Science.gov

Sample records for accretion rate history

  1. The Phase Space of z=1.2 Clusters: Probing Dust Temperature and Star Formation Rate as a Function of Environment and Accretion History

    NASA Astrophysics Data System (ADS)

    Noble, Allison; SpARCS Collaboration

    2016-01-01

    Understanding the influence of environment is a fundamental goal in studies of galaxy formation and evolution, and galaxy clusters offer ideal laboratories with which to examine environmental effects on their constituent members. Clusters continually evolve and build up mass through the accumulation of galaxies and groups, resulting in distinct galaxy populations based on their accretion history. In Noble et al. 2013, we presented a novel definition for environment using the phase space of line-of-sight velocity and clustercentric radius, which probes the time-averaged density to which a galaxy has been exposed and traces out accretion histories. Using this dynamical definition of environment reveals a decline in specific star formation towards the cluster core in the earliest accreted galaxies, and was further shown to isolate post-starburst galaxies within clusters (Muzzin et al. 2014). We have now extended this work to higher-redshift clusters at z=1.2 using deep Herschel-PACS and -SPIRE data. With a sample of 120 spectroscopically-confirmed cluster members, we investigate various galaxy properties as a function of phase-space environment. Specifically, we use 5-band Herschel photometry to estimate the dust temperature and star formation rate for dynamically distinct galaxy populations, namely recent infalls and those that were accreted into the cluster at an earlier epoch (Noble et al. submitted). These properties are then compared to a field sample of star-forming galaxies at 1.1 < z < 1.2 to shed light on cluster-specific processes in galaxy evolution. In this talk I will discuss the various implications of a phase-space definition for environment, and present our most recent results, focusing on how this accretion-based definition aids our understanding of quenching mechanisms within z=1.2 galaxies.

  2. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxaccretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  3. Volatile accretion history of the Earth.

    PubMed

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation. PMID:20981045

  4. Thermal history of chondrites - Hot accretion vs. metamorphic reheating

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Taylor, G. J.; Scott, E. R. D.; Keil, Klaus

    1992-01-01

    The thermal evolution of chondrules is investigated for the stages including primary heating through accretion to parent-body processing to determine whether the chondrules could be hot during accretion. Theoretical attention is given to whether chondrites of different petrologic types could have originated by means of hot accretion or metamorphic reheating. Data are presented from cooling-rate experiments and from calculations of heat retention required for the hot-accretion scenario. The accretion of chondrules hotter than 800 C is shown to be inconsistent with constraints on chondrule thermal evolution, in particular the slow cooling environment of chondrules vs the apparent cooling of chondrites in cold environments. It is argued that petrologic chondrites are formed by cold accretion and subsequently by metamorphic heating.

  5. Lifetimes and Accretion Rates of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Li, Min; Xiao, Lin

    2016-03-01

    Protoplanetary disks originate in the collapse of molecular cloud cores. The formation and evolution of disks are influenced by the properties of molecular cloud cores. In this paper we investigate the dependence of disk lifetimes and accretion rates on cloud core properties. We find that the lifetime increases as the angular velocities and the mass of cloud cores increase and that the lifetime decreases as the core temperature increases. We have calculated the distribution of disk lifetimes and disk fractions with stellar age. Our calculations show that the lifetime is in the range of 1-15 Myr and that the typical lifetime is 1-3 Myr. There are a few disks with lifetimes greater than 10 Myr and ˜ 30% of the disks have lifetimes less than 1 Myr. We also fit the disk fraction by an exponential decay curve with characteristic time ˜3.7 Myr. Our results explain the observations of disk lifetimes. We also find that the accretion rate does not change significantly with ω and generally decreases with {T}{{cd}}. At the early evolution of the disks, the \\dot{M}{--}{M}* relation is about \\dot{M}\\propto {M}*1.2-2. Since the effects of the photoevaporation are weak at this stage, this relation is the consequence of the cloud core properties. At the late evolution of the disks, the \\dot{M}{--}{M}* relation is about \\dot{M}\\propto {M}*1.2-1.7. For low accretion rates at this stage, the \\dot{M}{--}{M}* relation results from the effects of X-ray photoevaporation. The calculated \\dot{M}{--}{M}* relations are consistent with the observations.

  6. Low Accretion Rate Expected From G2 Gas Cloud

    NASA Astrophysics Data System (ADS)

    Gracey, Brandon; Morsony, Brian; Workman, Jared

    2015-08-01

    We present high-resolution simulations of the encounter of the G2 gas cloud with Sag A*, focusing on the mass that can be accreted onto the supermassive black hole. Even assuming G2 is a gas cloud of a few time the mass of Earth, we find that very little material should be expected to be accreted. From 5 years before to 5 years after pericenter passage, at most 0.1% of the cloud mass is accreted. The total amount of material accreted by Sag A* increases by at most 20% over this period, and in many cases actually decreases due to the passage of G2. Even over very long timescales, out to 30 years after pericenter passage, only a few 10th's of a percent of the cloud will be accreted, with no significant increase in the overall mass accretion rate of Sag A*.We find that the size of the accretion radius in our simulations has a large effect on the accretion rate, with a smaller accretion radius having a smaller accretion rate. Changing the size of the accretion radius has a larger effect than changing the density profile of the cloud or changing the structure of the background material around Sag A*.

  7. Coastal erosion and accretion rates in Greece

    NASA Astrophysics Data System (ADS)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  8. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  9. Jets at lowest mass accretion rates

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar; Cantrell, Andrew; Markoff, Sera; Falcke, Heino; Miller, Jon; Bailyn, Charles

    2011-02-01

    We present results of recent observations and theoretical modeling of data from black holes accreting at very low luminosities (L/LEdd <~ 10-8). We discuss our newly developed time-dependent model for episodic ejection of relativistic plasma within a jet framework, and a successful application of this model to describe the origin of radio flares seen in Sgr A*, the Galactic center black hole. Both the observed time lags and size-frequency relationships are reproduced well by the model. We also discuss results from new Spitzer data of the stellar black hole X-ray binary system A0620-00. Complemented by long term SMARTS monitoring, these observations indicate that once the contribution from the accretion disk and the donor star are properly included, the residual mid-IR spectral energy distribution of A0620-00 is quite flat and consistent with a non-thermal origin. The results above suggest that a significant fraction of the observed spectral energy distribution originating near black holes accreting at low luminosities could result from a mildly relativistic outflow. The fact that these outflows are seen in both stellar-mass black holes as well as in supermassive black holes at the heart of AGNs strengthens our expectation that accretion and jet physics scales with mass.

  10. Binary accretion rates: dependence on temperature and mass ratio

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2015-09-01

    We perform a series of 2D smoothed particle hydrodynamics simulations of gas accretion on to binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios (q). We show that increasing the gas temperature increases the accretion rate on to the primary for all values of the binary mass ratio: for example, for q = 0.1 and a fixed binary separation, an increase of normalized sound speed by a factor of 5 (from our `cold' to `hot' simulations) changes the fraction of the accreted gas that flows on to the primary from 10 to ˜40 per cent. We present a simple parametrization for the average accretion rate of each binary component accurate to within a few per cent and argue that this parametrization (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of q during circumbinary disc accretion and argue that the period distribution of stellar `twin' binaries is strong evidence for the importance of circumbinary accretion. We also show that our parametrization of binary accretion increases the minimum mass ratio needed for spin alignment of supermassive black holes to q ˜ 0.4, with potentially important implications for the magnitude of velocity kicks acquired during black hole mergers.

  11. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  12. ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES

    SciTech Connect

    Trump, Jonathan R.; Impey, Christopher D.; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Kelly, Brandon C.; Civano, Francesca; Hao, Heng; Lanzuisi, Giorgio; Merloni, Andrea; Salvato, Mara; Urry, C. Megan; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Liu, Charles; Mainieri, Vincenzo; Scoville, Nick Z.

    2011-05-20

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L{sub int}) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L{sub int}/L{sub Edd} > 10{sup -2}), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L{sub int}/L{sub Edd} < 10{sup -2}) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L{sub int}/L{sub Edd} < 10{sup -2} narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L{sub int}/L{sub Edd} > 10{sup -2} broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L{sub int}/L{sub Edd} < 10{sup -2} AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical 'axis' of AGN unification, as described by a simple model.

  13. The accretion history of dark matter haloes - I. The physical origin of the universal function

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Wyithe, J. Stuart B.; Schaye, Joop; Duffy, Alan R.

    2015-06-01

    Understanding the universal accretion history of dark matter haloes is the first step towards determining the origin of their structure. We use the extended Press-Schechter formalism to derive the halo mass accretion history from the growth rate of initial density perturbations. We show that the halo mass history is well described by an exponential function of redshift in the high-redshift regime. However, in the low-redshift regime the mass history follows a power law because the growth of density perturbations is halted in the dark energy dominated era due to the accelerated expansion of the Universe. We provide an analytic model that follows the expression {M(z)=M0(1+z)^{af(M0)}e^{-f(M0)z}}, where M0 = M(z = 0), a depends on cosmology and f(M0) depends only on the linear matter power spectrum. The analytic model does not rely on calibration against numerical simulations and is suitable for any cosmology. We compare our model with the latest empirical models for the mass accretion history in the literature and find very good agreement. We provide numerical routines for the model online (available at https://bitbucket.org/astroduff/commah).

  14. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  15. Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA

    NASA Astrophysics Data System (ADS)

    Stathakopoulos, A.; Riegl, B. M.

    2015-03-01

    Sixteen new coral reef cores were collected to better understand the accretion history and composition of submerged relict reefs offshore of continental southeast (SE) Florida. Coral radiometric ages from three sites on the shallow inner reef indicate accretion initiated by 8,050 Cal BP and terminated by 5,640 Cal BP. The reef accreted up to 3.75 m of vertical framework with accretion rates that averaged 2.53 m kyr-1. The reef was composed of a nearly even mixture of Acropora palmata and massive corals. In many cases, cores show an upward transition from massives to A. palmata and may indicate local dominance by this species prior to reef demise. Quantitative macroscopic analyses of reef clasts for various taphonomic and diagenetic features did not correlate well with depth/environmental-related trends established in other studies. The mixed coral framestone reef lacks a classical Caribbean reef zonation and is best described as an immature reef and/or a series of fused patch reefs; a pattern that is evident in both cores and reef morphology. This is in stark contrast to the older and deeper outer reef of the SE Florida continental reef tract. Accretion of the outer reef lasted from 10,695-8,000 Cal BP and resulted in a larger and better developed structure that achieved a distinct reef zonation. The discrepancies in overall reef morphology and size as well as the causes of reef terminations remain elusive without further study, yet they likely point to different climatic/environmental conditions during their respective accretion histories.

  16. Comparing Accretion Histories of Earth, Mars, and Theia Analogs

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.; Cowan, Nick

    2014-11-01

    The canonical scenario for the formation of the Moon predicts that a Mars-mass impactor collided with the proto-Earth in a glancing collision that threw material into orbit around the Earth. However, such a scenario results in a Moon largely composed of material from the impactor rather than the proto-Earth. Since meteorites from Mars and the asteroid belt have markedly different oxygen isotope abundance ratios than Earth, this Moon origin scenario appears at odds with the nearly identical oxygen isotope signatures of lunar and terrestrial rocks. Here we test the possibility that the proto-Earth and Theia (the lunar impactor) had similar enough accretion histories before their collision to yield a moon with nearly identical oxygen isotope abundances to the Earth. To do this, we perform many numerical models of the final giant impact phase of terrestrial planet formation. In these models, we impose primordial distributions of oxygen isotopes that are tuned to yield final Δ17O differences between fully formed Earth and Mars analogs that match the observed differences between the two planets. Using these distributions, we can then build a hypothetical distribution of Δ17O values for Theia analogs that can be used to assess the probability that Theia had a similar accretion feeding zone to the Earth.

  17. YOUNG STELLAR OBJECTS IN LYNDS 1641: DISKS, ACCRETION, AND STAR FORMATION HISTORY

    SciTech Connect

    Fang Min; Kim, Jinyoung Serena; Flaherty, Kevin; Van Boekel, Roy; Henning, Thomas; Sicilia-Aguilar, Aurora

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering {approx}1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of {approx}50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M{sub *}/M{sub Sun }) Almost-Equal-To -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  18. The Mass Accretion Rate of Galaxy Clusters: A Measurable Quantity

    NASA Astrophysics Data System (ADS)

    De Boni, C.; Serra, A. L.; Diaferio, A.; Giocoli, C.; Baldi, M.

    2016-02-01

    We explore the possibility of measuring the mass accretion rate (MAR) of galaxy clusters from their mass profiles beyond the virial radius R200. We derive the accretion rate from the mass of a spherical shell whose inner radius is 2R200, whose thickness changes with redshift, and whose infall velocity is assumed to be equal to the mean infall velocity of the spherical shells of dark matter halos extracted from N-body simulations. This approximation is rather crude in hierarchical clustering scenarios where both smooth accretion and aggregation of smaller dark matter halos contribute to the mass accretion of clusters. Nevertheless, in the redshift range z = [0, 2], our prescription returns an average MAR within 20%-40% of the average rate derived from the merger trees of dark matter halos extracted from N-body simulations. The MAR of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real universe. Since the measurement of the mass profile of clusters beyond their virial radius can be performed with the caustic technique applied to dense redshift surveys of the cluster outer regions, our result suggests that measuring the mean MAR of a sample of galaxy clusters is actually feasible. We thus provide a new potential observational test of the cosmological and structure formation models.

  19. Comparing Accretion Histories of Earth, Mars, and Theia Analogs

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.; Cowan, Nicolas B.

    2015-01-01

    The canonical scenario for the formation of the Moon predicts that a Mars-mass impactor collided with the proto-Earth in a glancing collision that threw material into orbit around the Earth. However, such a scenario results in a Moon largely composed of material from the impactor rather than the proto-Earth. Since meteorites from Mars and the asteroid belt have markedly different oxygen isotope abundance ratios than Earth, this Moon origin scenario appears at odds with the nearly identical oxygen isotope signatures of lunar and terrestrial rocks. Here we test the possibility that the proto-Earth and Theia (the lunar impactor) had similar enough accretion histories before their collision to yield a moon with nearly identical oxygen isotope abundances to the Earth. To do this, we perform many numerical models of the final giant impact phase of terrestrial planet formation. In these models, we impose primordial distributions of oxygen isotopes that are tuned to yield final Δ17O differences between fully formed Earth and Mars analogs that match the observed differences between the two planets. Regardless of the assumed form for the inital Δ17O distribution among planetesimals, we find a probability of ~5% or less that a Theia analog will have an identical oxygen isotope composition to an Earth analog in any given simulated system.

  20. ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS

    SciTech Connect

    Ohtsuki, Keiji; Yasui, Yuki; Daisaka, Hiroshi

    2013-08-01

    We examine the gravitational capture probability of colliding particles in circumplanetary particle disks and accretion rates of small particles onto an embedded moonlet, using analytic calculation, three-body orbital integrations, and N-body simulations. Expanding our previous work, we take into account the Rayleigh distribution of particles' orbital eccentricities and inclinations in our analytic calculation and orbital integration and confirm agreement between them when the particle velocity dispersion is comparable to or larger than their mutual escape velocity and the ratio of the sum of the physical radii of colliding particles to their mutual Hill radius (r-tilde{sub p}) is much smaller than unity. As shown by our previous work, the capture probability decreases significantly when the velocity dispersion is larger than the escape velocity and/or r-tilde{sub p}{approx}>0.7. Rough surfaces of particles can enhance the capture probability. We compare the results of three-body calculations with N-body simulations for accretion of small particles by an embedded moonlet and find agreement at the initial stage of accretion. However, when particles forming an aggregate on the moonlet surface nearly fill the Hill sphere, the aggregate reaches a quasi-steady state with a nearly constant number of particles covering the moonlet, and the accretion rate is significantly reduced compared to the three-body results.

  1. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.

    PubMed

    Bhomia, R K; Inglett, P W; Reddy, K R

    2015-11-15

    Wetlands are known to serve as sinks for particulate matter and associated nutrients and contaminants. Consequently rate of soil accretion is critical for continued performance of wetlands to provide ecosystem services including water quality improvement and reduce excess contaminant loads into downstream waters. Here we demonstrate a new technique to determine rate of soil accretion in selected subtropical treatment wetlands located in southern USA. We also report changes in soil accretion rates and subsequent phosphorus (P) removal efficiency with increasing operational history of these treatment wetlands. Utilizing discernible signatures preserved within the soil depth profiles, 'change points' (CP) that corresponded to specific events in the life history of a wetland were determined. The CP was observed as an abrupt transition in the physico-chemical properties of soil as a manifestation of prevailing historical conditions (e.g. startup of treatment wetlands in this case). Vertical depth of CP from the soil surface was equivalent to the depth of recently accreted soil (RAS) and used for soil accretion rate calculations. Annual soil and P accretion rates determined using CP technique (CPT) in studied wetlands ranged from 1.0±0.3 to 1.7±0.8 cm yr(-1) and 1.3±0.6 to 3.3±2 g m(-2) yr(-1), respectively. There was no difference in RAS depth between emergent and submerged aquatic vegetation communities found at the study location. Our results showed that soil and P accretion rates leveled off after 10 yr of treatment wetlands' operation. On comparison, soil accretion rates and RAS depth determined by CPT were commensurate with that measured by other techniques. CPT can be easily used where a reliable record of wetland establishment date or some significant alteration/perturbation is available. This technique offers a relatively simple alternative to determine vertical accretion rates in free-water surface wetlands. PMID:26172597

  2. Earth and Mars: Water inventories as clues to accretional histories

    USGS Publications Warehouse

    Carr, M.H.; Wanke, H.

    1992-01-01

    The Earth has 2.7 km of water on its surface. Its mantle contains at least 150 ppm water, and probably significantly more depending on the amount of undepleted mantle and subducted crustal water that is present. Geologic evidence suggests that a few hundred meters of water are close to the Martian surface, but evidence from SNC meteorites indicates that the Martian mantle is very dry, containing no more than about 35 ppm water. Part of the difference in water content of the mantles of the two planets is attributed to plate tectonics. However, the Earth's mantle appears to contain at least several times the water content of the Martian mantle, even accounting for plate tectonics. We attribute the difference to two possible causes. The first possibility is that melting of the Earth's surface during accretion, as a result of the development of a steam atmosphere, allowed impact-devolatized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second and preferred possibility is that Mars, like the Earth, acquired a late volatile rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water-rich veneer. The perception of Mars as having a wet surface, but a dry interior, is consistent with what we know of the geologic history of Mars, which can be viewed as the progressive intrusion and overplating of a water-rich crust by dry, mantle-derived volcanic rocks. ?? 1992.

  3. Accretion rate of extraterrestrial 41Ca in Antarctic snow samples

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, J. M.; Bishop, S.; Faestermann, T.; Famulok, N.; Fimiani, L.; Hain, K.; Jahn, S.; Korschinek, G.; Ludwig, P.; Rodrigues, D.

    2015-10-01

    Interplanetary Dust Particles (IDPs) are small grains, generally less than a few hundred micrometers in size. Their main source is the Asteroid Belt, located at 3 AU from the Sun, between Mars and Jupiter. During their flight from the Asteroid Belt to the Earth they are irradiated by galactic and solar cosmic rays (GCR and SCR), thus radionuclides are formed, like 41Ca and 53Mn. Therefore, 41Ca (T1/2 = 1.03 × 105 yr) can be used as a key tracer to determine the accretion rate of IDPs onto the Earth because there are no significant terrestrial sources for this radionuclide. The first step of this study consisted to calculate the production rate of 41Ca in IDPs accreted by the Earth during their travel from the Asteroid Belt. This production rate, used in accordance with the 41Ca/40Ca ratios that will be measured in snow samples from the Antarctica will be used to calculate the amount of extraterrestrial material accreted by the Earth per year. There challenges for this project are, at first, the much longer time for the flight needed by the IDPs to travel from the Asteroid Belt to the Earth in comparison with the 41Ca half-life yields an early saturation for the 41Ca/40Ca ratio, and second, the importance of selecting the correct sampling site to avoid a high influx of natural 40Ca, preventing dilution of the 41Ca/40Ca ratio, the quantity measured by AMS.

  4. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  5. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    SciTech Connect

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-12-10

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass

  6. Observe Z sources at High Mass Accretion Rates

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2008-09-01

    We propose to test a new interpretation that links mass accretion rate to observed spectral changes in Z-sources in a diffwrent way than previously though. Integral part of the test is to catch Z-source on the horizontal branch (HB). There are a few sources where RXTE and previous observatories established a fairly accurate record of how often they appear on a specific spectral branch. 4 observations for 8 ks each has a 50% chance to observe GX 5-1 on the HB.

  7. Volatile accretion history of the terrestrial planets and dynamic implications.

    PubMed

    Albarède, Francis

    2009-10-29

    Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the Moon and the Earth were essentially dry immediately after the formation of the Moon-by a giant impact on the proto-Earth-and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is supported by U-Pb and I-Xe chronologies, which show that water delivery peaked approximately 100 million years after the isolation of the Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars. PMID:19865163

  8. The distribution of Extremely High Accretion Rates and Metallicities of QSO's as a Function of Redshift over Cosmic Evolution

    NASA Astrophysics Data System (ADS)

    Abu Seif, Nasser; Kazanas, Demosthenes

    2016-07-01

    The investigation of how QSOs' extremity of accretion rates vary with redshift has remained a major focus of our study in the last five years. How does the evolution of QSOs trace the accretion history of early SMBH? What does accretion at super-Eddington rates look like? Does the correlation between SMBHs and metallicity of QSOs emission line evolve differently at high redshift? Is it a surprise that metallicity is high at high redshift, or is this expected? Here, we establish a new database for the width of an emission line (e.g., Hβ, Mg II and C IV) to obtain a large statistical sample of QSOs at different redshifts. We calculated L/LEdd that determined mass from previous studies (Sloan Digital Sky Survey (SDSS)). We investigated the significant evolution of L/ LEdd for any value of MBH as a function of redshift. Also, we investigated the evolution and distribution of the accretion rate (L/LEdd) over cosmic time with a concentration on the extremely high accretion rate sources at high redshift. The current study investigated the accretion rate (L/LEdd) correlation to other QSO properties and investigated how the accretion of Black Holes L/LEdd and MBH occurs within heavily obscured environments. Our research found that some QSOs are radiating near the Eddington limit with L/ Ledd ~ 1 and those QSOs have extreme accretion. We also found that the lowest M BH has the highest accretion rate, a result that was already noted by McClure & Dunlop (2004). The distribution of Eddington ratio displayed by QSOs clearly shows that all luminous QSOs accreted at their Eddington limit have a poor approximation. This result is important because it is often assumed that optically luminous QSOs are accreting at their Eddington limit within the models of QSOs evolution. We determined the peak of the L/LEdd versus redshift and we found the largest of those peaks to be at the interval of redshift (1< Z < 2). We noted that the highest peak of the distribution of L/LEdd at all

  9. Warm dark haloes accretion histories and their gravitational signatures

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Mahdi, Hareth S.; Power, Chris; Lewis, Geraint F.

    2014-11-01

    We study clusters in warm dark matter (WDM) models of a thermally produced dark matter particle 0.5 keV in mass. We show that, despite clusters in WDM cosmologies having similar density profiles as their cold dark matter (CDM) counterparts, the internal properties, such as the amount of substructure, show marked differences. This result is surprising as clusters are at mass scales that are a thousand times greater than that at which structure formation is suppressed. WDM clusters gain significantly more mass via smooth accretion and contain fewer substructures than their CDM brethren. The higher smooth mass accretion results in subhaloes which are physically more extended and less dense. These fine-scale differences can be probed by strong gravitational lensing. We find, unexpectedly, that WDM clusters have higher lensing efficiencies than those in CDM cosmologies, contrary to the naive expectation that WDM clusters should be less efficient due to the fewer substructures they contain. Despite being less dense, the larger WDM subhaloes are more likely to have larger lensing cross-sections than CDM ones. Additionally, WDM subhaloes typically reside at larger distances, which radially stretches the critical lines associated with strong gravitational lensing, resulting in excess in the number of clusters with large radial cross-sections at the ˜2σ level. Though lensing profile for an individual cluster vary significantly with the line of sight, the radial arc distribution based on a sample of ≳100 clusters may prove to be the crucial test for the presence of WDM.

  10. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  11. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2016-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~ 103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs - precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~ 6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies - and the detailed accretion history of the halo - across cosmic time.

  12. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane Morris; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs --- precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies --- and the detailed accretion history of the halo --- across cosmic time.

  13. Locations of accretion shocks around galaxy clusters and the ICM properties: insights from self-similar spherical collapse with arbitrary mass accretion rates

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-09-01

    Accretion shocks around galaxy clusters mark the position where the infalling diffuse gas is significantly slowed down, heated up, and becomes a part of the intracluster medium (ICM). They play an important role in setting the ICM properties. Hydrodynamical simulations have found an intriguing result that the radial position of this accretion shock tracks closely the position of the `splashback radius' of the dark matter, despite the very different physical processes that gas and dark matter experience. Using the self-similar spherical collapse model for dark matter and gas, we find that an alignment between the two radii happens only for a gas with an adiabatic index of γ ≈ 5/3 and for clusters with moderate mass accretion rates. In addition, we find that some observed ICM properties, such as the entropy slope and the effective polytropic index lying around ˜1.1-1.2, are captured by the self-similar spherical collapse model, and are insensitive to the mass accretion history.

  14. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  15. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  16. The Information Content of Stellar Halos: Accretion Histories and Stellar Population Gradients in Quiescent Illustris Galaxies

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin A.; Conroy, Charlie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Hernquist, Lars

    2016-06-01

    Long dynamical timescales in the outskirts of galaxies are thought to preserve the information content of their accretion histories, in the form of stellar population gradients. We present a detailed analysis of the stellar halo properties of a statistically representative sample of quiescent galaxies from the Illustris simulation, and show that stellar population gradients at large radii can indeed be used to infer galactic accretion histories. We measure metallicity, age, and surface-brightness profiles in the halos of Illustris galaxies ranging from 1010 to 1012 solar masses. We find that the ex-situ mass fraction – the fraction of stars that were accreted from smaller bodies – at large radius is correlated with the gradients of both metallicity and surface-brightness between 2-10 effective radii. There is a tight relation between the two gradients, suggesting that the information content of hierarchical accretion is predominantly the same between the two. The residuals from this mean relation are correlated with the mean (mass-weighted) merger mass ratio, which implies that major and minor mergers leave slightly different signatures in the stellar populations of stellar halos.

  17. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-06-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions {sup 15}O(α, γ){sup 19}Ne and {sup 18}Ne(α, p){sup 21}Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the {sup 15}O(α, γ){sup 19}Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true {sup 15}O(α, γ){sup 19}Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  18. Does livestock grazing affect sediment deposition and accretion rates in salt marshes?

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Müller, Frauke; Schuerch, Mark; Wanner, Antonia; Esselink, Peter; Bakker, Jan P.; Jensen, Kai

    2013-12-01

    Accretion rates, defined as the vertical growth of salt marshes measured in mm per year, may be influenced by grazing livestock in two ways: directly, by increasing soil compaction through trampling, and indirectly, by reducing aboveground biomass and thus decreasing sediment deposition rates measured in g/m² per year. Although accretion rates and the resulting surface elevation change largely determine the resilience of salt marshes to sea-level rise (SLR), the effect of livestock grazing on accretion rates has been little studied. Therefore, this study aimed to investigate the effect of livestock grazing on salt-marsh accretion rates. We hypothesise that accretion will be lower in grazed compared to ungrazed salt marshes. In four study sites along the mainland coast of the Wadden Sea (in the south-eastern North Sea), accretion rates, sediment deposition rates, and soil compaction of grazed and ungrazed marshes were analysed using the 137Cs radionuclide dating method. Accretion rates were on average 11.6 mm yr-1 during recent decades and thus higher than current and projected rates of SLR. Neither accretion nor sediment deposition rates were significantly different between grazing treatments. Meanwhile, soil compaction was clearly affected by grazing with significantly higher dry bulk density on grazed compared to ungrazed parts. Based on these results, we conclude that other factors influence whether grazing has an effect on accretion and sediment deposition rates and that the effect of grazing on marsh growth does not follow a direct causal chain. It may have a great importance when interacting with other biotic and abiotic processes on the marsh.

  19. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  20. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  1. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ∼100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  2. ACCRETION RATES FOR T TAURI STARS USING NEARLY SIMULTANEOUS ULTRAVIOLET AND OPTICAL SPECTRA

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Blaty, Alex; Herczeg, Gregory; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander E-mail: ncalvet@umich.edu

    2013-04-20

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, {eta} Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (M-dot ) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of M-dot to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the M-dot estimates, to produce correlations between accretion indicators (H{beta}, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  3. MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS

    SciTech Connect

    Donehew, Brian; Brittain, Sean E-mail: sbritt@clemson.edu

    2011-02-15

    The accretion rate of young stars is a fundamental characteristic of these systems. While accretion onto T Tauri stars has been studied extensively, little work has been done on measuring the accretion rate of their intermediate-mass analogs, the Herbig Ae/Be stars. Measuring the stellar accretion rate of Herbig Ae/Bes is not straightforward both because of the dearth of metal absorption lines available for veiling measurements and the intrinsic brightness of Herbig Ae/Be stars at ultraviolet wavelengths where the brightness of the accretion shock peaks. Alternative approaches to measuring the accretion rate of young stars by measuring the luminosity of proxies such as the Br {gamma} emission line have not been calibrated. A promising approach is the measurement of the veiling of the Balmer discontinuity. We present measurements of this veiling as well as the luminosity of Br {gamma}. We show that the relationship between the luminosity of Br {gamma} and the stellar accretion rate for classical T Tauri stars is consistent with Herbig Ae stars but not Herbig Be stars. We discuss the implications of this finding for understanding the interaction of the star and disk for Herbig Ae/Be stars.

  4. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    PubMed

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  5. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs

    PubMed Central

    Vargas-Ángel, Bernardo; Richards, Cristi L.; Vroom, Peter S.; Price, Nichole N.; Schils, Tom; Young, Charles W.; Smith, Jennifer; Johnson, Maggie D.; Brainard, Russell E.

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  6. Pb Pb dating constraints on the accretion and cooling history of chondrites

    NASA Astrophysics Data System (ADS)

    Bouvier, Audrey; Blichert-Toft, Janne; Moynier, Frédéric; Vervoort, Jeffrey D.; Albarède, Francis

    2007-03-01

    incorporates the accretion rate, which determines the time at which the radiogenic heat becomes efficiently trapped, and the terminal size of the parent body, which controls its overall thermal inertia. The parent bodies of carbonaceous chondrites, which show little indication of metamorphic transformation, collect cooler nebular material at a relatively late stage. Small asteroids of ˜10-50 km radius accreting within 1-3 My could be the parent bodies of H and LL chondrites. The parent body of the L chondrites is likely to be a larger asteroid ( r > 100 km) or possibly the product of collisions of smaller planetary bodies.

  7. The Influence of Accretion Rate and Metallicity on Thermonuclear Bursts: Predictions from KEPLER Models

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Heger, Alexander; Galloway, Duncan K.

    2016-03-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated light curve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from η =1.1 to 1.24. We identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  8. Peat accretion histories during the past 6,000 years in marshes of the Sacramento-San Joaquin delta, CA, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Brown, Thomas A.

    2009-01-01

    The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento-San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age-depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year-1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.

  9. Tracers of the Extraterrestrial Component in Sediments and Inferences for Earth's Accretion History

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    The study of extraterrestrial matter in sediments began with the discovery of cosmic spherules during the HMS Challenger Expedition (1873-1876), but has evolved into a multidisciplinary study of the chemical, physical, and isotopic study of sediments. Extraterrestrial matter in sediments comes mainly from dust and large impactors from the asteroid belt and comets. What we know of the nature of these source materials comes from the study of stratospheric dust particles, cosmic spherules, micrometeorites, meteorites, and astronomical observations. The most common chemical tracers of extraterrestrial matter in sediments are the siderophile elements, most commonly iridium and other platinum group elements. Physical tracers include cosmic and impact spherules, Ni-rich spinels, meteorites, fossil meteorites, and ocean-impact melt debris. Three types of isotopic systems have been used to trace extraterrestrial matter. Osmium isotopes cannot distinguish chondritic from mantle sources, but provide a useful tool in modeling long-term accretion rates. Helium isotopes can be used to trace the long-term flux of the fine fraction of the interplanetary dust complex. Chromium isotopes can provide unequivocal evidence of an extraterrestrial source for sediments with high concentrations of meteoritic Cr. The terrestrial history of impacts, as recorded in sediments, is still poorly understood. Helium isotopes, multiple Ir anomalies, spherule beds, and craters all indicate a comet shower in the late Eocene. The Cretaceous-Tertiary boundary impact event appears to have been caused by a single carbonaceous chondrite projectile, most likely of asteroid origin. Little is known of the impact record in sediments from the rest of the Phanerozoic. Several impact deposits are known in the Precambrian, including several possible mega-impacts in the Early Archean.

  10. The Accretion Rates and White Dwarf Components of Nova-Like Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Mizusawa, Trisha; Merritt, J.; Bonaro, M.; Foran, S.; Plumberg, C.; Stewart, H.; Wiley, T.; Ballouz, R.; Sion, E.

    2009-01-01

    We present the results of a multi-component synthetic spectral analysis of the archival far ultraviolet spectra of several key nova-like variables including members of the SW Sex, RW Tri, UX UMa and VY Scl subclasses: KR Aur, V795 Her, BP Lyn, V825 Her, HL Aqr, RW Tri and V425 Cas. Accretion rates as well as the flux contribution of the accreting white dwarf are included in our analysis. Except for RW Tri which has a reliable trigonometric parallax, we computed the distances to the nova-like systems using the method of Knigge(2006, MNRAS, 373, 484). For KR Aur, we find that the white dwarf has T_eff = 29,000 +/- 2000K, log g = 8.4 and contributes 18% of the FUV flux while an accretion disk with accretion rate Mdot = 3 x 10-10 Msun/yr at an inclination of 41 degrees, contributes the remainder. Our analysis of seven archival IUE spectra of RW Tri at its parallax distance consistently yields a low mass (0.4 Msun) white dwarf and an average accretion rate, Mdot = 6.3 x 10-9 Msun/yr. We find that an accreting white dwarf rather than accretion disk dominates the far UV spectrum of V425 Cas while HL Aqr's and V825 Her's FUV spectra are dominated by an accretion disk with Mdot = 1 x 10-9 Msun/yr and 3 x 10-9 Msun/yr, respectively. For BP Lyn we find Mdot = 1 x 10-8 Msun/yr and we explore the possiblity that V795 Her is an intermediate polar. We discuss the implications of our results for the evolutionary status of nova-like variables. This work is supported by NSF grant AST-0807892 to Villanova University and by the Delaware Space Grant Consortium

  11. On the relation between Seyfert 2 accretion rate and environment at z < 0.1

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Gurovich, Sebastián; Díaz Tello, Jorge; Söchting, Ilona K.; Lambas, Diego G.

    2014-01-01

    We analyse different properties of the small-scale environment of Seyfert 2 for two samples selected according to the accretion rate parameter , R, from the Sloan Digital Sky Survey, Data Release 7 survey. We compare the results with two control samples of non-active galaxies that cover the same redshift range, luminosity, colours, morphology, age and stellar mass content. Our study shows that both high and low accretion rate subsamples reside in bluer and lower density environments than the control samples. However, we find that this difference is at least two times stronger for the low accretion rate Seyferts. In the vicinity of Seyfert 2, red galaxies have systematically lower values of stellar mass as compared with corresponding control samples. The lower values of stellar mass for red neighbours is more significant at higher density environments and it is more evident for low accretion rate Seyfert. We also find that this effect is independent of the host's stellar mass. Our results are consistent with a scenario where active galactic nucleus occurrence is higher in lower/medium density environments with a higher merger rate and a lack of a dense intergalactic medium (that can strip gas from these systems) that provide suitable conditions for the central black hole feeding. We find this particularly evident for the low accretion rate Seyferts that could compensate through the intergalactic medium the lack of gas of their hosts.

  12. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  13. Chernobyl {sup 137}Cs used to determine sediment accretion rates at selected northern European coastal wetlands

    SciTech Connect

    Callaway, J.C.; DeLaune, R.D.; Patrick, W.H. Jr.

