growth. This increased mass allows for more rapid accretion even in the absence of high-density clumps, compounding the effect and resulting in substantially faster overall black hole growth. This increased growth allows the black hole to efficiently evacuate gas from the central region of the galaxy, driving strong winds up to ∼2500 km s-1, producing outflows ∼10 × stronger than the smooth accretion case, suppressing the inflow of gas on to the host galaxy, and suppressing the star formation within the galaxy by as much as a factor of 2. This suggests that the proper incorporation of variability is a key factor in the co-evolution between black holes and their hosts.

  4. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  5. TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS

    SciTech Connect

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  6. Warm gas accretion onto the Galaxy

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.

    2009-03-01

    We present evidence that the accretion of warm gas onto the Galaxy today is at least as important as cold gas accretion. For more than a decade, the source of the bright Hα emission (up to 750 mR†) along the Magellanic Stream has remained a mystery. We present a hydrodynamical model that explains the known properties of the Hα emission and provides new insights on the lifetime of the Stream clouds. The upstream clouds are gradually disrupted due to their interaction with the hot halo gas. The clouds that follow plough into gas ablated from the upstream clouds, leading to shock ionisation at the leading edges of the downstream clouds. Since the following clouds also experience ablation, and weaker Hα (100-200 mR) is quite extensive, a disruptive cascade must be operating along much of the Stream. In order to light up much of the Stream as observed, it must have a small angle of attack (≈ 20°) to the halo, and this may already find support in new Hi observations. Another prediction is that the Balmer ratio (Hα/Hβ) will be substantially enhanced due to the slow shock; this will soon be tested by upcoming WHAM observations in Chile. We find that the clouds are evolving on timescales of 100-200 Myr, such that the Stream must be replenished by the Magellanic Clouds at a fairly constant rate (≳ 0.1 M⊙ yr-1). The ablated material falls onto the Galaxy as a warm drizzle; diffuse ionized gas at 104 K is an important constituent of galactic accretion. The observed Hα emission provides a new constraint on the rate of disruption of the Stream and, consequently, the infall rate of metal-poor gas onto the Galaxy. We consider the stability of Hi clouds falling towards the Galactic disk and show that most of these must break down into smaller fragments that become partially ionized. The Galactic halo is expected to have huge numbers of smaller neutral and ionized fragments. When the ionized component of the infalling gas is accounted for, the rate of gas accretion is

  7. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  8. Numerical and experimental study of magnetized accretion phenomena in young stars

    NASA Astrophysics Data System (ADS)

    Khiar, Benjamin; Ciardi, Andrea; Revet, Guilhem; Vinci, Tommaso; Fuchs, Julien; Orlando, Salvatore; Inaf Team; Luli Team; Lerma Team

    2016-10-01

    Newly formed stars accrete mass from the circumstellar disc via magnetized accretion funnels that connect the inner disc regions to the star. The ensuing impact of this free-falling plasma onto the stellar surface generates a strong shock, whose emission is used as a proxy to determine the accretion rates. Observations show that the X-ray luminosity arising from the shock heated plasma at the base of accretion columns is largelybelow the value expected on the basis of optical/UV observations. As a result, current 2D numerical simulations matching X-ray accretion rates cannot reproduce optical accretion rates. To understand the impact of accretion flows on the stellar surface in the presence of a strong magnetic field we have developed laboratory experiments reproducing crucial aspects of the accretion dynamics in Young Stellar Objects. As a model of accretion columns, we use laser-produced super-Alfvenic magnetically confined jets to collide them on solid targets. Here we present results from these experiments and from multi-dimensional MHD simulations. The authors acknowledge the support from the Ile-de-France DIM ACAV, from the LABEX Plas@par and from the ANR Grant SILAMPA.

  9. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  10. Use and abuse of crustal accretion calculations

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Cole, James C.; Stoeser, Douglas B.; Quick, James E.

    1990-01-01

    Recent attempts to calculate the average growth rate of continental crust for the Late Proterozoic shield of Arabia and Nubia are subject to large geological uncertainties, and widely contrasting conclusions result from dissimilar boundary conditions. The four greatest sources of divergence are (1) the extent of 620-920 Ma arc-terrane crust beneath Phanerozoic cover; (2) the extent of pre-920 Ma continental crust within the arc terranes; (3) the amount of postaccretion magmatic addition and erosion; and (4) the aggregate length and average life span of Late Proterozoic magmatic-arc systems that formed the Arabian-Nubian Shield. Calculations restricted to the relatively well known Arabian segment of the Arabian-Nubian Shield result in average crustal growth rates and arc accretion rates comparable to rates for modern arc systems, but we recognize substantial uncertainty in such results. Critical review of available geochemical, isotopic, and geochronological evidence contradicts the often stated notion that intact, pre-920 Ma crust is widespread in the eastern Arabian Shield. Instead, the arc terranes of the region apparently were "contaminated" with sediments derived, in part, from pre-920 Ma crust. Available geologic and radiometric data indicate that the Arabian-Nubian Shield and its "Pan-African" extensions constitute the greatest known volume of arc-accreted crust on Earth that formed in the period 920-620 Ma. Thus, the region may truly represent a disproportionate share of Earth's crustal growth budget for this time period.

  11. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  12. Accretion and canal impacts in a rapidly subsiding wetland II: Feldspar marker horizon technique

    USGS Publications Warehouse

    Cahoon, D.R.; Turner, R.E.

    1989-01-01

    Recent (6-12 months) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in a Spartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr-1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr-1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackish Spatina patens marsh on Louisiana's chenier plain, vertical accretion rates were the same along natural and canal waterways (3-4 mm yr-1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr-1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.

  13. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  14. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  15. Identical metabolic rate and thermal conductance in Rock Sandpiper (Calidris ptilocnemis) subspecies with contrasting nonbreeding life histories

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis

    2013-01-01

    Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper (Calidris ptilocnemis) exhibits the most northerly nonbreeding distribution of any shorebird in the North Pacific, being common during winter in cold, dark locations as far north as upper Cook Inlet, Alaska (61°N). By contrast, the tschuktschorum subspecies migrates to sites ranging from about 59°N to more benign locations as far south as ~37°N. These distributional extremes exert contrasting energetic demands, and we measured common metabolic parameters in the two subspecies held under identical laboratory conditions to determine whether differences in these parameters are reflected by their nonbreeding life histories. Basal metabolic rate and thermal conductance did not differ between subspecies, and the subspecies had a similar metabolic response to temperatures below their thermoneutral zone. Relatively low thermal conductance values may, however, reflect intrinsic metabolic adaptations to northerly latitudes. In the absence of differences in basic metabolic parameters, the two subspecies’ nonbreeding distributions will likely be more strongly influenced by adaptations to regional variation in ecological factors such as prey density, prey quality, and foraging habitat.

  16. Exercise interventions for smokers with a history of alcoholism: exercise adherence rates and effect of depression on adherence.

    PubMed

    Patten, Christi A; Vickers, Kristin S; Martin, John E; Williams, Carl D

    2003-06-01

    This study examined the adherence rates and the effect of depression on adherence in two studies conducted among smokers with a past history of alcoholism. In both studies, subjects participated in a 12-session group-based exercise intervention for smoking cessation. The target quit date (TQD) was Session 8. Participants in Study 1 were 73 smokers (43% female). Exercise instructions began at Session 8 and continued through Session 12. Mean frequency and number of minutes of exercise decreased during the 4 weeks of exercise treatment (P<.001). Study 2, conducted with 18 smokers (50% female), examined the feasibility of commencing exercise at Session 1, well before the TQD. The mean number of minutes exercised increased from Sessions 1 to 12 (P=.013). In both studies, average session attendance was high (82%). Combining subjects from both studies, depressed smokers at baseline reported greater mean frequency of exercise per week than nondepressed smokers (P=.05). The results suggest that depressed smokers can be engaged in an exercise program. Further research is needed to determine if commencing exercise early during treatment, prior to the TQD, improves adherence.

