Sample records for accretion rate increases

  1. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep

    PubMed Central

    Rozance, Paul J.; Thorn, Stephanie R.; Friedman, Jacob E.; Hay, William W.

    2012-01-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion. PMID:22649066

  2. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  3. The growth and structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Zhao, D. H.; Mo, H. J.; Jing, Y. P.; Börner, G.

    2003-02-01

    In this paper, we analyse in detail the mass-accretion histories and structural properties of dark haloes in high-resolution N-body simulations. We model the density distribution in individual haloes using the Navarro-Frenk-White (NFW) profile. For a given halo, there is a tight correlation between its inner-scale radius rs and the mass within it, Ms, for all its main progenitors. Using this correlation, one can predict quite well the structural properties of a dark halo at any time in its history from its mass-accretion history, implying that the structure properties and the mass-accretion history are closely correlated. The predicted growing rate of concentration c with time tends to increase with decreasing mass-accretion rate. The build-up of dark haloes in cold dark matter (CDM) models generally consists of an early phase of fast accretion (where the halo mass Mh increases with time much faster than the expansion rate of the Universe) and a late phase of slow accretion (where Mh increases with time approximately as the expansion rate). These two phases are separated at a time when c~ 4 and the typical binding energy of the halo is approximately equal to that of a singular isothermal sphere with the same circular velocity. Haloes in the two accretion phases show systematically different properties, for example, the circular velocity vh increases rapidly with time in the fast accretion phase but remains almost constant in the slow accretion phase, the inner properties of a halo, such as rs and Ms increase rapidly with time in the fast accretion phase but change only slowly in the slow accretion phase, the inner circular velocity vs is approximately equal to vh in the fast accretion phase but is larger in the slow accretion phase. The potential well associated with a halo is built up mainly in the fast accretion phase, while a large amount of mass can be accreted in the slow accretion phase without changing the potential well significantly. We discuss our results in connection with the formation of dark haloes and galaxies in hierarchical models.

  4. On the wind production from hot accretion flows with different accretion rates

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Gan, Zhao-Ming

    2018-02-01

    We perform two-dimensional simulations to study how the wind strength changes with accretion rate. We take into account bremsstrahlung, synchrotron radiation and the Comptonization. We find that when the accretion rate is low, radiative cooling is not important, and the accretion flow is hot. For the hot accretion flow, wind is very strong. The mass flux of wind can be ˜ 50 per cent of the mass inflow rate. When the accretion rate increases to a value at which radiative cooling rate is roughly equal to or slightly larger than viscous heating rate, cold clumps can form around the equatorial plane. In this case, the gas pressure gradient force is small and wind is very weak. Our results may be useful for the sub-grid model of active galactic nuclear feedback study.

  5. The impact of feedback and the hot halo on the rates of gas accretion on to galaxies

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-07-01

    We investigate the physics that drives the gas accretion rates on to galaxies at the centres of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2, the accretion rate on to the galaxy increases with halo mass in the halo mass range 1010-1011.7 M⊙, flattens between the halo masses 1011.7 and 1012.7 M⊙, and increases again for higher mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when active galactic nucleus (AGN) feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes, AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much, and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates on to galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  6. A model for accretion of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1974-01-01

    One possible origin of the terrestrial planets involves their formation by gravitational accretion of particles originally in Keplerian orbits about the sun. Some implications of this theory are considered. A formal expression for the rate of mass accretion by a planet is developed. The formal singularity of the gravitational collision cross section for low relative velocities is shown to be without physical significance when the accreting bodies are in heliocentric orbits. The distribution of particle velocities relative to an accreting planet is considered; the mean velocity increases with time. The internal temperature of an accreting planet is shown to depend simply on the accretion rate. A simple and physically reasonable approximate expression for a planetary accretion rate is proposed.

  7. On the Dependence of the X-Ray Burst Rate on Accretion and Spin Rate

    NASA Astrophysics Data System (ADS)

    Cavecchi, Yuri; Watts, Anna L.; Galloway, Duncan K.

    2017-12-01

    Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations: when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.

  8. Simulating X-ray bursts during a transient accretion event

    NASA Astrophysics Data System (ADS)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  9. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon ismore » quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.« less

  10. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.