    1996-05-01

    Sediment cores were collected form five coastal wetlands along the North Sea (England and Netherlands) and Baltic Sea (Poland). {sup 137}Cs dating was used to assess sediment accretion rates, including rates based on the {sup 137}Cs peak from the 1986 accident at Chernobyl. Peaks form the Chernobyl fallout were found in cores from the Oder and Vistula Rivers in Poland, from the Eastern Scheldt in the Netherlands, and in one of the two cores from Stiffkey Marsh, UK. No evidence of Chernobyl fallout was found in cores from Dengie Marsh, UK. The Chernobyl {sup 137}Cs peak serves as an excellent marker for short-term accretion rates because of its high activity. Vertical accretion rates (cm yr{sup {minus}1}) based on 1963 and 1986 peaks were similar at most sites; differences may be due to large inputs of sediment from storms or recent accumulation of organic matter. Large differences in sediment characteristics and accretion rates were found between samples from Poland and western Europe. Vertical accretion rates over the period 1963-1986 ranged from 0.26 to 0.85 cm{sup {minus}1} and from 0.30 to 1.90 cm yr{sup {minus}1} over the 1986-1991 period. Vertical accretion rates for the period these sites are in imminent danger of excessive flooding. The Chernobyl {sup 137}Cs peak will be especially useful for studies of short-term (i.e. very recent) sedimentation in the near future and for comparisons of sediment processes over different time scales. 33 refs., 4 figs., 4 tabs.

  14. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  15. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  16. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2011-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  17. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2010-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  18. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2013-10-01

    The Sloan Digital Sky Survey has discovered a remarkable group of ~100 quasars with extremely weak emission lines in their rest-frame optical-UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of six quasars of this class with a total exposure time of 128 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the optical-UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  19. Suppression of the accretion rate in thin discs around binary black holes.

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-05-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  20. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  1. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  2. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  3. Monitoring the Mass Accretion Rate in Scorpius X-1 Using the Optical Johnson B Filter

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Norwood, J.; Harrison, T. E.; Holtzman, J.; Dukes, R.; Barker, T.

    2005-04-01

    The emission from low-mass X-ray binaries (LMXBs) arises from the accretion of mass onto a neutron star or black hole. A knowledge of the amount of mass being accreted as well as changes in this value are therefore essential inputs into models of these systems. Despite the need for this information, we currently lack an easily applied method that allows the accretion rate to be measured. X-ray color-color plots and UV observations can be used for this purpose, but these methods require access to oversubscribed satellites. Even if time is granted on these facilities, there is no guarantee that the source will be in a desired state when the observations take place. In this paper we show that an estimate of the ratio of the mass accretion rate to the Eddington rate can be obtained for Sco X-1 by using the Johnson B magnitude. Based on correlated X-ray and ground-based observations, we find that for Sco X-1, M˙/M˙E=-(0.123+/-0.007)B+2.543+/-0.085. This relation is valid when the system is on its normal and lower flaring branches. Based on theoretical models, we suggest that similar relations should also exist for other LMXBs.

  4. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-04-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von-Zeipel surfaces and projected the jet equations of motion onto the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≲ 0.06 in the general relativistic prescription, but is lower if massloss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock. The jet terminal speed increases with stronger shocks, quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6% of the mass accretion rate.

  5. Modelling the Accretion History of the Galactic Disk (and the Gravitational Lensing of a High-z Galaxy)

    NASA Astrophysics Data System (ADS)

    Meyers, Adrian

    2015-01-01

    Over its long history, the Milky Way is expected to have accreted many dwarf galaxies. The debris from the destruction of most of these dwarf galaxies will by now be fully phase-mixed throughout the Galaxy and hence undetectable as local over-densities in position-space. However, the debris from these systems could have distinct kinematic signatures that may help distinguish these stars from, for example, the Galactic disk. We aim to construct a reliable method of determining the contributions to the Milky Way disk from accreted structures that could be applied to current kinematic data sets, such as SDSS's APOGEE survey. In an effort to mimic the kinematic traits of an accreted satellite, we construct single-orbit models to compare to a cosmologically motivated simulation of satellite accretion. We find that these orbit models adhere to the kinematic signatures of certain types of accreted galaxies better than others, giving us insight on which parameters to trust when searching for accreted populations. As a bonus, we describe a separate project in which we attempt to deduce the intrinsic properties of the 8 o'clock arc, a gravitationally lensed Lyman break galaxy at redshift 2.73. Using the lensmodel code and its pixel-based source reconstruction extension pixsrc, we derive a de-lensed image of the galaxy in the source plane.

  6. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  7. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  8. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  9. Rapid accretion and hibernation in the preoutburst history of classical novae

    SciTech Connect

    Prialnik, D.; Shara, M.M.

    1986-12-01

    A new nova evolution model is used to resolve the apparent discrepancy between the observed mass accretion rate (MAR) in prenovae and in old novae and the theoretical upper limit to the MAR which yields a thermonuclear runaway. The model offers a plausible disguise state for very old novae as well as unifying links between old novae, novalike variables, and dwarf novae. The model predicts that mass transfer must cease in a cataclysmic binary a few centuries after eruption, remain off for millennia, and then resume. The effects of such long-term variability of MAR on a white dwarf are studied, and the implications of the results for the long-term evolution of novae and related catalysmic binaries are discussed. 32 references.

  10. Mass accretion rates from multiband photometry in the Carina Nebula: the case of Trumpler 14

    NASA Astrophysics Data System (ADS)

    Beccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, G.; Romaniello, M.; Zoccali, M.; Weidner, C.

    2015-01-01

    Context. We present a study of the mass accretion rates of pre-main sequence (PMS) stars in the cluster Trumpler 14 (Tr 14) in the Carina Nebula. Using optical multiband photometry we were able to identify 356 PMS stars showing Hα excess emission with equivalent width EW(Hα) > 20 Å. We interpret this observational feature as an indication that these objects are still actively accreting gas from their circumstellar medium. From a comparison of the HR diagram with PMS evolutionary models we derive ages and masses of the PMS stars. We find that most of the PMS objects are younger than 10 Myr with a median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we determine the mass accretion rate (Ṁacc) and discuss its dependence on mass and age. We finally combine the optical photometry with near-IR observations to build the spectral energy distribution (SED) for each PMS star in Tr 14. The analysis of the SEDs suggests the presence of transitional discs in which a large amount of gas is still present and sustains accretion onto the PMS object at ages older than 10 Myr. Our results, discussed in light of recent recent discoveries with Herschel of transitional discs containing a massive gas component around the relatively old PMS stars TW Hydrae, 49 Ceti, and HD 95086, support a new scenario n which old and evolved debris discs still host a significant amount of gas. Aims: Methods: Results:

  11. On the stream-accretion disk interaction - Response to increased mass transfer rate

    NASA Technical Reports Server (NTRS)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  12. NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

    SciTech Connect

    Schaefer, Bradley E.; Collazzi, Andrew C.

    2010-05-15

    We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500 Cyg, V1974 Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500 Cyg. V1500 Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500 Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

  13. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  14. Conditions for Circumstellar Disc Formation II: Effects of Initial Cloud Stability and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-09-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate onto the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brake the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with nonuniform densities.

  15. The Properties of Low-Luminosity AGN: Variability, Accretion Rate, Black Hole Mass and Color

    NASA Astrophysics Data System (ADS)

    Oleas, Juan; Podjed, Stephanie; Sarajedini, Vicki

    2016-01-01

    We present the results from a study of ~5000 Broad-Line selected AGN from the Sloan Digital Sky Survey DR7. Galaxy and AGN templates have been fit to the SDSS spectra to isolate the AGN component. The sources have absolute magnitudes in the range -23 < Mi < -18 and lie at redshifts less than z ~ 0.8. A variability analysis reveals that the anti-correlation between luminosity and variability amplitude continues to the faintest AGN in our sample (Gallastegui-Aizpun & Sarajedini 2014), though the underlying cause of the relation is still poorly understood. To address this, we further explore the connection between AGN luminosity and variability through measurement of the Hβ line width to determine black hole mass and accretion rate. We find that AGN with the highest variability amplitudes at a given luminosity appear to have lower accretion rates compared to low amplitude variables. We also investigate correlations with AGN color and accretion rate among these low-luminosity AGN.

  16. The radial dependence of pebble accretion rates: A source of diversity in planetary systems. I. Analytical formulation

    NASA Astrophysics Data System (ADS)

    Ida, S.; Guillot, T.; Morbidelli, A.

    2016-06-01

    Context. The classical planetesimal accretion scenario for the formation of planets has recently evolved with the idea that pebbles, centimeter- to meter-sized icy grains migrating in protoplanetary disks, can control planetesimal and/or planetary growth. Aims: We investigate how pebble accretion depends on disk properties and affects the formation of planetary systems. Methods: We construct analytical models of pebble accretion onto planetary embryos that consistently account for the mass and orbital evolution of the pebble flow and reflect disk structure. Results: We derive simple formulas for pebble accretion rates in the so-called settling regime for planetary embryos that are more than 100 km in size. For relatively smaller embryos or in outer disk regions, the accretion mode is three-dimensional (3D), meaning that the thickness of the pebble flow must be taken into account, and resulting in an accretion rate that is independent of the embryo mass. For larger embryos or in inner regions, the accretion is in a two-dimensional (2D) mode, i.e., the pebble disk may be considered infinitely thin. We show that the radial dependence of the pebble accretion rate is different (even the sign of the power-law exponent changes) for different disk conditions such as the disk heating source (viscous heating or stellar irradiation), drag law (Stokes or Epstein, and weak or strong coupling), and in the 2D or 3D accretion modes. We also discuss the effect of the sublimation and destruction of icy pebbles inside the snow line. Conclusions: Pebble accretion easily produces a large diversity of planetary systems. In other words, to infer the results of planet formation through pebble accretion correctly, detailed prescriptions of disk evolution and pebble growth, sublimation, destruction and migration are required.

  17. Accretion history and stratigraphy of mid-Holocene coral reefs from Southeast Florida, USA

    NASA Astrophysics Data System (ADS)

    Stathakopoulos, A.; Riegl, B. M.; Swart, P. K.

    2013-05-01

    The southeast Florida shelf is a well-studied coral reef region previously used in studies of late Quaternary sea-level, reef geomorphology, and paleoecology in the sub-tropical Atlantic. Situated on the shelf is the southeast Florida continental reef tract; a ~125 km long Holocene fringing/barrier coral reef complex, composed of three shore-parallel linear reefs ('outer', 'middle', and 'inner' reefs) of varying age. Since few detailed stratigraphic descriptions exist, drill cores were extracted to further understand the composition, character, and radiometric ages of reef material in order to reconstruct the accretion history. Sixteen reef cores from the shallow inner reef were collected along and across the reef axes and were combined with lidar bathymetric data for stratigraphic and geomorphologic analyses. Macroscopic and microscopic (petrographic thin sections) examinations of reef clasts were performed to identify coral and reef infauna species compositions, diagenetic facies, and taphonomic features for interpretation of former reef environments/zonation. The southeast Florida continental reef tract was characterized by dynamic reef terminations, backstepping, and re-initiation in response to post-glacial sea-level rise and flooding of topography suitable for reef initiation and growth. Results suggest that the outer reef accreted from ~10.6-8.0 ka cal BP, the middle reef from at least ~5.8-3.7 ka cal BP, and the inner reef from ~7.8-5.5 ka cal BP. The outer reef is the best-developed reef, followed by the inner reef, while the middle reef apparently has relatively little framework buildup. New data from this study and a lack of significant age overlaps confirm that reef backstepping from the outer to the inner reef occurred within a few hundred years after outer reef termination. This is consistent with temporal and spatial scales reported from backstepped reefs in St. Croix and Puerto Rico. The cause of the backstep is still unknown however some studies

  18. Dependence of the outer density profiles of halos on their mass accretion rate

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2014-07-01

    We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.

  19. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  20. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    NASA Astrophysics Data System (ADS)

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  1. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    PubMed

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate. PMID:20164924

  2. Pebble Accretion Rates for Planetesimals: Hydrodynamics Calculations with Direct Particle Integration

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron

    2015-12-01

    The formation and growth of planetesimals are fundamental to planet building. However, in our understanding of planet formation, there are a number of processes that limit the formation of planetesimals such as particle bouncing, fragmentation, and inward radial drift due to gas drag. Such processes seemingly make growth beyond mm to cm sizes difficult. In this case, the protoplanetary disk may become rich in pebble-sized solids as opposed to km-sized planetesimals. If a small number of large planetesimals do manage to form, then gas-drag effects can allow those seeds to efficiently accrete the abundant pebbles from the nebula and grow to planet sizes. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes and nebular conditions using wind tunnel numerical experiments.

  3. Implications of Mars Pathfinder data for the accretion history of the terrestrial planets.

    PubMed

    Bertka, C M; Fei, Y

    1998-09-18

    Accretion models of the terrestrial planets often assume planetary bulk compositions with nonvolatile element abundance ratios equivalent to those of C1 carbonaceous chondrites. The moment of inertia factor of Mars reported by the Pathfinder team is inconsistent with a bulk planet C1 Fe/Si ratio or Fe content, which suggests that C1 chondrite accretion models are insufficient to explain the formation of Mars and the other terrestrial planets. Future planetary accretion models will have to account for variations in bulk Fe/Si ratios among the terrestrial planets. PMID:9743493

  4. Accretion History and Mass of the Milky Way Halo: HST Proper Motions and Keck Spectra

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, A. J.; Guhathakurta, P.; Rockosi, C. M.; Barro, G.; Van Der Marel, R. P.; Sohn, S.; Anderson, J.; HSTPROMO Collaboration; HALO7D Collaboration

    2014-01-01

    The Milky Way (MW) is shrouded in a faint metal-poor stellar halo. Its structure and kinematics provide a unique archaeological record of the MW's formation, past evolution, and accretion history. These data also help us constrain the dark matter mass out to large radii (50 to 100 kpc). The stellar density profile and line-of-sight velocity dispersion profile of the halo are known, but our understanding of the halo is limited by a striking lack of knowledge about the transverse motions of its stars. It is difficult from the ground to determine proper motions (PMs) far outside of the solar neighborhood. We have recently developed techniques for making PM measurements from multi-epoch Hubble Space Telescope (HST) data using distant background galaxies to define an absolute astrometric reference frame. We will obtain very deep (8 to 24 hr integrations) Keck II 10-m telescope/DEIMOS spectra of hundreds of faint Milky Way halo stars with HST-measured proper motions, to measure their line-of-sight velocities and chemical abundances, giving us 6D phase-space information plus chemical abundance information. Our primary fields of interest include the CANDELS HST/MCT program fields GOODS-N, COSMOS, and EGS. These fields are characterized by deep HST photometry at wavelengths ranging from the ultraviolet to the infrared. This dataset, which will be unique even in the era of Gaia, will vastly improve our understanding of the Milky Way structure, evolution and mass in a way that neither the HST proper motions or Keck spectroscopy can do on their own. This research is part of two large collaborations: The HST Proper Motion (HSTPROMO) collaboration and the Halo Assembly in Lambda-CDM: Observations in 7-Dimensions (HALO7D). We acknowledge financial support from the National Science Foundation and NASA.

  5. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    SciTech Connect

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.; Montesinos, B.; Najita, J. R.; Brittain, S. D.; Van den Ancker, M. E.

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  6. Stellar Parameters and Accretion Rate of the Transition Disk Star HD 142527 from X-Shooter

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Fairlamb, J.; Montesinos, B.; Oudmaijer, R. D.; Najita, J. R.; Brittain, S. D.; van den Ancker, M. E.

    2014-07-01

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T eff = 6550 ± 100 K, log g = 3.75 ± 0.10, L */L ⊙ = 16.3 ± 4.5, M */M ⊙ = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M ⊙. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10-7 M ⊙ yr-1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ~7 on a timescale of 2 to 5 yr.

  7. Rates of floodplain accretion in a tropical island river system impacted by cyclones and large floods

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Garimella, Sitaram; Kostaschuk, Ray A.

    2002-01-01

    Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 ( 137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year -1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m 3 s -1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200-500 g l -1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.

  8. THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY

    SciTech Connect

    Watson, Casey R.; Kochanek, Christopher S.; Forman, William R.; Hickox, Ryan C.; Jones, Christine J.; Kenter, Almus T.; Murray, Steve S.; Vikhlinin, Alexey; Fazio, Giovani G.; Green, Paul J.; Brown, Michael J. I.; Brand, Kate; Dey, Arjun; Jannuzi, Buell T.; Rieke, Marcia; Eisenstein, Daniel J.; McNamara, Brian R.; Shields, Joseph C.

    2009-05-10

    We combine IR, optical, and X-ray data from the overlapping, 9.3 deg{sup 2} NOAO Deep Wide-Field Survey, AGN and Galaxy Evolution Survey (AGES), and XBooetes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 {approx}< z {approx}< 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and active galactic nucleus (AGN) emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like {approx}(1 + z){sup 3{+-}}{sup 1}, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.

  9. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Woosley, S. E.; Hartmann, Dieter H.

    1999-11-01

    The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ~100 day-1 (2) neutron star-black hole mergers: ~450 day-1 (3) collapsars: ~104 day-1 (4) helium star black hole mergers: ~1000 day-1 and (5) white dwarf-black hole mergers: ~20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (fΩ<1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host galaxy, one-half of

  10. The Accretion Rate Independence of Horizontal Branch Oscillation in XTE J1701-462

    NASA Astrophysics Data System (ADS)

    Li, Zhaosheng; Chen, Li; Qu, Jinlu; Bu, Qingcui; Wang, Dehua; Xu, Renxin

    2014-05-01

    We study the temporal and energy spectral properties of the unique neutron star low-mass X-ray binary XTE J1701-462. Assuming the horizontal branch/normal branch (HB/NB) vertex as a reference position of the accretion rate, the horizontal branch oscillation (HBO) of the HB/NB vertex is roughly 50 Hz. It indicates that the HBO is independent of the accretion rate or the source intensity. The spectral analysis shows R_{in}\\propto \\dot{M}_{Disk}^{2.9+/- 0.09} in the HB/NB vertex and R_{in}\\propto \\dot{M}_{Disk}^{1.7+/- 0.06} in the NB/flaring branch (FB) vertex, which implies that different accretion rates may be produced in the HB/NB and NB/FB vertex. The Comptonization component could be fitted by a constrained broken power law or nthComp. Unlike GX 17+2, the frequencies of HBO positively correlate with the inner disk radius, which contradict with the prediction of the Lense-Thirring precession model. XTE J1701-462, both in the Cyg-like phase and in the Sco-like phase, follows a positive correlation between the break frequency of broadband noise and the characteristic frequency of HBO, which is called the W-K relation. An anticorrelation between the frequency of HBO and photon energy is observed. Moreover, the rms of HBO increases with photon energy until ~10 keV. We discuss the possible origin of HBO from the corona in XTE J1701-462.

  11. Is the Oort A-value a universal growth rate limit for accretion disk shear instabilities?

    NASA Technical Reports Server (NTRS)

    Balbus, Steven A.; Hawley, John F.

    1992-01-01

    A weak-field local MHD instability that is of importance to accretion disks is examined. The maximum growth rate of the instability is found to be not only independent of the magnetic field strength but independent of field geometry as well. In particular, all Keplerian disks are unstable in the presence of any weak poloidal field, with the ratio of the maximum growth rate to disk angular velocity given by 3/4. The maximum growth rate of any weak field configuration that is not purely toroidal is given by the local Oort A-value of the disk. The behavior is studied by using a form of the dynamical Hill equations. It is conjectured that the Oort A-value is an upper bound to the growth rate of any instability feeding upon the free energy of differential rotation.

  12. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillations decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.

  13. GX 3+1: THE STABILITY OF SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE

    SciTech Connect

    Seifina, Elena; Titarchuk, Lev E-mail: titarchuk@fe.infn.it

    2012-03-10

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and Beppo SAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component. We argue that the electron temperature kT{sub e} of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index {Gamma} is almost constant ({Gamma} = 2.00 {+-} 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index {Gamma} and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli and Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low

  14. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Technical Reports Server (NTRS)

    Seifana, Elena; Titarchuk, Lev

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram, We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites, We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and Gaussian component We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keY to 4.5 keY, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by factor four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+ I was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries. This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at

  15. POISSON project. III. Investigating the evolution of the mass accretion rate

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  16. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  17. A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK

    SciTech Connect

    Cannizzo, J. K. E-mail: gehrels@milkyway.gsfc.nasa.gov

    2009-08-01

    We present a new way of looking at the very long-term evolution of gamma-ray bursts (GRBs) in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep 'breaks' in the long-term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an 'external disk' whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power-law decay to the GRB light curves. In this model, the different canonical power-law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power-law segment.

  18. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    USGS Publications Warehouse

    Krauss, K.W.; Allen, J.A.; Cahoon, D.R.

    2003-01-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types - prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba - on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year-1) more than pneumatophores or bare soil controls (mean, 8.3 mm year-1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year-1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year-1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. Lagoonal reef accretion and holocene sea-level history from three atolls in the Cook Islands, Central South Pacific

    USGS Publications Warehouse

    Gray, S.C.; Hein, J.R.

    2005-01-01

    Radiocarbon ages of corals from cores collected at nine drill sites in the lagoons of three atolls (Pukapuka, Rakahanga, Aitutaki, Cook Islands) provide a history of lagoon sedimentation in response to Holocene sea-level rise and stabilization. Holocene lagoonal reefs were established between 8700 and 7800 years B.P. on 130,000-200,000 year-old reef platforms that are presently 7 to 22 m below the floor of the lagoons. Comparison of radiocarbon ages of the deepest corals to published sea-level curves indicate that Holocene reefs colonized these substrates rapidly (accretion rates for the Holocene in the lagoons varied by location (83 ?? 2 to 278 ?? 8 cm/ka) and decreased through the Holocene in six of seven drill holes as the lagoons shallowed and became enclosed by the outer reef. A sample from an emergent (<0.5 m above present mean tide) reef on Rakahanga is 4610 ?? 100 years old, which may indicate a higher middle Holocene relative sea level on Rakahanga. Coral growth in Rakahanga lagoon ceased less than 2000 years ago, but was prolific in the early to middle Holocene. The timing and pattern of Holocene reef development exhibited in the Cook Islands is consistent with other oceanic islands. An assessment of the response of reef development to sea-level change during the Holocene provides a baseline to predict how future sea-level changes may affect the morphology of modern reefs.

  20. New Low Accretion Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Schmidt, Gary D.; Szkody, Paula; Vanlandingham, Karen M.; Anderson, Scott F.; Barentine, J. C.; Brewington, Howard J.; Hall, Patrick B.; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Long, Dan; Margon, Bruce; Neilsen, Eric H., Jr.; Newman, Peter R.; Nitta, Atsuko; Schneider, Donald P.; Snedden, Stephanie A.

    2005-09-01

    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray-faint, magnetic accretion binaries that accrete at rates M˙<~10-13 Msolar yr-1, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post-common-envelope systems whose orbits have not yet decayed to the point of Roche lobe contact. They are premagnetic cataclysmic variables, or pre-Polars. The systems exhibit spin-orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon.'' Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG. A portion of the results presented here was obtained with the MMT Observatory, a facility operated jointly by the University of Arizona and the Smithsonian Institution. Based in part on observations with the Apache Point Observatory 3.5 m telescope and the Sloan Digital Sky Survey, which are owned and operated by the Astrophysical Research Consortium (ARC).

  1. EVIDENCE FOR ACCRETION RATE CHANGE DURING TYPE I X-RAY BURSTS

    SciTech Connect

    Worpel, Hauke; Galloway, Duncan K.; Price, Daniel J.

    2013-08-01

    The standard approach for time-resolved X-ray spectral analysis of thermonuclear bursts involves subtraction of the pre-burst emission as background. This approach implicitly assumes that the persistent flux remains constant throughout the burst. We reanalyzed 332 photospheric radius expansion bursts observed from 40 sources by the Rossi X-Ray Timing Explorer, introducing a multiplicative factor f{sub a} to the persistent emission contribution in our spectral fits. We found that for the majority of spectra the best-fit value of f{sub a} is significantly greater than 1, suggesting that the persistent emission typically increases during a burst. Elevated f{sub a} values were not found solely during the radius expansion interval of the burst, but were also measured in the cooling tail. The modified model results in a lower average value of the {chi}{sup 2} fit statistic, indicating superior spectral fits, but not yet to the level of formal statistical consistency for all the spectra. We interpret the elevated f{sub a} values as an increase of the mass accretion rate onto the neutron star during the burst, likely arising from the effects of Poynting-Robertson drag on the disk material. We measured an inverse correlation of f{sub a} with the persistent flux, consistent with theoretical models of the disk response. We suggest that this modified approach may provide more accurate burst spectral parameters, as well as offering a probe of the accretion disk structure.

  2. The Phase Space of z~1.2 SpARCS Clusters: Using Herschel to Probe Dust Temperature as a Function of Environment and Accretion History

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; Webb, T. M. A.; Yee, H. K. C.; Muzzin, A.; Wilson, G.; van der Burg, R. F. J.; Balogh, M. L.; Shupe, D. L.

    2016-01-01

    We present a five-band Herschel study (100-500 μm) of three galaxy clusters at z˜ 1.2 from the Spitzer Adaptation of the Red-Sequence Cluster Survey. With a sample of 120 spectroscopically confirmed cluster members, we investigate the role of environment on galaxy properties utilizing the projected cluster phase space (line-of-sight velocity versus clustercentric radius), which probes the time-averaged galaxy density to which a galaxy has been exposed. We divide cluster galaxies into phase-space bins of (r/{r}200)× ({{Δ }}v/{σ }v), tracing a sequence of accretion histories in phase space. Stacking optically star-forming cluster members on the Herschel maps, we measure average infrared star formation rates, and, for the first time in high-redshift galaxy clusters, dust temperatures for dynamically distinct galaxy populations—namely, recent infalls and those that were accreted onto the cluster at an earlier epoch. Proceeding from the infalling to virialized (central) regions of phase space, we find a steady decrease in the specific star formation rate and increase in the stellar age of star-forming cluster galaxies. We perform a probability analysis to investigate all acceptable infrared spectral energy distributions within the full parameter space and measure a ˜ 4σ drop in the average dust temperature of cluster galaxies in an intermediate phase-space bin, compared to an otherwise flat trend with phase space. We suggest one plausible quenching mechanism which may be consistent with these trends, invoking ram-pressure stripping of the warmer dust for galaxies within this intermediate accretion phase. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Sensitivity analysis of the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER)

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Drexler, J. Z.; Schoellhamer, D. H.; Thorne, K.; Spragens, K.; Takekawa, J.

    2010-12-01

    The San Francisco Estuary contains the largest extent of tidal marsh in the western United States. It is home to several state and federally listed species that are threatened or endangered. Climate change is a potential threat to these tidal marsh habitats through accelerated sea-level rise. The Wetland Accretion Rate Model for Ecosystem Resilience, or WARMER, is a 1-D vertical model of elevation at a point representative of target wetland habitat. WARMER incorporates both biological and physical components of vertical marsh accretion processes based on previous wetland models and is modified to incorporate mechanistic organic matter and inorganic deposition and the predicted SLR curve for San Francisco Estuary. Processes that are currently being modified include relative sea-level rise, inorganic sediment deposition, organic matter production, decomposition, and compaction. The model will be applied to marshes across the San Francisco Estuary and results will be used to evaluate the extent sea-level rise will reduce the functional habitat of the threatened black rail (Laterallus jamaicensis coturniculus), the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris). Here we present a sensitivity analysis of key model parameters. Previous studies have noted that inorganic sediment deposition, initial elevation and pore space are the most sensitive parameters. Consistent with these studies, sensitivity analysis shows that pore space is the most sensitive parameter in the current model and the modified inorganic sediment deposition subroutine is particularly sensitive to the parameterization of settling velocity. Perturbations to initial elevation, the rate of sea level rise, organic matter input rates and percent refractory organic matter had small impacts on the modeled final elevation. Proper characterization of marsh sediment pore space and temporally variable sediment

  4. The pre- and post-accretion irradiation history of cometary ices

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1989-01-01

    Comets Halley and Wilson exhibited similar 3.4 micron emission features at approx. 1 AU from the Sun. A simple model of thermal emission from organic grains fits the feature, provides optical depths in good agreement with spacecraft measurements, and explains the absence of longer-wavelength organic features as due to spectral heliocentric evolution (Chyba and Sagan, 1987). The model utilizes transmission spectra of organics synthesized in the laboratory by irradiation of candidate cometary ices; the authors have long noted that related gas-phase syntheses yield polycyclic aromatic hydrocarbons, among other organic residues (Sagan et al., 1967). The authors previously concluded (Chyba and Sagan, 1987) that Halley's loss of several meters' depth with each perihelion passage, combined with the good fit of the Halley 3.4 micron feature to that of comet Wilson (Allen and Wickramasinghe, 1987), argues for the primordial - but not necessarily interstellar - origin of cometary organics. The authors examine the relative importance to the formation of organics of the variety of radiation environments experienced by comets. They conclude that there is at present no compelling reason to choose any of three contributing mechanisms (pre-accretion UV, pre-accretion cosmic ray, and post-accretion radionuclide processing) as the most important.

  5. Testing propagating mass accretion rate fluctuations model PROPFLUC on black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2016-05-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of black hole X-ray binaries. However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and a quasi-periodic oscillation (QPO) on the precession frequency. We recently applied systematically for the first time PROPFLUC on a black hole candidate (MAXI J1543-564) in order to compare the results of phenomenological and physical modeling of the source power spectrum and to give a physical interpretation of the rising phase of the source outburst. Here we resume the results of our study on MAXI J1543-564 and we discuss future PROPFLUC implementations.

  6. Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Kleine, Thorsten; Touboul, Mathieu; Van Orman, James A.; Bourdon, Bernard; Maden, Colin; Mezger, Klaus; Halliday, Alex N.

    2008-06-01

    We obtained Hf-W metal-silicate isochrons for several H chondrites of petrologic types 4, 5, and 6 to constrain the accretion and high-temperature thermal history of the H chondrite parent body. The silicate fractions have 180Hf/184W ratios up to ˜ 51 and 182W/184W ratios up to ˜ 33 ɛ units higher than the whole-rock. These high 180Hf/184W and radiogenic W isotope ratios result in highly precise Hf-W ages. The Hf-W ages of the H chondrites become younger with increasing metamorphic grade and range from ΔtCAI = 1.7 ± 0.7 Ma for the H4 chondrite Ste. Marguerite to ΔtCAI = 9.6 ± 1.0 Ma for the H6 chondrites Kernouvé and Estacado. Closure temperatures for the Hf-W system in H chondrites were estimated from numerical simulations of W diffusion in high-Ca pyroxene, the major host of radiogenic 182W in H chondrites, and range from 800 ± 50 °C for H4 chondrites to 875 ± 75 °C for H6 chondrites. Owing to these high closure temperatures, the Hf-W system closed early and dates processes associated with the earliest evolution of the H chondrite parent body. Consequently, the high-temperature interval of ˜ 8 Ma as defined by the Hf-W ages is much shorter than intervals obtained from Rb-Sr and Pb-Pb dating. For H4 chondrites, heating on the parent body probably was insufficient to cause W diffusion in high-Ca pyroxene, such that the Hf-W age of ΔtCAI = 1.7 ± 0.7 Ma for Ste. Marguerite was not reset and most likely dates chondrule formation. This is consistent with Al-Mg ages of ˜ 2 Ma for L and LL chondrules and indicates that chondrules from all ordinary chondrites formed contemporaneously. The Hf-W ages for H5 and H6 chondrites of ΔtCAI = 5.9 ± 0.9 Ma and ΔtCAI = 9.6 ± 1.0 Ma correspond closely to the time of the thermal peak within the H chondrite parent body. Combined with previously published chronological data the Hf-W ages reveal an inverse correlation of cooling rate and metamorphic grade: shortly after their thermal peak H6 chondrites cooled at ˜ 10

  7. The Record of Collision and Accretion in the History of a Convergent Margin

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Cayley, R. A.

    2014-12-01

    Convergent margins become congested when they try to swallow buoyant, exotic crust or an oceanic swell associated with anomalously buoyant plume material. Mountain belts (orogens) that form at these convergent plate margins are the sites of significant lateral continental growth. Modern examples of accretionary margins are the North American Cordillera and southwest Pacific. The geologic record is riddled with accretionary orogens, such as the Tasmanides along the eastern margin of the supercontinent Gondwana and the Altaides that formed on the southern margin of Laurasia. In modern and ancient examples of long lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back arc basin development, often related to subduction roll back and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. In previous work, (Mason et al, 2010), we found that buoyant material ingested by a subduction zone produces a relative advance of the local region of the trench (either reduced rollback or absolute advance) naturally leading to the characteristic indentation of the plate boundary by the plateau. Depending on the strength and buoyancy of the incoming anomaly relative to the oceanic lithosphere, it may be subducted or it may be accreted with the associated formation of a slab window. Extending this model to ocean-continent convergent zones (Moresi et al, 2014), we show how the indentation of buoyant exotic material also dominates terrane accretion. When large blocks of material congest a subduction zone, the subduction zone needs to undergo signficiant re-arrangement for convergence to continue. We have modelled this process and observe characteristic patterns in the deformation of the over-riding plate, in the timing of the escape of material from behind the indenter, and in the oroclinal geometry that remains once the collision has completed. References Mason, W. G., Moresi, L., Betts, P. G

  8. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  9. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  10. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Brennecka, Gregory A.; Symes, Steven J. K.

    2016-02-01

    mantle reservoirs formed during planetary differentiation associated with magma ocean solidification, the age determined here implies that magma ocean solidification occurred several tens of millions of years after the beginning of the Solar System. Recent thermal models, however, suggest that Mars-sized bodies cool rapidly in less than ∼5 Ma after accretion ceases, even in the presence of a thick atmosphere. Assuming these models are correct, an extended period of accretion is necessary to provide a mechanism to keep portions of the martian mantle partially molten until 4504 Ma. Late accretional heating of Mars could either be associated with protracted accretion occurring at a quasi-steady state or alternatively be associated with a late giant impact. If this scenario is correct, then accretion of Mars-sized bodies takes up to 60 Ma and is likely to be contemporaneous with the core formation and possibly the onset of silicate differentiation. This further challenges the concept that isotopic equilibrium is attained during primordial evolution of planets, and may help to account for geochemical evidence implying addition of material into planetary interiors after core formation was completed.

  11. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  12. Growing black holes and galaxies: black hole accretion versus star formation rate

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-05-01

    We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully compare star formation rate (SFR) and BH accretion rate (BHAR) time-scales, temporal behaviour, and relative magnitude. We find that (i) BHAR and galaxy-wide SFR are typically temporally uncorrelated, and have different variability time-scales, except during the merger proper, lasting ˜0.2-0.3 Gyr. BHAR and nuclear (<100 pc) SFR are better correlated, and their variability are similar. Averaging over time, the merger phase leads typically to an increase by a factor of a few in the BHAR/SFR ratio. (ii) BHAR and nuclear SFR are intrinsically proportional, but the correlation lessens if the long-term SFR is measured. (iii) Galaxies in the remnant phase are the ones most likely to be selected as systems dominated by an active galactic nucleus, because of the long time spent in this phase. (iv) The time-scale over which a given diagnostic probes the SFR has a profound impact on the recovered correlations with BHAR, and on the interpretation of observational data.

  13. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  14. Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States

    USGS Publications Warehouse

    Preston, T.M.; Sojda, R.S.; Gleason, R.A.

    2013-01-01

    Increased sedimentation and nutrient cycle changes in Prairie Pothole Region wetlands associated with agriculture threaten the permanence and ecological functionality of these important resources. To determine the effects of land use on sedimentation and nutrient cycling, soil cores were analyzed for cesium-137 (137Cs), lead-210 (210Pb), and potassium-40 (40K) activities; textural composition; organic and inorganic carbon (C); and total nitrogen (N) from twelve wetlands surrounded by cropland, Conservation Reserve Program (CRP) lands, or native prairie uplands. Separate soil cores from nine of these wetlands were also analyzed for phosphorus (P), nitrate (NO3), and ammonium (NH4) concentrations. Wetlands surrounded by cropland had significantly greater linear sediment accretion rates than wetlands surrounded by CRP or native prairie. Linear sediment accretion rates from wetlands surrounded by cropland were 2.7 and 6 times greater than wetlands surrounded by native prairie when calculated from the initial and peak occurrence of 137Cs, respectively, and 0.15 cm y−1 (0.06 in yr−1) greater when calculated from 210Pb. Relative to wetlands surrounded by CRP, linear sediment accretion rates for wetlands surrounded by cropland were 4.4 times greater when calculated from the peak occurrence of 137Cs. No significant differences existed between the linear sediment accretion rates between wetlands surrounded by native prairie or CRP uplands. Wetlands surrounded by cropland had increased clay, P, NO3, and NH4, and decreased total C and N concentrations compared to wetlands surrounded by native prairie. Wetlands surrounded by CRP had the lowest P and NO3 concentrations and had clay, NH4, C, and N concentrations between those of cropland and native prairie wetlands. We documented increased linear sediment accretion rates and changes in the textural and chemical properties of sediments in wetlands with cultivated uplands relative to wetlands with native prairie uplands. These

  15. Estimating the long-term phosphorus accretion rate in the Everglades: A Bayesian approach with risk assessment

    NASA Astrophysics Data System (ADS)

    Qian, Song S.; Richardson, Curtis J.