  17. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  18. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  19. Winds and accretion in delta Sagittae

    NASA Astrophysics Data System (ADS)

    Eaton, Joel A.; Hartkopf, William I.; McAlister, Harold A.; Mason, Brian D.

    1995-04-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; MB = 2.9 solar mass and MM = 3.8 solar mass; and RB = 2.6 solar radius and RM = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 -8 solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized metals. This emission seems to be

  20. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular

  1. Chondrule formation in the radiative accretional shock

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, T. V.; Ip, W.

    1994-01-01

    The physical, mineralogical, and isotopic properties of chondrules strongly indicate that they were formed by the rapid melting and resolidification of preexisting solids composed of primitive material. The chondrule precursors were heated to temperatures of about 1800 K in short high-temperature events, followed by cooling with a rate of 10(exp 2)-10(exp 3) K/hr. A heat input of about 1500 J/g is required to heat chondrule precursors to such a temperature and melt them. Lightning discharges and flares in the solar nebula, and heating of the chondrule precursors by friction with gas decelerated in the accretional shock or in a shock (of unspecified origin) within the solar nebula, have been discussed as possible mechanisms for chondrule formation. One advantage of chondrule formation in large-scale shocks is that a lot of dust material can be processed. An accretional shock, which is produced by infalling gas of the presolar cloud when it collides with the solar nebula, belongs to this type of shock. In 1984 Wood considered the possibility of chondrule formation in the accretional shock by heating of chondrule precursors by gas drag. He concluded that the density in the accreting material is much lower than needed to melt silicates at the distance of the asteroid belt if the accreting matter had the cosmic ratio of dust to gas, and the mass of the solar nebula did not exceed 2 solar mass units. Melting of chondrule precursors is difficult because of their effective cooling by thermal radiation. Suppression of the radiative cooling of individual grains in dust swarms, which are opaque to thermal emission, was considered to be the only possible means of chondrule formation in solar nebula shocks. Previous models of solid grain melting in solar nebula shocks have neglected gas cooling behind the shock front, i.e., they considered adiabatic shocks. In this paper we show that large dust grains could be heated much stronger than was supposed by these authors, because of

  2. Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru; Seghedi, Ioan; Pécskay, Zoltán; Mirea, Viorel

    2015-02-01

    Based on a new set of K-Ar age data and detailed field observations, the eruptive history of the youngest volcano in the whole Carpathian-Pannonian region was reconstructed. Ciomadul volcano is a dacitic dome complex located at the southeastern end of the Călimani-Gurghiu-Harghita Neogene volcanic range in the East Carpathians. It consists of a central group of extrusive domes (the Ciomadul Mare and Haramul Mare dome clusters and the Köves Ponk dome) surrounded by a number of isolated peripheral domes, some of them strongly eroded (Bálványos, Puturosul), and others topographically well preserved (Haramul Mic, Dealul Mare). One of the domes (Dealul Cetăţii) still preserves part of its original breccia envelope. A large number of bread-crust bombs found mostly along the southern slopes of the volcano suggest that the dome-building activity at Ciomadul was punctuated by short Vulcanian-type explosive events. Two late-stage explosive events that ended the volcanic activity of Ciomadul left behind two topographically well-preserved craters disrupting the central group of domes: the larger-diameter, shallower, and older Mohoş phreatomagmatic crater and the smaller, deeper and younger Sf. Ana (sub)Plinian crater. Phreatomagmatic products of the Mohoş center, including accretionary lapilli-bearing base-surge deposits and poorly sorted airfall deposits with impact sags, are known close to the eastern crater rim. A key section studied in detail south of Băile Tuşnad shows the temporal succession of eruptive episodes related to the Sf. Ana (sub)Plinian event, as well as relationships with the older dome-building stages. The age of this last eruptive event is loosely constrained by radiocarbon dating of charcoal pieces and paleosoil organic matter at ca. 27-35 ka. The age of the Mohoş eruption is not constrained, but we suggest that it is closely related to the Sf. Ana eruption. The whole volcanic history of Ciomadul spans over ca. 1 Myr, starting with the building

  3. Accretion-driven star formation in central dominant galaxies in X-ray clusters

    NASA Astrophysics Data System (ADS)

    Sarazin, C. L.; Oconnell, R. W.

    1983-05-01

    Analytical and observational evidence for the formation of low-mass stars in the gas accreting in the central dominant galaxies in clusters is presented. Observations of the (U-V) and (K-V) color gradients in accreting galaxies are suggested to reveal colors altered by the appearance of young stars, e.g., the excess blue and the A star spectrum detected in NGC 1275. Low-temperature X ray line emissions from accreting galaxies have been partially surveyed with the result that 10 pct of the brightest cluster galaxies in a magnitude-limited sample show evidence of significant accretion. Photometric data from the quasar 3C 48, located in a galaxy with a very blue population, also suggests low-mass star formation, especially when compared to measurements of NGC 1275, which has the highest accretion rate among observed central dominant cluster galaxies. The quasar, however, would not be accreting interstellar gas.

  4. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bidwell, C. S.

    1990-01-01

    An effort to develop a three-dimensional ice accretion modeling method is initiated. This first step toward creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flowfields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is intended as a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3D method for a MS-317 swept wing geometry are projected onto a 2D plane normal to the wing leading edge and compared to 2D results for the same geometry. These results indicate that the flowfield over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3D calculation.

  5. Radiative efficiency of hot accretion flow and the radio/X-ray correlation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo

    2016-02-01

    Significant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.

  6. The Influence of Outflow in Supercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Zahra Zeraatgari, Fatemeh; Abbassi, Shahram; Mosallanezhad, Amin

    2016-06-01

    We solve the radiation-hydrodynamic equations of supercritical accretion flows in the presence of radiation force and outflow by using self-similar solutions. Similar to the pioneering works, in this paper we consider a power-law function for mass inflow rate as \\dot{M}\\propto {r}s. We found that s = 1 when the radiative cooling term is included in the energy equation. Correspondingly, the effective temperature profile with respect to the radius was obtained as {T}{eff}\\propto {r}-1/2. In addition, we investigated the influence of the outflow on the dynamics of the accretion flow. We also calculated the continuum spectrum emitted from the disk surface as well as the bolometric luminosity of the accretion flow. Furthermore, our results show that the advection parameter, f, depends strongly on mass inflow rate.

  7. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    NASA Astrophysics Data System (ADS)

    Sakurai, Y.; Vorobyov, E. I.; Hosokawa, T.; Yoshida, N.; Omukai, K.; Yorke, H. W.

    2016-06-01

    The formation of supermassive stars (SMSs) is a potential pathway to seed supermassive black holes in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper, we study the evolution of an accreting SMS and its UV emissivity with realistic variable accretion from a circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the protostellar accretion until the stellar mass exceeds 104 M⊙. The disc fragments by gravitational instability, creating many clumps that migrate inward to fall on to the star. The resulting accretion history is highly time-dependent: short episodic accretion bursts are followed by longer quiescent phases. We show that the disc for the direct collapse model is more unstable and generates greater variability than normal Pop III cases. Next, we conduct a stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the variable accretion, the stellar radius monotonically increases with almost constant effective temperature at Teff ≃ 5000 K as the stellar mass increases. The resulting UV feedback is too weak to hinder accretion due to the low flux of stellar UV photons. The insensitivity of stellar evolution to variable accretion is attributed to the fact that time-scales of variability, ≲103 yr, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS collapses to produce a black hole by the general relativistic instability after the mass reaches ≳105 M⊙.

  8. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  9. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Urry, C. Megan

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability.