  11. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the mass that is accreted onto the star should represent a decreasing fraction of the mass outflows when the mass of the accreting object increases. In other words, the accretion efficiency (mass effectively accreted onto the star with respect to the total in falling matter) decreases when the mass of the star increases.

  12. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  13. Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Le, Truong; Newman, William; Edge, Brinkley

    2018-06-01

    Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.

  14. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park

    USGS Publications Warehouse

    Smoak, Joseph M.; Breithaupt, Joshua L.; Smith, Thomas J.; Sanders, Christian J.

    2013-01-01

    The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr−1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr−1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m−2 yr−1 within the storm deposit compared to 151 and 168 g m−2 yr−1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

  15. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  16. Kinetic and radiative power from optically thin accretion flows

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Gaspari, Massimo

    2017-06-01

    We perform a set of general relativistic, radiative, magneto-hydrodynamical simulations (GR-RMHD) to study the transition from radiatively inefficient to efficient state of accretion on a non-rotating black hole. We study ion to electron temperature ratios ranging from TI/Te = 10 to 100, and simulate flows corresponding to accretion rates as low as 10^{-6}\\dot{M}_Edd, and as high as 10^{-2}\\dot{M}_Edd. We have found that the radiative output of accretion flows increases with accretion rate, and that the transition occurs earlier for hotter electrons (lower TI/Te ratio). At the same time, the mechanical efficiency hardly changes and accounts to ≈3 per cent of the accreted rest mass energy flux, even at the highest simulated accretion rates. This is particularly important for the mechanical active galactic nuclei (AGN) feedback regulating massive galaxies, groups and clusters. Comparison with recent observations of radiative and mechanical AGN luminosities suggests that the ion to electron temperature ratio in the inner, collisionless accretion flow should fall within 10 < TI/Te < 30, I.e. the electron temperature should be several percent of the ion temperature.

  17. Bondi-Hoyle accretion in an isothermal magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbersmore » of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by Bondi-Hoyle rates. Our results should find application in numerical codes, enabling accurate sub-grid models of sink particles accreting from magnetized media.« less

  18. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  19. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. Y.; Liu, B. F.; Qiao, E. L.

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpretmore » HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.« less

  20. Importance of fingering convection for accreting white dwarfs in the framework of full evolutionary calculations: the case of the hydrogen-rich white dwarfs GD 133 and G 29-38

    NASA Astrophysics Data System (ADS)

    Wachlin, F. C.; Vauclair, G.; Vauclair, S.; Althaus, L. G.

    2017-05-01

    Context. A large fraction of white dwarfs show photospheric chemical composition that is polluted by heavy elements accreted from a debris disk. Such debris disks result from the tidal disruption of rocky planetesimals that have survived to whole stellar evolution from the main sequence to the final white dwarf stage. Determining the accretion rate of this material is an important step toward estimating the mass of the planetesimals and understanding the ultimate fate of the planetary systems. Aims: The accretion of heavy material with a mean molecular weight, μ, higher than the mean molecular weight of the white dwarf outer layers, induces a double-diffusive instability producing the fingering convection and an extra-mixing. As a result, the accreted material is diluted deep into the star. We explore the effect of this extra-mixing on the abundance evolution of Mg, O, Ca, Fe and Si in the cases of the two well-studied polluted DAZ white dwarfs: GD 133 and G 29-38. Methods: We performed numerical simulations of the accretion of material that has a chemical composition similar to the bulk Earth composition. We assumed a continuous and uniform accretion and considered a range of accretion rates from 104 g/s to 1010 g/s. Two cases are simulated, one using the standard mixing length theory (MLT) and one including the double-diffusive instability (fingering convection). Results: The double-diffusive instability develops on a very short timescale. The surface abundance rapidly reaches a stationary value while the depth of the zone mixed by the fingering convection increases. In the case of GD 133, the accretion rate needed to reproduce the observed abundances exceeds by more than two orders of magnitude the rate estimated by neglecting the fingering convection. In the case of G 29-38 the needed accretion rate is increased by approximately 1.7 dex. Conclusions: Our numerical simulations of the accretion of heavy elements on the hydrogen-rich white dwarf GD 133 and G 29-38 show that fingering convection is an efficient mechanism to mix the accreted material deeply. We find that when fingering convection is taken into account, accretion rates higher by 1.7 to 2 dex than those inferred from the standard MLT are needed to reproduce the abundances observed in G 29-38 and GD 133.