    Using wetlands as a sink of nutrients, phosphorus in particular, is becoming an increasingly attractive alternative to conventional wastewater treatment technology. In this paper, we briefly review the mechanism of phosphorus retention in wetlands, as well as previous modeling efforts. A Bayesian method is then proposed for estimating the long-term phosphorus accretion rate in wetlands through a piecewise linear model of outflow phosphorus concentration and phosphorus mass loading rate. The Bayesian approach was used for its simplicity in computation and its ability to accurately represent uncertainty. Applied to an Everglades wetland, the Bayesian method not only produced the probability distribution of the long-term phosphorus accretion rate but also generated a relationship of acceptable level of ``risk'' and optimal phosphorus mass loading rate for the proposed constructed wetlands in south Florida. The latter is a useful representation of uncertainty which is of interest to decision makers.

  16. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  17. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  18. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    SciTech Connect

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  19. Accretion onto Planetary Mass Companions of Low-mass Young Stars

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L.

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10-9-10-11 M ⊙ yr-1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  20. H-chondrite parent asteroid: A multistage cooling, fragmentation and re-accretion history constrained by thermometric studies, diffusion kinetic modeling and geochronological data

    NASA Astrophysics Data System (ADS)

    Ganguly, Jibamitra; Tirone, Massimiliano; Chakraborty, Sumit; Domanik, Kenneth

    2013-03-01

    We present a detailed thermometric study and cooling history analysis of selected H-chondrites from the petrologic types 4-6 on the basis of their mineralogical properties, and integrate these data with other available constraints on the cooling rates to develop a comprehensive model for the cooling, fragmentation and re-accretion history of the parent asteroid. Temperatures have been determined on the basis of two-pyroxene (2-Px) and spinel (Spnl)-orthopyroxene (Opx)/olivine (Ol) thermometers using the average of line scans and distributed spot analysis of coexisting pairs in each set. All of these minerals have been found to be compositionally homogeneous from ˜1 to 2 μm from the interface within the resolution of microprobe analysis. The thermometric results for the H5 (Allegan and Richardton) and H6 (Guarena and Kernouvé) samples are very similar. Also, while the 2-Px temperature increases by ˜90 °C from H4 to H5/6, a reverse trend is observed for the Spnl-Opx/Ol temperatures implying compositional resetting of these pairs during cooling. For the H4 sample (Forest Vale) all thermometric results are similar. The cooling rates calculated from numerical modeling of the compositional profiles in Opx-Cpx pairs in H5 and H6, corrected for the spatial averaging or convolution effect in microprobe analysis, are ˜25-100 °C/ky, which are 3-4 orders of magnitude higher than the cooling rates implied by in situ cooling in an onion-shell parent body model. Similar numerical simulation of the compositional profile in Opx-Spnl pair in H4 yields a cooling rate ˜50 °C/ky, which is in very good agreement with recent metallographic cooling rate of this sample and geochronological constraints on the cooling T-t path. Numerical simulation suggests that the slow cooling of the H5/6 samples at a rate of ˜15 °C/My, as deduced by recent metallographic study, could not have commenced at a temperature above ˜700 °C since, otherwise, the simulated compositional profile fails

  1. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    SciTech Connect

    Kim, Hyo Jeong; Evans, Neal J. II; Dunham, Michael M.; Lee, Jeong-Eun; Pontoppidan, Klaus M.

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  2. Enhanced Accretion Rates of Stars on Supermassive Black Holes by Star-Disk Interactions in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-01

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  3. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  4. Seismic characteristics and accretion history of Halimeda bioherms on Kalukalukuang Bank, eastern Java Sea (Indonesia)

    NASA Astrophysics Data System (ADS)

    Phipps, C. V. G.; Roberts, H. H.

    1988-03-01

    Extensive areas of Halimeda bioherms similar to those described by Orme et al. (1978), Orme (1985), Davies and Marshall (1985), and Phipps et al. (1985) from Australia's Great Barrier Reef have formed on Kalukalukuang Bank (K-Bank) 50 km east of the Sunda Shelf margin in the easter Java Sea. K-Bank is an isolated limestone platform whose top slopes southward from a water depth of about 20 m at the north to about 100 m at the south (≈30 km). It occurs in a bidirectional monsoonal wind regime and a predominantly southerly flowing current from Makassar Strait. The water column around K-Bank has a well developed shallow thermocline (50 m to 150 m). K-Bank has a relatively flat top with marginal banks of suspected Pleistocene origin as interpreted from seismic relationships. A reconnaissancelevel survey grid of high-resolution seismic profiles indicates that Halimeda bioherms are restricted to the bank margins with the exception of the eastern margin. Bioherms either extend to the steep margin of the platforms or are separated from the platform edge by banks of coral and coralline algae. The morphology of the Halimeda bioherms varies from steep-sided, elongate ridges in the northern bank area, through coalescing symmetrical mounds with partly infilled valleys, to broad undulating areas similar to those described by Orme (1985) from the Great Barrier Reef. High-resolution seismic records indicate erosional episodes in the high-relief areas, an interpretation that seems to be supported by accumulation rates calculated from C14 dates of cores. Thicknesses of Halimeda accumulation above a prominent reflector considered as Pleitocene, vary from around 20 m in the north to a maximum of over 50 m in the southwest. Accumulation rates obtained from dating of two cores to-ward the north of K-Bank, average 0.294 m/100 yr for core VC4 and a maximum of 0.59 m/100 yr in a part of core PC12. Dating of material from the top 30 cm of a deep bioherm (≈100 m) in the southwest of K

  5. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  6. Classical T Tauri stars with VPHAS+ - I. H α and u-band accretion rates in the Lagoon Nebula M8

    NASA Astrophysics Data System (ADS)

    Kalari, V. M.; Vink, J. S.; Drew, J. E.; Barentsen, G.; Drake, J. J.; Eislöffel, J.; Martín, E. L.; Parker, Q. A.; Unruh, Y. C.; Walton, N. A.; Wright, N. J.

    2015-10-01

    We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using ugri H α photometry from the VST Photometric H α survey+. Our sample consists of stars displaying H α excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the u-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using H α and u-band intensities to be ˜0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star-forming processes suggested in the literature.

  7. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  8. Evolution and precession of accretion disk in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Shen, R.-F.; Matzner, C. D.

    2012-12-01

    In a supermassive black hole (BH) tidal disruption event (TDE), the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t-5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t-5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t-8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH's frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  9. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  10. Structure of the Upper Crust Exposed at Endeavor Deep: Implications for Crustal Accretion at Ultra-Fast Spreading Rates

    NASA Astrophysics Data System (ADS)

    Popham, C. T.; Pockalny, R. A.; Larson, R. L.

    2004-12-01

    Endeavor Deep lies at the tip of the propagating spreading center defining the Juan Fernandez/Nazca plate boundary. This 3 km-deep, amagmatic basin,which rifted into ultra-fast spread 3Myr old Nazca Plate crust, was recently surveyed and sampled with Simrad EM300, DSL-120 and ROV Jason II. Over 140 structural orientations measured from Jason II video of the south rift wall show that flows in extrusive layer 2a strike north-south and dip shallowly to the west, while dikes in intrusive layer 2b strike east-west and dip steeply to the south. Using a general model for crustal accretion in which dikes are emplaced vertically and extrusives horizontally, a rotational history is determined for the 3 Myr old crust exposed in the walls of the deep. Multiple rotations are necessary with two-fold intent, first to return structure to the original off-axis orientation prior to tectonic reorganization; second to account for rotations involved in the process of accretion. Tectonic events are first addressed with a 10-25 degree rotation about a horizontal rift parallel axis to account for flexural uplift. Next a 65-degree rotation applied about a vertical axis to return magnetic lineation 2a to its proposed paleo-off axis orientation. After rotation, intrusive and extrusive populations are strike parallel (N5E). In this orientation, dikes average 65-degree dip away from and extrusives 25-degree dip towards the ridge axis. This generally conforms to observations at Hess deep, Blanco FZ, and ODP hole 801C. The second goal of rotation is to account for off axis adjustments during crustal accretion; a 25-degree rotation about a ridge parallel, horizontal axis returns the average dike inclination to vertical and the extrusive dip to horizontal.

  11. The accretion history of dark matter haloes - III. A physical model for the concentration-mass relation

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Wyithe, J. Stuart B.; Schaye, Joop; Duffy, Alan R.

    2015-09-01

    We present a semi-analytic, physically motivated model for dark matter halo concentration as a function of halo mass and redshift. The semi-analytic model combines an analytic model for the halo mass accretion history (MAH), based on extended Press-Schechter (EPS) theory, with an empirical relation between concentration and formation time obtained through fits to the results of numerical simulations. Because the semi-analytic model is based on EPS theory, it can be applied to wide ranges in mass, redshift and cosmology. The resulting concentration-mass (c-M) relations are found to agree with the simulations, and because the model applies only to relaxed haloes, they do not exhibit the upturn at high masses or high redshifts found by some recent works. We predict a change of slope in the z ˜ 0 c-M relation at a mass-scale of 1011 M⊙. We find that this is due to the change in the functional form of the halo MAH, which goes from being dominated by an exponential (for high-mass haloes) to a power law (for low-mass haloes). During the latter phase, the core radius remains approximately constant, and the concentration grows due to the drop of the background density. We also analyse how the c-M relation predicted by this work affects the power produced by dark matter annihilation, finding that at z = 0 the power is two orders of magnitude lower than that obtained from extrapolating best-fitting c-M relations. We provide fits to the c-M relations as well as numerical routines to compute concentrations and MAHs.†

  12. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  13. 2500 years of changing shoreline accretion rates at the mouths of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Tamura, Toru; Anthony, Edward; Brunier, Guillaume; Saito, Yoshiki; Dussouillez, Philippe; Lap Nguyen, Van; Ta, Oahn

    2016-04-01

    The Mekong River delta prograded rapidly in a relatively sheltered bight in the South China Sea under the influence of high fluvial sediment supply 5300 to 3500 years ago, developing from an estuary into a delta. This >200 km seaward growth resulted in increasing exposure of the delta to ocean waves that led to a more wave-influenced mode of progradation characterized by the construction of numerous sets of beach ridges in the eastern sector of the delta, which shows a system of multiple distributary mouths. The growth pattern of this river-mouth sector over the last 2500 years has been determined from OSL dating of these beach-ridge deposits, while the most up-to-date trends (1950-2014) have been highlighted from the analysis of maps and satellite images. The OSL ages show that the area of the delta in the mouths sector remained nearly constant till about 500 yr BP, following which significant accretion occurred, possibly in response to changes in catchment land-use and monsoon rainfall and attendant river water and sediment discharge. A fine-tuned analysis of changes since 1950 shows dominant but fluctuating accretion, with two periods of erosion. The first (1965-1973) occurred in the course of the second Indochina war, and the second more recently from 2003 to 2011, followed by mild recovery between 2011 and 2014. These fluctuations most likely reflect changes in sediment supply caused by the vicissitudes of war and its effect on vegetation cover, as well as variations in monsoon rainfall and discharge, and, for the most recent period, massive sand mining in the river and deltaic channels. Accretion of the mouths sector has gone apace, over the same recent multi-decadal period, with large-scale erosion of the muddy shores of the delta in the western South China Sea and the Gulf of Thailand, thus suggesting that the mouths sector may be increasingly sequestering sediment to the detriment of the rest of the delta shoreline. The accretion in the mouths sector is

  14. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  15. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  16. Coronal geometry at low mass-accretion rates from XMM and NuSTAR spectra

    NASA Astrophysics Data System (ADS)

    Fuerst, F.; NuSTAR Binaries Team; NuSTAR AGN Team

    2016-06-01

    At very low Eddington luminosities the structure and physics of the accretion flow around a black hole are still debated, in particular in the inner most regions. By making sensitive measurements of the relativistic blurring of the X-ray reflection spectrum we investigate these physics, a task for which XMM-Newton, in combination with hard X-ray coverage provided by NuSTAR or Hitomi, is ideally suited and will continue to be unique for years to come. I will present results from XMM and NuSTAR observations of the radio-galaxy Cen A and of the X-ray binary GRS 1739-278 during the decline of its outburst. While Cen A shows a prominent iron line, the broad-band spectrum shows no evidence of reflection. This lack of reflection can best be explained by a jet origin of the hard X-rays or a significantly truncated accretion disk. The iron line can be self-consistently explained when assuming an optically thick torus surrounding the super-massive black-hole. The broad-band X-ray spectrum of GRS 1739-278 can be well described by a simple power-law or Comptonization continuum. A weak relativistic reflection model results in a small but significant improvement of the statistical quality of the fit. This relativistic model indicates a strongly truncated disk.

  17. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    SciTech Connect

    De Marchi, Guido; Beccari, Giacomo; Panagia, Nino E-mail: gbeccari@eso.org

    2013-09-20

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dot{sub acc}, as a function of the stellar parameters finding that log M-dot{sub acc}≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

  18. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  19. Origin of Siletzia, an Accreted Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.; Wooden, J.

    2014-12-01

    Siletzia as named by Irving (1979) is a Paleogene large igneous province forming the oceanic basalt basement of coastal OR, WA and S. BC that was accreted to North America in the early Eocene. U-Pb (magmatic, detrital zircon) and 40Ar/39Ar ages constrained by mapping, global coccolith (CP) zones, and magnetic polarities permit correlation of basalts with the geomagnetic polarity time scale of Gradstein et al. (2012). Siletzia was rapidly erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Magmatism continued until ca. 46 Ma with emplacement of a basalt sill complex during or shortly after accretion. Siletzia's great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms mark the Tillamook magmatic episode in the forearc (41.6 Ma; CP zone 14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in an open source plate modeling program. In most reference frames, the YHS is on or near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS thus could have provided a 56-49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time. Following accretion of Siletzia, the leading edge of North America overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous high-Ti tholeiitic to alkalic magmatism of the 42-34 Ma Tillamook episode and extension in the forearc. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the probable hotspot track on North

  20. [Credits and rating system in teaching of history of medicine].

    PubMed

    Sorokina, T S

    2006-01-01

    Implementation of system of credits and score-rating of students' knowledge at the medical faculty of Peoples' Friendship University of Russia is considered. Estimation of maximum possible rating for each discipline is conventionally based on mode of "one credit--36 study hours of student--36 scores". System of numerical score elaborated at Course of history of medicine considers attendance of lectures and studies, activity of student during study hours and self-instruction (term papers included), contribution of student into chair research, interim testing and test passing. Total score of discipline determines rating of student for study class, university year and faculty. Tables of score estimation, its relationship with conventional system of scores are discussed. Examples of evaluation of student's knowledge using score-rating system are presented. PMID:16739631

  1. OT2_sserje01_2: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2011-09-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe. In OT1 the HOTAC concluded "The science output from the proposed survey will be outstanding [...] The panel was convinced that these observations should be done" but it since became clear that priority 2 time is very unlikely to be executed, so we request reclassification to priority 1.

  2. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  3. Evolution of Nova TrA 2008 into a High Mass-Accretion Rate Post-Nova

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.

    2015-06-01

    NR TrA (Nova TrA 2008) was a normal slow Fe II novae for its first year of evolution. During its third year eclipses appeared, and optical spectra revealed the presence of hot permitted lines of C IV, N V, and O VI in addition to the usual nebular lines. The light curve and spectra resemble those of the V Sge stars. The orbital period is 5.25 hours. The time-resolved spectra show a prominent S-wave in the hot lines with an amplitude of about 100 km/s. We conclude that the system is a CV with a high mass accretion rate that has persisted for some 6 years after the explosion.

  4. Mapping the average AGN accretion rate in the SFR-M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5

    NASA Astrophysics Data System (ADS)

    Delvecchio, I.; Lutz, D.; Berta, S.; Rosario, D. J.; Zamorani, G.; Pozzi, F.; Gruppioni, C.; Vignali, C.; Brusa, M.; Cimatti, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Lanzuisi, G.; Oliver, S.; Rodighiero, G.; Santini, P.; Symeonidis, M.

    2015-05-01

    We study the relation of AGN accretion, star formation rate (SFR) and stellar mass (M*) using a sample of ≈8600 star-forming galaxies up to z = 2.5 selected with Herschel imaging in the GOODS and COSMOS fields. For each of them we derive SFR and M*, both corrected, when necessary, for emission from an active galactic nucleus (AGN), through the decomposition of their spectral energy distributions (SEDs). About 10 per cent of the sample are detected individually in Chandra observations of the fields. For the rest of the sample, we stack the X-ray maps to get average X-ray properties. After subtracting the X-ray luminosity expected from star formation and correcting for nuclear obscuration, we derive the average AGN accretion rate for both detected sources and stacks, as a function of M*, SFR and redshift. The average accretion rate correlates with SFR and with M*. The dependence on SFR becomes progressively more significant at z > 0.8. This may suggest that SFR is the original driver of these correlations. We find that average AGN accretion and star formation increase in a similar fashion with offset from the star-forming `main-sequence'. Our interpretation is that accretion on to the central black hole and star formation broadly trace each other, irrespective of whether the galaxy is evolving steadily on the main-sequence or bursting.

  5. Thermal History and Volatile Partitioning between Proto-Atmosphere and Interior of Mars Accreted in a Solar Nebula

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2015-11-01

    Recent precise Hf-W chronometry of Martian meteorites reveals that Mars had likely reached the half of its present mass within 3 Myr from the birth of the solar system (Dauphas and Pourmand, 2011). Hence, the accretion is considered to almost proceed within the solar nebula associated with the capture of nebula gas components. At the same time, the impact degassing may inevitably occur because impact velocity increases high enough for such degassing when a proto-planet gets larger than around lunar size. Thus, we can expect the formation of a hybrid-type proto-atmosphere that consists of nebula gas and degassed one.This study analyzes the thermal structure of this proto-atmosphere sustained by accretional heating by building a 1D radiative-convective equilibrium model. Raw materials of Mars are supposed to be volatile-rich on the basis of the geochemical systematics of Mars meteorites (Dreibus and Wanke, 1988). The composition of degassed component comprised of H2, H2O, CH4, and CO is determined by chemical equilibrium with silicate and metal under the physical condition of locally heated region generated by each impact (Kuramoto, 1997). Degassed component lies beneath the nebula gas atmosphere at altitudes below the compositional boundary height that would change depending on the amount of degassed component. The accretion time is taken to be from 1 to 6 Myr.Our model predicts that the surface temperature exceeds the liquidus temperature of rock when a proto Mars grows larger than 0.7 times of its present mass for the longest accretion time case. In this case, the magma ocean mass just after the end of accretion is 0.2 times of its present mass if heat transfer and heat sources such as short-lived radionuclides are neglected in the interior. The corresponding amount of water dissolved into the magma ocean would be around 1.8 times the present Earth ocean mass. These results suggest that the earliest Mars would be hot enough to form deep magma oceans, which

  6. Charge Accretion Rate and Injection Radius of Ionized-Induced Injections in Laser Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Chen, Min; Sheng, Zheng-Ming

    2016-03-01

    Ionization-induced injection has recently been proved to be a stable injection method with several advantages in laser wakefield accelerators. However, the controlling of this injection process aiming at producing high quality electron beams is still challenging. In this paper, we examine the ionization injection processes and estimate the injection rate with two-dimensional particle-in-cell simulations. The injection rate is shown to increase linearly with the high-Z gas density as long as its ratio is smaller than some threshold in the mix gases. It is also shown that by changing the transverse mode of the driving lasers one can control the injection rate.

  7. On the Disappearance of Kilohertz Quasi-periodic Oscillations at a High Mass Accretion Rate in Low-Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Cui, Wei

    2000-05-01

    For all sources in which the phenomenon of kilohertz quasi-periodic oscillation (kHz QPO) is observed, the QPOs disappear abruptly when the inferred mass accretion rate exceeds a certain threshold. Although the threshold cannot at present be accurately determined (or even quantified) observationally, it is clearly higher for bright Z sources than for faint atoll sources. Here we propose that the observational manifestation of kHz QPOs requires direct interaction between the neutron star magnetosphere and the Keplerian accretion disk and that the cessation of kHz QPOs at a high accretion rate is due to the lack of such an interaction when the Keplerian disk terminates at the last stable orbit and yet the magnetosphere is pushed farther inward. The threshold is therefore dependent on the magnetic field strength-the stronger the magnetic field, the higher the threshold. This is certainly in agreement with the atoll/Z paradigm, but we argue that it is also generally true, even for individual sources within each (atoll or Z) category. For atoll sources, the kHz QPOs also seem to vanish at a low accretion rate. Perhaps the ``disengagement'' between the magnetosphere and the Keplerian disk also takes place under such circumstances because of, for instance, the presence of quasi-spherical advection-dominated accretion flow (ADAF) close to the neutron star. Unfortunately, in this case, the estimation of the accretion rate threshold would require a knowledge of the physical mechanisms that cause the disengagement. If the ADAF is responsible, the threshold is likely dependent on the magnetic field of the neutron star.

  8. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. I. METHOD AND APPLICATION TO THE SN 1987A FIELD

    SciTech Connect

    De Marchi, Guido; Panagia, Nino; Romaniello, Martino E-mail: panagia@stsci.ed

    2010-05-20

    We have developed and successfully tested a new self-consistent method to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion in a resolved stellar population, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to (1) identify all stars with excess H{alpha} emission, (2) convert the excess H{alpha} magnitude into H{alpha} luminosity L(H{alpha}), (3) estimate the H{alpha} emission equivalent width, (4) derive the accretion luminosity L{sub acc} from L(H{alpha}), and finally (5) obtain the mass accretion rate M-dot{sub acc} from L{sub acc} and the stellar parameters (mass and radius). By selecting stars with an accuracy of 15% or better in the H{alpha} photometry, the statistical uncertainty on the derived M-dot{sub acc} is typically {approx_lt}17% and is dictated by the precision of the H{alpha} photometry. Systematic uncertainties, of up to a factor of 3 on the value of M-dot{sub acc}, are caused by our incomplete understanding of the physics of the accretion process and affect all determinations of the mass accretion rate, including those based on a spectroscopic H{alpha} line analysis. As an application of our method, we study the accretion process in a field of 9.16 arcmin{sup 2} around SN 1987A, using existing Hubble Space Telescope photometry. We identify as bona fide PMS stars a total of 133 objects with a H{alpha} excess above the 4{sigma} level and a median age of 13.5 Myr. Their median mass accretion rate of 2.6 x 10{sup -8} M{sub sun} yr{sup -1} is in excellent agreement with previous determinations based on the U-band excess of the stars in the same field, as well as with the value measured for G-type PMS stars in the Milky Way. The accretion luminosity of these PMS objects shows a strong dependence on their distance from a group of hot massive stars in the field and suggests that the ultraviolet radiation of the latter is rapidly

  9. Paleoenvironmental reconstruction of a downslope accretion history: From coralgal-coralline sponge rubble to mud mound deposits (Eocene, Ainsa Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, Marta; Reitner, Joachim

    2015-12-01

    In the Lutetian intraslope Ainsa sub-basin, small, sub-spherical, carbonate mud mounds occur associated with hemipelagic marls and mixed gravity flow deposits. The studied mud mounds consist of a mixture of allochthonous, parautochthonous and autochthonous components that show evidences of reworking, bioerosion, and accretion by different fossil assemblages at different growth stages. The crusts of microbial-lithistid sponges played an important role stabilizing the rubble of coralgal-coralline sponges and formed low-relief small benthic patches in a dominant marly soft slope environment. These accidental hard substrates turned into suitable initiation/nucleation sites for automicrite production (dense and peloidal automicrites) on which the small mud mounds dominated by opportunistic epi- and infaunal heterozoan assemblages grew. A detailed microfacies mapping and paleoenvironmental analysis reveals a multi-episodic downslope accretion history starred by demosponges (coralline and lithistid sponges), agariciid corals, calcareous red algae, putative microbial benthic communities and diverse sclerobionts from the upper slope to the middle slope. The analyzed mud mound microfacies are compared with similar fossil assemblages and growth fabrics described in many fossil mud mounds, and with recent deep-water fore reefs and cave environments.

  10. The Star-formation History and Accretion Disk Fraction Among the Low-Mass Members of the Scorpius-Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark; Mamajek, E. E.

    2012-01-01

    As part of a long-term observing program to elucidate the membership, star-formation history, and substructure of the nearest OB association (Sco-Cen; d = 100-150 pc; ages 10-20 Myr), we present results from a low-resolution optical spectroscopy survey of 363 G/K/M-type candidates of Sco-Cen selected via X-ray activity, proper-motions, and 2MASS photometry consistent with membership. Using low-resolution spectra over red ( 5700A-6800A) wavelengths obtained using the SMARTS 1.5-m telescope, we measured Li equivalent widths, determined accurate MK spectral classifications and searched for evidence of accretion among these low-mass stars ( 0.6-1.1 Msun). Using Li as a youth indicator, we evaluate membership and place each confirmed member on the H-R diagram. Combining these results with previously published results for the higher- and lower-mass stars, we discuss the substructure, age distribution, and kinematics of the Sco-Cen OB association, as well as the accretion disk fraction amongst young G/K/M-type stars in the 10-20 Myr range. This work has been supported by NSF grant AST-1008908.

  11. Seismic structure and crustal accretion along an intermediate-rate mid-ocean ridge segment

    NASA Astrophysics Data System (ADS)

    Weekly, Robert Todd

    pervasive tectonic fracturing and persist off-axis, recording the history of ridge propagation. Near the segment center, velocities within the upper 1 km show ridge-parallel bands with low velocities on the outer flanks of topographic highs. These features are attributed to localized thickening of the volcanic extrusive layer from eruptions extending outside of the axial valley that flow down the fault-tilted blocks that form the abyssal hill topography. On-axis velocities are relatively high beneath the hydrothermal vent fields due to the infilling of porosity by mineral precipitation. Lower velocities are observed beneath the most vigorous vent fields in a seismically active region above the axial magma chamber and may reflect increased fracturing and higher temperatures. Seismic anisotropy is high on-axis but decreases substantially off-axis over ~8 km (0.3 Ma). This decrease coincides with an increase in seismic velocities at depths greater than 1 km and is attributed to the infilling of cracks in the sheeted dike layer by mineral precipitation associated with near-axis hydrothermal circulation. The orientation of the fast-axis of anisotropy is ridge-parallel near the segment center but curves near the segment ends reflecting the tectonic fabric within the OSCs.

  12. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  13. Combining Hf-W Ages, Cooling Rates, and Thermal Models to Estimate the Accretion Time of Iron Meteorite Parent Bodies

    NASA Astrophysics Data System (ADS)

    Qin, L.; Dauphas, N.; Wadhwa, M.; Masarik, J.; Janney, P. E.

    2007-12-01

    The 182Hf-182W short-lived chronometer has been widely used to date metal-silicate differentiation processes in the early Solar System. However the presence of cosmogenic effects from exposure to GCR can potentially hamper the use of this system for chronology purposes (e.g. [1,2]). These effects must be corrected for in order to calculate metal-silicate differentiation ages. In this study, high-precision W isotope measurements are presented for 32 iron meteorites from 8 magmatic and 2 non-magmatic groups. Exposure ages and pre- atmospheric size estimates are available for most of these samples [3]. Our precision is better than or comparable to the currently most precise literature data and our results agree with previous work [4]. All magmatic irons have ɛ182W equal within error to or more negative than the Solar System initial derived from a CAI isochron [5]. Iron meteorites from the same magmatic groups show variations in ɛ182W. These are most easily explained by exposure to cosmic rays in space. A correction method was developed to estimate pre-exposure ɛ182W for individual iron meteorite groups. Metal-silicate differentiation in most iron meteorite parent bodies must have occurred within 2 Myr of formation of refractory inclusions. For the first time, we combine 182Hf-182W ages with parent body sizes inferred from metallographic cooling rates in a thermal model to constrain the accretion time of iron meteorite parent bodies. The estimated accretion ages are within 1.5 Myr for most magmatic groups, and could be as early as 0.2 Myr after CAI formation. This is consistent with the study of Bottke et al. [6] who argued that iron meteorite parent bodies could represent an early generation of planetesimals formed in the inner region of the Solar System. [1] Masarik J. (1997) EPSL 152, 181-185. [2] Markowski A. et al. (2006) EPSL 250,104-115. [3] Voshage H. (1984) EPSL 71, 181-194. [4] Markowski A. et al. (2006) EPSL 242, 1-15. [5] Kleine T. et al. (2005) GCA 69

  14. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. II. NGC 346 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    De Marchi, Guido; Sirianni, Marco; Panagia, Nino; Sabbi, Elena; Romaniello, Martino; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla E-mail: panagia@stsci.edu

    2011-10-10

    We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the Small Magellanic Cloud, using a novel self-consistent method that allows us to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to identify all stars with excess H{alpha} emission and derive the accretion luminosity L{sub acc} and mass accretion rate M-dot{sub acc} for all of them. The application of this method to existing Hubble Space Telescope (HST)/Advanced Camera for Surveys photometry of the NGC 346 field has allowed us to identify and study 680 bona fide PMS stars with masses from {approx}0.4 M{sub sun} to {approx}4 M{sub sun} and ages in the range from {approx}1 Myr to {approx}30 Myr. Previous investigations of this region, based on the same data, had identified young ({approx}3 Myr old) candidate PMS stars on the basis of their broadband colors. In this study, we show that there are at least two, almost equally numerous, young populations with distinct ages of, respectively, {approx}1 and {approx}20 Myr. We provide accurate physical parameters for all of them. We take advantage of the unprecedented size of our PMS sample and of its spread in mass and age to study the evolution of the mass accretion rate as a function of stellar parameters. We find that, regardless of stellar mass, the mass accretion rate decreases with roughly the square root of the age, or about three times slower than predicted by current models of viscous disk evolution, and that more massive stars systematically have a higher mass accretion rate in proportion to their mass. A multivariate linear regression fit reveals that log M-dot{sub acc}{approx_equal}-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a quantity that is higher at lower metallicity. This result is consistent with

  15. Theory of wind accretion

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2014-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  16. Magnetospheric accretion in EX Lupi

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  17. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  18. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  19. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-08-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7% confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  20. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  1. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailab...

  2. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size–Luminosity Scaling Relation for the Broad-line Region

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Zhang, Zhi-Xiang; Huang, Ying-Ke; Wang, Kai; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Fan, Xu-Liang; Fang, Xiang-Er; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2016-07-01

    This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014 and 2015. Ten new targets were selected from the quasar sample of the Sloan Digital Sky Survey (SDSS), which have generally been more luminous than the SEAMBH candidates in the last two years. Hβ lags ({τ }{{H}β }) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known R H β–L 5100 relation. The five quasars have dimensionless accretion rates of \\dot{{M}\\quad }=10–103. Combining these with measurements of the previous SEAMBHs, we find that the reduction of Hβ lags depends tightly on accretion rates, {τ }{{H}β }/{τ }R-L\\propto {\\dot{{M}}}-0.42, where {τ }R-L is the Hβ lag from the normal R H β–L 5100 relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: {R}{{H}β }={α }1{{\\ell }}44{β 1} {min} [1,{(\\dot{{M}}/{\\dot{{M}}}c)}-{γ 1}], where {{\\ell }}44={L}5100/{10}44 {erg} {{{s}}}-1 is the 5100 Å continuum luminosity, and the coefficients are {α }1={29.6}-2.8+2.7 lt-day, {β }1={0.56}-0.03+0.03, {γ }1={0.52}-0.16+0.33, and {\\dot{{M}}}c={11.19}-6.22+2.29. This relation is applicable to AGNs over a wide range of accretion rates, from 10‑3 to 103. Implications of this new relation are briefly discussed.

  3. Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Weidenschilling, S. J.; McSween, H. Y., Jr.

    2003-05-01

    Widespread evidence exists for heating that caused melting, thermal metamorphism, and aqueous alteration in meteorite parent bodies. Previous simulations of asteroid heat transfer have assumed that accretion was instantaneous. For the first time, we present a thermal model that assumes a realistic (incremental) accretion scenario and takes into account the heat budget produced by decay of 26Al during the accretion process. By modeling 6 Hebe (assumed to be the H chondrite parent body), we show that, in contrast to results from instantaneous accretion models, an asteroid may reach its peak temperature during accretion, the time at which different depth zones within the asteroid attain peak metamorphic temperatures may increase from the center to the surface, and the volume of high-grade material in the interior may be significantly less than that of unmetamorphosed material surrounding the metamorphic core. We show that different times of initiation and duration of accretion produce a spectrum of evolutionary possibilities, and thereby, highlight the importance of the accretion process in shaping an asteroid's thermal history. Incremental accretion models provide a means of linking theoretical models of accretion to measurable quantities (peak temperatures, cooling rates, radioisotope closure times) in meteorites that were determined by their thermal histories.

  4. Ringed Accretion Disks: Instabilities

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  5. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  6. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  7. Accreting X-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    This presentation describes the behavior of matter in environments with extreme magnetic and gravitational fields, explains the instability/stability of accretion disks in certain systems, and discusses how emergent radiation affects accretion flow. Magnetic field measurements are obtained by measuring the lowest cyclotron absorption line energy, observing the cutoff of accretion due to centrifugal inhibition and measuring the spin-up rate at high luminosity.

  8. Diet History Questionnaire: Response Rates/Length of Questionnaire

    Cancer.gov

    Based on pilot study research from about 400 individuals in one study and about 1000 in another, the response rates for the DHQ varied from 70-85%. In both these studies, the DHQ response rates were not statistically different than those from shorter FFQs.

  9. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  10. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    SciTech Connect

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  11. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  12. Intrinsic Absorption in Quasars (AAL & BAL) and its Relation to Outflows, BH Mass, Accretion Rate, Spin, Orientation, and Radio Properties

    NASA Astrophysics Data System (ADS)

    Stone, Robert Bernard; Richards, Gordon T.

    2016-01-01

    Despite the fact that quasars are fueled by matter falling into supermassive black holes, this process spews out considerable mass and energy. We investigate the nature of these outflows in the form of both broad and narrow absorption lines using data taken as part of the Sloan Digital Sky Survey (SDSS). Although these outflows are seen to have ejection speeds of up to 60,000 km/s, it is still unclear how they affect the quasar's host-galaxy and its evolution. We look for correlations of these outflows with the radio properties of the quasars, which can potentially reveal a physical connection between the quasar's accretion physics and its outflows. We also investigate how relaxing the traditional criteria for defining both radio loud and broad absorption line quasars impacts our understanding of these classes and quasars in general. Our ultimate goal is to understand how outflows from quasars change as a function of line-of-sight orientation, mass, accretion, and spin of the black holes that fuel them.

  13. Using ILI pigs to establish pipeline corrosion rates -- Case histories

    SciTech Connect

    Brown, W.H.

    1999-07-01

    Corrosion is a major concern for the oil and gas industry. Pipelines are subject to internal and external agents that can cause corrosion affecting their safety, integrity, and profitability. Corrosion causes metal losses that may hamper the supply of energy and could lead to substantial damage to the ecology. Restoring pipelines to safe operating condition is the main goal of in-line inspection (ILI) using state-of-the-art Smart Pigs. These tools travel through the full length of pipelines gathering detailed information that is used for the assessment of both the internal and the external surfaces of the line. Ultrasound ILI tools perform direct measurements of the remaining wall thickness of the pipe. The analysis of an ultrasound ILI run determines the residual strength of the pipeline at the time of the inspection. On the other hand, the comparison of successive ultrasound runs establishes patterns of individual defect growth. Under this light the interpretation of the data leads to an assessment of the dynamics of the corrosion phenomena occurring in pipelines. Case histories are presented in this paper in order to illustrate how ultrasound ILI data are being used today to establish courses of action in corrective, preventive, and predictive maintenance of pipelines.

  14. Paleomagnetic and rock magnetic results from lower crustal rocks of IODP Site U1309: Implication for thermal and accretion history of the Atlantis Massif

    NASA Astrophysics Data System (ADS)

    Zhao, Xixi; Tominaga, Masako

    2009-09-01

    accretion history of the Atlantis Massif.

  15. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  16. Evolution of Accretion Disks in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  17. Evolution of accretion disks in tidal disruption events

    SciTech Connect

    Shen, Rong-Feng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  18. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  19. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  20. Controls on the Geometry of Accretion Reflectors

    NASA Astrophysics Data System (ADS)

    Wolovick, M.; Bell, R. E.; Buck, W. R.; Creyts, T. T.

    2012-12-01

    Basal accretion occurs when meltwater refreezes onto the base of an ice sheet. Thick packages (900-1100m) of accretion ice are identified in radio-echo sounding data as plume-shaped reflectors above the basal reflector and below isochronous layers of meteoric ice. Accretion reflectors have been imaged in both Antarctica and Greenland rising to a height of 1/3-1/2 of the ice sheet thickness and extending in the flow direction as far as 100 km. Here we use a two-dimensional thermomechanical higher order flowline model coupled to a basal hydrology model to investigate the freezing rates and energy budgets of basal accretion processes. Simple order-of-magnitude estimates for the freezing rate based on the observed height of the reflectors and the assumption that all ice under the observed reflector consists of accretion ice indicate very large freezing rates, on the order of 10-100 cm/yr. We test two end-member possibilities for the formation of the basal accretion bodies: high accretion rates and complex basal deformation. The first possibility is that the freezing rates are very large. The second possibility is that the ice under the observed reflector is a mixture of accreted and meteoric ice. If the ice below the accretion reflector is a mixture, the freezing rates can be much smaller than the simple estimates. If the freezing rates are small, then complex basal deformation must be invoked to cause accretion ice to override meteoric ice to a height of 1/3-1/2 the ice thickness. In the basal deformation case, low freezing rates predict a maximum thickness of 100-200m of accretion ice. The remaining ice beneath the reflector will be deformed meteoric ice. Both cases make testable predictions. If the accretion rates are very high and supercooling is the dominant process, accretion cannot use up all of the subglacial water. In this high rate scenario there will be water at the melting point exiting the accretion site. Alternatively if the accretion is part of a complex

  1. PS1-10jh Continues to Follow the Fallback Accretion Rate of a Tidally Disrupted Star

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Chornock, R.; Lawrence, A.; Rest, A.; Jones, D. O.; Berger, E.; Challis, P. M.; Narayan, G.