  10. Variation in cadmium uptake, feeding rate, and life-history effects in the gastropod potamopyrgus antipodarum: linking toxicant effects on individuals to the population level.

    PubMed

    Jensen, A; Forbes, V E; Parker, E D

    2001-11-01

    A life-table response experiment was performed to investigate the effects of sediment-bound cadmium on individual life-history traits and feeding rates of four clones of Potamopyrgus antipodarum. Demographic effects were evaluated using a simple two-stage model to estimate population growth rate (lambda). Decomposition analysis was performed to investigate the contributions of each of the affected life-history traits to the effects observed on lambda, and elasticity analysis was applied to examine the relative sensitivity of lambda to changes in each of the life-history traits. Interclonal differences in tolerance to sediment-bound cadmium were statistically significant but were within an order of magnitude. There were no consistent patterns among clones in terms of which individual life-history trait was most or least sensitive to cadmium exposure. The relative performance of clones did not rank consistently across the cadmium gradient and was dependent on which trait was measured. Although lambda was most sensitive to changes in survival terms, the effects of cadmium on time to first reproduction and reproductive output were the major causes of reductions in lambda. Large percent reductions in some of the individual life-history traits were attenuated at the population level, but very small effects on population growth rate were statistically significant.

  11. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    NASA Astrophysics Data System (ADS)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T0 and pressure P0. At low temperatures ({T}0≲ 300–1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface–interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}ȯ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04∼ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L∼ {10}-4 {L}ȯ .

  12. Migration of accreting planets in radiative discs from dynamical torques

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to

  13. Accretion Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    D'Alessio, Paola

    1996-04-01

    A method to calculate the structure and brightness distribution of accretion disks surrounding low and intermediate mass young stars is introduced and discussed. The method includes a realistic treatment of the energy transport mechanisms and disk heating by radiation from external sources. The disk is assumed steady, geometrically thin and in vertical hydrostatic equilibrium. The turbulent viscosity coefficient is expressed using the α prescription and the α parameter and the mass accretion rate are assumed to be constant through the disk. Energy is transported in the vertical direction by: (a) a turbulent flux, computed self-consistently with the viscosity coefficient used to describe the viscous energy dissipation, (b) radiation, using the first moments of the transfer equation, the Eddington approximation, and the Rosseland and Planck Mean Opacities, and (c) convection, taking into account that the convective elements, not necessarily optically thick, lose energy by radiation and turbulent flux. This treatment of the energy transport mechanisms differs from previous work in this field, allowing one to extend, with confidence, the calculation of the disk structure to optically thin regimes. The heating mechanisms considered, which affect the disk's structure and emission, are stellar radiation and a circumstellar envelope which reprocesses and scatters radiation from the star and from the disk itself. In addition to a detailed numerical calculation, an analytical self-consistent formulation of the irradiation of the disk is given. This analytical formulation allows one to understand and extend the numerical results. To evaluate the potential of the method presented in this thesis, a set of models of viscous non-irradiated and irradiated disks are computed. Their predictions are compared with observations of young stellar sources likely to have disks. Given the disk structure and specifying its orientation with respect to the line of sight, the specific

  14. Inverse characterization method for mechanical properties of strain/strain-rate/temperature/temperature-history dependent steel sheets and its application for hot press forming

    NASA Astrophysics Data System (ADS)

    Kim, Hyunki; Kim, Dongun; Ahn, Kanghwan; Yoo, Donghoon; Son, Hyun-Sung; Kim, Gyo-Sung; Chung, Kwansoo

    2015-09-01

    In order to measure the flow curves of steel sheets at high temperatures, which are dependent on strain and strain rate as well as temperature and temperature history, a tensile test machine and specimens were newly developed in this work. Besides, an indirect method to characterize mechanical properties at high temperatures was developed by combining experiments and its numerical analysis, in which temperature history were also accounted for. Ultimately, a modified Johnson-Cook type hardening law, accounting for the dependence of hardening behavior with deterioration on strain rate as well as temperature, was successfully developed covering both pre- and post-ultimate tensile strength ranges for a hot press forming steel sheet. The calibrated hardening law obtained based on the inverse characterization method was then applied and validated for hot press forming of a 2-D mini-bumper as for distributions of temperature history, thickness and hardness considering the continuous cooling transformation diagram. The results showed reasonably good agreement with experiments

  15. Recent accretion in two managed marsh impoundments in coastal Louisiana

    USGS Publications Warehouse

    Cahoon, D.R.

    1994-01-01

    Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.

  16. Accretion physics: It's not U, it's B

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    2017-03-01

    Black holes grow by accreting mass, but the process is messy and redistributes gas and energy into their environments. New evidence shows that magnetic processes mediate both the accretion and ejection of matter.

  17. Workshop on the Early Earth: The Interval from Accretion to the Older Archean

    NASA Technical Reports Server (NTRS)

    Burke, K. (Editor); Ashwal, L. D. (Editor)

    1985-01-01

    Presentation abstracts are compiled which address various issues in Earth developmental processes in the first one hundred million years. The session topics included: accretion of the Earth (processes accompanying immediately following the accretion, including core formation); impact records and other information from planets and the Moon relevant to early Earth history; isotopic patterns of the oldest rocks; and igneous, sedimentary, and metamorphic petrology of the oldest rocks.

  18. Thermal History of São João Nepomuceno (IVA) Iron Meteorite Inferred from Ganguly's Cooling Rate Model and 57Fe Mössbauer Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    dos Santos, E.; Scorzelli, R. B.; Varela, M. E.

    2016-08-01

    The intracrystalline Fe-Mg distribution in orthopyroxenes, as measured by means of 57Fe Mössbauer spectroscopy and associated to Ganguly’s cooling rate numerical method, are used to infer the thermal history of São João Nepomuceno (IVA) meteorite.

  19. Neutrinos from Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Torres, Diego F.; McCauley, Thomas P.; Romero, Gustavo E.; Aharonian, Felix A.

    2003-05-01

    The magnetospheres of accreting neutron stars develop electrostatic gaps with huge potential drops. Protons and ions, accelerated in these gaps along the dipolar magnetic field lines to energies greater than 100 TeV, can impact onto the surrounding accretion disk. A proton-induced cascade develops, and charged pion decays produce ν emission. With extensive disk shower simulations using DPMJET and GEANT4, we have calculated the resulting ν spectrum. We show that the spectrum produced out of the proton beam is a power law. We use this result to propose accretion-powered X-ray binaries (with highly magnetized neutron stars) as a new population of pointlike ν sources for kilometer-scale detectors such as ICECUBE. As a particular example, we discuss the case of A0535+26. We show that ICECUBE should find A0535+26 to be a periodic ν source, one for which the formation and loss of its accretion disk can be fully detected. Finally, we comment briefly on the possibility that smaller telescopes such as AMANDA could also detect A0535+26 by folding observations with the orbital period.

  20. Elemental Fractionation During Rapid Accretion of the Moon Triggered by a Giant Impact

    NASA Technical Reports Server (NTRS)

    Abe, Y.; Zahnle, K. J.; Hashimoto, A.

    1998-01-01

    . Viewed globally, the accretional energy is about half the energy required to vaporize the entire Moon. Thus to first approximation, half of the Moon-forming material can be vaporized and lost during accretion. During this process, we would expect preferential loss of relatively volatile elements. Escape will retard the rate of accretion. To test these ideas, we computed detailed models of the thermal state of the Moon during accretion. We pay special attention to the structure of the silicate atmosphere and its loss rate by calculating the chemical species at equilibrium. We used the PHEQ program which includes 12 elements (H,O,C,Mg,Si,Fe,Ca, Al, Na,Ti, and N.) and 272 compounds (including ionic compounds). Because of the large heats of vaporization and ionization, the adiabatic atmosphere is nearly isothermal and massive escape is expected. The pressure of the atmosphere is determined by the balance between vaporization of a accreting material and escape. If the accretion time is one month, a 0.3 bar atmosphere is expected. Elemental fractionation depends strongly on the temperature of the accreting material. The initial temperature of the material can be estimated from the condition of gravitational instability in the protolunar disk. As shown by Ida et al, accretion starts when gravitational instability occurs when more than 99% of the material condenses. At this point, all of Ca, Al, Si, Mg, and Fe, and 95% of Na (probably K also), are in condensed phases. If the moon is formed from the accretion of such material, volatile elements such as Na, and K are retained by the moon only early in accretion. At later times, K and Na are lost and a fraction of the MG, Si and Fe is lost. However, refractory elements such as Ca and Al are retained and so achieve a mild degree (factor 2) of superabundance.

  1. Massive accretion disks in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Scoville, N. Z.

    In the luminous infrared galaxies, very large masses of interstellar matter have been concentrated in the galactic nuclei at radii less than 300 pc as a result of galactic merging, while in lower luminosity systems, this material is probably concentrated by stellar bars and viscous accretion. In both cases, the nuclear region will be highly obscured by dust at visible wavelengths, forcing studies to longer wavelengths where the extinction is reduced. We review recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging of the dense gas and dust accretion disks in nearby luminous galactic nuclei. Since this nuclear ISM is the active ingredient for both starburst activity and a likely fuel for central AGNs, the nuclear accretion disks are critical to both the activity and the optical appearance of the nucleus. For a sample of 24 luminous galaxies imaged with NICMOS at 1-2μm, approximately 13 show nuclear point sources, indicating the existence of a central AGN or an intense starburst at <= 50 pc radius. Approximately 14 of the sample galaxies have apparent central dust disks. In the best studied ultraluminous IR galaxy, Arp 220, the 2μm imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gas masses ~ 109Msolar for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are ~ 2×109Msolar, that is, only slightly larger than the gas masses. These disks have radii ~ 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicate that the gas in the disks has area filling factors ~25-50% and mean densities of >= 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps >= 10 Msolar yr-1. If this inflow persists to very small radii, it is enough to feed even the highest

  2. Strongly Magnetized Accretion Disks Around Black Holes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2017-01-01

    Recent observations are suggestive of strongly magnetized accretion disks around black holes. Performing local (shearing box) simulations of accretion disks, we investigate how a strong magnetization state can develop and persist. We demonstrate that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion disks. We also show that black hole spin measurements can become unconstrained if magnetic fields provide a significant contribution to the vertical pressure support of the accretion disk atmosphere.

  3. Dynamics of Continental Accretion

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.

    2013-12-01

    Subduction zones become congested when they try to swallow buoyant exotic crust. Accretionary mountain belts (orogens) that form at these convergent plate margins are the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North and South American Cordilleras and southwest Pacific. The geologic record is riddled with accretionary orogens, such as the Tasmanides along the eastern margin of the supercontinent Gondwana and the Altaides that formed on the southern margin of Laurasia. Both the modern and ancient examples are characterised by episodic switches between extension and shortening associated with transitions from collision of exotic crust and subduction related rollback. We present three-dimensional dynamic models that show for the first time how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back arc region. The complexity of the morphology and evolution of the system are driven by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonal to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, but infer that this is a global phenomena throughout Earth's evolution.

  4. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  5. REVIEWS OF TOPICAL PROBLEMS: The nature of accretion disks of close binary stars: overreflection instability and developed turbulence

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Bisikalo, D. V.

    2008-06-01

    The current status of the physics of accretion disks in close binary stars is reviewed, with an emphasis on the hydrodynamic overreflection instability, which is a factor leading to the accretion disk turbulence. The estimated turbulent viscosity coefficients are in good agreement with observations and explain the high angular momentum transfer rate and the measured accretion rate. Based on the observations, a power-law spectrum for the developed turbulence is obtained.

  6. Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case.

    NASA Astrophysics Data System (ADS)

    Proga, D.; Begelman, M. C.

    2003-03-01

    We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means of numerical 2D, axisymmetric, MHD simulations with and without resistive heating. Our main result is that the properties of the accretion flow depend mostly on an equatorial accretion torus. Initially, accretion occurs only through the polar funnel, as in the hydrodynamic inviscid case, where material has zero or very low angular momentum. The material that has too much angular momentum to be accreted directly forms a thick torus near the equator. However, in the later phase of the evolution, the transport of angular momentum due to the magnetorotational instability (MRI) facilitates accretion through the torus, too. The torus thickens towards the poles and develops a corona or an outflow or both. Consequently, the mass accretion through the funnel is stopped. The accretion of rotating gas through the torus is significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate). Our results do not change if we switch on or off resistive heating. Overall our simulations are very similar those presented by Stone, Pringle, Hawley and Balbus despite different initial and outer boundary conditions. Thus, we confirm that the MRI is very robust and controls the nature of radiatively inefficient accretion flows. DP acknowledges support from NASA under LTSA grant NAG5-11736 and support provided by NASA through grant AR-09532 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. MB acknowledges support from NSF grant AST-9876887.

  7. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  8. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  9. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  10. The formation of stars by gravitational collapse rather than competitive accretion.

    PubMed

    Krumholz, Mark R; McKee, Christopher F; Klein, Richard I

    2005-11-17

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (M(o)), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (approximately 0.5M(o)), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  11. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  12. LMXB X-ray Transients: Revealing Basic Accretion Parameters in Non-stationary Regimes

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Yan, Zhen; Zhang, Hui; Zhang, Wenda

    2014-08-01

    X-ray observations of low mass X-ray binaries(LMXBs), especially those black hole transient systems, have been very important in shaping up our understanding of black hole accretion and testing accretion theory in a broad range of accretion regimes. We show strong evidence for non-stationary accretion regimes in the X-ray observations of spectral states and multi-wavelength observations of disk-jet coupling in more than 100 outbursts of 36 black hole and neutron star transients in the past decade or so. The occurrence of spectral state transitions and the peak episodic jet power during the rising phase of transient outbursts are found correlated with rate-of-increase of the X-ray luminosity, indicating the rate-of-change of the mass accretion rate, in addition to the mass accretion rate, must be considered when interpreting observations of spectral state transitions and disk-jet coupling in these X-ray transients. This is supported by observations since the increase of the mass accretion rate due to its rate-of-change on the observational time scale of interest is significant during outbursts.

  13. The Instability in Accretion Flows: GvMRI

    NASA Astrophysics Data System (ADS)

    Yardimci, Melis; Ebru Devlen, Doç.

    2016-07-01

    In this study, we discuss the physical instability defining the expected turbulence in Radiatively Inefficient Accretion Flows (RIAFs) around the supermassive black holes (e.g., Sagittarius A* in the center of our Galaxy). These flows, with a high probability, include weakly collisional hot, optically thin and dilute plasmas. Within these flows, gravitational potential energy brought about by turbulent stresses is trapped as heat energy. Thus, in order accretion to be realized, outward transport of heat as well as angular momentum is required. This outward heat transport may reduce the mass inflow rate on black hole. We solve MHD equations including variation of viscosity coefficients with pressure in the momentum conservation equation. We plot the wave number-frequency diagrams for the wave modes. We show that one of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instabilitiy (GvMRI).

  14. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Zwart, S. Portegies

    2017-03-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classical picture of star formation in GCs, which approximates them as a single generation of stars. Bastian et al. recently suggested an evolutionary scenario in which a second, chemically distinct, population is formed by the accretion of chemically enriched material onto the protoplanetary disc of low-mass stars in the initial GC population. Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can accrete sufficient enriched material to account for the observed abundances in `second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  15. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2014-09-16

    We successfully, applied the induced gravitational collapse (IGC) paradigm to the explanation of GRB-SNe. The progenitor is a tight binary system composed of a CO core and a NS companion. Furthermore, the explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, gravitationally collapsing to a BH with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present the first full numerical simulations of the IGC process. We simulate the core-collapse, the SN explosion, and the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS. For appropriate binary parameters, the IGC occurs in short timescale 102–103 s due to the combined action of photon trapping and neutrino cooling near the NS surface. We also address the observational features of this process.