    2015-12-01

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t‑5/3 power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  2. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  3. Relationship between Star Formation Rate and Black Hole Accretion At Z = 2: the Different Contributions in Quiescent, Normal, and Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Brusa, M.; Daddi, E.; Negrello, M.; Mullaney, J. R.; Delvecchio, I.; Lutz, D.; Renzini, A.; Franceschini, A.; Baronchelli, I.; Pozzi, F.; Gruppioni, C.; Strazzullo, V.; Cimatti, A.; Silverman, J.

    2015-02-01

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5\\lt z\\lt 2.5 galaxies displaying a greater diversity of star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, LX) and stellar mass (M*) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M*0.43+/- 0.09, implying faster BH growth in more massive galaxies at z∼ 2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of LX/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼ 2 is associated with normal star-forming systems, with only ∼ 6(+/- 1)% and ∼ 11(+/- 1)% associated with starburst and quiescent galaxies, respectively.

  4. Istoriya al'ternativnykh techenij v planetnoj kosmogonii (gomogennaya ili geterogennaya akkretsiya) %t The history of two alternative concepts in planetary cosmogony (homogeneous of heterogeneous accretion)

    NASA Astrophysics Data System (ADS)

    Rezanov, I. A.

    Initially the hypotheses of Kant, Laplace, and other authors implied homogeneous accretion of planets from uniform material. O. Yu. Schmidt shared this idea. The idea of heterogeneous accretion was proposed in the mid-1940s by V. G. Fesenkov, who demonstrated that the iron cores of planets started to form prior to their silicate mantles. The obvious increase in average planet density with decreasing distance from the Sun suggests that the protoplanetary nebula was also heterogeneous - iron concentrated closer to the Sun, probably under the effect of its magnetic field. In the second half of the 20th century, planetary cosmogony developed against the background of continuous dispute between the adherents of homogeneous and heterogeneous planetary accretion. The confrontation still exists, although arguments in favour of heterogeneous accretion increase in weight. The dilemma under discussion is directly related to modern tectonic concepts, because it is necessary to find an answer to the question whether the core originated from the differentiation of the Earth's material or our planet had a core from the beginning.

  5. Child Mortality Estimation: Consistency of Under-Five Mortality Rate Estimates Using Full Birth Histories and Summary Birth Histories

    PubMed Central

    Silva, Romesh

    2012-01-01

    Background Given the lack of complete vital registration data in most developing countries, for many countries it is not possible to accurately estimate under-five mortality rates from vital registration systems. Heavy reliance is often placed on direct and indirect methods for analyzing data collected from birth histories to estimate under-five mortality rates. Yet few systematic comparisons of these methods have been undertaken. This paper investigates whether analysts should use both direct and indirect estimates from full birth histories, and under what circumstances indirect estimates derived from summary birth histories should be used. Methods and Findings Usings Demographic and Health Surveys data from West Africa, East Africa, Latin America, and South/Southeast Asia, I quantify the differences between direct and indirect estimates of under-five mortality rates, analyze data quality issues, note the relative effects of these issues, and test whether these issues explain the observed differences. I find that indirect estimates are generally consistent with direct estimates, after adjustment for fertility change and birth transference, but don't add substantial additional insight beyond direct estimates. However, choice of direct or indirect method was found to be important in terms of both the adjustment for data errors and the assumptions made about fertility. Conclusions Although adjusted indirect estimates are generally consistent with adjusted direct estimates, some notable inconsistencies were observed for countries that had experienced either a political or economic crisis or stalled health transition in their recent past. This result suggests that when a population has experienced a smooth mortality decline or only short periods of excess mortality, both adjusted methods perform equally well. However, the observed inconsistencies identified suggest that the indirect method is particularly prone to bias resulting from violations of its strong

  6. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  7. The history of cosmic baryons: X-ray emission versus star formation rate

    NASA Astrophysics Data System (ADS)

    Menci, N.; Cavaliere, A.

    2000-01-01

    We relate the star formation from cold baryons condensing in virialized structures to the X-ray properties of the associated diffuse, hot baryonic component. Our computations use the standard `semi-analytic' models to include and connect three sectors of the complex astrophysics involved: first, the formation of dark matter haloes through accretion and merging, after the standard hierarchical clustering; secondly, the star formation governed, after the current `recipes', by radiative cooling and by feedback of the supernova energy into the hot baryonic component; thirdly, and novel, the hydrodynamics and thermodynamics of the hot phase, rendered with our Punctuated Equilibria model. So we relate the X-ray observables concerning the intracluster medium (namely, the luminosity-temperature relation, the luminosity functions, the source counts) to the thermal energy of the gas pre-heated and expelled by supernovae following star formation, and then accreted during the subsequent merging events. Our main results are as follows. At fluxes fainter than FX~10-15ergcm-2s-1 the X-ray counts of extended extragalactic sources (as well as the faint end of the luminosity function, their contribution to the soft X-ray background, and the LX-T correlation at the group scales) increase considerably if the star formation rate is high for z>1 as indicated by growing optical/infrared evidence. Specifically, the counts in the range 0.5-2keV are increased by factors ~4 when the the feedback is decreased and the star formation is enhanced as to yield a flat shape of the star formation rate for 22, and a new way to advance the understanding of the galaxy formation.

  8. Gas Accretion and Mergers in Massive Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Ownsworth, Jamie; Mortlock, Alice; Bluck, Asa F. L.

    2013-07-01

    Galaxy assembly is an unsolved problem, with ΛCDM theoretical models unable to easily account for among other things, the abundances of massive galaxies, and the observed merger history. We show here how the problem of galaxy formation can be addressed in an empirical way without recourse to models. We discuss how galaxy assembly occurs at 1.5 < z < 3 examining the role of major and minor mergers, and gas accretion from the intergalactic medium in forming massive galaxies with log M* > 11 found within the GOODS NICMOS Survey (GNS). We find that major mergers, minor mergers and gas accretion are roughly equally important in the galaxy formation process during this epoch, with 64% of the mass assembled through merging and 36% through accreted gas which is later converted to stars, while 58% of all new star formation during this epoch arises from gas accretion. We also discuss how the total gas accretion rate is measured as Ṁ = 90+/-40 M⊙ yr-1 at this epoch, a value close to those found in some hydrodynamical simulations.

  9. Wind accretion: Theory and observations

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  10. He-accreting white dwarfs: accretion regimes and final outcomes

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Tornambé, A.; Yungelson, L. R.

    2014-12-01

    The behaviour of carbon-oxygen (CO) white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyse the thermal response of an accreting WD to mass deposition at different timescales. The analysis has been performed for initial WD masses and accretion rates in the range 0.60-1.02 M⊙ and 10-9-10-5 M⊙ yr-1, respectively. Thermal regimes in the parameter space MWD-dot{M}_He leading to formation of red-giant-like structures, steady burning of He, and mild, strong and dynamical flashes have been identified and the transition between these regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building up of a He-rich layer via H burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomial fits to the obtained results are provided for use in binary population synthesis computations. Several applications for close binary systems with He-rich donors and CO WD accretors are considered and the relevance of the results for interpreting He novae is discussed.

  11. Life-history correlates of maximum population growth rates in marine fishes.

    PubMed Central

    Denney, Nicola H; Jennings, Simon; Reynolds, John D

    2002-01-01

    Theory predicts that populations of animals with late maturity, low fecundity, large body size and low body growth rates will have low potential rates of population increase at low abundance. If this is true, then these traits may be used to predict the intrinsic rate of increase for species or populations, as well as extinction risks. We used life-history and population data for 63 stocks of commercially exploited fish species from the northeast Atlantic to test relationships between life-history parameters and the rate of population increase at low abundance. We used cross-taxonomic analyses among stocks and among species, and analyses that accounted for phylogenetic relationships. These analyses confirmed that large-bodied, slow-growing stocks and species had significantly lower rates of recruitment and adult production per spawning adult at low abundance. Furthermore, high ages at maturity were significantly correlated with low maximum recruit production. Contrary to expectation, fecundity was significantly negatively related to recruit production, due to its positive relationship with maximum body size. Our results support theoretical predictions, and suggest that a simply measured life-history parameter can provide a useful tool for predicting rates of recovery from low population abundance. PMID:12427316

  12. Galactic Fountains and Gas Accretion

    NASA Astrophysics Data System (ADS)

    Marinacci, F.; Binney, J.; Fraternali, F.; Nipoti, C.; Ciotti, L.; Londrillo, P.

    2010-06-01

    Star-forming disc galaxies such as the Milky Way need to accrete >~1 Msolar of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from these clouds and the stripped gas causes coronal gas to condense in the cloud's wake. For likely parameters of the Galactic corona and of typical fountain clouds we obtain a global accretion rate of the order of that required to feed the star formation.

  13. Reviewing the Association between the History of Parental Substance Abuse and the Rate of Child Abuse

    PubMed Central

    Yaghoubi-Doust, Mahmoud

    2013-01-01

    Background Substance abuse is a social, and health problem in Middle Eastern countries such as Iran. One of its most devastating effects is domestic violence against children. This study examined the association between the history of parental substance abuse, and rate of child abuse in Ahvaz, Iran. Methods This was a case-control study. The study population included all parents with high school children in Ahwaz within the academic year 2012-2013. The sample size was 384 people in two groups; with a history of substance abuse (case group) and no history of substance abuse (control group). Multi-stage cluster random sampling method was used through the Cochran formula. The data collection tools included a Childhood Trauma Questionnaire (CTQ) (Bernstein, 1995), a demographic questionnaire, Duncan Socioeconomic Index (DSI), and a researcher-made questionnaire for the history of substance abuse. For data analysis, statistical indicators such as percentage, mean, standard deviation, t-test, and correlation and regression analysis were used. Findings Data analysis showed that there was a significant positive correlation among parents with a history of substance abuse and domestic violence toward children. Mean and standard deviation of the violence level in families with normal parents were 61.34 ± 16.88, and in families with a history of substance abuse were 98.99 ± 32.07. Therefore, the test results showed that there was a significant difference between normal families and families with history of substance abuse and violence toward children (P < 0.001, t = 8.60). Conclusion Based on the findings, the history of domestic violence and parental substance abuse (physical and emotional abuse, emotional and physical neglect) had a significant positive correlation with their behavior toward their children. After matching the two groups we found that the most common types of violence against children by their parents were, respectively, emotional violence (r = 58

  14. Integrating river incision rates over timescales in the Ecuadorian Andes: from uplift history to current erosion rates

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Tenorio, Gustavo

    2013-04-01

    River profile development is studied at different timescales, from the response to uplift over millions of years over steady state erosion rates over millennia to the response to a single event, such as a major landslide. At present, few attempts have been made to compare data obtained over various timescales. Therefore we do not know to what extent data and model results are compatible: do long-term river profile development models yield erosion rates that are compatible with information obtained over shorter time spans, both in terms of absolute rates and spatial patterns or not? Such comparisons could provide crucial insights into the nature of river development and allow us to assess the confidence we may have when predicting river response at different timescales (e.g. Kirchner et al., 2001). A major issue hampering such comparison is the uncertainty involved in the calibration of long-term river profile development models. Furthermore, calibration data on different timescales are rarely available for a specific region. In this research, we set up a river profile development model similar to the one used by Roberts & White (2010) and successfully calibrated it for the northern Ecuadorian Andes using detailed uplift and sedimentological data. Subsequently we used the calibrated model to simulate river profile development in the southern Ecuadorian Andes. The calibrated model allows to reconstruct the Andean uplift history in southern Ecuador, which is characterized by a very strong uplift phase during the last 5 My. Erosion rates derived from the modeled river incision rates were then compared with 10Be derived basin-wide erosion rates for a series of basins within the study area. We found that the model-inferred erosion rates for the last millennia are broadly compatible with the cosmogenic derived denudation rates, both in terms of absolute erosion rates as well as in terms of their spatial distribution. Hence, a relatively simple river profile development

  15. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von, Huene R.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  16. Faster is not always better: selection on growth rate fluctuates across life history and environments.

    PubMed

    Monro, Keyne; Marshall, Dustin J

    2014-06-01

    Growth rate is increasingly recognized as a key life-history trait that may affect fitness directly rather than evolve as a by-product of selection on size or age. An ongoing challenge is to explain the abundant levels of phenotypic and genetic variation in growth rates often seen in natural populations, despite what is expected to be consistently strong selection on this trait. Such a paradox suggests limits to how contemporary growth rates evolve. We explored limits arising from variation in selection, based on selection differentials for age-specific growth rates expressed under different ecological conditions. We present results from a field experiment that measured growth rates and reproductive output in wild individuals of a colonial marine invertebrate (Hippopodina iririkiensis), replicated within and across the natural range of succession in its local community. Colony growth rates varied phenotypically throughout this range, but not all such variation was available for selection, nor was it always targeted by selection as expected. While the maintenance of both phenotypic and genetic variation in growth rate is often attributed to costs of growing rapidly, our study highlights the potential for fluctuating selection pressures throughout the life history and across environments to play an important role in this process. PMID:24823823

  17. Hurricane Mountain Formation melange: history of Cambro-Ordovician accretion of the Boundary Mountains terrane within the northern Appalachian orthotectonic zone

    SciTech Connect

    Boone, G.M.; Boudette, E.L.

    1985-01-01

    The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick are lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.

  18. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Heusser, G.

    1986-01-01

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  19. Cenozoic Uplift Rate History of South America from Inversion of River Profiles

    NASA Astrophysics Data System (ADS)

    Rodríguez Tribaldos, V.; White, N. J.; Roberts, G. G.

    2014-12-01

    It is generally accepted that the long wavelength shape of a longitudinal river profile is mainly controlled by uplift rate history and moderated by erosion, both of which can vary as a function of time and space. Thus, knowing the shape of a river and adequately parametrizing the erosional processes, it is feasible to retrieve spatial and temporal patterns of regional uplift rate by applying an inversion scheme. Here, a damped, non-negative, least-squares algorithm is used to model a drainage inventory from South America. The aim is to determine the uplift history of this continent. ~1800 river profiles were extracted from a digital elevation model of South America and their fidelity was checked using satellite imagery. The inverse problem is then solved by minimizing the misfit between observed and predicted river profiles as a function of uplift rate, which is allowed to vary smoothly as a function of time and space. Erosional processes are modelled using an advection-diffusion formulation, which includes both detachment-limited and transport-limited forms of erosion. The parameter space of the erosional model is constrained using independent observations of uplift and incision rate histories from different locations across South America. Residual misfit between observed and calculated rivers is small, demonstrating that coherent signals occur on different river profiles and uplift events across South America can be resolved. Inversion results suggest, for instance, rapid growth of the Andes from an elevation of ~2 km to ~4 km within the last 20 Ma. Youthful uplift occurred in the northern Andes, whereas the central and southern Andes appear to have grown mainly within the last 10 Ma. The Borborema Province also experienced uplift (1-2 km) during the last 20 Ma. Calculated uplift histories are consistent with independent spot measurements of uplift constrained by, for example, thermochronology, stable-isotope altimetry and carbonate-clastic sedimentation

  20. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ∼ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ∼ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  1. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  2. Ordovician ocean plate stratigraphy and thrust duplexes of the Ballantrae Complex, SW Scotland: Implications for the pelagic deposition rate and forearc accretion in the closing Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Fujisaki, Wataru; Asanuma, Hisashi; Suzuki, Kazue; Sawaki, Yusuke; Sakata, Shuhei; Hirata, Takafumi; Maruyama, Shigenori; Windley, Brian F.

    2015-11-01

    The Ballantrae Complex (at Bennane Lea in SW Scotland) contains important ocean plate stratigraphy (basalt, chert, mudstone, sandstone) in an accretionary prism that is associated with a classic Ordovician ophiolite. We used the ocean plate stratigraphy to sub-divide the prism into 11 tectonic units. To determine the depositional age of bedded cherts, zircons were separated from 9 tuff beds from 6 different units. All the tuffs have early to middle Ordovician ages, even though their present positions are mutually distant. These ages are consistent with microfossil records of radiolaria and graptolites. The stratigraphic-structural relationships demonstrate that the ocean plate stratigraphy has been repeated by bedding-parallel thrusts; this is typical of a modern accretionary duplex. We calculated the sedimentation rate of Early to Middle Ordovician bedded cherts at Bennane Lea on the basis of U-Pb zircon ages obtained from several tuff beds; the data indicate that the depositional rate (0.6-3 m/myr) was as slow as that of Mesozoic-Cenozoic equivalents defined by radiolaria. The age spectra of detrital zircons from Ballantrae sandstones show prominent single peaks at ca. 467 and 478 Ma, and a lack of Precambrian zircons. Integration of our new zircon ages with published isotopic data and palaeo-geographic maps indicates that the sandstones were deposited near an intra-oceanic arc and far from any continent containing Precambrian rocks. The pelagic-to-clastic sediments at Bennane Lea were deposited in the closing Iapetus Ocean from ca. 477 Ma to ca. 464 Ma, when they were accreted with the intra-oceanic arc of Ballantrae.

  3. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  4. Extracting Uplift Rate Histories From Longitudinal River Profiles: Examples From North America and Africa

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth G.; White, Nicky; Paul, Jonathan

    2013-04-01

    The physiography of the Earth's surface is a manifestation of vertical motions, erosion, and deposition of sediment. We show that a history of uplift rate of the continents during the last ~ 100 million years can be determined by jointly inverting the longitudinal profiles of rivers. We assume that the shape of a river profile is controlled by the history of uplift rate and moderated by the erosional process. We have parameterized fluvial erosion using a nonlinear advective-diffusive formulation. A river profile per se contains no information about the erosional timescale; values of erosional parameters must be calibrated. If either vertical incision rate or knickzone retreat rate is known independently, for example when palaeo-river profiles are preserved, we can calibrate the erosional model directly. Independent spot measurements of uplift offer another way to calibrate a regional model. In our inverse model, uplift rate is allowed to vary smoothly as a function of space and time, and upstream drainage area is invariant. Using this inverse methodology, we show that there exist time-correlative commonalities in the shapes of river profiles draining uplifted regions. We find that the rate at which knickzones propagate upstream is linearly dependent on slope in nearly all cases (i.e. n = 1 in the detachment-limited erosional model for ~ 600 North American and African rivers). The exponent on upstream drainage, m, which controls knickzone retreat rate, is typically < 0.5. Calculated retreat rates are therefore insensitive to large changes in upstream drainage area. Simultaneous inversion of profiles from the Colorado, Columbia, Mississippi and Rio Grande catchments shows that western North America experienced three regional phases of uplift during the last 100 Ma. The first phase of uplift occurred between 80-50 Ma, which generated ~ 1 km of topography at a rate of ~ 0.03 mm/yr. A second phase of uplift generated ~ 1.5 km of topography between 35-15 Ma at a rate of

  5. Bondi accretion onto cosmological black holes

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Malec, Edward

    2013-02-01

    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation era and after (roughly) 1012 years from the big bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—known as the Weyl curvature hypothesis—of the evolution of the Universe.

  6. Modeling temperature and strain rate history in effects in OFHU Cu

    NASA Astrophysics Data System (ADS)

    Tanner, Albert Buck

    Accurate material behavior prediction during large deformations is essential. For the U.S. Army, explosively formed projectiles (EFP), penetrators, and vehicle armor are applications which will benefit from a better understanding of and ability to predict material behavior when subjected to high and varying strain rates and temperatures. Linking macro-scale material behavior with the evolution of microstructure has proven effective in obtaining an appropriate mathematical structure for constitutive relationships. Incorporation of strain rate, temperature, and deformation path history effects are especially critical to accurately predict material responses for arbitrary nonisothermal, variable strain rate conditions. Material constitutive equations contain numerous parameters which must be determined experimentally, and often are not fully optimized. The goal of this research was to develop more physically descriptive kinematics and kinetics models for large strain deformation based on internal state variable (ISV) evolution laws which include strain rate and temperature history dependence. A unique and comprehensive set of experiments involving sequences of different strain rates, temperatures, and deformation paths, as well as, constant strain rate, isothermal and experiments characterizing restoration processes, were conducted on OFHC Cu. Microstructural examinations found that recrystallization occurs and has a significant influence on the flow stress. The performance of various models, including state-of-the-art models such as the BCJ (Sandia), MTS (Los Alamos), and McDowell models were correlated and compared to experimental data. A novel hybrid optimization strategy was used to obtain the optimum parameter set possible corresponding to each model form. To account for the observed flow stress softening, an internal state variable representing the "softened" recrystallized state was incorporated into the hardening evolution equations in the BCJ and Mc

  7. Does encephalization correlate with life history or metabolic rate in Carnivora?

    PubMed

    Finarelli, John A

    2010-06-23

    A recent analysis of brain size evolution reconstructed the plesiomorphic brain-body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade. PMID:20007169

  8. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  9. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  10. Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)

    NASA Technical Reports Server (NTRS)

    Magenheim, B.; Rocks, J. K.

    1982-01-01

    The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.

  11. X-ray surveys - Weighting the dark matter haloes of X-ray AGN: towards a physical description of the accretion history of the Universe

    NASA Astrophysics Data System (ADS)

    Georgakakis, Antonis; Mountrichas, G.; Fanidakis, N.; Finoguenov, A.; Aegis Collaboration

    2012-09-01

    The masses of the dark matter haloes in which AGN live is powerful diagnostic of the conditions under which supermassive black holes form and evolve across cosmic time. A new clustering estimation method will be presented which requires spectroscopy only for the AGN and uses photometric redshift probability density functions for galaxies to determine the projected real-space AGN/galaxy cross-correlation function. Our method is superior to traditional AGN clustering estimators (e.g. auto-correlation function) because (i) random errors are significantly suppressed when counting AGN/galaxy pairs, (ii) the impact of sample variance is minimized, and (iii) the requirements for spectroscopy are minimal; only spectroscopic redshift measurements for the AGN are needed. This method is applied to the combined AEGIS, COSMOS and ECDFS fields to infer the bias and dark matter halo mass of moderate luminosity (Lx~10^43 erg/s/cm^2) X-ray AGN at z~1 (total of 400). Predictions from the GALFORM semi-analytic model will be compared to the observations to show that a combination of hot and cold-gas accretion (the latter triggered by disk instabilities in spirals rather than mergers) reproduce well the clustering properties of X-ray AGN over a range of redshifts and luminosities.

  12. Influence of Shear History on the Growth Rate and Equilibrium Size of Mud Flocs

    NASA Astrophysics Data System (ADS)

    Keyvani, A.; Strom, K.

    2013-12-01

    Effects of repeated exposure to multiple cycles of high and low turbulent shear rate on the floc growth pattern and equilibrium size were investigated through a laboratory study on a suspension of mud. The specific research questions examined are: (1) does repeated cycles of flocculation and deflocculation change the equilibrium floc size from one cycle to another?; and (2) do these repeated cycles impact the floc growth rate and path to equilibrium? For the experiments, a mixture of kaolinite and montmorillonite clay was sonicated and introduced to a mixing chamber to allow for flocculation under a mean turbulent shear rate of 35 s-1. Floc size time series, floc circularity index, and time series of the number of flocs were measured using a camera system and image processing routines. After the flocs reached an equilibrium size, the sample was deflocculated with vigorous turbulent mixing (400 s-1) for 15 hours, and then reflocculated by returning the shear rate to the initial value of 35 s-1. This procedure was repeated seven consecutive times. Results show that the different initial states of particles after sonication and after intense shearing had almost no effect on the equilibrium floc size, but that the initial state did significantly impact the floc growth pattern before the equilibrium was reached. With each repeated deflocculation and reflocculation cycle, the rate of floc growth decreased. Each of the seven reflocculation growth cycles were modeled with the Winterwerp (1998) equation for the mean floc size by calibrating the collision and breakup efficiency coefficients for each cycle. To obtain a good fit to the data, both the collision and breakup efficiency coefficients had to be reduced further with each successive cycle; the modeling suggests that flocs become stronger and less reactive with each repeated cycles of flocculation and defloccualtion. These results indicate that inclusion of shear history and initial condition impacts on mud flocs in

  13. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  14. Social status regulates growth rate: Consequences for life-history strategies

    PubMed Central

    Hofmann, Hans A.; Benson, Mark E.; Fernald, Russell D.

    1999-01-01

    The life-history strategies of organisms are sculpted over evolutionary time by the relative prospects of present and future reproductive success. As a consequence, animals of many species show flexible behavioral responses to environmental and social change. Here we show that disruption of the habitat of a colony of African cichlid fish, Haplochromis burtoni (Günther) caused males to switch social status more frequently than animals kept in a stable environment. H. burtoni males can be either reproductively active, guarding a territory, or reproductively inactive (nonterritorial). Although on average 25–50% of the males are territorial in both the stable and unstable environments, during the 20-week study, nearly two-thirds of the animals became territorial for at least 1 week. Moreover, many fish changed social status several times. Surprisingly, the induced changes in social status caused changes in somatic growth. Nonterritorial males and animals ascending in social rank showed an increased growth rate whereas territorial males and animals descending in social rank slowed their growth rate or even shrank. Similar behavioral and physiological changes are caused by social change in animals kept in stable environmental conditions, although at a lower rate. This suggests that differential growth, in interaction with environmental conditions, is a central mechanism underlying the changes in social status. Such reversible phenotypic plasticity in a crucial life-history trait may have evolved to enable animals to shift resources from reproduction to growth or vice versa, depending on present and future reproductive prospects. PMID:10570217

  15. Fueling galaxy growth through gas accretion in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan Rubaloff

    Despite significant advances in the numerical modeling of galaxy formation and evolution, it is clear that a satisfactory theoretical picture of how galaxies acquire their baryons across cosmic time remains elusive. In this thesis we present a computational study which seeks to address the question of how galaxies get their gas. We make use of new, more robust simulation techniques and describe the first investigations of cosmological gas accretion using a moving-mesh approach for solving the equations of continuum hydrodynamics. We focus first on a re-examination of past theoretical conclusions as to the relative importance of different accretion modes for galaxy growth. We study the rates and nature of gas accretion at z=2, comparing our new simulations run with the Arepo code to otherwise identical realizations run with the smoothed particle hydrodynamics code Gadget. We find significant physical differences in the thermodynamic history of accreted gas, explained in terms of numerical inaccuracies in SPH. In contrast to previous results, we conclude that hot mode accretion generally dominates galaxy growth, while cold gas filaments experience increased heating and disruption. Next, we consider the impact of feedback on our results, including models for galactic-scale outflows driven by stars as well as the energy released from supermassive black holes. We find that feedback strongly suppresses the inflow of "smooth" mode gas at all redshifts, regardless of its temperature history. Although the geometry of accretion at the virial radius is largely unmodified, strong galactic-fountain recycling motions dominate the inner halo. We measure a shift in the characteristic timescale of accretion, and discuss implications for semi-analytical models of hot halo gas cooling. To overcome the resolution limitations of cosmological volumes, we simulate a suite of eight individual 1012 solar mass halos down to z=2. We quantify the thermal and dynamical structure of the gas in

  16. Accretion flows govern black hole jet properties

    NASA Astrophysics Data System (ADS)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  17. Regional Rates of US Forest Regeneration Measured from Annual Landsat Disturbance History and Ikonos Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Neigh, C. S. R.; Masek, J. G.; Bourget, P.; Rishmawi, K.; Zhao, F.; Huang, C.; Nelson, R.

    2014-12-01

    Forests of the Continental United States have been found to be a large contributor to the global atmospheric carbon (C) sink. Here we combine annual Landsat disturbance history with single date IKONOS stereo imagery to estimate the change in forest canopy height with the intention of understanding rates of forest regeneration and C accumulation in the CONUS. We produced canopy height models (CHMs) by differencing digital surface models derived from stereo pairs with national elevation data. CHM data were also derived from Goddard's airborne LiDAR Hyper-spectral and Thermal Imager (G-LiHT) and linearly correlated to forest inventory and analysis (FIA) data to develop above ground live dry wood biomass coefficients. We used these coefficients to approximate C sequestration rates and through this approach we captured forest regeneration rates. A slow rate of regeneration was found in Florida of 0.30 m yr‒1 RMSE 7 m, where agro-forestry is less common. We found fast rates of regeneration in the southeastern US of 0.53 m yr‒1 RMSE < 4.3 m where large tracks of loblolly pine are routinely managed and harvested. Aboveground live dry wood biomass accumulated from 162 gCm‒2yr‒1 in Florida to 506 gCm‒2yr‒1 in South Carolina. We evaluated the accuracy of our estimates by comparing to field measurements of growth, airborne LiDAR data, and independent model estimates of C accumulation. Landsat disturbance history and existing stereo archives could provide an independent empirical data source to help constrain C-cycle models in forested ecosystems and reduce our uncertainties about the North American C sink.

  18. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  19. A new integrated tectonic model for the Mesozoic-Early Cenozoic subduction, spreading, accretion and collision history of Tethys adjacent to the southern margin of Eurasia (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Parlak, Osman; Ustaömer, Timur; Taslı, Kemal; İnan, Nurdan; Dumitrica, Paulian; Karaoǧlan, Fatih

    2014-05-01

    A major Tethyan suture zone (İzmir-Ankara-Erzincan-Kars Suture Zone) borders the southern margin of Eurasia throughout the Pontides. In eastern Turkey the suture zone includes a range of redeposited terrigenous and volcanogenic sedimentary rocks, pelagic sedimentary rocks and also igneous/metamorphic rocks. The igneous rocks are mostly basaltic blocks and thrust sheets within melange, plus relatively intact, to dismembered, ophiolitic rocks (oceanic crust). Two alternative hypotheses have been developed and tested during this work: 1. The suture zone preserves a single Andean-type active continental margin associated with northward subduction, accretion and arc magmatism during Mesozoic-early Cenozoic time; 2. The suture zone preserves the remnants of two different subduction zones, namely a continental margin subduction zone (as above) and an intra-ocean subduction zone (preferred model). To determine the age of the oceanic crust, relevant to both hypotheses, zircons were extracted from basic ophiolitic rocks (both intact and dismembered) and dated by the U/Pb method (U238/U236) using an ion probe at Edinburgh University. This yielded the following results for the intact ophiolites (Ma): plagiogranite cutting sheeted dykes of the Refahiye ophiolite (east of Erzincan), 183.6±1.7 (2σ); isotropic gabbro from the Karadaǧ ophiolite (northeast of Erzurum), 179.4±1.7 (2σ). In addition, dismembered ophiolites gave the following ages: gabbro cumulate (Bayburt area), 186.2±1.4 (2σ), gabbro cumulate (N of Horasan), 178.1±1.8 (2σ). Furthermore, two samples from a kilometre-sized (arc-related) tonalite body, mapped as cutting a thrust sheet of ophiolitic isotropic gabbro in the Kırdaǧ area, yielded ages of 182.1±3.2 (2σ) and 185.1±3.0 (2σ) Ma. We infer that the ophiolitic and related magmatic arc rocks formed by spreading in a supra-subduction zone setting during the late Early Jurassic (Pliensbachian-Toarcian). This amends former assumptions of a Late

  20. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    PubMed

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. PMID:26768970

  1. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  2. Pressure gradient torque in highly supersonic nonaxisymmetric accretion

    NASA Technical Reports Server (NTRS)

    Ho, Cheng; Taam, Ronald E.; Fryxell, Bruce A.; Matsuda, Takuya; Koide, Hiroshi

    1989-01-01

    The contribution of a pressure gradient torque to the angular momentum transfer rate in highly supersonic nonaxisymmetric accretion flows is considered. This study takes into account the contribution due to the pressure variation in the postaccretion-shock region which is significant for high Mach number accretion. For the case of accretion flow with Mach (infinity) of not less than 5, the overall accretion torque is shown to approach a constant value.

  3. Preserved History of Global Mean Spreading Rate: 83 Ma to Present

    NASA Astrophysics Data System (ADS)

    Rowan, Christopher J.; Rowley, David B.

    2016-07-01

    Using an up-to-date global plate rotation model, applied to the end points of preserved major spreading ridge isochrons, we have calculated the explicitly reconstructable length-weighted mean global half-spreading rate, ridge length, and area production as a function of time since the end of the Cretaceous Normal Superchron at 83.0 Ma. Our calculations integrate uncertainties in rotation parameters and chron boundary ages with the partial sampling uncertainties arising from progressive subduction of older oceanic lithosphere and its preserved spreading record. This record of directly reconstructable oceanic ridge production provides a well-constrained baseline that can be compared to reconstructions that include the largely unconstrained extrapolated histories of entirely subducted oceanic plates. The directly reconstructable global mean half-spreading rate has not varied by more than ± 15% about an average rate of 28.4 ± 4.6 mm/a since 83 Ma. No long-term secular trend is evident: a maximum global mean half-rate of 32 ± 6 mm/a occurred from 33.1 Ma to about 25.8 Ma, with minima of 26 ± 5 mm/a between about 56 Ma and 40.2 Ma, and 24 ± 1 mm/a since 3.2 Ma. Only this most recent interval has a rate that differs significantly (at ± 2σ) from the long-term mean. The global, reconstructable ridge length at 56 Ma decreases by less than 15% relative to the modern ridge system; by 83 Ma it has decreased by 38%. These relatively high preserved ridge fractions mean that the estimated uncertainty due to partial sampling stays roughly equivalent to the estimated rotation model uncertainties, allowing long-term spreading rate variations of > 20% since the Late Cretaceous to be ruled out. In contrast, prior to 83 Ma too little oceanic lithosphere is preserved to reliably reconstruct global spreading rates.

  4. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth

    USGS Publications Warehouse

    Puchtel, I.S.; Walker, R.J.; James, O.B.; Kring, D.A.

    2008-01-01

    To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically

  5. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}ȯ ≲ M * ≲ 103 {M}ȯ . The formation of very massive (≳250 {M}ȯ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}ȯ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}ȯ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  6. Oceanic terranes of S-Central America - 200 Million years of accretion history recorded on the W-edge of the Caribbean Plate.

    NASA Astrophysics Data System (ADS)

    Baumgartner, P. O.; Flores, K.; Bandini, A.; Buchs, D.; Andjic, G.; Baumgartner-Mora, C.

    2012-04-01

    (Chortis Block s. str.), and became exhumed again by the earliest Cretaceous (139 Ma phengite age). A pre-Albian basaltic plateau-like basement is suspected but yet undated in the Matambú Terrane (Central Nicoya Peninsula). It is overlain by the Albian Loma Chumico Formation. A pre-Turonian basement hosting the 90 Ma old Tortugal Picrites and alkaline baselts characterizes the Manzanillo Terrane ( around the Nicoya Gulf, Costa Rica). The overlying Coniacian-Santonian to early Campanian Berrugate Formation represents the first Cretaceous evolved arc activity. It must be located on the edge of the MCOT, since the CLIP is still forming at that time. To the SE of the S-Nicoya fault zone, Turonian-Santonian (~90-85 Ma) oceanic plateaus represent outcrops of the CLIP. These include parts of Herradura (Costa Rica) and the Azuero Plateau (Coiba, Sona and Azuero, Panama). Late Campanian to Paleocene arcs rest on the CLIP: The Golfito Complex (Costa Rica) and the Azuero Arc (Panama), possibly also the San Blas Complex (Panama) and the Serrania de Baudo (W-Colombia). Late Cretaceous to Eocene plateau/seamount basalts and oceanic sediments became accreted during the Early Tertiary: The Tulin Group (Herradura), Quepos, The Osa Igneous Complex, Burica, the Osa Mélange (Costa Rica/Panama), and the Azuero Accretionary Complex (Panama).

  7. Gravitational N-body problem on the accretion process of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Mizutani, H.

    1978-01-01

    Numerical integration of the gravitational N-body problem has been carried out for a variety of protoplanetary clusters in the range N = 100 to 200. Particles are assumed to coagulate at collisions irrespective of relative velocity and mass ratio of the particles. It is shown graphically how the dispersed N-bodies accumulate to a single planet through mutual collisions. The velocity distribution and size distribution of bodies are also investigated as functions of time in the accretion process. Accretion rates of planets are found to be dependent strongly on the initial number density distribution, the initial size distribution, and the initial velocity distribution of bodies. Formation of satellites of about 10% in the planet mass is common to most cases in the present study. A substantial mass of bodies also escapes from the cluster. Many satellites and escapers formed during the accretion process of planets may be source materials of heavy bombardment in the early history of planets.