  16. The minimum mantle viscosity of an accreting earth

    NASA Technical Reports Server (NTRS)

    Cooperman, S. A.

    1983-01-01

    The minimum mantle viscosity in an earth accreting from planetesimals is estimated. A plausible distribution of planetesimal sizes deposits enough energy to melt the outer nine-tenths of earth's mass; however, vigorous convection keeps temperatures near the solidus. Viscosity is significantly lower than prevails now. The temperature-dependent viscosity provides self-regulation so there is a continuing balance between accretional energy input and heat transfer out. This allows calculation of the minimum viscosity necessary to transfer out heat by a Nu/Ra-number relation. Typical viscosities are 0.1 to a million sq m/sec, lowest at mid-accretion when the mass growth rate is largest. Terrestrial planets are compared, and minimum iron descent times to central lithospheres are calculated.

  17. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Urry, C. Megan; Wandel, Amri

    1990-01-01

    The accretion disk is an attractive model for BL Lac objects because of its preferred axis and high efficiency. While the smooth continuum spectra of BL Lacs do not show large UV bumps, in marked contrast to quasars, high quality simultaneous data do reveal deviations from smoothness. Using detailed calculations of cool accretion disk spectra, the best measured ultraviolet and soft x ray spectra of the BL Lac object PKS 2155-304 are fitted. The mass and accretion rate required are determined. A hot disk or corona could comptonize soft photons from the cool disk and produce the observed power law spectrum in the 1 to 10 keV range. The dynamic time scales in the disk regions that contribute most of the observed ultraviolet and soft x ray photons are consistent with the respective time scales for intensity variations. The mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard x ray variability.

  18. Shocks in the low angular momentum accretion flow

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Janiuk, Agnieszka

    2015-04-01

    We address the variability of low luminous galactic nuclei including the Sgr A* or other transient accreting systems, e.g. the black hole X-ray binaries, such as GX 339-4 or IGR J17091. These sources exhibit bright X-ray flares and quasi-periodical oscillations and are theoretically interpreted as the quasi-spherical accretion flows, formed instead of or around Keplerianaccretion disks. In low angular momentum flows the existence of shocks for some range of leading parameters (energy, angular momentum and adiabatic constant of the gas) was studied semi-analytically. The possible hysteresis effect, caused by the fact that the evolution of the flow and the formation of the shock depends on its own history, was discovered. The presence of the shock in the accreted material is important for the observable properties of the out-coming radiation. In the shocked region the gas is dense and hot, thus much more luminous than in the other case. We study the appearance of standing shocks in low angular momentum gas accreting onto a black hole with numerical hydrodynamicalsimulations, using the ZEUS code with Paczynski-Wiitapseudo-Newtonian potential.

  19. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  20. Combining N-body accretion simulations with partitioning experiments in a statistical model of terrestrial planet accretion and core formation

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Ciesla, F.; Campbell, A. J.

    2014-12-01

    The terrestrial planets accreted in a series of increasingly large and violent collisions. Simultaneously, metallic cores segregated from their silicate mantles, acquiring their modern compositions through high pressure (P), high temperature (T) partitioning reactions. Here we present a model that couples these aspects of early planetary evolution, building on recent accretion simulations and experimental results. We have run 100 N-body simulations of terrestrial planet accretion, with Jupiter and Saturn on either circular (CJS) or eccentric (EJS) orbits, to gain insight into the statistics of this highly stochastic process (Fischer and Ciesla, 2014). An Earth (Mars) analogue forms in 84-92% (2-10%) of our simulations. We draw on our recent high P-T metal-silicate partitioning experiments of Ni, Co, V, Cr, Si, and O in a diamond anvil cell to 100 GPa and 5500 K. In our model, N-body simulations describe the delivery, masses, and original locations of planetary building blocks. As planets accrete, their core and mantle compositions are modified by high P-T reactions with each collision (Rubie et al., 2011). By utilizing a large number of N-body simulations, we obtain a statistical view and observe a wide range of outcomes. We use this model to predict the core compositions of Earth-like planets. For partial equilibration of the mantle at 50% of the core-mantle boundary (CMB) pressure, we find that their cores contain 6.9 ± 1.8 wt% Si and 4.8 ± 2.3 wt% O (Figure), with this uncertainty due entirely to variations in accretion history in our 100 simulations. This composition is consistent with the seismologically-inferred density of Earth's core, based on comparisons to high P-T equations of state (Fischer et al., 2011, 2014). Earth analogues experience 0.7 ± 0.1 or 0.9 ± 0.2 log units of oxidation during accretion in EJS or CJS simulations respectively, which is due to both the effects of high P-T partitioning and the temporal evolution of the Earth analogue

  1. Unveiling slim accretion disc in AGN through X-ray and Infrared observations

    NASA Astrophysics Data System (ADS)

    Castelló-Mor, Núria; Kaspi, Shai; Netzer, Hagai; Du, Pu; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Wang, Jian-Min

    2017-01-01

    In this work, which is a continuation of Castello-Mor et al. (2016), we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we rigorously explore the dependence of the optical-to-X-ray spectral index αOX and the IR-to-optical spectral index on the dimensionless accretion rate, dot{M}=dot{m}/η where dot{m}=LAGN/LEdd and η is the mass-to-radiation conversion efficiency, in low and high accretion rate sources. We find that the SED of the faster accreting sources are surprisingly similar to those from the comparison sample of sources with lower accretion rate. In particular: I) the optical-to-UV AGN SED of slow and fast accreting AGN can be fitted with thin AD models. II) The value of αOX is very similar in slow and fast accreting systems up to a dimensionless accretion rate dot{M}c ˜10. We only find a correlation between αOX and dot{M} for sources with dot{M}>dot{M}c. In such cases, the faster accreting sources appear to have systematically larger αOX values. III) We also find that the torus in the faster accreting systems seems to be less efficient in reprocessing the primary AGN radiation having lower IR-to-optical spectral slopes. These findings, failing to recover the predicted differences between the SEDs of slim and thin ADs within the observed spectral window, suggest that additional physical processes or very special geometry act to reduce the extreme UV radiation in fast accreting AGN. This may be related to photon trapping, strong winds, and perhaps other yet unknown physical processes.

  2. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  3. Planetary accretion in circumstellar disks

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Stewart, Glen R.

    1993-01-01

    The formation of terrestrial planets and the cores of Jovian planets is reviewed in the framework of the planetesimal hypothesis, wherein planets are assumed to grow via the pairwise accumulation of small solid bodies. Emphasis is placed on the dynamics of solid body accretion from kilometer size planetesimals to terrestrial type planets. This stage of planetary growth is least dependent on the characteristics of the evolutionary state of the central star. It is concluded that the evolution of the planetesimal size distribution is determined by the gravitationally enhanced collision cross-section, which favors collisions between planetesimals with smaller velocities. Runaway growth of the largest planetesimal in each accretion zone appears to be a likely outcome. The subsequent accumulation of the resulting protoplanets leads to a large degree of radial mixing in the terrestrial planet region, and giant impacts are probable.

  4. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  5. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1). f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation. The nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. Such as the calculation of advance of the perihelion of QFT, let the gravitational potential U = - G M /r which is just the distribution density of net nuν _{0} flux. From SR we again get Eq.(1): f (QFT) = f _{P} + f _{C}, f _{P} = - m ( delta∂ U / delta∂ r) r / r, f _{C} = - m ( delta∂U / delta∂ r) v / c , U = (1 - betaβ (2) )V, V is the Newtonian gravitational potential. f_{ P} correspond the change rate of three-dimensional momentum p, f_{C} correspond the change rate of fourth dimensional momentum i m c which show directly as a dissipative force of mass change. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91 (2011)’ with the

  6. Hydrodynamic Viscosity in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Duschl, Wolfgang J.; Strittmatter, Peter A.; Biermann, Peter L.

    We propose a generalized accretion disk viscosity prescription based on hydrodynamically driven turbulence at the critical effective Reynolds number. This approach is consistent with recent re-analysis by Richard & Zahn (1999) of experimental results on turbulent Couette-Taylor flows. This new β-viscosity formulation applies to both selfgravitating and non-selfgravitating disks and is shown to yield the standard α-disk prescription in the case of shock dissipation limited, non-selfgravitating disks.

  7. X-ray deficiency on strongly accreting T Tauri stars. Comparing Orion with Taurus

    NASA Astrophysics Data System (ADS)

    Bustamante, I.; Merín, B.; Bouy, H.; Manara, C. F.; Ribas, Á.; Riviere-Marichalar, P.

    2016-03-01

    Context. Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Aims: Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster (ONC), we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. Methods: We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. Results: We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. A considerable number of classified non-accreting sources show accretion rates comparable to those of classical T Tauri Stars (CTTS). Our data do not allow us to confirm the classification between classical and weak-line T Tauri stars (WTTS), and the number of WTTS in this work is small compared to the complete samples. Thus, we have used the entire samples as accretors in our analysis. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an ONC T Tauri stars sample. Conclusions: Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the ONC. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the

  8. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  9. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  10. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    SciTech Connect

    Guenther, H. M.; Wolk, S. J.; Wolter, U.; Robrade, J.

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  11. Torque Reversal and Spin-Down of the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto L.; Bildsten, L.; Grunsfeld, J. M.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Finger, M. H.; Scott, D. M.; Wilson, R. B.

    1997-01-01

    Over 5 yr of hard X-ray (20-60 keV) monitoring of the 7.66 s accretion-powered pulsar 4U 1626-67 with the Compton Gamma Ray Observatory/BATSE large-area detectors has revealed that the neutron star is now steadily spinning down, in marked contrast to the steady spin-up and spin-down torques differ by only 15% with the neutron star spin changing on a timescale |v/v| approximately equals 5000 yr in both states. The current spin-down rate is itself decreasing on a timescale |v/v| approximately equals 26 yr. The long-term timing history shows small-amplitude variations on a 4000 day timescale, which are probably due to variations in the mass transfer rate. The pulsed 20-60 keV emission from 4U 1626-67 is well-fitted by a power-law spectrum with photon index gamma = 4.9 and a typical pulsed intensity of 1.5 x 10(exp -10) ergs cm (exp -2)s(exp -1). The low count rates with BATSE prohibited us from constraining the reported 42 minute binary orbit, but we can rule out long-period orbits in the range 2 days < or = P(orb) < or = 900 days. We compare the long-term torque behavior of 4U 1626-67 to other disk-fed accreting pulsars and discuss the implications of our results for the various theories of magnetic accretion torques. The abrupt change in the sign of the torque is difficult to reconcile with the extremely smooth spin-down now observed. The strength of the torque noise in 4U 1626-67, approximately 10(exp -22) Hz(exp 2)s(exp -2) Hz(exp -1), is the smallest ever measured for an accreting X-ray pulsar, and it is comparable to the timing noise seen in young radio pulsars. We close by pointing out that the core temperature and external torque (the two parameters potentially relevant to internal sources of timing noise) of an accreting neutron star are also comparable to those of young radio pulsars.

  12. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  13. Contrasting Accreting White Dwarf Pulsators with the ZZ Ceti Stars

    NASA Astrophysics Data System (ADS)

    Mukadam, A. S.; Szkody, P.; Gänsicke, B. T.; Pala, A.

    2017-03-01

    Understanding the similarities and differences between the accreting white dwarf pulsators and their non-interacting counterparts, the ZZ Ceti stars, will eventually help us deduce how accretion affects pulsations. ZZ Ceti stars pulsate in a narrow instability strip in the range 10800–12300 K due to H ionization in their pure H envelopes; their pulsation characteristics depend on their temperature and stellar mass. Models of accreting white dwarfs are found to be pulsationally unstable due to the H/HeI ionization zone, and even show a second instability strip around 15000 K due to HeII ionization. Both these strips are expected to merge for a He abundance higher than 0.48 to form a broad instability strip, which is consistent with the empirical determination of 10500–16000 K. Accreting pulsators undergo outbursts, during which the white dwarf is heated to temperatures well beyond the instability strip and is observed to cease pulsations. The white dwarf then cools to quiescence in a few years as its outer layers cool more than a million times faster than the evolutionary rate. This provides us with an exceptional opportunity to track the evolution of pulsations from the blue edge to quiescence in a few years, while ZZ Ceti stars evolve on Myr timescales. Some accreting pulsators have also been observed to cease pulsations without any apparent evidence of an outburst. This is a distinct difference between this class of pulsators and the non-interacting ZZ Ceti stars. While the ZZ Ceti instability strip is well sampled, the strip for the accreting white dwarfs is sparsely sampled and we hereby add two new potential discoveries to improve the statistics.

  14. Exploring the Relationships between Mutation Rates, Life History, Genome Size, Environment, and Species Richness in Flowering Plants.

    PubMed

    Bromham, Lindell; Hua, Xia; Lanfear, Robert; Cowman, Peter F

    2015-04-01

    A new view is emerging of the interplay between mutation at the genomic level, substitution at the population level, and diversification at the lineage level. Many studies have suggested that rate of molecular evolution is linked to rate of diversification, but few have evaluated competing hypotheses. By analyzing sequences from 130 families of angiosperms, we show that variation in the synonymous substitution rate is correlated among genes from the mitochondrial, chloroplast, and nuclear genomes and linked to differences in traits among families (average height and genome size). Within each genome, synonymous rates are correlated to nonsynonymous substitution rates, suggesting that increasing the mutation rate results in a faster rate of genome evolution. Substitution rates are correlated with species richness in protein-coding sequences from the chloroplast and nuclear genomes. These data suggest that species traits contribute to lineage-specific differences in the mutation rate that drive both synonymous and nonsynonymous rates of change across all three genomes, which in turn contribute to greater rates of divergence between populations, generating higher rates of diversification. These observations link mutation in individuals to population-level processes and to patterns of lineage divergence.

  15. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  16. Accretion at the periastron passage of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Kashi, Amit

    2017-01-01

    We present high-resolution numerical simulations of the colliding wind system η Carinae, showing accretion on to the secondary star close to periastron passage. Our hydrodynamical simulations include self-gravity and radiative cooling. The smooth stellar winds collide and develop instabilities, mainly the non-linear thin shell instability, and form filaments and clumps. We find that a few days before periastron passage the dense filaments and clumps flow towards the secondary as a result of its gravitational attraction, and reach the zone where we inject the secondary wind. We run our simulations for the conventional stellar masses, M1 = 120 M⊙ and M2 = 30 M⊙, and for a high mass model, M1 = 170 M⊙ and M2 = 80 M⊙, that was proposed to better fit the history of giant eruptions. As expected, the simulations results show that the accretion processes are more pronounced for a more massive secondary star.

  17. Scars of intense accretion episodes at metal-rich white dwarfs

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Gänsicke, B. T.; Wyatt, M. C.; Girven, J.; Pringle, J. E.; King, A. R.