  8. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied. PMID:23283175

  9. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  10. The Sensitivity of Earth's Climate History To Changes In The Rates of Biological And Geological Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.

    2014-12-01

    The faint young Sun paradox (early Earth had surface liquid water despite solar luminosity 70% of the modern value) implies that our planet's albedo has increased through time and/or greenhouse warming has fallen. The obvious explanation is that negative feedback processes stabilized temperatures. However, the limited temperature data available does not exhibit the expected residual temperature rise and, at least for the Phanerozoic, estimates of climate sensitivity exceed the Planck sensitivity (the zero net-feedback value). The alternate explanation is that biological and geological evolution have tended to cool Earth through time hence countering solar-driven warming. The coincidence that Earth-evolution has roughly cancelled Solar-evolution can then be explained as an emergent property of a complex system (the Gaia hypothesis) or the result of the unavoidable observational bias that Earth's climate history must be compatible with our existence (the anthropic principle). Here, I use a simple climate model to investigate the sensitivity of Earth's climate to changes in the rate of Earth-evolution. Earth-evolution is represented by an effective emissivity which has an intrinsic variation through time (due to continental growth, the evolution of cyanobacteria, orbital fluctuations etc) plus a linear feedback term which enhances emissivity variations. An important feature of this model is a predicted maximum in the radiated-flux versus temperature function. If the increasing solar flux through time had exceeded this value then runaway warming would have occurred. For the best-guess temperature history and climate sensitivity, the Earth has always been within a few percent of this maximum. There is no obvious Gaian explanation for this flux-coincidence but the anthropic principle naturally explains it: If the rate of biological/geological evolution is naturally slow then Earth is a fortunate outlier which evolved just fast enough to avoid solar-induced over

  11. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites

  12. Morphodynamics of Accreting Beaches

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Gelfenbaum, G.; Sherwood, C. R.; Kaminsky, G. M.

    2002-12-01

    Beaches along the Pacific Northwest coast of the US have been shown to have large seasonal variability in shoreline position with several 10's of meters of recession occurring during the winter (high-energy waves) and typically similar scales of beach recovery during the summer (low-energy waves). However, many beaches along the Columbia River littoral cell (northwest Oregon and southwest Washington) have exhibited net residual progradation of several meters per year over decades, resulting in significant shoreline realignment. This historical shoreline advance has been primarily due to the dispersal of sand from the flanks of the ebb-tidal deltas following jetty construction at the entrances to the Columbia River and Grays Harbor. The installation of jetties removed the shallow shoals from the influence of tidal currents, resulting in a shoreface profile that was too shallow for the inherent wave energy. Onshore transport of large quantities of sand occurred over the next several decades, decreasing through time. While much of the original source material is now exhausted, many beaches today are still rapidly accreting on inter-annual time scales. Gradients in alongshore sediment transport, net onshore directed cross-shore sediment transport within the surf zone, and cross-shore feeding from a shoreface out of equilibrium with forcing conditions may each be partially responsible for this continued accretion. The primary morphodynamic mechanism for sub-aerial beach growth, and shoreline progradation on a seasonal scale, is hypothesized to be the development, onshore migration, and welding of inter-tidal (swash) bars to the upper beach face. To investigate the processes and morphodynamics associated with accreting beaches we have completed two field experiments and are applying computational models that link measured sediment transport to wave and current forcing. Experiments completed in Spring 2001 and Summer 2002 combined process measurements with observations of

  13. Cosmogenic nuclides in cometary materials: Implications for rate of mass loss and exposure history

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Englert, P. A. J.; Reedy, R. C.

    1989-01-01

    As planned, the Rosetta mission will return to earth with a 10-kg core and a 1-kg surface sample from a comet. The selection of a comet with low current activity will maximize the chance of obtaining material altered as little as possible. Current temperature and level of activity, however, may not reliably indicate previous values. Fortunately, from measurements of the cosmogenic nuclide contents of cometary material, one may estimate a rate of mass loss in the past and perhaps learn something about the exposure history of the comet. Perhaps the simplest way to estimate the rate of mass loss is to compare the total inventories of several long-lived cosmogenic radionuclides with the values expected on the basis of model calculations. Although model calculations have become steadily more reliable, application to bodies with the composition of comets will require some extension beyond the normal range of use. In particular, the influence of light elements on the secondary particle cascade will need study, in part through laboratory irradiations of volatile-rich materials. In the analysis of cometary data, it would be valuable to test calculations against measurements of short-lived isotopes.

  14. The star formation history and accretion-disc fraction among the K-type members of the Scorpius-Centaurus OB association

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark J.; Mamajek, Eric E.

    2016-09-01

    We present results of a spectroscopic survey for new K- and M-type members of Scorpius-Centaurus (Sco-Cen), the nearest OB Association (˜100-200 pc). Using an X-ray, proper motion and colour-magnitude selected sample, we obtained spectra for 361 stars, for which we report spectral classifications and Li and Hα equivalent widths. We identified 156 new members of Sco-Cen, and recovered 51 previously published members. We have combined these with previously known members to form a sample of 493 solar-mass (˜0.7-1.3 M⊙) members of Sco-Cen. We investigated the star formation history of this sample, and re-assessed the ages of the massive main-sequence turn-off and the G-type members in all three subgroups. We performed a census for circumstellar discs in our sample using WISE infrared data and find a protoplanetary disc fraction for K-type stars of 4.4^{+1.6}_{-0.9} per cent for Upper Centaurus-Lupus and Lower Centaurus-Crux at ˜16 Myr and 9.0^{+4.0}_{-2.2} per cent for Upper Scorpius at ˜10 Myr. These data are consistent with a protoplanetary disc e-folding time-scale of ˜4-5 Myr for ˜1 M⊙ stars, twice that previously quoted, but consistent with the Bell et al. revised age scale of young clusters. Finally, we construct an age map of Scorpius-Centaurus which clearly reveals substructure consisting of concentrations of younger and older stars. We find evidence for strong age gradients within all three subgroups. None of the subgroups are consistent with being simple, coeval populations which formed in single bursts, but likely represents a multitude of smaller star formation episodes of hundreds to tens of stars each.

  15. Dynamics of continental accretion.

    PubMed

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon. PMID:24670638

  16. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates

    SciTech Connect

    Kroener, A. ); Eyal, M.; Eyal, Y. )

    1990-06-01

    The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodes elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.

  17. Accretion of Ghost Condensate by Black Holes

    SciTech Connect

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  18. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: evidence for a high accretion rate and warm outflow

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.; González Delgado, R. M.; Tzioumis, A.; Inskip, K. J.

    2006-08-01

    We use deep optical, infrared and radio observations to explore the symbiosis between nuclear activity and galaxy evolution in the southern compact radio source PKS 1549-79 (z = 0.1523). The optical imaging observations reveal the presence of tidal tail features which provide strong evidence that the host galaxy has undergone a major merger in the recent past. The merger hypothesis is further supported by the detection of a young stellar population (YSP), which, on the basis of spectral synthesis modelling of our deep Very Large Telescope (VLT) optical spectra, was formed 50-250 Myr ago and makes up a significant fraction of the total stellar mass (1-30 per cent). Despite the core-jet structure of the radio source, which is consistent with the idea that the jet is pointing close to our line of sight, our HI 21-cm observations reveal significant HI absorption associated with both the core and the jet. Moreover, the luminous, quasar-like active galactic nucleus (AGN) (MV < -23.5) is highly extinguished (Av > 6.4) at optical wavelengths and show many properties in common with narrow-line Seyfert 1 galaxies (NLS1), including relatively narrow permitted lines [full width at half-maximum (FWHM) ~ 1940 km s-1], highly blueshifted [OIII] λλ5007,4959 lines (ΔV ~ 680 km s-1) and evidence that the putative supermassive black hole is accreting at a high Eddington ratio (0.3 < Lbol/Ledd < 11). The results suggest that accretion at high Eddington ratio does not prevent the formation of powerful relativistic jets. Together, the observations lend strong support to the predictions of some recent numerical simulations of galaxy mergers in which the black hole grows rapidly through merger-induced accretion following the coalescence of the nuclei of two merging galaxies, and the major growth phase is largely hidden at optical wavelengths by the natal gas and dust. Although the models also predict that AGN-driven outflows will eventually remove the gas from the bulge of the host

  19. Experimental correlation of melt structures, nucleation rates, and thermal histories of silicate melts

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The theory and measurement of the structure of liquids is an important aspect of modern metallurgy and igneous petrology. Liquid structure exerts strong controls on both the types of crystals that may precipitate from melts and on the chemical composition of those crystals. An interesting aspect of melt structure studies is the problem of melt memories; that is, a melt can retain a memory of previous thermal history. This memory can influence both nucleation behavior and crystal composition. This melt memory may be characterized quantitatively with techniques such as Raman, infrared and NMR spectroscopy to provide information on short-range structure. Melt structure studies at high temperature will take advantage of the microgravity conditions of the Space Station to perform containerless experiments. Melt structure determinations at high temperature (experiments that are greatly facilitated by containerless technology) will provide invaluable information for materials science, glass technology, and geochemistry. In conjunction with studies of nucleation behavior and nucleation rates, information relevant to nucleation in magma chambers in terrestrial planets will be acquired.

  20. Disk accretion by magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Lamb, F. K.

    1978-01-01

    A model for disk accretion by a rotating magnetic neutron star is proposed which includes a detailed description of matter flow in the transition region between the disk and the magnetosphere. It is shown that the disk plasma cannot be completely screened from the stellar magnetic field and that the resulting magnetic coupling between the star and the disk exerts a significant torque on the star. On the assumption that the distortion of the residual stellar field lines threading the disk is limited by reconnection, the total accretion torque on the star is calculated. The calculated torque gives period changes in agreement with those observed in the pulsating X-ray sources and provides a natural explanation of why a fast rotator like Her X-1 has a spin-up rate much below the conventional estimate for slow rotators. It is shown that for such fast rotators, fluctuations in the mass-accretion rate can produce fluctuations in the accretion torque about 100 times larger. For sufficiently fast rotators or, equivalently, for sufficiently low accretion rates, the star experiences a braking torque even while accretion continues and without any mass ejection from its vicinity.

  1. Asymmetric Accretion Flows within a Common Envelope

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  2. Rates of Earth degassing

    NASA Technical Reports Server (NTRS)

    Onions, R. K.

    1994-01-01

    The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.

  3. The Western Sierras Pampeanas: Protracted Grenville-age history (1330-1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Rapela, C. W.; Pankhurst, R. J.; Casquet, C.; Baldo, E.; Galindo, C.; Fanning, C. M.; Dahlquist, J. M.

    2010-01-01

    basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.

  4. Accretion, winds and outflows in young stars

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  5. Bondi accretion in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-05-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of an Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  6. Bondi accretion in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-08-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper, we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of a Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore, allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  7. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  8. Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2012-09-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with \\dot{M}_*\\sim 0.1{--}1 \\,M_\\odot \\,yr^{-1} during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper, we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 103 M ⊙. To this end, we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 10-2 M ⊙ yr-1, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates, the star always has a radius exceeding 100 R ⊙, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~100 M ⊙ follows the same track with R *vpropM 1/2 * in all cases with accretion rates >~ 10-2 M ⊙ yr-1 at a stellar mass of 103 M ⊙, the radius is ~= 7000 R ⊙ (sime 30 AU). With higher accretion rates, the onset of hydrogen burning is shifted toward higher stellar masses. In particular, for accretion rates exceeding \\dot{M}_*\\gtrsim 0.1 \\,M_\\odot \\,yr^{-1}, there is no significant hydrogen burning even after 103 M ⊙ have accreted onto the protostar. Such "supergiant" protostars have effective temperatures as low as T eff ~= 5000 K throughout their evolution and because they hardly emit ionizing photons, they do not create an H II region or significantly heat their immediate surroundings. Thus, radiative feedback is unable to hinder the growth of rapidly accreting stars to masses in excess of 103 M ⊙ as long as material is accreted at rates \\dot{M}_*\\gtrsim 10^{-2} \\,M_\\odot \\,yr^{-1}.

  9. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  10. High rates of alcohol problems and history of physical and sexual abuse among women inpatients.

    PubMed

    Swett, C; Halpert, M

    1994-01-01

    A total of 88 consecutive new women patients were surveyed on an adult psychiatric inpatient unit which did not have a specific program for the treatment of alcoholics. Those with a self-reported history of physical and/or sexual abuse had significantly higher scores on the Michigan Alcoholism Screening Test (MAST) than those with no such history. Former drinkers and teetotalers were more likely to have been both physically and sexually abused than the others. Thirty-three patients (38%) reported a history of alcohol problems measured by scores of seven or more on the MAST, but only 20 had a diagnosis of alcohol abuse or alcohol dependence made by a psychiatrist. PMID:8042607

  11. Torque Reversals in Disk Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Li, Jianke; Wickramasinghe, Dayal T.

    1998-07-01

    X-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10-13 Hz s-1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque-mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.

  12. The Infrared Signature of Accretion Luminosity in Protostars

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Villarama, Ethan G.; Flores-Rivera, Lizxandra

    2016-06-01

    Mass accretion from the disk onto the star is an important mechanism by which a star increases in mass during the formation phase. If the mass accretion rate is time variable then the brightness of the star should also change with time. We use the HOCHUNK3D radiative transfer code to investigate how disk accretion rate (Mdot) affects the protostar spectral energy distribution (SED). The biggest changes in brightness occur at infrared wavelengths ranging from approximately 5 to 100 microns. The results show that the protostar luminosity doubles from 1 to 2 L⊙ when the disk accretion rate is increased to Mdot=3.0e-7 M⊙/year. We conclude that the models are a useful tool to study mass accretion rates and time variability in protostars.

  13. BONDI-HOYLE-LYTTLETON ACCRETION ONTO A PROTOPLANETARY DISK

    SciTech Connect

    Moeckel, Nickolas; Throop, Henry B.

    2009-12-10

    Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star's birth and the dispersal of the cluster's gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this 'tail-end' accretion for planet formation was recently highlighted by Throop and Bally. While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttleton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper, we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such that outer disk migrates inward, increasing the inner disk surface density and reducing the outer radius. The accretion flow also triggers the development of spiral density features, and changes to the disk inclination. The mean accretion rate onto the star remains roughly the same with and without the presence of a disk. We discuss the potential impact of this process on planet formation, including the possibility of triggered gravitational instability, inclination differences between the disk and the star, and the appearance of spiral structure in a gravitationally stable system.

  14. Effects of Reinforcement History on Response Rate and Response Pattern in Periodic Reinforcement

    ERIC Educational Resources Information Center

    Lopez, Florente; Menez, Marina

    2005-01-01

    Several researchers have suggested that conditioning history may have long-term effects on fixed-interval performances of rats. To test this idea and to identify possible factors involved in temporal control development, groups of rats initially were exposed to different reinforcement schedules: continuous, fixed-time, and random-interval.…

  15. ACCRETION ONTO INTERMEDIATE-MASS BLACK HOLES REGULATED BY RADIATIVE FEEDBACK. I. PARAMETRIC STUDY FOR SPHERICALLY SYMMETRIC ACCRETION

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2011-09-20

    We study the effect of radiative feedback on accretion onto intermediate-mass black holes (IMBHs) using the hydrodynamical code ZEUS-MP with a radiative transfer algorithm. In this paper, the first of a series, we assume accretion from a uniformly dense gas with zero angular momentum and extremely low metallicity. Our one-dimensional (1D) and 2D simulations explore how X-ray and UV radiation emitted near the black hole regulates the gas supply from large scales. Both 1D and 2D simulations show similar accretion rates and periods between peaks in accretion, meaning that the hydro-instabilities that develop in 2D simulations do not affect the mean flow properties. We present a suite of simulations exploring accretion across a large parameter space, including different radiative efficiencies and radiation spectra, black hole masses, density, and temperature, T{sub {infinity}}, of the neighboring gas. In agreement with previous studies, we find regular oscillatory behavior of the accretion rate, with duty cycle {approx}6%, mean accretion rate 3% (T{sub {infinity}}/10{sup 4} K){sup 2.5} of the Bondi rate and peak accretion {approx}10 times the mean for T{sub {infinity}} ranging between 3000 K and 15, 000 K. We derive parametric formulae for the period between bursts, the mean accretion rate, and the peak luminosity of the bursts and thus provide a formulation of how feedback-regulated accretion operates. The temperature profile of the hot ionized gas is crucial in determining the accretion rate, while the period of the bursts is proportional to the mean size of the Stroemgren sphere, and we find qualitatively different modes of accretion in the high versus low density regimes. We also find that a softer radiation spectrum produces a higher mean accretion rate. However, it is still unclear what the effect of a significant time delay is between the accretion rate at our inner boundary and the output luminosity. Such a delay is expected in realistic cases with non

  16. Supernova Light Curves Powered by Fallback Accretion

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  17. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect

    Dexter, Jason; Kasen, Daniel

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  18. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  19. Establishing the Natural History and Growth Rate of Ameloblastoma with Implications for Management: Systematic Review and Meta-Analysis

    PubMed Central

    Chae, Michael P.; Smoll, Nicolas R.; Hunter-Smith, David J.; Rozen, Warren Matthew

    2015-01-01

    Background Ameloblastoma is the second most common odontogenic tumor, known to be slow-growing, persistent, and locally aggressive. Recent data suggests that ameloblastoma is best treated with wide resection and adequate margins. Following primary excision, bony reconstruction is often necessary for a functional and aesthetically satisfactory outcome, making early diagnosis paramount. Despite earlier diagnosis potentially limiting the extent of resection and reconstruction, an understanding of the growth rate and natural history of ameloblastoma has been notably lacking from the literature. Method A systematic review of the literature was conducted by reviewing relevant articles from PubMed and Web of Science databases. Each article’s level of evidence was formally appraised according to the Centre of Evidence Based Medicine (CEBM), with data from each utilized in a meta-analysis of growth rates for ameloblastoma. Results Literature regarding the natural history of ameloblastoma is limited since the tumor is immediately acted upon at its initial detection, unless the patient voluntarily refuses a surgical intervention. From the limited data, it is derived that the highest estimated growth rate is associated with solid, multicystic type and the lowest rate with peripheral ameloblastomas. After meta-analysis, the calculated mean specific grow rate is 87.84% per year. Conclusion The growth rate of ameloblastoma has been demonstrated, offering prognostic and management information, particularly in cases where a delay in management is envisaged. PMID:25706407

  20. Accretion disks in luminous young stellar objects

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; de Wit, W. J.

    2016-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  1. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  2. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    SciTech Connect

    Matt, Sean P.; Greene, Thomas P.; Pudritz, Ralph E. E-mail: thomas.p.greene@nasa.gov E-mail: pudritz@physics.mcmaster.ca

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  3. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  4. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate

    USGS Publications Warehouse

    Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.

    2016-01-01

    There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.

  5. Metabolic rate and vascular function are reduced in women with a family history of type 2 diabetes mellitus.

    PubMed

    Olive, Jennifer L; Ballard, Kevin D; Miller, James J; Milliner, Beth A

    2008-06-01

    Metabolic and vascular abnormalities have been found in individuals with type 2 diabetes mellitus (T2D). Family history is often associated with increased risk of the development of T2D. We sought to determine if young, sedentary, insulin-sensitive individuals with a family history of T2D (FH+) have a reduced resting energy expenditure (REE) and vascular endothelial function compared with individuals who have no family history of T2D (FH-). The REE was determined in 18 FH+ individuals and 15 FH- individuals using indirect open-circuit calorimetry. Vascular endothelial function was measured via flow-mediated dilation (FMD) of the brachial artery. C-reactive protein and interleukin-6 were also measured to look at vascular inflammation. Body composition was measured via bioelectrical impedance analysis to determine fat-free mass and fat mass for each individual. Insulin resistance was calculated using the homeostasis model assessment equation and fasting insulin and glucose concentrations. Subjects (n = 42) were approximately 26 years old and had normal fasting serum insulin or glucose concentrations. The REE normalized for body weight (kilocalories per day per kilogram body weight) was significantly reduced in the FH+ women compared with FH- women (P < .001) but not in the men. The FMD was significantly reduced (34.3%) in the FH+ group compared with the FH- in women (P = .002). However, no between-group difference in FMD was present in male subjects (P = .376). Young, healthy, insulin-sensitive women with a family history of T2D have reduced whole-body metabolic rate and vascular endothelial function compared with those with no family history of disease. These differences in whole-body metabolic rate and vascular endothelial function were not present in male subjects. PMID:18502267

  6. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    USGS Publications Warehouse

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  7. Effects of Stochasticity in Early Life History on Steepness and Population Growth Rate Estimates: An Illustration on Atlantic Bluefin Tuna

    PubMed Central

    Simon, Maximilien; Fromentin, Jean-Marc; Bonhommeau, Sylvain; Gaertner, Daniel; Brodziak, Jon; Etienne, Marie-Pierre

    2012-01-01

    The intrinsic population growth rate (r) of the surplus production function used in the biomass dynamic model and the steepness (h) of the stock-recruitment relationship used in age-structured population dynamics models are two key parameters in fish stock assessment. There is generally insufficient information in the data to estimate these parameters that thus have to be constrained. We developed methods to directly estimate the probability distributions of r and h for the Atlantic bluefin tuna (Thunnus thynnus, Scombridae), using all available biological and ecological information. We examined the existing literature to define appropriate probability distributions of key life history parameters associated with intrinsic growth rate and steepness, paying particular attention to the natural mortality for early life history stages. The estimated probability distribution of the population intrinsic growth rate was weakly informative, with an estimated mean r = 0.77 (±0.53) and an interquartile range of (0.34, 1.12). The estimated distribution of h was more informative, but also strongly asymmetric with an estimated mean h = 0.89 (±0.20) and a median of 0.99. We note that these two key demographic parameters strongly depend on the distribution of early life history mortality rate (M0), which is known to exhibit high year-to-year variations. This variability results in a widely spread distribution of M0 that affects the distribution of the intrinsic population growth rate and further makes the spawning stock biomass an inadequate proxy to predict recruitment levels. PMID:23119063

  8. Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta

    2015-08-01

    Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion

  9. An Analysis of Foster Care Placement History and Post-Secondary Graduation Rates

    ERIC Educational Resources Information Center

    Day, Angelique; Dworsky, Amy; Feng, Wenning

    2013-01-01

    Prior research has document significant disparities in post-secondary educational attainment between young adults who had been in foster care and their peers in the general population. This study uses survival analysis to compare the four-year college graduation rate of students who had been in foster care to the graduation rate of first…

  10. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  11. Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth

    PubMed Central

    Dean, M. Christopher; Cole, Tim J.

    2013-01-01

    We explored the relationship between growth in tooth root length and the modern human extended period of childhood. Tooth roots provide support to counter chewing forces and so it is advantageous to grow roots quickly to allow teeth to erupt into function as early as possible. Growth in tooth root length occurs with a characteristic spurt or peak in rate sometime between tooth crown completion and root apex closure. Here we show that in Pan troglodytes the peak in root growth rate coincides with the period of time teeth are erupting into function. However, the timing of peak root velocity in modern humans occurs earlier than expected and coincides better with estimates for tooth eruption times in Homo erectus. With more time to grow longer roots prior to eruption and smaller teeth that now require less support at the time they come into function, the root growth spurt no longer confers any advantage in modern humans. We suggest that a prolonged life history schedule eventually neutralised this adaptation some time after the appearance of Homo erectus. The root spurt persists in modern humans as an intrinsic marker event that shows selection operated, not primarily on tooth tissue growth, but on the process of tooth eruption. This demonstrates the overarching influence of life history evolution on several aspects of dental development. These new insights into tooth root growth now provide an additional line of enquiry that may contribute to future studies of more recent life history and dietary adaptations within the genus Homo. PMID:23342167

  12. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana

    SciTech Connect

    Hatton, R.S.; DeLaune, R.D.; Patrick, W.H. Jr.

    1983-05-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in cores collected from fresh water, intermediate, brackish, and salt marshes in the Barataria Basin, Louisiana. Vertical accretion rates vary from about 1.3 cm.yr/sup -1/ in levee areas to 0.7 in backmarshes. Mineral sediment content of the marsh soil profile decreased with distance from the coast. Except in natural levee areas, marsh accretion rates are less than subsidence measured by water level data, however this alone cannot account for observed land-loss patterns in the basin area.

  13. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  14. The accretion column of AE Aqr

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Costa, D. Joaquim; Luna, Gerardo; Lima, Isabel J.; Silva, Karleyne M. G.; De Araujo, Jose Carlos N.; Coelho, Jaziel

    2016-07-01

    AE Aqr is a magnetic cataclysmic variable, whose white dwarf rotates at the very fast rate of 33 s modulating the flux from high-energies to optical wavelengths. There are many studies of the origin of its emission, which consider emission from a rotating magnetic field or from an accretion column. Recently, MAGIC observations have discarded AE Aqr emission in very high energy gamma-rays discarding non-thermal emission. Furthermore, soft and hard X-ray data from Swift and NuSTAR were fitted using thermal models. Here we present the modelling of AE Aqr X-ray spectra and light curve considering the emission of a magnetic accretion column using the Cyclops code. The model takes into consideration the 3D geometry of the system, allowing to properly represent the white-dwarf auto eclipse, the pre-shock column absorption, and the varying density and temperature of a tall accretion column.

  15. Exploring the disk accretion in DI Cep

    NASA Astrophysics Data System (ADS)

    Parihar, Padmakar Singh; Shantikumar, N. S.

    The low mass young stellar objects of class-II, popularly known as classical T Tauri stars (CTTS) supposed to be surrounded by thick flared disk and accretes disk material through strong stellar dipolar magnetic field. The disk accretion rate and its variation with time is poorly know. DI Cep is an interesting object, found to have unexpected hump around 5300 Å in the continuum excess emission spectrum, which cannot be explained by current models of YSOs. Over the last six years this object is being spectroscopically as well as photometrically monitored using HCT. The data have been analyzed and modeled using a simple modeling technique developed by us. In this paper, we report for the first time our results related to the disk accretion phenomena in DI Cep.

  16. Quantitative evaluation of efficiency of the methods for a posteriori filtration of the slip-rate time histories

    NASA Astrophysics Data System (ADS)

    Kristekova, M.; Galis, M.; Moczo, P.; Kristek, J.

    2012-04-01

    Simulated slip-rate time histories often are not free from spurious high-frequency oscillations. This is because the used spatial grid is not fine enough to properly discretize possibly broad-spectrum slip-rate and stress variations and the spatial breakdown zone of the propagating rupture. In order to reduce the oscillations some numerical modelers apply the artificial damping. An alternative way is the application of the adaptive smoothing algorithm (ASA, Galis et al. 2010). The other modelers, however, rely on the a posteriori filtration. If the oscillations do not affect (change) development and propagation of the rupture during simulations, it is possible to apply a posteriori filtration to reduce the oscillations. Often, however, the a posteriori filtration is a problematic trade-off between suppression of oscillations and distortion of a true slip rate. We present quantitative comparison of efficiency of several methods. We have analyzed slip-rate time histories simulated by the FEM-TSN method. Signals containing spurious high-frequency oscillations and signals after application of a posteriori filtering have been compared to the reference signal. The reference signal was created by application of a careful iterative and adjusted denoising of the slip rate simulated using the finest (technically possible) spatial grid. We performed extensive numerical simulations in order to test efficiency of a posteriori filtration for slip rates with different level and nature of spurious oscillations. We show that the time-frequency analysis and time-frequency misfit criteria (Kristekova et al. 2006, 2009) are suitable tools for evaluation of efficiency of a posteriori filtration methods and also clear indicators of possible distortions introduced by a posteriori filtration.

  17. Crystallization history of lunar picritic basalt sample 12002 - Phase-equilibria and cooling-rate studies

    NASA Technical Reports Server (NTRS)

    Walker, D.; Kirkpatrick, R. J.; Longhi, J.; Hays, J. F.

    1976-01-01

    Experimental crystallization of a lunar picrite composition (sample 12002) at controlled linear cooling rates produces systematic changes in the temperature at which crystalline phases appear, in the texture, and in crystal morphology as a function of cooling rate. Phases crystallize in the order olivine, chromium spinel, pyroxene, plagioclase, and ilmenite during equilibrium crystallization, but ilmenite and plagioclase reverse their order of appearance and silica crystallizes in the groundmass during controlled cooling experiments. The partition of iron and magnesium between olivine and liquid is independent of cooling rate, temperature, and pressure. Comparison of the olivine nucleation densities in the lunar sample and in the experiments indicates that the sample began cooling at about 1 deg C/hr. Pyroxene size, chemistry, and growth instability spacings, as well as groundmass coarseness, all suggest that the cooling rate subsequently decreased by as much as a factor of 10 or more. The porphyritic texture of this sample, then, is produced at a decreasing, rather than a discontinuously increasing, cooling rate.

  18. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  19. Sedimentation rates and pollution history of a dried lake: Al-Oteibeh Lake.

    PubMed

    Al-Masri, M S; Aba, A; Khalil, H; Al-Hares, Z

    2002-07-01

    Sediment accumulation rates as well as the distribution of selected elements in a dried Syrian lake (Al-Oteibeh Lake), near Damascus City, are reported. Five core samples from different locations of the lake were collected, and four major elements (Fe, K, Mg and Na) and six trace metals (Co, Ni, Cr, Pb, Zn, U and Cu) were analyzed. Sedimentation rates were determined applying the 210Pb dating method and found to vary between 0.100 and 0.793 cm year(-1). The results showed that the constant flux constant sedimentation rate (CF:CS) simple dating model is applicable for dating recent dried sediment and recording the past historical pollution of the last 100 years. However, the method was found to be only applicable for dating trace and major elements, which cannot be leached to deeper layers by rainwater. In addition, the obtained records can be used to verify the date of water level declining. PMID:12109471

  20. RECONCILING THE GAMMA-RAY BURST RATE AND STAR FORMATION HISTORIES

    SciTech Connect

    Jimenez, Raul; Piran, Tsvi E-mail: tsvi.piran@huji.ac.il

    2013-08-20

    While there are numerous indications that gamma-ray bursts (GRBs) arise from the deaths of massive stars, the GRB rate does not follow the global cosmic star formation rate and, within their hosts, GRBs are more concentrated in regions of very high star formation. We explain both puzzles here. Using the publicly available VESPA database of the Sloan Digital Sky Survey (SDSS) Data Release 7 spectra, we explore a multi-parameter space in galaxy properties such as stellar mass, metallicity, and dust to find the subset of galaxies that reproduces the GRB rate recently obtained by Wanderman and Piran. We find that only galaxies with present stellar masses below <10{sup 10} M{sub Sun} and low metallicity reproduce the observed GRB rate. This is consistent with direct observations of GRB hosts and provides an independent confirmation of the nature of GRB hosts. Because of the significantly larger sample of SDSS galaxies, we compute their correlation function and show that they are anti-biased with respect to dark matter: they are in filaments and voids. Using recent observations of massive stars in local dwarfs we show how the fact that GRB host galaxies are dwarfs can explain the observation that GRBs are more concentrated in regions of high star formation than are supernovae. Finally, we explain these results using new theoretical advances in the field of star formation.

  1. Life-history Constraints on the Mechanisms that Control the Rate of ROS Production

    PubMed Central

    Aledo, Juan Carlos

    2014-01-01

    The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects. PMID:24955029

  2. Olivine cooling speedometers. [cooling rate indicator for lunar and terrestrial rock thermal histories

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Uhlmann, D. R.; Taylor, L. A.; Coish, R. A.; Gamble, R. P.

    1978-01-01

    Several kinetic models of zoning in olivines are discussed at length. The effects on predicted cooling rates of various assumptions used in the analyses are evaluated. It is concluded that the models of Walker et al. (1977) and Taylor et al. (1977) both provide underestimates of the cooling rate required to preserve a given compositional profile, and that both models as well as the model of Taylor et al. (1978) can be used to provide order-of-magnitude estimates of cooling rates. A new model is described which considers diffusion in both solid and liquid during crystallization as well as diffusion in the solid after crystallization is complete. The model provides a description of the compositional gradients which develop during crystallization as well as after cooling at various rates. Applied to olivine crystals nucleated at 1272 C in a high-iron analogue to Lunar Composition 15555, the model predicts only slight compositional gradients - in accord with electron beam microprobe measurements on crystals grown isothermally at this temperature.

  3. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  4. Accumulation-rate history at Siple Dome, West Antarctica, using bubble number-density

    NASA Astrophysics Data System (ADS)

    Spencer, M.; Dennison, A.; Alley, R. B.; Fitzpatrick, J. J.; Fegyveresi, J. M.

    2012-12-01

    Past allowable accumulation rate/temperature combinations at Siple Dome, West Antarctica, are estimated from the measured number-density of bubbles in ice core samples. Mass density increase and grain growth in polar firn both are controlled by temperature and accumulation rate, and their integrated effects are recorded in the number-density of bubbles as the firn changes to ice [1]. Accumulation-rate estimates from measured bubble number-density and additional constraints from numerical modeling of firn densification at Siple Dome are consistent with 1-D ice-flow model results that have little change in the thickness of the ice sheet in the central Ross Embayment of West Antarctica since the last glacial maximum [2]. Using methods developed to analyze late-Holocene bubble number-density samples from the West Antarctic Ice Sheet Divide Ice Core Project [3], Siple Dome bubble number-densities show an early-Holocene high in accumulation rate followed by an approximately 10% reduction in accumulation rate between 11.33 ka and 1.863 ka. [1] Spencer, M.K., R.B. Alley and J.J. Fitzpatrick. Developing a bubble number-density paleoclimatic indicator for glacier ice, J. Glaciol. 52(178), 358-364 (2006). [2] E.D. Waddington et al., Decoding the dipstick: thickness of Siple Dome, West Antarctica, at the last glacial maximum, Geology 33(4), 281-284 (2005). [3] J.M. Fegyveresi, et al., Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates, J. Glaciol., 57(204) , 629 - 638 (2011).

  5. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  6. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I

  7. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  8. Hoyle-Lyttleton Accretion from a Planar Wind

    NASA Astrophysics Data System (ADS)

    Raymer, Eric

    2014-01-01

    Two-dimensional hydrodynamic simulations of Hoyle-Lyttleton accretion have informed predictions about the evolution of wind-driven accretion systems for over two decades. These simulations frequently exhibit dramatic nonlinear behavior such as the flip-flop instability and the formation of transient accretion disks. During disk accretion, the mass accretion rate is suppressed and angular momentum accretion occurs at quasi-Keplerian rates. These results have been used to interpret neutron star accretion from the equatorially enhanced wind of a Be star in Be/X-ray Binaries. We employ large-scale hydrodynamic simulations to investigate whether the flip-flop instability is possible in three dimensions or is simply a consequence of the restrictions on a 2D flow. We do not observe the flip-flop instability in 3D for any values of the wind scale height or density. Moreover, the angular momentum vector of the accreting gas is typically found to be in the plane of the disk wind rather than perpendicular to it as one might expect based on the results of 2D planar simulations. We measure large-scale asymmetries about the plane of the disk wind that arise due to rotational flow near the accretor. Gas is driven above and below the plane, where it interacts with the bow shock and results in a time-varying shock structure. Winds with scale heights of 0.25 Ra enter locked rotation modes that remain stable for the duration of our computational runs. During this phase, the mass accretion rate is suppressed by up to two orders of magnitude below the analytical prediction and angular momentum accretion occurs at sub-Keplerian values.

  9. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  10. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  11. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  12. Eastern Denali Fault Slip Rate and Paleoseismic History, Kluane Lake Area, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Seitz, G. J.; Haeussler, P. J.; Crone, A. J.; Lipovsky, P.; Schwartz, D. P.

    2008-12-01

    In 2002, the central part of the dextral-slip Denali fault (DF) system generated a M 7.9 earthquake in central Alaska. This rupture included the section of the Denali fault with the highest measured late Pleistocene slip rate, of 12.1±1.7 mm/yr, and the Totschunda fault, with a slip rate of 6.0±1.2 mm/yr. Immediately east of the Denali-Totschunda fault juncture, the slip rate on the eastern Denali fault (EDF) decreases to 8.4±2.2 mm/yr. We present observations of Holocene fault activity on the Yukon part of the EDF (Shakwak segment), which is located about 280 km southeast of the Denali-Totschunda intersection in the vicinity of Kluane Lake. Aerial reconnaissance in 2007, from the Denali-Totschunda fault juncture to the Kluane Lake region revealed a nearly continuously identifiable fault trace, which is occasionally obscured where it is subparallel to glacial landforms. In addition to geomorphic features associated with strike-slip faults, such as shutter ridges and sag ponds, the fault is commonly expressed by a chain of elongate mounds, likely tectonic pushups, 20-70 m in length, 10-50 m wide, and locally up to 10 m high. These appear to have formed by shortening between en echelon left-stepping fault strands that developed in layered glacial sediments. At one location (61°18'30.12" N, 139°01'02.54"W) we measured on the ground a channel offset of 20-25 m. An aerial view showed that other channels in the vicinity, as well as the margins of two mounds, were offset by similar amounts. These channels likely developed after deglaciation 10-12 ka. Using this age and the offset yields a slip-rate range of 1.7-2.5 mm/yr, a minimum value but one that may be close to the actual rate. However, because of uncertainties in age relations between construction of the uplift mounds and channel incision the offset could be younger and we estimate an upper limit of about 5 mm/yr. Adjacent to and south of the Duke River, an approximately 2-km-long section of the fault is

  13. Rayleigh-Taylor-Unstable Accretion and Variability of Magnetized Stars: Global Three-Dimensional Simulations

    SciTech Connect

    Kulkarni, A. K.; Romanova, M. M.

    2008-10-29

    We present results of 3D simulations of MHD instabilities at the accretion disk-magnetosphere boundary. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It produces tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, {theta} < or approx. 30 deg., between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hot spots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems.

  14. Reaction rates, depositional history and sources of indium in sediments from Appalachian and Canadian Shield lakes

    NASA Astrophysics Data System (ADS)

    Tessier, André; Gobeil, Charles; Laforte, Lucie

    2014-07-01

    Sediment cores were collected at the deepest site of twelve headwater lakes from the Province of Québec, Canada that receive contaminants only from atmospheric deposition, either directly to the lake surface or indirectly from the watershed. Several of the lakes are located within relatively short distance (<40 km) and others at more than 200 km from potential sources of contamination. The sediments were dated and analyzed for In and other elements including Fe, Mn, Al and organic C. Fe-rich authigenic material was collected on Teflon sheets inserted vertically into the sediments at the only study site whose hypolimnion remains perennially oxic. Porewater samples collected at the coring site of four of the lakes were also analyzed for In and other solutes including sulfide, sulfate, Fe, Mn, inorganic and organic C and major ions. The porewater In profiles display concentration gradients at or below the sediment-water interface. Modeling these profiles with a one-dimensional transport-reaction equation assuming steady state allows definition of depth intervals (zones) where In is either released to or removed from porewater and quantification of net In reactions rates in each zone. The position of the In consumption zones, the shape of the vertical profiles of dissolved In, sulfide and iron, as well as thermodynamic calculations of saturation states collectively suggest that In(OH)3(s) and In2S3(s) do not precipitate in the sediments and that adsorption of In onto sedimentary FeS(s) does not occur. However, similarities in the In and Fe porewater profiles, and the presence of In in the authigenic Fe-rich solids, reveal that part of the In becomes associated with authigenic Fe oxyhydroxides in the perennially oxic lake and is coupled to the Fe redox cycling. Comparison of the In/Corg and In/Fe molar ratios in the authigenic Fe-rich material and in surface sediments (0-0.5 cm) of this lake suggests that most non-lithogenic In was bound to humic substances. From the

  15. Effects of Mitochondrial DNA Rate Variation on Reconstruction of Pleistocene Demographic History in a Social Avian Species, Pomatostomus superciliosus

    PubMed Central

    Norman, Janette A.; Blackmore, Caroline J.; Rourke, Meaghan; Christidis, Les

    2014-01-01

    Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than

  16. Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA

    NASA Astrophysics Data System (ADS)

    Davis, Jesse W.; Coleman, Drew S.; Gracely, John T.; Gaschnig, Richard; Stearns, Michael

    2012-03-01

    Zircon U-Pb geochronology results indicate that the John Muir Intrusive Suite of the central Sierra Nevada batholith, California, was assembled over a period of at least 12 Ma between 96 and 84 Ma. Bulk mineral thermochronology (U-Pb zircon and titanite, 40Ar/39Ar hornblende and biotite) of rocks from multiple plutons comprising the Muir suite indicates rapid cooling through titanite and hornblende closure following intrusion and subsequent slow cooling through biotite closure. Assembly of intrusive suites in the Sierra Nevada and elsewhere over millions of years favors growth by incremental intrusion. Estimated long-term pluton assembly rates for the John Muir Intrusive Suite are on the order of 0.001 km3 a-1 which is inconsistent with the rapid magma fluxes that are necessary to form large-volume magma chambers capable of producing caldera-forming eruptions. If large shallow crustal magma chambers do not typically develop during assembly of large zoned intrusive suites, it is doubtful that the intrusive suites represent cumulates left behind following caldera-forming eruptions.

  17. Accretion of radiation and rotating primordial black holes

    NASA Astrophysics Data System (ADS)

    Mahapatra, S.; Nayak, B.

    2016-02-01

    We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.

  18. Forsterite dissolution rates in Mg-sulfate-rich Mars-analog brines and implications of the aqueous history of Mars

    NASA Astrophysics Data System (ADS)

    Albright Olsen, Amanda; Hausrath, Elisabeth M.; Rimstidt, J. Donald

    2015-03-01

    High salinity brines, although rare on Earth's surface, may have been important in the geologic history of Mars. Increasing evidence suggests the importance of liquid brines in multiple locations on Mars. In order to interpret the effect of high ionic strength brines on olivine dissolution, which is widely present on Mars, 47 new batch reactor experiments combined with 35 results from a previous study conducted at 25°C from 1 < pH < 4 in magnesium sulfate, sodium sulfate, magnesium nitrate, and potassium nitrate solutions with ionic strengths as high as 12 m show that very high ionic strength brines have an inhibitory effect of forsterite dissolution rates. Multiple linear regression analysis of the data suggests that the inhibition in dissolution rates is due to decreased water activity at high ionic strengths. Regression models also show that mMg up to 4 m and mSO4 up to 3 m have no effect on forsterite dissolution rates. The effect of decreasing dissolution rates with decreasing aH2O is consistent with the idea that water acts as a ligand that participates in the dissolution process. Less available water to participate in the dissolution reaction results in a slower dissolution rate. Multiple linear regression analysis of the data produces the rate equation log r = -6.81 - 0.52pH + 3.26log aH2O. Forsterite in dilute solutions with a water activity of one dissolves twice as fast as those in brines with a water activity of 0.8.

  19. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  20. Spherical Accretion in a Uniformly Expanding Universe

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  1. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  2. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  3. Lambda Boo Abundance Patterns: Accretion from Orbiting Sources

    NASA Astrophysics Data System (ADS)

    Jura, M.

    2015-12-01

    The abundance anomalies in λ Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically inferred bounds for interstellar accretion. Therefore, a λ Boo star’s thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some λ Boo stars accrete from the winds of hot Jupiters.

  4. ACCRETION DISK TEMPERATURES OF QSOs: CONSTRAINTS FROM THE EMISSION LINES

    SciTech Connect

    Bonning, E. W.; Shields, G. A.; Stevens, A. C.; Salviander, S. E-mail: shields@astro.as.utexas.edu E-mail: triples@astro.as.utexas.edu

    2013-06-10

    We compare QSO emission-line spectra to predictions based on theoretical ionizing continua of accretion disks. The observed line intensities do not show the expected trend of higher ionization with theoretical accretion disk temperature as predicted from the black hole mass and accretion rate. Consistent with earlier studies, this suggests that the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. The emission lines of radio-detected and radio-undetected sources show different trends as a function of the theoretically predicted disk temperature.

  5. Bondi-like Accretion in Magnetized Supersonic Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    Burleigh, Kaylan J.; McKee, Christopher F.; Klein, Richard I.

    2016-01-01

    The Bondi and Bondi-Hoyle-Lytlleton formulas give the order of magnitude steady-accretion rate onto a point mass at rest or moving, respectively, in a uniform density gas in the limit of negligible gas self-gravity. This applies in star-forming clouds where self-gravity is negligible near protostars and new-born stars, but instead of being uniform the gas is supersonically turbulent and threaded by dynamically important (Alven Mach number ˜ 1) large-scale magnetic fields. To determine the Bondi-like accretion rate in these environments, we used the ORION2 code to carry out grid-based 3D adaptive mesh refinement (AMR) magnetohydrodynamic (MHD) simulations of accretion onto sink particles embedded in an environment of fully developed, magnetized supersonic isothermal turbulence. We evolved the models until the median and mean accretion rates, over particles, became steady. We present a simple semi-analytic model that predicts the median and mean accretion rate from the turbulent properties of the background medium, such as the 3D Mach number and RMS plasma-β, and show that it is highly consistent with our simulations. Numerical codes can use our semi-analytic model as an accurate sub-grid model for accretion in magnetized supersonic isothermal turbulence.

  6. Accretion of a ghost condensate by black holes

    SciTech Connect

    Frolov, Andrei V.

    2004-09-15

    The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  7. Compton heated winds and coronae above accretion disks. I Dynamics

    NASA Technical Reports Server (NTRS)

    Begelman, M. C.; Mckee, C. F.; Shields, G. A.

    1983-01-01

    X rays emitted in the inner part of an accretion disk system can heat the surface of the disk farther out, producing a corona and possibly driving off a strong wind. The dynamics of Compton-heated coronae and winds are analyzed using an approximate two-dimensional technique to estimate the mass loss rate as a function of distance from the source of X rays. The findings have important dynamical implications for accretion disks in quasars, active galactic nuclei, X ray binaries, and cataclysmic variables. These include: mass loss from the disk possibly comparable with or exceeding the net accretion rate onto the central compact object, which may lead to unstable accretion; sufficient angular momentum loss in some cases to truncate the disk in a semidetached binary at a smaller radius than that predicted by tidal truncation theories; and combined static plus ram pressure in the wind adequate to confine line-emitting clouds in quasars and Seyfert galaxies.

  8. Magnetically driven accretion in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Lesur, Geoffroy; Kunz, Matthew W.; Armitage, Philip J.

    2015-11-01

    We characterize magnetically driven accretion at radii between 1 and 100 au in protoplanetary discs, using a series of local non-ideal magnetohydrodynamic (MHD) simulations. The simulations assume a minimum mass solar nebula (MMSN) disc that is threaded by a net vertical magnetic field of specified strength. Confirming previous results, we find that the Hall effect has only a modest impact on accretion at 30 au, and essentially none at 100 au. At 1-10 au the Hall effect introduces a pronounced bimodality in the accretion process, with vertical magnetic fields aligned to the disc rotation supporting a strong laminar Maxwell stress that is absent if the field is anti-aligned. In the anti-aligned case, we instead find evidence for bursts of turbulent stress at 5-10 au, which we tentatively identify with the non-axisymmetric Hall-shear instability. The presence or absence of these bursts depends upon the details of the adopted chemical model, which suggests that appreciable regions of actual protoplanetary discs might lie close to the borderline between laminar and turbulent behaviour. Given the number of important control parameters that have already been identified in MHD models, quantitative predictions for disc structure in terms of only radius and accretion rate appear to be difficult. Instead, we identify robust qualitative tests of magnetically driven accretion. These include the presence of turbulence in the outer disc, independent of the orientation of the vertical magnetic fields, and a Hall-mediated bimodality in turbulent properties extending from the region of thermal ionization to 10 au.

  9. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    SciTech Connect

    Montgomery, M. M.

    2009-11-01

    accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.

  10. Earth, Moon, Sun, and CV Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2009-11-01

    accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.

  11. AGN flickering and chaotic accretion

    NASA Astrophysics Data System (ADS)

    King, Andrew; Nixon, Chris

    2015-10-01

    Observational arguments suggest that the growth phases of the supermassive black holes in active galactic nuclei have a characteristic time-scale ˜105 yr. We show that this is the time-scale expected in the chaotic accretion picture of black hole feeding, because of the effect of self-gravity in limiting the mass of any accretion-disc feeding event.

  12. Accretion in brown dwarfs: An infrared view

    NASA Astrophysics Data System (ADS)

    Natta, A.; Testi, L.; Muzerolle, J.; Randich, S.; Comerón, F.; Persi, P.

    2004-09-01

    This paper presents a study of the accretion properties of 19 very low mass objects (M*˜ 0.01-0.1 M⊙) in the regions Chamaeleon I and ρ Oph. For 8 objects we obtained high resolution Hα profiles and determined mass accretion rate \\dot Mac and accretion luminosity Lac. Pa\\beta is detected in emission in 7 of the 10 ρ Oph objects, but only in one in Cha I. Using objects for which we have both a determination of Lac from Hα and a Paβ detection,} we show that the correlation between the Paβ luminosity and luminosity Lac, found by Muzerolle et al. (\\cite{Mea98}) for T Tauri stars in Taurus, extends to objects with mass ˜0.03 M⊙; L(Paβ) can be used to measure Lac also in the substellar regime. The results were less conclusive for Brγ, which was detected only in 2 objects, neither of which had an Hα estimate of \\dot Mac. Using the relation between L(Pa\\beta) and Lac we determined the accretion rate for all the objects in our sample (including those with no Hα spectrum), } more than doubling the number of substellar objects with known \\dot Mac. When plotted as a function of the mass of the central object together with data from the literature, our results confirm the trend of lower \\dot Mac for lower M*, although with a large spread. Some of the spread is probably due to an age effect; our very young objects in ρ Oph have on average an accretion rate at least one order of magnitude higher than objects of similar mass in older regions. As a side product, we found that the width of Hα measured at 10% peak intensity is not only a qualitative indicator of the accreting nature of very low mass objects, but can be used to obtain a quantitative, although not very accurate, estimate of \\dot Mac over a large mass range, from T Tauri stars to brown dwarfs. Finally, we found that some of our objects show evidence of mass-loss in their optical spectra. Based on observations collected at the European Southern Observatory, Chile. Table 2 is only available in

  13. Accreting planets as dust dams in 'transition' disks

    SciTech Connect

    Owen, James E.

    2014-07-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10{sup –9}-10{sup –8} M {sub ☉} yr{sup –1}), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M{sub J} ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  14. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  15. Possible long-term decline in impact rates. 2. Lunar impact-melt data regarding impact history

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Quantin, Cathy; Mangold, Nicolas

    2007-01-01

    Crater counts at lunar landing sites with measured ages establish a steep decline in cratering rate during the period ˜3.8 to ˜3.1 Gyr ago. Most models of the time dependence suggest a roughly constant impact rate (within factor ˜2) after about 3 Gyr ago, but are based on sparse data. Recent dating of impact melts from lunar meteorites, and Apollo glass spherules, clarifies impact rates from ˜3.2 to ˜2 Gyr ago or less. Taken together, these data suggest a decline with roughly 700 Myr half-life around 3 Gyr ago, and a slower decline after that, dropping by a factor ˜3 from about ˜2.3 Gyr ago until the present. Planetary cratering involved several phases with different time behaviors: (1) rapid sweep-up of most primordial planetesimals into planets in the first hundred Myr, (2) possible later effects of giant planet migration with enhanced cratering, (3) longer term sweep-up of leftover planetesimals, and finally (4) the present long-term "leakage" of asteroids from reservoirs such as the main asteroid belt and Kuiper belt. In addition, at any given point on the Moon, a pattern of "spikes" (sharp maxima of relatively narrow time width) will appear in the production rate of smaller craters (≲500 m?), not only from secondary debris from large primary lunar impacts at various distances from the point in question, but also from asteroid breakups dotted through Solar System history. The pattern of spikes varies according to type of sample being measured (i.e., glass spherules vs impact melts). For example, several data sets show an impact rate spike ˜470 Myr ago associated with the asteroid belt collision that produced the L chondrites (see Section 3.6 below). Such spikes should be less prominent in the production record of craters of D≳ few km. These phenomena affect estimates of planetary surfaces ages from crater counts, as discussed in a companion paper [Quantin, C., Mangold, N., Hartmann, W.K., Allemand, P., 2007. Icarus 186, 1-10]. Fewer impact melts and

  16. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  17. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  18. Life history as a predictor of salamander recovery rate from timber harvest in southern appalachian forests, USA.

    PubMed

    Connette, Grant M; Semlitsch, Raymond D

    2013-12-01

    Forest management often represents a balance between social, economic, and ecological objectives. In the eastern United States, numerous studies have established that terrestrial salamander populations initially decline in abundance following timber harvest, yet the large-scale and long-term consequences are relatively unknown. We used count data from terrestrial survey points to examine the relation between salamander abundance and historic timber harvest while accounting for imperfect detection of individuals. Overall, stream- and terrestrial-breeding salamanders appeared to differ by magnitude of population decline, rate of population recovery, and extent of recolonization from surrounding forest. Specifically, estimated abundance of both species groups was positively associated with stand age and recovery rates were predicted to increase over time for red-legged salamanders (Plethodon shermani) and decrease in stream-breeding species. Abundance of stream-breeding salamanders was predicted to reach a peak by 100 years after timber harvest, and the population growth rate of red-legged salamanders was predicted to undergo a significant increase 100 years after harvest. Estimated abundance of stream-breeding salamanders in young forest stands was also negatively associated with the distance to adjacent forest, a result that suggests immigration has a role in the recovery of these species. Our results indicate that salamander abundance in young forest stands may be only modestly lower than in more mature forest but that full recovery from timber harvest may take a substantial amount of time and that species life history may affect patterns of recovery. Historia de Vida como un Vaticinador de la Tasa de Recuperación de una Salamandra a la Colecta de Madera en los Bosques del Sur de los Apalaches, E.U.A. PMID:24033390

  19. Infall-driven protostellar accretion and the solution to the luminosity problem

    SciTech Connect

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2014-12-10

    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall rates from protostar to protostar, and large fluctuations during the evolution of individual protostars. In most cases, the infall rate is initially of order 10{sup –5} M {sub ☉} yr{sup –1}, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed. The simulation reproduces well the observed characteristic values and scatter of protostellar luminosities and matches the observed protostellar luminosity function. The luminosity problem is therefore solved once realistic protostellar infall histories are accounted for, with no need for extreme accretion episodes. These results are based on a simulation of randomly driven magnetohydrodynamic turbulence on a scale of 4 pc, including self-gravity, adaptive-mesh refinement to a resolution of 50 AU, and accreting sink particles. The simulation yields a low star formation rate, consistent with the observations, and a mass distribution of sink particles consistent with the observed stellar initial mass function during the whole duration of the simulation, forming nearly 1300 sink particles over 3.2 Myr.

  20. CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION

    SciTech Connect

    Robertson, Brant E.; Ellis, Richard S.

    2012-01-10

    depth of Thomson scattering to the cosmic microwave background, we show that such a star formation history would overpredict the observed stellar mass density at z > 4 measured from rest-frame optical surveys. The resolution of this important disagreement is currently unclear, and the GRB production rate at early times is likely more complex than a simple function of SFR and progenitor metallicity.

  1. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  2. Pouring 'Cold Water' on Hot Accretion

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1995-09-01

    was concluded that the textures must have formed during cooling after hot accretion. However, because spinodal decomposition textures develop over the temperature range 1400-1100 K [14,15] and type-4 and -5 OC were probably not heated above 1000 K and 1050 K, respectively [16], these textures are probably relicts of chondrule formation. It was also suggested [14] that compositional zoning in pyroxenes indicates that type-3 OC cooled more rapidly than type-4 to -5 OC. However, OC metallographic cooling rates are not correlated with petrologic type [17]. Furthermore, experimental data [13] show that rare thick opx lamellae in H4 Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid cooling (1700 to 1000 K within days to weeks) [18]; by analogy, it was proposed that all H3-6 chondrites containing polycrystalline taenite cooled rapidly from 1700 K [4], an idea inconsistent with prograde metamorphism. However, cooling rates in equilibrated chondrites that were slow enough to permit significant growth of kamacite would erase prior solidification zoning in taenite by solid-state diffusion [19,20]. This hypothesis, confirmed by computer modeling [21], invalidates the assumption that equilibrated OC containing polycrystalline taenite cooled rapidly. Polycrystalline taenite is most likely a pre-metamorphic relict. Heterogeneous metal grains. Compositionally and texturally heterogeneous metal grains in L6 Bruderheim are unlikely to have survived solid-state diffusion during prograde metamorphism [22]; these authors favored hot accretion followed by low-temperature annealing. However, Bruderheim is a fragmental breccia of shock

  3. Accretion Acceleration of Neutron Stars and Effects of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Fu, Yan-yan; Zhang, Yue-zhu; Wei, Yi-huan; Zhang, Cheng-min; Yu, Shao-hua; Pan, Yuan-yue; Guo, Yuan-qi; Wang, De-hua

    2016-01-01

    In this paper we studied the neutron star's spin acceleration in the accretion process of the neutron star binary system, and the relation how the spin period changes with the accreted mass. We analyzed further the evolutions of both magnetic field and spin period of a neutron star, and compared the modeled results with the observational data of pulsars, to show that they are consistent with each other. Based on above studies, we investigated the effect of gravitational radiation on the spin-up process of a neutron star, and derived the change rate of the neutron star's spin period in the accretion process. We also estimated the critical angular velocity Ωcr, at which the accretion torque is balanced by that of gravitational radiation, and discussed the influence of gravitational radiation on the neutron star's spin evolution.

  4. Gas accretion from halos to disks: observations, curiosities, and problems

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-08-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  5. Properties of accretion disk coronae

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Staubert, R.; Begelman, M. C.

    1997-01-01

    The properties of accretion disk corona in a parameter regime suitable for Galactic black hole candidates are considered and the results of an analysis of these properties using a self-consistent Monte Carlo code are presented. Examples of the coronal temperature structure, the shape and angular dependency of the spectrum and the maximum temperature allowed for each optical depth of the corona are presented. It is shown that the observed spectrum of the Galactic black hole candidate Cygnus X-1 cannot be explained by accreting disk corona models with a slab geometry, where the accretion disk is sandwiched by the comptonizing medium.

  6. Identical metabolic rate and thermal conductance in Rock Sandpiper (Calidris ptilocnemis) subspecies with contrasting nonbreeding life histories

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E., Jr.; Piersma, Theunis

    2013-01-01

    Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper (Calidris ptilocnemis) exhibits the most northerly nonbreeding distribution of any shorebird in the North Pacific, being common during winter in cold, dark locations as far north as upper Cook Inlet, Alaska (61°N). By contrast, the tschuktschorum subspecies migrates to sites ranging from about 59°N to more benign locations as far south as ~37°N. These distributional extremes exert contrasting energetic demands, and we measured common metabolic parameters in the two subspecies held under identical laboratory conditions to determine whether differences in these parameters are reflected by their nonbreeding life histories. Basal metabolic rate and thermal conductance did not differ between subspecies, and the subspecies had a similar metabolic response to temperatures below their thermoneutral zone. Relatively low thermal conductance values may, however, reflect intrinsic metabolic adaptations to northerly latitudes. In the absence of differences in basic metabolic parameters, the two subspecies’ nonbreeding distributions will likely be more strongly influenced by adaptations to regional variation in ecological factors such as prey density, prey quality, and foraging habitat.

  7. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  8. CONSTRAINT ON THE GIANT PLANET PRODUCTION BY CORE ACCRETION

    SciTech Connect

    Rafikov, Roman R.

    2011-02-01

    The issue of giant planet formation by core accretion (CA) far from the central star is rather controversial because the growth of a massive solid core necessary for triggering the gas runaway can take longer than the lifetime of the protoplanetary disk. In this work, we assess the range of separations at which CA may operate by (1) allowing for an arbitrary (physically meaningful) rate of planetesimal accretion by the core and (2) properly taking into account the dependence of the critical mass for the gas runaway on the planetesimal accretion luminosity. This self-consistent approach distinguishes our work from similar studies in which only a specific planetesimal accretion regime was explored and/or the critical core mass was fixed at some arbitrary level. We demonstrate that the largest separation at which the gas runaway can occur within 3 Myr corresponds to the surface density of solids in the disk {approx}>0.1 g cm{sup -2} and is 40-50 AU in the minimum mass solar nebula. This limiting separation is achieved when the planetesimal accretion proceeds at the fastest possible rate, even though the high associated accretion luminosity increases the critical core mass, delaying the onset of gas runaway. Our constraints are independent of the mass of the central star and vary only weakly with the core density and its atmospheric opacity. We also discuss various factors that can strengthen or weaken our limits on the operation of CA.

  9. Turbulent Mixing on Helium-accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.

    2015-03-01

    An attractive scenario for producing Type Ia supernovae (SNe Ia) is a double detonation, where detonation of an accreted helium layer triggers ignition of a C/O core. Whether or not such a mechanism can explain some or most SNe Ia depends on the properties of the helium burning, which in turn is set by the composition of the surface material. Using a combination of semi-analytic and simple numerical models, I explore when turbulent mixing due to hydrodynamic instabilities during the accretion process can mix C/O core material up into the accreted helium. Mixing is strongest at high accretion rates, large white dwarf (WD) masses, and slow spin rates. The mixing would result in subsequent helium burning that better matches the observed properties of SNe Ia. In some cases, there is considerable mixing that can lead to more than 50% C/O in the accreted layer at the time of ignition. These results will hopefully motivate future theoretical studies of such strongly mixed conditions. Mixing also has implications for other types of WD surface explosions, including the so-called .Ia supernovae, the calcium-rich transients (if they arise from accreting WDs), and metal-enriched classical novae.

  10. Driving of Accretion Disk Variability by the Disk Dynamo

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-01-01

    Variability is a univeral feature of emission from accreting objects, but many questions remain as to how the variability is driven and how it relates to the underlying accretion physics. We use a long, semi-global MHD simulation of a thin accretion disk around a black hole to perform a detailed study of the fluctuations in the internal disk stress and the affect these fluctuations have on the accretion flow. In this poster, we show that low frequency fluctuations in the effective α-parameter in the disk are due to oscillations of the disk dynamo. Additionally, we show that fluctuations in the effective α-parameter drive "propagating fluctuations" in mass accretion rate through the disk that qualitatively resemble the variability from astrophysical black hole systems. In particular, we show that several of the ubiquitous phenomenological properties of black hole variability, including log-normal flux distributions, RMS-flux relationships, and radial coherence are present in the mass accretion rate fluctuations of our simulation.

  11. Thermonuclear bursts from slowly and rapidly accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Linares, Manuel

    2012-07-01

    Models of thermonuclear burning on accreting neutron stars predict different ignition regimes, depending mainly on the mass accretion rate per unit area. For more than three decades, testing these regimes observationally has met with only partial success. I will present recent results from the Fermi-GBM all-sky X-ray burst monitor, which is yielding robust measurements of recurrence time of rare and highly energetic thermonuclear bursts at the lowest mass accretion rates. I will also present RXTE observations of thermonuclear bursts at high mass accretion rates, including the discovery of millihertz quasi-periodic oscillations and several bursting regimes in a neutron star transient and 11 Hz X-ray pulsar. This unusual neutron star, with higher magnetic field and slower rotation than any other known burster, showed copious bursting activity when the mass accretion rate varied between 10% and 50% of the Eddington rate. I will discuss the role of fuel composition and neutron star spin in setting the burst properties of this system, and the possible implications for the rest of thermonuclear bursters.

  12. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    SciTech Connect

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  13. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  14. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  15. Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania

    NASA Astrophysics Data System (ADS)

    Szakács, Alexandru; Seghedi, Ioan; Pécskay, Zoltán; Mirea, Viorel

    2015-02-01

    Based on a new set of K-Ar age data and detailed field observations, the eruptive history of the youngest volcano in the whole Carpathian-Pannonian region was reconstructed. Ciomadul volcano is a dacitic dome complex located at the southeastern end of the Călimani-Gurghiu-Harghita Neogene volcanic range in the East Carpathians. It consists of a central group of extrusive domes (the Ciomadul Mare and Haramul Mare dome clusters and the Köves Ponk dome) surrounded by a number of isolated peripheral domes, some of them strongly eroded (Bálványos, Puturosul), and others topographically well preserved (Haramul Mic, Dealul Mare). One of the domes (Dealul Cetăţii) still preserves part of its original breccia envelope. A large number of bread-crust bombs found mostly along the southern slopes of the volcano suggest that the dome-building activity at Ciomadul was punctuated by short Vulcanian-type explosive events. Two late-stage explosive events that ended the volcanic activity of Ciomadul left behind two topographically well-preserved craters disrupting the central group of domes: the larger-diameter, shallower, and older Mohoş phreatomagmatic crater and the smaller, deeper and younger Sf. Ana (sub)Plinian crater. Phreatomagmatic products of the Mohoş center, including accretionary lapilli-bearing base-surge deposits and poorly sorted airfall deposits with impact sags, are known close to the eastern crater rim. A key section studied in detail south of Băile Tuşnad shows the temporal succession of eruptive episodes related to the Sf. Ana (sub)Plinian event, as well as relationships with the older dome-building stages. The age of this last eruptive event is loosely constrained by radiocarbon dating of charcoal pieces and paleosoil organic matter at ca. 27-35 ka. The age of the Mohoş eruption is not constrained, but we suggest that it is closely related to the Sf. Ana eruption. The whole volcanic history of Ciomadul spans over ca. 1 Myr, starting with the building

  16. Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake Thamnophis elegans.

    PubMed

    Gangloff, Eric J; Vleck, David; Bronikowski, Anne M

    2015-01-01

    Interactions at all levels of ecology are influenced by the rate at which energy is obtained, converted, and allocated. Trade-offs in energy allocation within individuals in turn form the basis for life-history theory. Here we describe tests of the influences of temperature, developmental environment, and genetic background on measures of growth efficiency and resting metabolic rate in an ectothermic vertebrate, the western terrestrial garter snake (Thamnophis elegans). After raising captive-born snakes from divergent life-history ecotypes on thermal regimes mimicking natural habitat differences (2 × 2 experimental design of ecotype and thermal environment), we measured oxygen consumption rate at temperatures spanning the activity range of this species. We found ecotypic differences in the reaction norms of snakes across the measured range of temperatures and a temperature-dependent allometric relationship between mass and metabolic rate predicted by the metabolic-level boundaries hypothesis. Additionally, we present evidence of within-individual trade-offs between growth efficiency and resting metabolic rate, as predicted by classic life-history theory. These observations help illuminate the ultimate and proximate factors that underlie variation in these interrelated physiological and life-history traits. PMID:26658251

  17. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  18. Energy flows in thick accretion discs and their consequences for black hole feedback

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Lasota, Jean-Pierre; Abramowicz, Marek A.; Narayan, Ramesh

    2016-03-01

    We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is 3 per cent - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.

  19. The Orbital Period of the Accreting Pulsar GX 1+4.

    PubMed

    Pereira; Braga; Jablonski

    1999-12-01

    We report strong evidence for a approximately 304 day periodicity in the spin history of the accretion-powered pulsar GX 1+4 that is most probably associated with the orbital period of the system. We have used data from the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to show a clear periodic modulation of the pulsar frequency from 1991 to date, in excellent agreement with the ephemeris proposed by Cutler, Dennis, & Dolan in 1986. Our results indicate that the orbital period of GX 1+4 is 303.8+/-1.1 days, making it the widest known low-mass X-ray binary system by more than 1 order of magnitude and putting this long-standing question to rest. A likely scenario for this system is an elliptical orbit in which the neutron star decreases its spin-down rate (or even exhibits a momentary spin-up behavior) at periastron passages due to the higher torque exerted by the accretion disk onto the magnetosphere of the neutron star. These results are not inconsistent with either the X-ray pulsed flux light curve measured by BATSE during the same epoch or the X-ray flux history from the All-Sky Monitor on board the Rossi X-Ray Timing Explorer. PMID:10550289

  20. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  1. Electromagnetic Spindown of a Transient Accreting Millisecond Pulsar During Quiescence

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Mastrano, A.

    2016-02-01

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751-305, SAX J1808.4-3658, and Swift J1756.9-2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  2. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  3. Temporal and spatial cyclicity of accretion at slow-spreading ridges-evidence from the Reykjanes Ridge

    NASA Astrophysics Data System (ADS)

    Peirce, Christine; Gardiner, Alex; Sinha, Martin

    2005-10-01

    A unifying model of oceanic crustal development at slow spreading rates is presented in which accretion follows a cyclic pattern of magmatic construction and tectonic destruction, controlled by along-axis variation in melt supply and coupled to along-axis variation in spreading rate and across-axis asymmetry in spreading. This study focuses on the Reykjanes Ridge, Mid-Atlantic Ridge south of Iceland, which is divided along its entire length into numerous axial volcanic ridges (AVR). Five adjacent AVRs have been analysed, located between 57°30'N and 58°30'N and south of any strong Iceland hotspot influence. The seabed morphology of each AVR is investigated using sidescan sonar data to determine relative age and eruptive history. Along-axis gravity profiles for each AVR are modelled relative to a seismically derived crustal reference model, to reveal the underlying crustal thickness and density structure. Correlating these models with seabed features, crustal structure, ridge segment morphology and relative ages, a model of cyclic ridge segmentation is developed in which accretion results in adjacent AVRs with a range of crustal features which, when viewed collectively, reveal that second-order segments on the Reykjanes Ridge have an along-axis length of ~70 km and comprise several adjacent AVRs which, in turn, reflect the pattern of third-order segmentation. Tectono-magmatic accretion is shown to operate on the scale of individual AVRs, as well as on the scale of the second-order segment as a whole.

  4. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  5. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    SciTech Connect

    Lesniak, M. V.; Desch, S. J.

    2011-10-20

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10{sup 4}) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T{sub mid} are strongly affected by the column density {Sigma}{sub a} of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10{sup 2} K higher than our layered accretion models do. For M-dot < 10{sup -7} M{sub sun} yr{sup -1} and the column densities {Sigma}{sub a} < 10 g cm{sup -2} associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to {Sigma}{sub a}, making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  6. TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS

    SciTech Connect

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  7. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over ~17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the Hα flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The Hα emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the Hα and Hβ lines is followed by He I (λ5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of ~2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows ~2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  8. Titan's Cold Accretion and its Internal Structure

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Mosqueira, I.

    2010-10-01

    Recent Cassini radio tracking data has provided a normalized moment of inertia for Titan of 0.34 (Iess et al. 2010). Given that the quadrupole field is consistent with hydrostatic equilibrium, a two-layer interior model implies incomplete differentiation with a 700 km water-ice shell and an undifferentiated ice and rock-metal interior. We investigate the accretional history of Titan in connection with its internal structure. Our formation model allows for a size distribution of impactors with upper size cut-off constrained by Hyperion's size and a variable power-law exponent (Mosqueira et al. 2010). The burial of impact energy takes place in a lengthscale of order of the impactor radius, as indicated by numerical simulations (e.g., Pierazzo et al. 1997) applied to our energy regime of interest. Our thermal model includes radiogenic heating due to short and long-lived radionuclides, latent heat of melting, gravitational energy release due to sinking rock, heat of accretion and radiative cooling. We find that melting in the interior takes place well before the satellite reaches its final size. As a result, we expect the formation of an ocean overlying a silicate carapace, which may spend a considerable amount of time in contact with the liquid layer. Such a framework not only facilitates the transport of heat from the interior, but also can help both in leaching Ar40 into the ocean and then releasing into the atmosphere. We consider a range of parameters such as the degree of hydration of the rock component, the fraction of the impact energy that is deposited at the surface of the satellite, and accretion times. But we do not yet consider the effects of small admixtures of contaminants. We argue that models that form Titan in a cold environment may have allowed for the interior to remain cold enough as to preclude complete differentiation.

  9. Accretion and canal impacts in a rapidly subsiding wetland II: Feldspar marker horizon technique

    USGS Publications Warehouse

    Cahoon, D.R.; Turner, R.E.

    1989-01-01

    Recent (6-12 months) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in a Spartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr-1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr-1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackish Spatina patens marsh on Louisiana's chenier plain, vertical accretion rates were the same along natural and canal waterways (3-4 mm yr-1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr-1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.

  10. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  11. Hyper-Eddington accretion flows onto massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-04-01

    We study very-high rate, spherically symmetric accretion flows onto massive black holes (BH; 10^2 ⪉ M_BH ⪉ 10^6~M_⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105~cm-3) > (MBH/104~M⊙)-1(T∞/104~K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000~LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000~K. When the emergent luminosity is limited to ⪉ L_Edd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of T_vir⪆ 10^4~K. Once a seed BH forms at the center of the galaxy, it can grow to a maximum ˜105~(Tvir/104~K)~M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  12. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  13. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  14. Use and abuse of crustal accretion calculations

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Cole, James C.; Stoeser, Douglas B.; Quick, James E.

    1990-01-01

    Recent attempts to calculate the average growth rate of continental crust for the Late Proterozoic shield of Arabia and Nubia are subject to large geological uncertainties, and widely contrasting conclusions result from dissimilar boundary conditions. The four greatest sources of divergence are (1) the extent of 620-920 Ma arc-terrane crust beneath Phanerozoic cover; (2) the extent of pre-920 Ma continental crust within the arc terranes; (3) the amount of postaccretion magmatic addition and erosion; and (4) the aggregate length and average life span of Late Proterozoic magmatic-arc systems that formed the Arabian-Nubian Shield. Calculations restricted to the relatively well known Arabian segment of the Arabian-Nubian Shield result in average crustal growth rates and arc accretion rates comparable to rates for modern arc systems, but we recognize substantial uncertainty in such results. Critical review of available geochemical, isotopic, and geochronological evidence contradicts the often stated notion that intact, pre-920 Ma crust is widespread in the eastern Arabian Shield. Instead, the arc terranes of the region apparently were "contaminated" with sediments derived, in part, from pre-920 Ma crust. Available geologic and radiometric data indicate that the Arabian-Nubian Shield and its "Pan-African" extensions constitute the greatest known volume of arc-accreted crust on Earth that formed in the period 920-620 Ma. Thus, the region may truly represent a disproportionate share of Earth's crustal growth budget for this time period.