    2012-07-01

    A re-evaluation of time-averaged accretion rates at DBZ-type white dwarfs points to historical, time-averaged rates significantly higher than the currently observed episodes at their DAZ counterparts. The difference between the ongoing, instantaneous accretion rates witnessed at DAZ white dwarfs, which often exceed 108 g s-1, and those inferred over the past 105-106 yr for the DBZ stars can be of a few orders of magnitude, and therefore must result from high-rate episodes of tens to hundreds of years so that they remain undetected to date. This paper explores the likelihood that such brief, intense accretion episodes of gas-phase material can account for existing data. For reasonable assumptions about the circumstellar gas, accretion rates approaching or exceeding 1015 g s-1 are possible, similar to rates observed in quiescent cataclysmic variables, and potentially detectable with future X-ray missions or wide-field monitoring facilities. Gaseous debris that is prone to such rapid accretion may be abundant immediately following a tidal disruption event via collisions and sublimation, or if additional bodies impinge upon an extant disc. Particulate disc matter accretes at or near the Poynting-Robertson drag rate for long periods between gas-producing events, consistent with rates inferred for dusty DAZ white dwarfs. In this picture, warm DAZ stars without infrared excesses have rates consistent with accretion from particulate discs that remain undetected. This overall picture has implications for quasi-steady state models of accretion and the derived chemical composition of asteroidal debris in DBZ white dwarfs.

  18. Black Hole Accretion and Feedback Driven by Thermal Instability

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.

    2013-03-01

    Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.

  19. CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2013-07-15

    The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius, respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.

  20. Accretion Flow in the inner Accretion Discs of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Balman, Solen; Revnivtsev, Mikhail

    2012-07-01

    We study nature of time variability of brightness of non-magnetic cataclysmic variables. We show that lightcurtves of all analyzed DN systems in UV and X-ray energy bands demonstrate band limited noise, which can be adequately described in the framework of the model of propagating fluctuations. The frequency of the break indicates the inner disc truncation with a range of radii (10-3)e+9 cm. We analyse the RXTE and optical (RTT150) data of SS Cyg in outburst and quiescence which show that during the outburst the inner disk radius moves towards the white dwarf and receeds as the outburst declines to quiescence. Cross-correlations between the simultaneous UV and X-ray light curves find time lags in the X-rays of 90-180 sec consistent with travel time of matter from a truncated inner disc to the white dwarf surface. This suggests that DN and other plausible nonmagnetic systems have truncated accretion discs indicating that the accretion may occur through coronal flows in the disc. We compare and contrast magnetic and nonmagnetic systems in terms of their aperiodic noise characteristics and the model of propagating fluctuations. The comparison of the X-ray/UV time lag observed by us in the case of non-magnetic CVs with those, detected for magnetic CVs allows us to make an rough estimate of the viscosity parameter. Multi band simultaneous observations of coming observattories like ASTROSAT will give us the opportunity to study time variability of brightness variations of accretion disks in cataclysmic variables in quiescence and outburst using LAXPC and UVIT/OPT instruments. We will elaborate on the nature and possible outcomes of such research.

  1. Angular momentum transport in thin accretion disks and intermittent accretion.

    PubMed

    Coppi, B; Coppi, P S

    2001-07-30

    The plasma modes, transporting angular momentum in accretion disks, under minimally restrictive conditions when the magnetic energy density is significant relative to the thermal energy density, are shown to be singular if the ideal MHD approximation is adopted. A similarity with the modes producing magnetic reconnection in current carrying plasmas is established. The combined effects of finite plasma temperature, of plasma compressibility, of the gradient of the rotation frequency, and of appropriate transport processes (outside ideal MHD) are involved in the onset of these nonaxisymmetric and locally corotating modes.

  2. Probing Sagittarius A* accretion with ALMA

    NASA Astrophysics Data System (ADS)

    Murchikova, Elena

    2017-01-01

    The submm Hydrogen recombination line technique can be used as a probe of the Galactic Center. We present the results of our H30α observations of ionized gas from within 0.015 pc around SgrA*. The observations were obtained on ALMA in cycle 3. The line was not detected, but we were able to set a limit on the mass of the cool gas (T~ 104 K) at 2 × 10-3 M ⊙. This is the unique probe of gas cooler than T ~106 K traced by X-ray emission. The total amount of gas near SgrA* gives us clues to understanding the accretion rate of SgrA*.

  3. Diskoseismology - Signatures of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Nowak, Michael; Wagoner, Robert V.

    1992-01-01

    General relativity requires the existence of a spectrum of oscillations which are trapped near the inner edge of accretion disks around black holes. We have developed a general formalism for analyzing the normal modes of such acoustic perturbations of arbitrary thin disk models, approximating the dominant relativistic effects via a modified Newtonian potential (these modes do not exist in Newtonian gravity). The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall in to two main classes, which are analogous to the p-modes and g-modes in the sun. In this work, we compute the eigenfunctions and eigenfrequencies of isothermal disks. The (relatively small) rates of growth or damping of these oscillations due to gravitational radiation and parameterized models of viscosity are also computed.

  4. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    SciTech Connect

    Szulágyi, J.; Morbidelli, A.; Crida, A.; Masset, F.

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  5. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  6. Accretion to magnetized stars through the Rayleigh-Taylor instability: global 3D simulations

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. K.; Romanova, M. M.

    2008-05-01

    We present results of 3D simulations of magnetohydrodynamics (MHD) instabilities at the accretion disc-magnetosphere boundary. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner disc dynamical time-scale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, Θ <~ 30°, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hotspots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems, as well as planet migration.

  7. NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE

    SciTech Connect

    Fragile, P. Chris; Gillespie, Anna; Monahan, Timothy; Rodriguez, Marco; Anninos, Peter

    2012-08-01

    Modeling the radiation generated by accreting matter is an important step toward realistic simulations of black hole accretion disks, especially at high accretion rates. To this end, we have recently added radiation transport to the existing general relativistic magnetohydrodynamic code, Cosmos++. However, before attempting to model radiative accretion disks, we have tested the new code using a series of shock tube and Bondi (spherical inflow) problems. The four radiative shock tube tests, first presented by Farris et al., have known analytic solutions, allowing us to calculate errors and convergence rates for our code. The Bondi problem only has an analytic solution when radiative processes are ignored, but it is pertinent because it is closer to the physics we ultimately want to study. In our simulations, we include Thomson scattering and thermal bremsstrahlung in the opacity, focusing exclusively on the super-Eddington regime. Unlike accretion onto bodies with solid surfaces, super-Eddington accretion onto black holes does not produce super-Eddington luminosity. In our examples, despite accreting at up to 300 times the Eddington rate, our measured luminosity is always several orders of magnitude below Eddington.

  8. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  9. The Importance of Rotational Time-scales in Accretion Variability

    NASA Astrophysics Data System (ADS)

    Costigan, Gráinne; Vink, Joirck; Scholz, Aleks; Testi, Leonardo; Ray, Tom

    2013-07-01

    For the first few million years, one of the dominant sources of emission from a low mass young stellar object is from accretion. This process regulates the flow of material and angular moments from the surroundings to the central object, and is thought to play an important role in the definition of the long term stellar properties. Variability is a well documented attribute of accretion, and has been observed on time-scales of from days to years. However, where these variations come from is not clear. Th current model for accretion is magnetospheric accretion, where the stellar magnetic field truncates the disc, allowing the matter to flow from the disc onto the surface of the star. This model allows for variations in the accretion rate to come from many different sources, such as the magnetic field, the circumstellar disc and the interaction of the different parts of the system. We have been studying unbiased samples of accretors in order to identify the dominant time-scales and typical magnitudes of variations. In this way different sources of variations can be excluded and any missing physics in these systems identified. Through our previous work with the Long-term Accretion Monitoring Program (LAMP), we found 10 accretors in the ChaI region, whose variability is dominated by short term variations of 2 weeks. This was the shortest time period between spectroscopic observations which spanned 15 months, and rules out large scale processes in the disk as origins of this variability. On the basis of this study we have gone further to study the accretion signature H-alpha, over the time-scales of minutes and days in a set of Herbig Ae and T Tauri stars. Using the same methods as we used in LAMP we found the dominant time-scales of variations to be days. These samples both point towards rotation period of these objects as being an important time-scale for accretion variations. This allows us to indicate which are the most likely sources of these variations.