  15. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  16. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  17. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    NASA Astrophysics Data System (ADS)

    Feng, Wanda; Desch, Steven; Turner, Neal; Kalyaan, Anusha

    2016-06-01

    About 1/3 of white dwarfs (WDs) are polluted with heavy elements (e.g., Koester et al., 2014; Zuckerman et al., 2010) that should sediment out of their atmospheres on astronomically short timescales unless replenished by accretion from a reservoir, at rates that for many WDs must exceed ~1010 g/s (Farihi et al., 2010). Direct accretion of planetesimals is too improbable and Poynting-Robertson drag of dust is too slow (due to the low luminosity of WDs) (Jura, 2003), so it is often assumed that WDs accrete from a disk of gas and solid particles, fed by tidal disruption of planeteismals inside the WD Roche limit (e.g. Debes et al., 2012; Rafikov, 2011a, 2011b). A few such gaseous disks have been directly observed, through emission from Ca II atoms in the disk (e.g. Manser et al., 2016; Wilson et al. 2014). Models successfully explain the accretion rates of metals onto the WD, provided the gaseous disk viscously spreads at rates consistent with a partially suppressed magnetorotational instability (Rafikov, 2011a, 2011b). However, these models currently do not explore the likely extent of the magnetorotational instability in disks by calculating the degree of ionization, or suppression by strong magnetic field.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The composition of the disk, the ionization and recombination mechanisms, and the degree of ionization of the disk are explored. Magnetic field strengths consistent with WD dipolar magnetic fields are assumed. Elsasser numbers are calculated as a function of radius in the WD disk. The rate of viscous spreading is calculated, and the model of Rafikov (2011a, 2011b) updated to compute likely accretion rates of metals onto WDs.

  18. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  19. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  20. Chondrule formation in the radiative accretional shock

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, T. V.; Ip, W.

    1994-01-01

    The physical, mineralogical, and isotopic properties of chondrules strongly indicate that they were formed by the rapid melting and resolidification of preexisting solids composed of primitive material. The chondrule precursors were heated to temperatures of about 1800 K in short high-temperature events, followed by cooling with a rate of 10(exp 2)-10(exp 3) K/hr. A heat input of about 1500 J/g is required to heat chondrule precursors to such a temperature and melt them. Lightning discharges and flares in the solar nebula, and heating of the chondrule precursors by friction with gas decelerated in the accretional shock or in a shock (of unspecified origin) within the solar nebula, have been discussed as possible mechanisms for chondrule formation. One advantage of chondrule formation in large-scale shocks is that a lot of dust material can be processed. An accretional shock, which is produced by infalling gas of the presolar cloud when it collides with the solar nebula, belongs to this type of shock. In 1984 Wood considered the possibility of chondrule formation in the accretional shock by heating of chondrule precursors by gas drag. He concluded that the density in the accreting material is much lower than needed to melt silicates at the distance of the asteroid belt if the accreting matter had the cosmic ratio of dust to gas, and the mass of the solar nebula did not exceed 2 solar mass units. Melting of chondrule precursors is difficult because of their effective cooling by thermal radiation. Suppression of the radiative cooling of individual grains in dust swarms, which are opaque to thermal emission, was considered to be the only possible means of chondrule formation in solar nebula shocks. Previous models of solid grain melting in solar nebula shocks have neglected gas cooling behind the shock front, i.e., they considered adiabatic shocks. In this paper we show that large dust grains could be heated much stronger than was supposed by these authors, because of

  1. Winds and accretion in delta Sagittae

    NASA Astrophysics Data System (ADS)

    Eaton, Joel A.; Hartkopf, William I.; McAlister, Harold A.; Mason, Brian D.

    1995-04-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; MB = 2.9 solar mass and MM = 3.8 solar mass; and RB = 2.6 solar radius and RM = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 -8 solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized metals. This emission seems to be

  2. Winds and accretion in delta Sagittae

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Hartkopf, William I.; Mcalister, Harold A.; Mason, Brian D.

    1995-01-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; M(sub B) = 2.9 solar mass and M(sub M) = 3.8 solar mass; and R(sub B) = 2.6 solar radius and R(sub M) = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 (exp -8) solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized

  3. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular

  4. The Influence of Outflow in Supercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Zahra Zeraatgari, Fatemeh; Abbassi, Shahram; Mosallanezhad, Amin

    2016-06-01

    We solve the radiation-hydrodynamic equations of supercritical accretion flows in the presence of radiation force and outflow by using self-similar solutions. Similar to the pioneering works, in this paper we consider a power-law function for mass inflow rate as \\dot{M}\\propto {r}s. We found that s = 1 when the radiative cooling term is included in the energy equation. Correspondingly, the effective temperature profile with respect to the radius was obtained as {T}{eff}\\propto {r}-1/2. In addition, we investigated the influence of the outflow on the dynamics of the accretion flow. We also calculated the continuum spectrum emitted from the disk surface as well as the bolometric luminosity of the accretion flow. Furthermore, our results show that the advection parameter, f, depends strongly on mass inflow rate.

  5. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    NASA Astrophysics Data System (ADS)

    Sakurai, Y.; Vorobyov, E. I.; Hosokawa, T.; Yoshida, N.; Omukai, K.; Yorke, H. W.

    2016-06-01

    The formation of supermassive stars (SMSs) is a potential pathway to seed supermassive black holes in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper, we study the evolution of an accreting SMS and its UV emissivity with realistic variable accretion from a circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the protostellar accretion until the stellar mass exceeds 104 M⊙. The disc fragments by gravitational instability, creating many clumps that migrate inward to fall on to the star. The resulting accretion history is highly time-dependent: short episodic accretion bursts are followed by longer quiescent phases. We show that the disc for the direct collapse model is more unstable and generates greater variability than normal Pop III cases. Next, we conduct a stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the variable accretion, the stellar radius monotonically increases with almost constant effective temperature at Teff ≃ 5000 K as the stellar mass increases. The resulting UV feedback is too weak to hinder accretion due to the low flux of stellar UV photons. The insensitivity of stellar evolution to variable accretion is attributed to the fact that time-scales of variability, ≲103 yr, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS collapses to produce a black hole by the general relativistic instability after the mass reaches ≳105 M⊙.

  6. Black hole accretion disc impacts

    NASA Astrophysics Data System (ADS)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  7. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  8. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Urry, C. Megan

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability.

  9. Evolution of Accreting White Dwarfs: Some of Them Continue to Grow

    NASA Astrophysics Data System (ADS)

    Newsham, G.; Starrfield, S.; Timmes, F. X.

    2014-12-01

    Novae are cataclysmic variable binary systems in which a white dwarf (WD) primary is accreting material from a low mass companion. The importance of this accretion takes on added significance if the WD can increase its mass to reach the Chandrasekhar limit thus exploding as a Type Ia supernova. In this study we accrete material of Solar composition onto carbon/oxygen (CO) WDs of 0.70, 1.00 and 1.35 M⊙ with accretion rates from 1.6×10-10 to 1.6×10-6 M⊙ yr-1. We have utilized the MESA stellar evolution code for our modeling and evolve them for many nova cycles or, in some cases, evolution to a red giant stage. Differing behaviors occur as a function of both the WD mass and the accretion rate. For the lower WD masses, the models undergo recurrent hydrogen flashes at low accretion rates; for higher accretion rates, steady-burning of hydrogen occurs and eventually gives way to recurrent hydrogen flashes. At the highest accretion rates, these models go through a steady-burning phase but eventually transition into red giants. For the highest WD mass recurrent hydrogen flashes occur at lower accretion rates but for higher rates the models exhibit steady-burning interspersed with helium flashes. We find that for all our models that undergo recurrent hydrogen flashes, as well as the steady-burning models that exhibit helium flashes, the mass of the WD continues to grow toward the Chandrasekhar limit. These results suggest that the accretion of Solar abundance material onto CO WDs in cataclysmic variable systems, the single degenerate scenario, is a viable channel for progenitors of Type Ia supernova explosions.

  10. The interplay of sedimentation and carbon accretion in riparian forests

    NASA Astrophysics Data System (ADS)

    Rieger, Isaak; Lang, Friederike; Kowarik, Ingo; Cierjacks, Arne

    2014-06-01

    Sediment trapping and organic carbon (OC) accretion in soil are crucial ecosystem services of floodplain forests. However, interactions between the two processes have scarcely been analyzed at the ecosystem level. This study aimed at quantifying OC accretion parameters (CAP, including sedimentation rate, OC concentration, OC accretion) over roughly the last 50 years on both sides of a dike in a Danubian floodplain forest in Austria. Additionally, we determined soil OC stocks (0-100 cm in depth) and modeled both CAP and OC stocks in relation to environmental parameters. Overall, mean sedimentation rate and OC accretion of the riparian forest were 0.8 cm y- 1 and 3.3 t OC ha- 1 y- 1 and significantly higher in flooded riparian forest (FRF; 1.0 cm y- 1 and 4.1 t OC ha- 1 y- 1) than in diked riparian forest (DRF; 0.3 cm y- 1 and 1.5 t OC ha- 1 y- 1). In contrast, mean OC concentration (0.05 t OC m- 3) and OC stocks (238 t OC ha- 1) were significantly higher in the DRF than in FRF (0.05 vs. 0.04 t OC m- 3 and 286 vs. 201 t OC ha- 1). Modeling revealed tree species, fluctuation of groundwater table, and the distance to the river as valuable indicators for OC accretion rate. The OC concentration and distance to the river were positively and sedimentation negatively correlated with OC stock. The dike was consistently ruled out as a significant predictor variable. Consequently, differences among FRF and DRF seem to be related rather to longer term processes during the last centuries than directly to the dike. Our findings highlight the relevance of sediment quality (i.e., OC concentration) for building up long-term soil OC stocks, whereas sediment quantity is the main driver of recent OC accretion rates.

  11. Effect of ethnicity, gender and drug use history on achieving high rates of affirmative informed consent for genetics research: impact of sharing with a national repository

    PubMed Central

    Ray, Brenda; Jackson, Colin; Ducat, Elizabeth; Ho, Ann; Hamon, Sara; Kreek, Mary Jeanne

    2013-01-01

    Aim Genetic research representative of the population is crucial to understanding the underlying causes of many diseases. In a prospective evaluation of informed consent we assessed the willingness of individuals of different ethnicities, gender and drug dependence history to participate in genetic studies in which their genetic sample could be shared with a repository at the National Institutes of Health. Methods Potential subjects were recruited from the general population through the use of flyers and referrals from previous participants and clinicians with knowledge of our study. They could consent to 11 separate choices so that they could specify how and with whom their genetic sample could be shared. Rates of affirmative consent were then analysed by gender, ethnicity and drug dependence history. Results Of 1416 volunteers enrolled, 99.7% gave affirmative informed consent for studies of addiction conducted in our laboratory. No significant difference was found for participation in genetic studies conducted in our laboratory by gender, ethnicity or drug dependence history. Over all 11 questions, individuals with a history of drug use were more likely to agree to consent to participate in our study than were healthy volunteers. Conclusion A high percentage of each category of gender, ethnicity and drug history, gave affirmative consent at all levels. The level of detail in and the amount of time spent reviewing the informed consent, and a relationship of trust with the clinical investigator may contribute to this outcome. PMID:21266386

  12. Workshop on the Early Earth: The Interval from Accretion to the Older Archean

    NASA Technical Reports Server (NTRS)

    Burke, K. (Editor); Ashwal, L. D. (Editor)

    1985-01-01

    Presentation abstracts are compiled which address various issues in Earth developmental processes in the first one hundred million years. The session topics included: accretion of the Earth (processes accompanying immediately following the accretion, including core formation); impact records and other information from planets and the Moon relevant to early Earth history; isotopic patterns of the oldest rocks; and igneous, sedimentary, and metamorphic petrology of the oldest rocks.

  13. Mass Outflows from Dissipative Shocks in Hot Accretion Flows

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes

    2007-11-01

    We consider stationary, axisymmetric hydrodynamic accretion flows in Kerr geometry. As a plausible means of efficiently separating a small population of nonthermal particles from the bulk accretion flows, we investigate the formation of standing dissipative shocks, i.e., shocks at which fraction of the energy, angular momentum, and mass fluxes do not participate in the shock transition of the flow that accretes onto the compact object but are lost into collimated (jets) or uncollimated (winds) outflows. The mass-loss fraction (at a shock front) is found to vary over a wide range (0%-95%), depending on flow's angular momentum and energy. On the other hand, the associated energy-loss fraction appears to be relatively low (<~1%) for a flow onto a nonrotating black hole case, whereas the fraction could be an order of magnitude higher (<~10%) for a flow onto a rapidly rotating black hole. By estimating the escape velocity of the outflowing particles with a mass-accretion rate relevant for typical active galactic nuclei, we find that nearly 10% of the accreting mass could escape to form an outflow in a disk around a nonrotating black hole, while as much as 50% of the matter may contribute to outflows in a disk around a rapidly rotating black hole. In the context of disk-jet paradigm, our model suggests that shock-driven outflows from accretion can occur in regions not too far from a central engine. Our results imply that a shock front under some conditions could serve as a plausible site where (nonthermal) seed particles of the outflows (jets/winds) are efficiently decoupled from bulk accretion.

  14. Star Formation in Massive Clusters via Bondi Accretion

    NASA Astrophysics Data System (ADS)

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl <~ 5 × 10-2 of the GMC, radii r cl ~ 1 pc, and free-fall times τcl ~ 2 × 105 yr. We show that clumps inside GMCs should accrete at a modified Bondi accretion rate, which depends on clump mass as \\dot{M}_{cl}\\sim M_{cl}^{5/4}. This rate is initially rather slow, usually slower than the initial star formation rate inside the clump (we adopt the common assumption that inside the clump, \\dot{M}_*=\\epsilon _ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  15. Elemental Fractionation During Rapid Accretion of the Moon Triggered by a Giant Impact

    NASA Technical Reports Server (NTRS)

    Abe, Y.; Zahnle, K. J.; Hashimoto, A.

    1998-01-01

    . Viewed globally, the accretional energy is about half the energy required to vaporize the entire Moon. Thus to first approximation, half of the Moon-forming material can be vaporized and lost during accretion. During this process, we would expect preferential loss of relatively volatile elements. Escape will retard the rate of accretion. To test these ideas, we computed detailed models of the thermal state of the Moon during accretion. We pay special attention to the structure of the silicate atmosphere and its loss rate by calculating the chemical species at equilibrium. We used the PHEQ program which includes 12 elements (H,O,C,Mg,Si,Fe,Ca, Al, Na,Ti, and N.) and 272 compounds (including ionic compounds). Because of the large heats of vaporization and ionization, the adiabatic atmosphere is nearly isothermal and massive escape is expected. The pressure of the atmosphere is determined by the balance between vaporization of a accreting material and escape. If the accretion time is one month, a 0.3 bar atmosphere is expected. Elemental fractionation depends strongly on the temperature of the accreting material. The initial temperature of the material can be estimated from the condition of gravitational instability in the protolunar disk. As shown by Ida et al, accretion starts when gravitational instability occurs when more than 99% of the material condenses. At this point, all of Ca, Al, Si, Mg, and Fe, and 95% of Na (probably K also), are in condensed phases. If the moon is formed from the accretion of such material, volatile elements such as Na, and K are retained by the moon only early in accretion. At later times, K and Na are lost and a fraction of the MG, Si and Fe is lost. However, refractory elements such as Ca and Al are retained and so achieve a mild degree (factor 2) of superabundance.

  16. Stellar X-ray accretion signatures

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Guenther, M.

    2016-06-01

    Accretion is observed in a wide range objects with partially overlapping properties. In this contribution, we study accretion in young stars, where we can directly observe the accretion shock on the stellar surface in the X-ray regime. High-resolution grating spectroscopy allows us to infer the properties of the accretion streams. I will present results from our recent 250 ks XMM-Newton/Chandra program targeting the prototypical T Tau system such as strong X-ray variability despite constant mass accretion, abundances typical for accreting stars, but line ratios typically not found in accreting stars. Finally, I will compare these results with other systems focusing on potentially different accretion modes.

  17. ACCRETION OF ROCKY PLANETS BY HOT JUPITERS

    SciTech Connect

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-11-01

    The observed population of Hot Jupiters displays a stunning variety of physical properties, including a wide range of densities and core sizes for a given planetary mass. Motivated by the observational sample, this Letter studies the accretion of rocky planets by Hot Jupiters, after the Jovian planets have finished their principal migration epoch and become parked in {approx}4 day orbits. In this scenario, rocky planets form later and then migrate inward due to torques from the remaining circumstellar disk, which also damps the orbital eccentricity. This mechanism thus represents one possible channel for increasing the core masses and metallicities of Hot Jupiters. This Letter determines probabilities for the possible end states for the rocky planet: collisions with the Jovian planets, accretion onto the star, ejection from the system, and long-term survival of both planets. These probabilities depend on the mass of the Jovian planet and its starting orbital eccentricity, as well as the eccentricity damping rate for the rocky planet. Since these systems are highly chaotic, a large ensemble (N {approx} 10{sup 3}) of simulations with effectively equivalent starting conditions is required. Planetary collisions are common when the eccentricity damping rate is sufficiently low, but are rare otherwise. For systems that experience planetary collisions, this work determines the distributions of impact velocities-both speeds and impact parameters-for the collisions. These velocity distributions help determine the consequences of the impacts, e.g., where energy and heavy elements are deposited within the giant planets.

  18. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  19. Viscosity in spherically symmetric accretion

    NASA Astrophysics Data System (ADS)

    Ray, Arnab K.

    2003-10-01

    The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.

  20. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  1. Dynamics of Continental Accretion

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.

    2013-12-01

    Subduction zones become congested when they try to swallow buoyant exotic crust. Accretionary mountain belts (orogens) that form at these convergent plate margins are the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North and South American Cordilleras and southwest Pacific. The geologic record is riddled with accretionary orogens, such as the Tasmanides along the eastern margin of the supercontinent Gondwana and the Altaides that formed on the southern margin of Laurasia. Both the modern and ancient examples are characterised by episodic switches between extension and shortening associated with transitions from collision of exotic crust and subduction related rollback. We present three-dimensional dynamic models that show for the first time how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back arc region. The complexity of the morphology and evolution of the system are driven by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonal to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, but infer that this is a global phenomena throughout Earth's evolution.

  2. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  3. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  4. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  5. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  6. The Stability of Hoyle-Lyttleton Accretion in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Raymer, E.

    2011-05-01

    The gravitational accretion of gas onto a compact star moving supersonically through a uniform ambient medium is dynamically unstable in the restricted case of two-dimensional planar geometry (a cylindrical star). Numerical simulations in 3D (e.g., the series of papers by Ruffert) show some hint of instability, but not the dramatic flip-flop seen in 2D planar simulations. We extend the recent 2D numerical simulations of Blondin and Pope (2009) to 3D using the overset spherical grid approach developed by Kageyama and Sato (2004). Using this grid geometry on current supercomputers allows us to simulate the smallest accretors studied in previous 3D work, but with an order of magnitude higher spatial resolution. For an ideal gas with a ratio of specific heats of 5/3, we find relatively minor time variability in the subsonic flow between the head of the accretion bow shock and the accreting star. Overall the bow shock and mass accretion rate remain nearly constant in time, with negligible angular momentum accreted onto the compact star.

  7. Identification of 23 accreting binaries in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Torres, M. A. P.; Jonker, P. G.; Britt, C. T.; Johnson, C. B.; Hynes, R. I.; Greiss, S.; Steeghs, D.; Maccarone, T. J.; Özel, F.; Bassa, C.; Nelemans, G.

    2014-05-01

    We present the identification of optical counterparts to 23 GBS X-ray sources. All sources are classified as accreting binaries according to the emission-line characteristics inferred from medium-resolution spectroscopy. To distinguish accreting binaries from chromospherically active objects, we develop criteria based on Hα and He I λλ5786, 6678 emission-line properties available in the literature. The spectroscopic properties and photometric variability of each object is discussed and a classification is given where possible. At least 12 of the 23 systems show an accretion-dominated optical spectrum and another 6 show stellar absorption features in addition to emission lines indicating that they are probably accreting binaries in quiescence or in a low accretion rate state. Two sources are confirmed to be eclipsing: CX207 and CX794. CX207 is likely a magnetic cataclysmic variable (CV), while CX794 is a nova-like CV in the period gap. Finally, the large broadening (2100 km s-1 FWHM) of the Hα emission lines in CX446 and CX1004 suggests that they are also high-inclination or even eclipsing systems. Whether the compact object is a white dwarf in an eclipsing CV, a neutron star or a black hole in a high-inclination low-mass X-ray binary remains to be established.

  8. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  9. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-06-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several super-massive black hole sources and the observational implications of our present analysis are discussed.

  10. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  11. The minimum mantle viscosity of an accreting earth

    NASA Technical Reports Server (NTRS)

    Cooperman, S. A.

    1983-01-01

    The minimum mantle viscosity in an earth accreting from planetesimals is estimated. A plausible distribution of planetesimal sizes deposits enough energy to melt the outer nine-tenths of earth's mass; however, vigorous convection keeps temperatures near the solidus. Viscosity is significantly lower than prevails now. The temperature-dependent viscosity provides self-regulation so there is a continuing balance between accretional energy input and heat transfer out. This allows calculation of the minimum viscosity necessary to transfer out heat by a Nu/Ra-number relation. Typical viscosities are 0.1 to a million sq m/sec, lowest at mid-accretion when the mass growth rate is largest. Terrestrial planets are compared, and minimum iron descent times to central lithospheres are calculated.

  12. Accretion disk emission from a BL Lacertae object

    NASA Technical Reports Server (NTRS)

    Urry, C. Megan; Wandel, Amri

    1990-01-01

    The accretion disk is an attractive model for BL Lac objects because of its preferred axis and high efficiency. While the smooth continuum spectra of BL Lacs do not show large UV bumps, in marked contrast to quasars, high quality simultaneous data do reveal deviations from smoothness. Using detailed calculations of cool accretion disk spectra, the best measured ultraviolet and soft x ray spectra of the BL Lac object PKS 2155-304 are fitted. The mass and accretion rate required are determined. A hot disk or corona could comptonize soft photons from the cool disk and produce the observed power law spectrum in the 1 to 10 keV range. The dynamic time scales in the disk regions that contribute most of the observed ultraviolet and soft x ray photons are consistent with the respective time scales for intensity variations. The mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard x ray variability.

  13. Nonlinear dynamics of accretion disks with stochastic viscosity

    SciTech Connect

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2014-08-20

    We present a nonlinear numerical model for a geometrically thin accretion disk with the addition of stochastic nonlinear fluctuations in the viscous parameter. These numerical realizations attempt to study the stochastic effects on the disk angular momentum transport. We show that this simple model is capable of reproducing several observed phenomenologies of accretion-driven systems. The most notable of these is the observed linear rms-flux relationship in the disk luminosity. This feature is not formally captured by the linearized disk equations used in previous work. A Fourier analysis of the dissipation and mass accretion rates across disk radii show coherence for frequencies below the local viscous frequency. This is consistent with the coherence behavior observed in astrophysical sources such as Cygnus X-1.

  14. Star Formation and Gas Accretion in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Yim, Kijeong; van der Hulst, J. M.

    2016-08-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 μm (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and H I (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and H I in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  15. Shocks in the low angular momentum accretion flow

    NASA Astrophysics Data System (ADS)

    Suková, Petra; Janiuk, Agnieszka

    2015-04-01

    We address the variability of low luminous galactic nuclei including the Sgr A* or other transient accreting systems, e.g. the black hole X-ray binaries, such as GX 339-4 or IGR J17091. These sources exhibit bright X-ray flares and quasi-periodical oscillations and are theoretically interpreted as the quasi-spherical accretion flows, formed instead of or around Keplerianaccretion disks. In low angular momentum flows the existence of shocks for some range of leading parameters (energy, angular momentum and adiabatic constant of the gas) was studied semi-analytically. The possible hysteresis effect, caused by the fact that the evolution of the flow and the formation of the shock depends on its own history, was discovered. The presence of the shock in the accreted material is important for the observable properties of the out-coming radiation. In the shocked region the gas is dense and hot, thus much more luminous than in the other case. We study the appearance of standing shocks in low angular momentum gas accreting onto a black hole with numerical hydrodynamicalsimulations, using the ZEUS code with Paczynski-Wiitapseudo-Newtonian potential.

  16. WHAT DO DARK MATTER HALO PROPERTIES TELL US ABOUT THEIR MASS ASSEMBLY HISTORIES?

    SciTech Connect

    Wong, Anson W. C.; Taylor, James E. E-mail: taylor@uwaterloo.ca

    2012-09-20

    Individual dark matter halos in cosmological simulations vary widely in their detailed structural properties, properties such as concentration, shape, spin, and degree of internal relaxation. Recent non-parametric (principal component) analyses suggest that a few principal components explain a large fraction of the scatter in these structural properties. The main principal component is closely aligned with concentration, which in turn is known to be related to the mass accretion history (MAH) of the halo, as described by its merger tree. Here, we examine more generally the connection between the MAH and structural parameters. The space of mass accretion histories has principal components of its own. The strongest, accounting for almost 60% of the scatter between individual histories, can be interpreted as the age of the system. We give an analytic fit for this first component, which provides a rigorous way of defining the dynamical age of a halo. The second strongest component, representing acceleration or deceleration of growth at late times, accounts for 25% of the scatter. Relating structural parameters to formation history, we find that concentration correlates strongly with the early history of the halo, while shape and degree of relaxation or dynamical equilibrium correlate with the later history. We examine the inferences about formation history that can be drawn by splitting halos into sub-samples based on observable properties such as concentration and shape. Applications include the definition young and old samples of galaxy clusters in a quantitative way, or empirical tests of environmental processing rates in clusters.

  17. Combining N-body accretion simulations with partitioning experiments in a statistical model of terrestrial planet accretion and core formation

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Ciesla, F.; Campbell, A. J.

    2014-12-01

    The terrestrial planets accreted in a series of increasingly large and violent collisions. Simultaneously, metallic cores segregated from their silicate mantles, acquiring their modern compositions through high pressure (P), high temperature (T) partitioning reactions. Here we present a model that couples these aspects of early planetary evolution, building on recent accretion simulations and experimental results. We have run 100 N-body simulations of terrestrial planet accretion, with Jupiter and Saturn on either circular (CJS) or eccentric (EJS) orbits, to gain insight into the statistics of this highly stochastic process (Fischer and Ciesla, 2014). An Earth (Mars) analogue forms in 84-92% (2-10%) of our simulations. We draw on our recent high P-T metal-silicate partitioning experiments of Ni, Co, V, Cr, Si, and O in a diamond anvil cell to 100 GPa and 5500 K. In our model, N-body simulations describe the delivery, masses, and original locations of planetary building blocks. As planets accrete, their core and mantle compositions are modified by high P-T reactions with each collision (Rubie et al., 2011). By utilizing a large number of N-body simulations, we obtain a statistical view and observe a wide range of outcomes. We use this model to predict the core compositions of Earth-like planets. For partial equilibration of the mantle at 50% of the core-mantle boundary (CMB) pressure, we find that their cores contain 6.9 ± 1.8 wt% Si and 4.8 ± 2.3 wt% O (Figure), with this uncertainty due entirely to variations in accretion history in our 100 simulations. This composition is consistent with the seismologically-inferred density of Earth's core, based on comparisons to high P-T equations of state (Fischer et al., 2011, 2014). Earth analogues experience 0.7 ± 0.1 or 0.9 ± 0.2 log units of oxidation during accretion in EJS or CJS simulations respectively, which is due to both the effects of high P-T partitioning and the temporal evolution of the Earth analogue

  18. The LINER Nucleus of M87: A Shock-excited Dissipative Accretion Disk

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Koratkar, Anuradha P.; Allen, Mark G.; Tsvetanov, Zlatan I.; Ford, Holland C.; Bicknell, Geoffrey V.; Sutherland, Ralph S.

    1997-11-01

    We present long-baseline Faint Object Spectrograph (FOS) spectra of the nuclear accretion disk in M87 (NGC 4486), offset from the nucleus by 0.6" (42.7 pc) in order to avoid the nuclear continuum. Even so close to the nucleus, the optical spectrum has the appearance of a normal LINER galaxy. We show that the presence of strong UV emission lines provides a definitive test of the excitation mechanism; the disk is shock excited, not photoionized by a UV continuum from the central source. The shock velocity inferred (265 km s-1) is about one-half of the Keplerian rotation velocity found earlier by Ford et al. Since shock dissipation appears to be the principal means of increasing the binding energy of the accreting gas, we can use the FOS data and the luminosity profile of the accretion disk to estimate the rate of mass accretion as a function of radius. We find that this rate decreases with decreasing distance from the nucleus, as the material becomes organized into a cool and thin classical accretion disk in the inner regions. In the outer disk, the accretion rate (~4 M⊙ yr-1) is comparable to that determined for the X-ray-emitting cooling flow, showing that a large fraction of the cooling gas can find its way into the nuclear regions. The accretion rate near the nucleus (~3 × 10-2 M⊙ yr-1) is consistent with the properties of the relativistic jet and its associated radio emission. Over the lifetime of the jets, about 107 M⊙ of cool material may have accumulated in the nuclear regions, allowing the formation of a disk that is optically thick to Thomson scattering where it becomes ionized close to the nucleus. We speculate that LINER emission is a general property of the shocked dissipative regions of accretion disks in active galaxies with strongly sub-Eddington accretion and may therefore be used as a diagnostic of these dissipative accretion flows.

  19. Low-dose rate prostate brachytherapy is well tolerated in patients with a history of inflammatory bowel disease

    SciTech Connect

    Peters, Christopher A. . E-mail: christopher.peters@mountsinai.org; Cesaretti, Jamie A.; Stone, Nelson N.; Stock, Richard G.

    2006-10-01

    Purpose: We report on the follow-up of 24 patients with a prior history of inflammatory bowel disease (IBD) treated with brachytherapy for early-stage prostate cancer. Methods and Materials: Twenty-four patients with a history of inflammatory bowel disease (17 with ulcerative colitis (UC), 7 with Crohn's disease [CD]) underwent prostate brachytherapy between 1992 and 2004. Fifteen patients were treated with I-125 implantation and 6 patients were treated with Pd-103 alone or in combination with 45 Gy external beam radiation. Charts were reviewed for all patients, and all living patients were contacted by phone. National Cancer Institute common toxicity scores for proctitis were assigned to all patients. Actuarial risk of late toxicity was calculated by the Kaplan-Meier method. Statistical analysis was performed using SPSS software. Follow-up ranged from 3 to 126 months (median, 48.5 months; mean, 56.8 months). Results: None of the patients experienced Grade 3 or 4 rectal toxicity. Four patients experienced Grade 2 late rectal toxicity. The 5-year actuarial freedom from developing late Grade 2 rectal toxicity was 81%. At a median follow-up of 48.5 months, 23 patients were alive and had no evidence of disease with a median prostate-specific antigen for the sample of 0.1 ng/mL (range, <0.05-0.88 ng/mL). One patient died of other causes unrelated to his prostate cancer. Conclusions: Prostate brachytherapy is well tolerated in patients with a history of controlled IBD. Therefore, brachytherapy should be considered a viable therapeutic option in this patient population.

  20. Accretion-powered Compact Binaries

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  1. Three-dimensional Hydrodynamic Simulations of Accretion in High-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Raymer, Eric John

    Wind accretion in high-mass X-ray binaries (HMXBs) often results in highly variable X-ray behavior, the nature of which is not well understood. Most models of wind accretion are based on the analytical predictions of Hoyle-Lyttleton accretion (HLA), which assumes a steady axisymmetric flow. Surprisingly little is known about the structure, stability, and time-evolution of HLA in three dimensions, particularly in the presence of non-uniform winds. This work describes hydrodynamic simulations of idealized HLA in three-dimensions, then applies these simulations to two HMXB subclasses that exhibit unexplained X-ray behavior. Our idealized HLA models show that the accretion flow remains steady and stable in two-dimensional axisymmetric and three dimensional grid geometries, assuming a uniform upstream flow. We test the stability of the model with linear upstream density gradients and find that they are able to induce rotational flow around the accretor that reduces the mass accretion rate by up to an order of magnitude. We apply our 3D model to accretion in the context of Be/X-ray binaries, in which the accreting neutron star is immersed in the dense decretion disk of the Be donor star. These systems have traditionally been described with 2D models that exhibit the flip-flop instability. This instability results in the formation and destruction of transient accretion disks with accompanying bursts of mass accretion. Our 3D models show no sign of the flip-flop instability, but instead display rotation about the neutron star directed primarily out of the plane of the decretion disk. This rotation generates large-scale asymmetries in the bow shock and suppresses mass accretion by up to two orders of magnitude. The accretion of a clumped stellar wind is one of the primary mechanisms proposed to explain the high-luminosity X-ray flares of supergiant fast X-ray transients. We model clump accretion in 3D to determine whether the impact of a clump can produce flares with a

  2. Revisiting the "Flip-Flop" Instability of Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Pope, T. Chris

    2009-07-01

    We revisit the flip-flop instability of two-dimensional planar accretion using high-fidelity numerical simulations. By starting from an initially steady-state axisymmetric solution, we are able to follow the growth of this overstability from small amplitudes. In the small-amplitude limit, before any transient accretion disk is formed, the oscillation period of the accretion shock is comparable to the Keplerian period at the Hoyle-Lyttleton accretion radius (Ra ), independent of the size of the accreting object. The growth rate of the overstability increases dramatically with decreasing size of the accretor, but is relatively insensitive to the upstream Mach number of the flow. We confirm that the flip-flop does not require any gradient in the upstream flow. Indeed, a small density gradient as used in the discovery simulations has virtually no influence on the growth rate of the overstability. The ratio of specific heats does influence the overstability, with smaller γ leading to faster growth of the instability. For a relatively large accretor (a radius of 0.037 Ra ) planar accretion is unstable for γ = 4/3, but stable for γ >= 1.6. Planar accretion is unstable even for γ = 5/3 provided the accretor has a radius of < 0.0025 Ra . We also confirm that when the accretor is sufficiently small, the secular evolution is described by sudden jumps between states with counter-rotating quasi-Keplerian accretion disks.

  3. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  4. The lamppost model of accreting black holes

    NASA Astrophysics Data System (ADS)

    Zdziarski, A.

    2016-06-01

    Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.

  5. X-ray deficiency on strongly accreting T Tauri stars. Comparing Orion with Taurus

    NASA Astrophysics Data System (ADS)

    Bustamante, I.; Merín, B.; Bouy, H.; Manara, C. F.; Ribas, Á.; Riviere-Marichalar, P.

    2016-03-01

    Context. Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Aims: Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster (ONC), we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. Methods: We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. Results: We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. A considerable number of classified non-accreting sources show accretion rates comparable to those of classical T Tauri Stars (CTTS). Our data do not allow us to confirm the classification between classical and weak-line T Tauri stars (WTTS), and the number of WTTS in this work is small compared to the complete samples. Thus, we have used the entire samples as accretors in our analysis. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an ONC T Tauri stars sample. Conclusions: Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the ONC. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the

  6. Torque Reversal and Spin-Down of the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto L.; Bildsten, L.; Grunsfeld, J. M.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Finger, M. H.; Scott, D. M.; Wilson, R. B.

    1997-01-01

    Over 5 yr of hard X-ray (20-60 keV) monitoring of the 7.66 s accretion-powered pulsar 4U 1626-67 with the Compton Gamma Ray Observatory/BATSE large-area detectors has revealed that the neutron star is now steadily spinning down, in marked contrast to the steady spin-up and spin-down torques differ by only 15% with the neutron star spin changing on a timescale |v/v| approximately equals 5000 yr in both states. The current spin-down rate is itself decreasing on a timescale |v/v| approximately equals 26 yr. The long-term timing history shows small-amplitude variations on a 4000 day timescale, which are probably due to variations in the mass transfer rate. The pulsed 20-60 keV emission from 4U 1626-67 is well-fitted by a power-law spectrum with photon index gamma = 4.9 and a typical pulsed intensity of 1.5 x 10(exp -10) ergs cm (exp -2)s(exp -1). The low count rates with BATSE prohibited us from constraining the reported 42 minute binary orbit, but we can rule out long-period orbits in the range 2 days < or = P(orb) < or = 900 days. We compare the long-term torque behavior of 4U 1626-67 to other disk-fed accreting pulsars and discuss the implications of our results for the various theories of magnetic accretion torques. The abrupt change in the sign of the torque is difficult to reconcile with the extremely smooth spin-down now observed. The strength of the torque noise in 4U 1626-67, approximately 10(exp -22) Hz(exp 2)s(exp -2) Hz(exp -1), is the smallest ever measured for an accreting X-ray pulsar, and it is comparable to the timing noise seen in young radio pulsars. We close by pointing out that the core temperature and external torque (the two parameters potentially relevant to internal sources of timing noise) of an accreting neutron star are also comparable to those of young radio pulsars.

  7. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  8. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  9. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1). f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation. The nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. Such as the calculation of advance of the perihelion of QFT, let the gravitational potential U = - G M /r which is just the distribution density of net nuν _{0} flux. From SR we again get Eq.(1): f (QFT) = f _{P} + f _{C}, f _{P} = - m ( delta∂ U / delta∂ r) r / r, f _{C} = - m ( delta∂U / delta∂ r) v / c , U = (1 - betaβ (2) )V, V is the Newtonian gravitational potential. f_{ P} correspond the change rate of three-dimensional momentum p, f_{C} correspond the change rate of fourth dimensional momentum i m c which show directly as a dissipative force of mass change. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91 (2011)’ with the

  10. Accretion physics in the Galaxy - Swift J045106.8-694803 a possible accreting magnetar in the Large Magellanic Cloud.

    NASA Astrophysics Data System (ADS)

    Klus, Helen

    2012-09-01

    We report the possibility of an accreting magnetar in the Large Magellanic Cloud (LMC). The High Mass X-ray Binary pulsar Swift J045106.8-694803 has been observed with Swift XRT in 2008 and RXTE in 2011. The change in spin period over these three years indicates a spin up rate of 5.68 seconds a year, amongst the highest observed for an accreting pulsar. This spin up rate can be accounted for using Ghosh and Lamb's (1979) accretion theory assuming it has a magnetic field of over 10^14 Gauss. This would make it an accreting magnetar, only the second of which to be discovered and the first in the LMC. The large spin up rate is consistent with Swift BAT observations that show that Swift J045106.8-694803 has had a continually high X-ray luminosity for at least five years. The orbital period is also reported. Further investigation of this source is required to confirm its change in spin period and hence its magnetic field.

  11. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    SciTech Connect

    Guenther, H. M.; Wolk, S. J.; Wolter, U.; Robrade, J.

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  12. Persistent Patterns in Accretion Disks

    SciTech Connect

    Amin, Mustafa A.; Frolov, Andrei V.; /KIPAC, Menlo Park

    2006-04-03

    We present a set of new characteristic frequencies associated with accretion disks around compact objects. These frequencies arise from persistent rotating patterns in the disk that are finite in radial extent and driven purely by the gravity of the central body. Their existence depends on general relativistic corrections to orbital motion and, if observed, could be used to probe the strong gravity region around a black hole. We also discuss a possible connection to the puzzle of quasi-periodic oscillations.

  13. Spiral Waves in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Harlaftis, Emilios

    A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.

  14. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  15. Magnetically Torqued Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kluźniak, W.; Rappaport, S.

    2007-12-01

    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ``transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.

  16. Infall of Planetesimals onto Growing Giant Planets: Onset of Runaway Gas Accretion and Metallicity of Their Gas Envelopes

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masakazu; Ida, Shigeru

    2008-09-01

    We have investigated the planetesimal accretion rate onto giant planets that are growing through gas accretion, using numerical simulations and analytical arguments. We derived the condition for the opening of a gap in the planetesimal disk, which is determined by a competition between the expansion of the planet's Hill radius due to the planet's growth and the damping of planetesimal eccentricity due to gas drag. We also derived the semianalytical formula for the planetesimal accretion rate as a function of the ratios of the rates of the Hill radius expansion, the damping, and planetesimal scattering by the planet. The predicted low planetesimal accretion rate due to the opening of the gap in early gas accretion stages quantitatively shows that "phase 2," which is a long (more than a Myr), slow gas accretion phase before the onset of runaway gas accretion, is not likely to occur. In late stages, rapid Hill radius expansion fills the gap, resulting in significant planetesimal accretion, which is as large as several M⊕ for Jupiter and Saturn. The efficient onset of runaway gas accretion and the late pollution may reconcile the ubiquity of extrasolar giant planets with the metal-rich envelopes of Jupiter and Saturn inferred from interior structure models. These formulae will give deep insights into the formation of extrasolar gas giants and the diversity in the metallicities of transiting gas giants.

  17. Parsec-scale Accretion and Winds Irradiated by a Quasar

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-03-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L\\gt 0.01 {L}{{Edd}}, where LEdd is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10-4-10-1{M}⊙ {{{yr}}}-1 through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L/{L}{{edd}} increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  18. Accretion and Nuclear Activity of Quiescent Supermassive Black Holes. II. Optical Study and Interpretation

    NASA Astrophysics Data System (ADS)

    Soria, R.; Graham, Alister W.; Fabbiano, G.; Baldi, A.; Elvis, M.; Jerjen, H.; Pellegrini, S.; Siemiginowska, A.

    2006-03-01

    Our X-ray study of the nuclear activity in a new sample of six quiescent early-type galaxies, as well as in a larger sample from the literature, confirmed (Paper I) that the Bondi accretion rate of diffuse hot gas is not a good indicator of the SMBH X-ray luminosity. Here we suggest that a more reliable estimate of the accretion rate must include the gas released by the stellar population inside the sphere of influence of the SMBH, in addition to the Bondi inflow of hot gas across that surface. We use optical surface brightness profiles to estimate the mass-loss rate from stars in the nuclear region: we show that for our sample of galaxies it is an order of magnitude higher (~10-4 to 10-3 Msolar yr-1) than the Bondi inflow rate of hot gas, as estimated from Chandra (Paper I). Only by taking into account both sources of fuel can we constrain the true accretion rate, the accretion efficiency, and the power budget. Radiatively efficient accretion is ruled out, for quiescent SMBHs. For typical radiatively inefficient flows, the observed X-ray luminosities of the SMBHs imply accretion fractions ~1%-10% (i.e., ~90%-99% of the available gas does not reach the SMBH) for at least five of our six target galaxies and most of the other galaxies with known SMBH masses. We discuss the conditions for mass conservation inside the sphere of influence, so that the total gas injection is balanced by accretion plus outflows. We show that a fraction of the total accretion power (mechanical plus radiative) would be sufficient to sustain a self-regulating, slow outflow that removes from the nuclear region all the gas that does not sink into the BH (``BH feedback''). The rest of the accretion power may be carried out in a jet or advected. We also discuss scenarios that would lead to an intermittent nuclear activity.

  19. CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES

    SciTech Connect

    Liu, B. F.; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2013-07-15

    The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius, respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.

  20. Impact of star formation history on the measurement of star formation rates: do we have to reassess the cosmic star formation rate?

    NASA Astrophysics Data System (ADS)

    Boquien, Médéric; Buat, Véronique; Perret, Valentin

    2015-08-01

    One of the key assumptions to measure the SFR of a galaxy is its SFH (star formation history). Most classical estimators are based on the assumption of a constant SFR over a period of 100 Myr. If this assumption seems reasonable at first sight for low redshift spiral galaxies evolving secularly, it is unlikely to hold true for interacting systems or at higher redshifts where the SFR necessarily varies on timescales that can be similar or shorter than 100 Myr.Even if in general we cannot uncover the SFH of galaxies in detail due to numerous degeneracies, it should nevertheless still be possible to investigate in isolation the impact of short- and long-term variations of the SFH on the measure of the SFR. To do so we have relied on the latest generation of high resolution hydrodynamical simulations of star-forming galaxies. Such simulations have now become so detailed that they provide us with realistic and reliable SFH. Combining these SFH with the CIGALE SED modelling code we have been able to simulate the observations of 23 main-sequence galaxies between redshift 1 and 2 and follow them every Myr over the course of several hundred Myr. Such an outstanding simulated dataset has allowed us to investigate the impact of realistic SFH on the measure of the SFR with classical methods.In this talk I will report that except for tracers related to the Lyman continuum (such as Hα for instance), classical SFR estimators calibrated over 100 Myr overestimate the true SFR from ~25% in the far-ultraviolet to ~65% in the U band. Such biases are due 1) to the contribution of stars living longer than 100 Myr, and 2) to variations of the SFR on timescales longer than a few tens of Myr. Rapid variations of the SFR increase the uncertainty on the determination of the instantaneous SFR, but have no long term effect. These discrepancies between the true and estimated SFR may explain in part the tension between the integral of the cosmic SFR density and the cosmic stellar mass density

  1. Al-26-production rates and Mn-53/Al-26 production rate ratios in nonantarctic chondrites and their application to bombardment histories

    NASA Astrophysics Data System (ADS)

    Herpers, U.; Englert, P.

    1983-11-01

    The long-lived spallogenic radionuclides Al-26 and Mn-53 were systematically studied in a large number of nonantarctic meteorites by nondestructive gamma-gamma-coincidence technique and neutron activation, respectively. From the Al-26-activities normalized to the main target element, silicon, an average production rate of 298 + or - 55 (dpm/kg Si/equ/) was derived. Baed on 15 chondrites with exposure ages equal to or greater than 12,000,000 a and depth profiles of Dhurmsala and Keyes, an average production rate ratio (Mn-53/Al-26)(prod) = 1.48 + or - 0.15 (dpm/kg Fe / dpm/kg Si/equ/) was calculated, which seems to be depth-independent for meteorites with preatmospheric radii R less than 35 cm. Mn-53/Al-26-radiation ages for 29 stones with short exposure ages were determined. A comparison of the results with the respective Mn-53 and Ne-21-exposure ages generally shows a good agreement. The cosmic ray bombardment age scale covered by this method is the range for T(rad) from 1,000,000 to 10,000,000 a.

  2. Black Hole Accretion and Feedback Driven by Thermal Instability

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.

    2013-03-01

    Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.

  3. Gravitational torques in spiral galaxies: Gas accretion as a driving mechanism of galactic evolution

    NASA Astrophysics Data System (ADS)

    Block, D. L.; Bournaud, F.; Combes, F.; Puerari, I.; Buta, R.

    2002-11-01

    The distribution of gravitational torques and bar strengths in the local Universe is derived from a detailed study of 163 galaxies observed in the near-infrared. The results are compared with numerical models for spiral galaxy evolution. It is found that the observed distribution of torques can be accounted for only with external accretion of gas onto spiral disks. Accretion is responsible for bar renewal - after the dissolution of primordial bars - as well as the maintenance of spiral structures. Models of isolated, non-accreting galaxies are ruled out. Moderate accretion rates do not explain the observational results: it is shown that galactic disks should double their mass in less than the Hubble time. The best fit is obtained if spiral galaxies are open systems, still forming today by continuous gas accretion, doubling their mass every 10 billion years.

  4. Spherical steady accretion flows: Dependence on the cosmological constant, exact isothermal solutions, and applications to cosmology

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward; Karkowski, Janusz

    2013-10-01

    We investigate spherical, isothermal and polytropic steady accretion models in the presence of the cosmological constant. Exact solutions are found for three classes of isothermal fluids, assuming the test gas approximation. The cosmological constant damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes. A “homoclinic-type” accretion flow of polytropic gas has been discovered in anti-de Sitter spacetimes in the test-gas limit. These results can have cosmological connotation, through the Einstein-Straus vacuole model of embedding local structures into Friedman-Lemaitre-Robertson-Walker spacetimes. In particular, one infers that steady accretion would not exist in the late phases of Penrose’s scenario of the evolution of the Universe, known as the Weyl curvature hypothesis.

  5. Educational Attainment as Process: Using Hierarchical Discrete-Time Event History Analysis to Model Rate of Progress

    ERIC Educational Resources Information Center

    Bahr, Peter Riley

    2009-01-01

    Variables that address student enrollment patterns (e.g., persistence, enrollment inconsistency, completed credit hours, course credit load, course completion rate, procrastination) constitute a longstanding fixture of analytical strategies in educational research, particularly research that focuses on explaining variation in academic outcomes.…

  6. A Model of Racial Residential History and Its Association with Self-Rated Health and Mortality Among Black and White Adults in the United States

    PubMed Central

    Ruel, Erin; Robert, Stephanie A.

    2009-01-01

    We construct a dynamic racial residential history typology and examine its association with self-rated health and mortality among black and white adults. Data are from a national survey of U.S. adults, combined with census tract data from 1970–1990. Results show that racial disparities in health and mortality are explained by both neighborhood contextual and individual socioeconomic factors. Results suggest that living in an established black neighborhood or in an established interracial neighborhood may actually be protective of health, once neighborhood poverty is controlled. Examining the dynamic nature of neighborhoods contributes to an understanding of health disparities. PMID:20161138

  7. METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING-ROBERTSON DRAG ON THEIR DEBRIS DISKS

    SciTech Connect

    Rafikov, Roman R.

    2011-05-01

    Recent discoveries of compact (sizes {approx}accretion of high-Z material from the disk. But the mechanism responsible for efficient transfer of mass from a particulate disk to the WD atmosphere has not yet been identified. Here we demonstrate that radiation of the WD can effectively drive accretion of matter through the disk toward the sublimation radius (located at several tens of WD radii), where particles evaporate, feeding a disk of metal gas accreting onto the WD. We show that, contrary to some previous claims, Poynting-Robertson (PR) drag on the debris disk is effective at providing metal accretion rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1} and higher, scaling quadratically with WD effective temperature. We compare our results with observations and show that, as expected, no WD hosting a particulate debris disk shows evidence of metal accretion rate below that produced by the PR drag. Existence of WDs accreting metals at rates significantly higher than M-dot{sub PR} suggests that another mechanism in addition to the PR drag drives accretion of high-Z elements in these systems.

  8. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    SciTech Connect

    Szulágyi, J.; Morbidelli, A.; Crida, A.; Masset, F.

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  9. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  10. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  11. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  12. MaGICC baryon cycle: the enrichment history of simulated disc galaxies

    NASA Astrophysics Data System (ADS)

    Brook, C. B.; Stinson, G.; Gibson, B. K.; Shen, S.; Macciò, A. V.; Obreja, A.; Wadsley, J.; Quinn, T.

    2014-10-01

    Using cosmological galaxy formation simulations from the MaGICC (Making Galaxies in a Cosmological Context) project, spanning stellar mass from ˜107 to 3 × 1010 M⊙, we trace the baryonic cycle of infalling gas from the virial radius through to its eventual participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and circumgalactic medium. We derive the distributions of time between gas crossing the virial radius and being accreted to the star-forming region (which allows for mixing within the corona), as well as the time between gas being accreted to the star-forming region and then ultimately forming stars (which allows for mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star-forming region. Gas entering high-mass galaxies is pre-enriched in low-mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z ˜ 5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star-forming region, with gas that is feeding the star-forming region surpassing 0.1 Z⊙ by z = 0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulated galaxy (Mvir ˜ 2 × 1010 M⊙, with M⋆ ˜ 107 M⊙), by contrast, accretes primordial gas through the virial radius and on to the disc, throughout its history. Much like the case for classical analytical solutions to the so-called `G-dwarf problem', overproduction of low-metallicity stars is ameliorated by the interplay between the time of accretion on to the disc and the subsequent involvement in star formation - i.e. due to the inefficiency of star formation. Finally, gas outflow

  13. THE VERTICAL COMPOSITION OF NEUTRINO-DOMINATED ACCRETION DISKS IN GAMMA-RAY BURSTS

    SciTech Connect

    Liu, Tong; Xue, Li; Gu, Wei-Min; Lu, Ju-Fu

    2013-01-10

    We investigate the vertical structure and element distribution of neutrino-dominated accretion flows around black holes in spherical coordinates using the reasonable nuclear statistical equilibrium. According to our calculations, heavy nuclei tend to be produced in a thin region near the disk surface, whose mass fractions are primarily determined by the accretion rate and vertical distribution of temperature and density. In this thin region, we find that {sup 56}Ni is dominant for the flow with a low accretion rate (e.g., 0.05 M {sub Sun} s{sup -1}), but {sup 56}Fe is dominant for the flow with a high accretion rate (e.g., 1 M {sub Sun} s{sup -1}). The dominant {sup 56}Ni in the aforementioned region may provide a clue to understanding the bumps in the optical light curve of core-collapse supernovae.

  14. Accretionary orogens through Earth history

    USGS Publications Warehouse

    Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.

    2009-01-01

    Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.

  15. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  16. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis. PMID:23030150

  17. Obscured AGN Accretion Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    We propose to combine data from XMM-Newton, the Chandra X-ray Observatory, and the Spitzer Space Telescope with ground-based optical spectroscopy from Keck and Magellan to measure the relationship between AGN obscuration and accretion activity over the bulk of cosmic history. This work will establish the prominence of both obscured and unobscured growth phases of black holes and shed light on the processes that trigger and fuel AGN as a function of time. We will complete three complementary projects that focus on a) understanding the completeness and biases of AGN selection at mid-IR versus X-ray wavelengths, b) tracing optical obscuration as a function of luminosity and redshift, and c) measuring the distribution and evolution of X-ray absorption of AGN. We will undertake a study of AGN demographics comparing selection techniques at three different wavelengths: mid-IR selection using data from the Spitzer Space Telescope, X- ray selection using data from the XMM-Newton and Chandra satellites, and broad-line optical selection using PRIMUS spectroscopy. We will determine the overlap and uniqueness of samples created using each method, to quantify the completeness and biases inherent in AGN selection at each wavelength. This will lead to a constraint on the fraction of heavily obscured, Compton-thick AGN to z~1. To study the optical obscuration of AGN, we will use three recently-completed spectroscopic surveys -- PRIMUS, DEEP2, and our own Keck program -- to robustly determine the ratio of unobscured (broad-line) to obscured (non--broad-line) X-ray selected AGN as a function of luminosity from z~0.2 to z~3. We will utilize the well- understood selection functions and characterize the AGN completeness of each survey as a function of redshift, magnitude, and obscuration properties. This will allow us to correct for a variety of observational effects to measure the underlying joint redshift- and luminosity-dependence of optical obscuration, which has direct implications

  18. Precession and accretion in circumbinary discs: the case of HD 104237

    NASA Astrophysics Data System (ADS)

    Dunhill, A. C.; Cuadra, J.; Dougados, C.

    2015-04-01

    We present the results of smoothed particle hydrodynamics (SPH) simulations of the disc around the young, eccentric stellar binary HD 104237. We find that the binary clears out a large cavity in the disc, driving a significant eccentricity at the cavity edge. This then precesses around the binary at a rate of dot{\\varpi } = 0.48°Tb^{-1}, which for HD 104237 corresponds to a precession period of 40 years. We find that the accretion pattern into the cavity and on to the binary changes with this precession, resulting in a periodic accretion variability driven purely by the physical parameters of the binary and its orbit. For each star we find that this results in order of magnitude changes in the accretion rate. We also find that the accretion variability allows the primary to accrete gas at a higher rate than the secondary for approximately half of each precession period. Using a large number of three-body integrations of test particles orbiting different binaries, we find good agreement between the precession rate of a test particle and our SPH disc precession. These rates also agree very well with the precession rates predicted by the analytic theory of Leung & Lee, showing that their prescription can be accurately used to predict long-term accretion variability time-scales for eccentric binaries accreting from a disc. We discuss the implications of our result, and suggest that this process provides a viable way of preserving unequal-mass ratios in accreting eccentric binaries in both the stellar and supermassive black hole regimes.

  19. ACCRETION VARIABILITY OF HERBIG Ae/Be STARS OBSERVED BY X-SHOOTER HD 31648 AND HD 163296

    SciTech Connect

    Mendigutía, I.; Brittain, S.; Eiroa, C.; Meeus, G.; Montesinos, B.; Mora, A.; Muzerolle, J.; Oudmaijer, R. D.; Rigliaco, E.

    2013-10-10

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.

  20. MAGNETICALLY REGULATED GAS ACCRETION IN HIGH-REDSHIFT GALACTIC DISKS

    SciTech Connect

    Birnboim, Yuval

    2009-09-10

    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes {approx}10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute {approx}1/3 of the pressure to distances of {approx}3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  1. Thermonuclear processes on accreting neutron stars - A systematic study

    NASA Technical Reports Server (NTRS)

    Ayasli, S.; Joss, P. C.

    1982-01-01

    A series of model calculations for the evolution of the surface layers of an accreting neutron star is carried out. The neutron star mass, radius, core temperature, and surface magnetic field strength are systematically varied, as are the accretion rate onto the neutron star surface and the metallicity of the accreting matter, in order to determine the effects of these parameters on the properties of thermonuclear flashes in the surface layers and the emitted X-ray bursts that result from such flashes. The core temperatures required for thermal equilibrium are found to be approximately a factor of 2 lower than estimated in earlier work. Owing to the effects of the gravitational redshift, the emitted X-ray bursts have lower peak luminosities and longer durations than those calculated in the Newtonian approximation. The entrainment of hydrogen into helium flashes can cause the flashes to exhibit a rather wide range of observable effects and can decrease by a factor of more than 2 the ratio of persistent accretion-driven luminosity to time-averaged burst luminosity emitted by the neutron star.

  2. Peculiarities of the accretion flow in the system HL CMa

    NASA Astrophysics Data System (ADS)

    Semena, A. N.; Revnivtsev, M. G.; Buckley, D.; Lutovinov, A. A.; Breitenbach, H.

    2016-06-01

    The properties of the aperiodic luminosity variability for the dwarf novaHLCMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above 0.7 × 10-2 Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and Xray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system and the accretion flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics in a wide energy range, from the optical to X-ray ones.

  3. ON THE ASSEMBLY HISTORY OF STELLAR COMPONENTS IN MASSIVE GALAXIES

    SciTech Connect

    Lee, Jaehyun; Yi, Sukyoung K.

    2013-03-20

    Matsuoka and Kawara showed that the number density of the most massive galaxies (log M/M{sub Sun} = 11.5-12.0) increases faster than that of the next massive group (log M/M{sub Sun} = 11.0-11.5) during 0 < z < 1. This appears to be in contradiction to the apparent 'downsizing effect'. We attempt to understand the two observational findings in the context of the hierarchical merger paradigm using semi-analytic techniques. Our models closely reproduce the result of Matsuoka and Kawara. Downsizing can also be understood as larger galaxies have, on average, smaller assembly ages but larger stellar ages. Our fiducial models further reveal details of the history of the stellar mass growth of massive galaxies. The most massive galaxies (log M/M{sub Sun} = 11.5-12.0 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via merger accretion. The role of merger accretion monotonically declines with galaxy mass: 40% for log M/M{sub Sun} = 11.0-11.5 and 20% for log M/M{sub Sun} = 10.5-11.0 at z = 0. The specific accreted stellar mass rates via galaxy mergers decline very slowly during the whole redshift range, while specific star formation rates sharply decrease with time. In the case of the most massive galaxies, merger accretion becomes the most important channel for the stellar mass growth at z {approx} 2. On the other hand, in situ star formation is always the dominant channel in L{sub *} galaxies.

  4. Tectonic geomorphology, deformation history, and slip-rate estimate along the Palos Verdes Fault, offshore Southern California

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Conrad, J. E.; Maier, K. L.; Paull, C. K.; McGann, M.

    2014-12-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. Despite its proximity to metropolitan Los Angeles, the recent activity and earthquake hazards associated with the PVF are poorly constrained. To characterize the near seafloor fault morphology, Late Pleistocene-Holocene slip-rate and tectonic influences on slope sedimentary processes, a grid of high-resolution multibeam bathymetry and chirp sub-bottom profiles were acquired with the Monterey Bay Aquarium Research Institute's (MBARI) Autonomous Underwater Vehicle (AUV). The AUV surveys were focused along the continental slope ~25 km south of Long Beach in water depths between 250 and 600 m, where the PVF crosses the slope. AUV multibeam bathymetry data gridded at 2-m resolution and chirp profiles are merged with 25-m resolution ship-based multibeam bathymetry and seismic-reflection profiles. Vibracores collected with the MBARI Remotely Operated Vehicle (ROV) and ship-based USGS gravity cores provided radiocarbon dates for stratigraphic horizons offset by the PVF. Recent deformation is expressed as a well-defined seafloor lineation and offset Late Pleistocene-Holocene sub-bottom reflections. Curvilinear scarps associated with an upper submarine landslide (~450 m water depth), a buried slump block, and a lower submarine landslide (~525 m water depth) have been right-laterally offset by 55±3, 55±5, and 40±5 meters, respectively. The age of the upper scarp is bracketed between 23-31 kyr BP, which yields an average slip rate across the PVF of 1.6-2.4 mm/yr. However, our best estimate for the age of the upper landslide is ~ 31 kyr BP, which yields a right-lateral slip-rate of 1.8 mm/yr. Vertical growth faulting observed along a subtle transtensional fault-bend suggests that at least two surface ruptures occurred during the Holocene. In summary, these results indicate that the offshore

  5. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  6. The pulse amplitude variation with QPO frequency in SAX J1808.4-3658: Resonances with the accretion disk

    NASA Astrophysics Data System (ADS)

    Caliskan, Sirin; Alpar, Mehmet Ali; Sasmaz Mus, Sinem

    2016-07-01

    SAX J1808.4-3658 is an accreting millisecond pulsar with a spin period of 401 Hz. The pulsed amplitudes of this source vary with its kHz QPO frequencies (Bult & van der Klis 2015). The pulsed amplitude peaks at certain upper kHz QPO frequencies which we associate with boundary layer modes of the viscous accretion disk (Erkut et al. 2008). We model this as peaks in the energy dissipation rate at the accretion caps due to resonances between the accretion column and the driving modes of the boundary layer.

  7. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NASA Astrophysics Data System (ADS)

    Patruno, Alessandro; D'Angelo, Caroline

    2013-07-01

    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion rates (the so-called propeller regime). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here, we associate the strong ~1 Hz modulation seen in the AMXP NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another AMXP (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow—of the order of 1 km. Modeling further suggests that there is a transition region (~1-10 km) around the corotation radius where the disk-field torque changes sign from spin-up to spin-down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region, in the frame of the trapped-disk instability model.

  8. Swept wing ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Bidwell, Colin S.

    1990-01-01

    An effort to develop a three-dimensional modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flow fields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane normal to the wing leading edge and compared to 2-D results for the same geometry. It is anticipated that many modifications will be made to this approach, however, this effort will lay the groundwork for future modeling efforts. Results indicate that the flow field over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3-D calculation.

  9. Ringed Accretion Disks: Equilibrium Configurations

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  10. Testing Convergence for Global Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hawley, John F.; Richers, Sherwood A.; Guan, Xiaoyue; Krolik, Julian H.

    2013-08-01

    Global disk simulations provide a powerful tool for investigating accretion and the underlying magnetohydrodynamic turbulence driven by magneto-rotational instability (MRI). Using them to accurately predict quantities such as stress, accretion rate, and surface brightness profile requires that purely numerical effects, arising from both resolution and algorithm, be understood and controlled. We use the flux-conservative Athena code to conduct a series of experiments on disks having a variety of magnetic topologies to determine what constitutes adequate resolution. We develop and apply several resolution metrics: langQz rang and langQ phirang, the ratio of the grid zone size to the characteristic MRI wavelength, αmag, the ratio of the Maxwell stress to the magnetic pressure, and \\langle B_R^2\\rangle /\\langle B_\\phi ^2\\rangle, the ratio of radial to toroidal magnetic field energy. For the initial conditions considered here, adequate resolution is characterized by langQz rang >= 15, langQ phirang >= 20, αmag ≈ 0.45, and \\langle B_R^2\\rangle /\\langle B_\\phi ^2\\rangle \\approx 0.2. These values are associated with >=35 zones per scaleheight H, a result consistent with shearing box simulations. Numerical algorithm is also important. Use of the Harten-Lax-van Leer-Einfeldt flux solver or second-order interpolation can significantly degrade the effective resolution compared to the Harten-Lax-van Leer discontinuities flux solver and third-order interpolation. Resolution at this standard can be achieved only with large numbers of grid zones, arranged in a fashion that matches the symmetries of the problem and the scientific goals of the simulation. Without it, however, quantitative measures important to predictions of observables are subject to large systematic errors.

  11. TESTING CONVERGENCE FOR GLOBAL ACCRETION DISKS

    SciTech Connect

    Hawley, John F.; Richers, Sherwood A.; Guan Xiaoyue; Krolik, Julian H. E-mail: xg3z@virginia.edu

    2013-08-01

    Global disk simulations provide a powerful tool for investigating accretion and the underlying magnetohydrodynamic turbulence driven by magneto-rotational instability (MRI). Using them to accurately predict quantities such as stress, accretion rate, and surface brightness profile requires that purely numerical effects, arising from both resolution and algorithm, be understood and controlled. We use the flux-conservative Athena code to conduct a series of experiments on disks having a variety of magnetic topologies to determine what constitutes adequate resolution. We develop and apply several resolution metrics: (Q{sub z} ) and (Q{sub {phi}}), the ratio of the grid zone size to the characteristic MRI wavelength, {alpha}{sub mag}, the ratio of the Maxwell stress to the magnetic pressure, and /, the ratio of radial to toroidal magnetic field energy. For the initial conditions considered here, adequate resolution is characterized by (Q{sub z} ) {>=} 15, (Q{sub {phi}}) {>=} 20, {alpha}{sub mag} Almost-Equal-To 0.45, and /{approx}0.2. These values are associated with {>=}35 zones per scaleheight H, a result consistent with shearing box simulations. Numerical algorithm is also important. Use of the Harten-Lax-van Leer-Einfeldt flux solver or second-order interpolation can significantly degrade the effective resolution compared to the Harten-Lax-van Leer discontinuities flux solver and third-order interpolation. Resolution at this standard can be achieved only with large numbers of grid zones, arranged in a fashion that matches the symmetries of the problem and the scientific goals of the simulation. Without it, however, quantitative measures important to predictions of observables are subject to large systematic errors.

  12. A wind accretion model for HLX-1

    SciTech Connect

    Miller, M. Coleman; Farrell, Sean A.; Maccarone, Thomas J.

    2014-06-20

    The brightest ultraluminous X-ray source currently known, HLX-1, has been observed to undergo five outburst cycles. The periodicity of these outbursts, and their high inferred maximum accretion rates of ∼few × 10{sup –4} M {sub ☉} yr{sup –1}, naturally suggest Roche lobe overflow at the pericenter of an eccentric orbit. It is, however, difficult for the Roche lobe overflow model to explain the apparent trend of decreasing decay times over the different outbursts while the integrated luminosity also drops. Thus, if the trend is real rather than simply being a reflection of the complex physics of accretion disks, a different scenario may be necessary. We present a speculative model in which, within the last decade, a high-mass giant star had most of its envelope tidally stripped by the ∼10{sup 4–5} M {sub ☉} black hole in HLX-1, and the remaining core plus low-mass hydrogen envelope now feeds the hole with a strong wind. This model can explain the short decay time of the disk, and could explain the fast decrease in decay time if the wind speed changes with time. A key prediction of this model is that there will be excess line absorption due to the wind; our analysis does in fact find a flux deficit in the ∼0.9-1.1 keV range that is consistent with predictions, albeit at low significance. If this idea is correct, we also expect that within years to dacades the bound material from the original disruption will return and will make HLX-1 a persistently bright source.

  13. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data

    PubMed Central

    Bhaskar, Anand; Wang, Y.X. Rachel; Song, Yun S.

    2015-01-01

    With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. PMID:25564017

  14. Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis.

    PubMed

    Valenza, Gaetano; Nardelli, Mimma; Lanatà, Antonio; Gentili, Claudio; Bertschy, Gilles; Paradiso, Rita; Scilingo, Enzo Pasquale

    2014-09-01

    Current clinical practice in diagnosing patients affected by psychiatric disorders such as bipolar disorder is based only on verbal interviews and scores from specific questionnaires, and no reliable and objective psycho-physiological markers are taken into account. In this paper, we propose to use a wearable system based on a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire electrocardiogram, respirogram, and body posture information in order to detect a pattern of objective physiological parameters to support diagnosis. Moreover, we implemented a novel ad hoc methodology of advanced biosignal processing able to effectively recognize four possible clinical mood states in bipolar patients (i.e., depression, mixed state, hypomania, and euthymia) continuously monitored up to 18 h, using heart rate variability information exclusively. Mood assessment is intended as an intrasubject evaluation in which the patient's states are modeled as a Markov chain, i.e., in the time domain, each mood state refers to the previous one. As validation, eight bipolar patients were monitored collecting and analyzing more than 400 h of autonomic and cardiovascular activity. Experimental results demonstrate that our novel concept of personalized and pervasive monitoring constitutes a viable and robust clinical decision support system for bipolar disorders recognizing mood states with a total classification accuracy up to 95.81%. PMID:24240031

  15. Star accretion onto supermassive black holes in axisymmetric galactic nuclei

    NASA Astrophysics Data System (ADS)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2016-02-01

    Tidal Disruption (TD) of stars by supermassive central black holes from dense rotating star clusters is modeled by high-accuracy direct N-body simulation. We study the time evolution of the stellar tidal disruption rate and the origin of tidally disrupted stars. Compared with that in spherical systems, we found a higher TD rate in axisymmetric systems. The enhancement can be explained by an enlarged loss-cone in phase space which is raised from the fact that total angular momentum J is not conserved. As in the case of spherical systems, the distribution of the last apocenter distance of tidally accreted stars peaks at the classical critical radius. However, the angular distribution of the origin of the accreted stars reveals bimodal features. We show that the bimodal structure can be explained by the presence of two families of regular orbits, namely short axis tube and saucer orbits.

  16. Albino mutation rates in red mangroves (Rhizophora mangle L.) as a bioassay of contamination history in Tampa Bay, Florida, USA

    USGS Publications Warehouse

    Proffitt, C.E.; Travis, S.E.

    2005-01-01

    We assessed the sensitivity of a viviparous estuarine tree species, Rhizophora mangle, to historic sublethal mutagenic stress across a fine spatial scale by comparing the frequency of trees producing albino propagules in historically contaminated (n=4) and uncontaminated (n=11) forests in Tampa Bay, Florida, USA. Data from uncontaminated forests were used to provide estimates of background mutation rates. We also determined whether other fitness parameters were negatively correlated with mutagenic stress (e.g., degree of outcrossing and numbers of reproducing trees km-1). Contaminated sites in Tampa Bay had significantly higher frequencies of trees that were heterozygous for albinism per 1000 total reproducing trees (FHT) than uncontaminated forests (mean ?? SE: 11.4 ?? 4.3 vs 4.3 ?? 0.73, P 25 yrs of subsequent recruitment and tree replacement may have allowed an initial elevation in the FHT to decay. Patterns of FHT were not explained by distance from the bay mouth or the degree of urbanization. However, there was a significant positive relationship between tree size and FHT (r=0.83, P<0.018), which suggests that forests with older or larger trees provide a more lasting record of cumulative mutagenic stress. No other fitness parameters correlated with FHT. There was a difference in FHT between two latitudes, as determined by comparing Tampa Bay with literature values for Puerto Rico. The sensitivity of this bioassay for the effects of mutagens will facilitate future monitoring of contamination events and comparisons of bay-wide recovery in future decades. Development of a database of FHT values for a range of subtropical and tropical estuaries is underway that will provide a baseline against which to compare mutational consequences of global change. ?? 2005, The Society of Wetland Scientists.

  17. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2011-12-01

    Results of current 1D models on planetesimal accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV [3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration

  18. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T. V.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2012-09-01

    accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV[3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron

  19. Occurrence of instability through the protostellar accretion disks by landing of low-mass condensations

    NASA Astrophysics Data System (ADS)

    Elyasi, Mahjubeh; Nejad-Asghar, Mohsen

    2016-06-01

    Low-mass condensations (LMCs) are observed inside the envelope of the collapsing molecular cloud cores. In this research, we investigate the effects of landing LMCs for occurrence of instability through the protostellar accretion disks. We consider some regions of the disk where duration of infalling and landing of the LMCs are shorter than the orbital period. In this way, we can consider the landing LMCs as density bumps and grooves in the azimuthal direction of an initial thin axisymmetric steady state self-gravitating protostellar accretion disk (nearly Keplerian). Using the linear effects of the bump quantities, we obtain a characteristic equation for growth/decay rate of bumps; we numerically solve it to find occurrence of instability. We also evaluate the minimum-growth-time-scale (MGTS) and the enhanced mass accretion rate. The results show that infalling and landing of the LMCs in the inner regions of the protostellar accretion disks can cause faster unstable modes and less enhanced accretion rates relative to the outer regions. Also, more fragmentation of landed LMCs in the azimuthal direction have less chance for instability, and then can produce more values of enhanced mass accretion rate.

  20. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas

    NASA Technical Reports Server (NTRS)

    Hubickyj, Olenka

    1997-01-01

    Models were developed to simulate planet formation. Three major phases are characterized in the simulations: (1) planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted; (2) occurs when both solid and gas accretion rates are small and nearly independent of time; and (3) starts when the solid and gas masses are about equal and is marked by runaway gas accretion. The models applicability to planets in our Solar System are judged using two basic "yardsticks". The results suggest that the solar nebula dissipated while Uranus and Neptune were in the second phase, during which, for a relatively long time, the masses of their gaseous envelopes were small but not negligible compared to the total masses. Background information, results and a published article are included in the report.