  10. Nucleosynthesis in the accretion disks of Type II collapsars

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-09-01

    We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an outward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly advection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (dot M) is, the higher the density and temperature are in the disks. We deal with accretion disks with relatively low accretion rates: 0.001 Msolar s-1 ≲ dot M ≲ 0.01 Msolar s-1 and hence these disks are predominantly advection dominated. We use He-rich and Sirich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31P, 39K, 43Sc, 35Cl and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they

  11. History of frequent gum chewing is associated with higher unstimulated salivary flow rate and lower caries severity in healthy Chinese adults.

    PubMed

    Wang, X P; Zhong, B; Chen, Z K; Stewart, M E; Zhang, C; Zhang, K; Ni, J; Dodds, M W J; Hanley, A B; Miller, L E

    2012-01-01

    This was a single-center, prospective, cross-sectional study stratified by age and gender with the objective of determining the relationship between gum chewing history, salivary flow, and dental caries severity in adults. We enrolled 191 subjects aged 18-65 years who underwent assessments for gum chewing history, unstimulated salivary flow rate, salivary pH, and caries severity. Unstimulated salivary flow rate tended to decline with increasing age (p = 0.04), and significant differences in unstimulated salivary flow rate were also found for males (0.58 ± 0.32 ml/min) versus females (0.48 ± 0.30 ml/min) (p = 0.02). Weekly gum chewing frequency was greater in younger subjects (p = 0.001) while no age group differences were noted in pieces per day or chewing duration. Gum chewing habits were similar in males and females. A multivariate model demonstrated that only days per week chewing gum (p < 0.001) and gender (p = 0.007) were predictive of unstimulated salivary flow rate (R(2) = 0.40). Mean caries severity scores, assessed via ICDAS II and DMFT, increased with age. In multivariate analysis, age was positively associated with ICDAS (p = 0.001) and days per week chewing gum was negatively associated with ICDAS (p = 0.004), indicating that caries severity increased with age, and that days of chewing provided an inverse effect, with increased days of chewing being associated with decreased severity of caries. Overall, a history of frequent gum chewing is associated with higher unstimulated salivary flow rate and lower caries severity.

  12. Theory of protostellar accretion disks

    NASA Technical Reports Server (NTRS)

    Ruden, S.

    1994-01-01

    I will present an overview of the current paradigm for the theory of gaseous accretion disks around young stars. Protostellar disks form from the collapse of rotating molecular cloud cores. The disks evolve via outward angular momentum transport provided by several mechanisms: gravitational instabilities, thermal convective turbulence, and magnetic stresses. I will review the conditions under which these mechanisms are efficient and consistent with the observed disk evolutionary timescales of several million years. Time permitting, I will discuss outbursts in protostellar disks (FU Orionis variables), the effect of planet formation on disk structure, and the dispersal of remnant gas.

  13. Accretion Onto Magnetic Degenerate Stars

    NASA Technical Reports Server (NTRS)

    Frank, Juhan

    2000-01-01

    While the original objectives of this research program included the study of radiative processes in cataclysmic variables and the evolution of neutron star magnetic fields, the scope of the reported research expanded to other related topics as this project developed. This final report therefore describes the results of our research in the following areas: 1) Irradiation-driven mass transfer cycles in cataclysmic variables and low-mass X-ray binaries; 2) Propeller effect and magnetic field decay in isolated old neutron stars; 3) Decay of surface magnetic fields in accreting neutron stars and pulsars; 4) Finite-Difference Hydrodynamic simulations of mass transfer in binary stars.

  14. Disk tides and accretion runaway

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  15. Young Stellar Objects in Lynds 1641: Disks and Accretion

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.

  16. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  17. Obscured AGN Accretion Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    We propose to combine data from XMM-Newton, the Chandra X-ray Observatory, and the Spitzer Space Telescope with ground-based optical spectroscopy from Keck and Magellan to measure the relationship between AGN obscuration and accretion activity over the bulk of cosmic history. This work will establish the prominence of both obscured and unobscured growth phases of black holes and shed light on the processes that trigger and fuel AGN as a function of time. We will complete three complementary projects that focus on a) understanding the completeness and biases of AGN selection at mid-IR versus X-ray wavelengths, b) tracing optical obscuration as a function of luminosity and redshift, and c) measuring the distribution and evolution of X-ray absorption of AGN. We will undertake a study of AGN demographics comparing selection techniques at three different wavelengths: mid-IR selection using data from the Spitzer Space Telescope, X- ray selection using data from the XMM-Newton and Chandra satellites, and broad-line optical selection using PRIMUS spectroscopy. We will determine the overlap and uniqueness of samples created using each method, to quantify the completeness and biases inherent in AGN selection at each wavelength. This will lead to a constraint on the fraction of heavily obscured, Compton-thick AGN to z~1. To study the optical obscuration of AGN, we will use three recently-completed spectroscopic surveys -- PRIMUS, DEEP2, and our own Keck program -- to robustly determine the ratio of unobscured (broad-line) to obscured (non--broad-line) X-ray selected AGN as a function of luminosity from z~0.2 to z~3. We will utilize the well- understood selection functions and characterize the AGN completeness of each survey as a function of redshift, magnitude, and obscuration properties. This will allow us to correct for a variety of observational effects to measure the underlying joint redshift- and luminosity-dependence of optical obscuration, which has direct implications

  18. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Meisel, Zach; Deibel, Alex

    2017-03-01

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from {e}--capture/{β }--decay cycles and provide signatures of prior nuclear burning over the ∼century timescales it takes to accrete to the {e}--capture depth of the strongest cooling pairs. Using crust cooling models of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and {e}--capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.

  19. Assessing Magnetospheric Accretion in Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia; Monnier, John D.

    2017-01-01

    Recent large spectropolarimetric surveys have found low magnetic field detection rates in Herbig Ae/Be stars. Efforts to measure and map young stars' magnetic fields have also noted that field structure and strength dramatically change with increasing stellar mass. These results are highly suggestive that the mechanisms for accretion and outflow in Herbig Ae/Be star+disk systems may differ from the magnetospheric accretion paradigm as envisaged for T Tauri star+disk systems. We have performed a high resolution optical spectroscopic campaign of ~60 Herbig AeBe stars including some multi-epoch observations; the timescales sampled range from high cadence (~minutes) to observations taken years spart, covering a wide range of kinematic processes. We find that the strength of variability increases with the cadence of the observations, and over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines. We see no inverse P-Cygni signatures as are often seen in lower mass T Tauri stars and generally thought to be diagnostic of infall in accretion streams along the line of sight. We discuss the implications of these results in context of recent spectropolarimetric surveys for our understanding of how accretion is occurring in these objects, as well as ongoing radiative transfer modeling.

  20. Wind-driven Accretion in Transitional Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Goodman, Jeremy J.

    2017-01-01

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.

  1. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Wijnen, Thomas; Pols, Onno; Portegies Zwart, Simon

    2015-08-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classic picture of star formation in GCs, which approximates them as a single generation of stars. However, Bastian et al. recently suggested an evolutionary scenario in which a second (and higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population. In this early disc accretion scenario the low-mass, pre-main sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster centre.Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can indeed accrete sufficient enriched material to account for the observed abundances in 'second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and check for consistency. In particular, we focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  2. Runaway gas accretion and gap opening versus type I migration

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.

    2017-03-01

    Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20 - 30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This

  3. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    PubMed

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  4. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there w