  1. 20 Years of sea-levels, accretion, and vegetation on two Long ...

    EPA Pesticide Factsheets

    The long-term 1939-2013 rate of RSLR (Relative Sea-Level Rise) at the New London, CT tide gauge is ~2.6 mm/yr, near the maximum rate of salt marsh accretion reported in eastern Long Island Sound salt marshes. Consistent with recent literature RSLR at New London has accelerated since the 1980s; inter-annual variability can be high, but over the last three decades rates have averaged ~4.5 mm/yr, more than double the first 40 years of the New London record. Marsh surface elevation has been followed for 10 years with a SET array at the Barn Island system on Little Narragansett Bay and 20 years using an accretion pin array at Mamacoke Marsh on the Thames River. From 2003 – 2013 accretion averaged 2.3 mm/yr on the Barn Island marshes while RSLR increased 5.4 mm/yr. The increased hydroperiod is driving vegetation change at Barn Island, particularly in areas that started with lower “elevation capital”. Over two decades Mamacoke accretion closely matched RSLR: 4.7 vs 4.9 mm/yr, with no significant shifts in vegetation. For the 1st 12 years at Mamacoke, accretion was slower than RSLR: 3.2 vs 8.1 mm/yr. From 2006 to 2014, however elevation increase averaged 7.0 mm/yr while sea level rose just 7 mm. By 2014 accretion rates across the marsh ranged from 1.3 to 16.1 mm /yr. Preliminary core analysis confirms highly organic peat, but reveals sand concentrations at 2–4 cm in some areas, suggesting that Hurricanes Irene (2011) and Sandy (2012) may have contributed to Mama

  2. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  3. Accretion onto a noncommutative-inspired Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  4. Spatial Trends and Variability of Vertical Accretion Rates in the Barataria Basin, Louisiana, U.S.A. using Pb-210 and Cs-137 radiochemistry

    NASA Astrophysics Data System (ADS)

    Shrull, S.; Wilson, C.; Snedden, G.; Bentley, S. J.

    2017-12-01

    Barataria Basin on the south Louisiana coast is experiencing some of the greatest amounts of coastal land loss in the United States with rates as high as 23.1 km2 lost per year. In an attempt to help slow or reverse land loss, millions of dollars are being spent to create sediment diversions to increase the amount of available inorganic sediments to these vulnerable coastal marsh areas. A better understanding of the spatial trends and patterns of background accretion rates needs to be established in order to effectively implement such structures. Core samples from 25 Coastwide Reference Monitoring System (CRMS) sites spanning inland freshwater to coastal saline areas within the basin were extracted, and using vertical accretion rates from Cs-137 & Pb-210 radionuclide detection, mineral versus organic sediment composition, grain size distribution, and spatial trends of bulk densities, the controls on the accretion rates of the marsh soils will be constrained. Initial rates show a range from 0.31 cm/year to 1.02 cm/year with the average being 0.79 cm/year. Preliminary results suggest that location and proximity to an inorganic sediment source (i.e. river/tributary or open water) have a stronger influence on vertical accretion rates than marsh classification and salinity, with no clear relationship between vertical accretion and salinity. Down-core sediment composition and bulk density analyses observed at a number of the sites likely suggest episodic sedimentation and show different vertical accretion rates through time. Frequency and length of inundation (i.e. hydroperiod), and land/marsh classification from the CRMS data set will be further investigated to constrain the spatial variability in vertical accretion for the basin.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendigutía, I.; Brittain, S.; Eiroa, C.

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a meanmore » mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.« less

  6. Observed Luminosity Spread in Young Clusters and FU Ori Stars: A Unified Picture

    NASA Astrophysics Data System (ADS)

    Baraffe, I.; Vorobyov, E.; Chabrier, G.

    2012-09-01

    The idea that non-steady accretion during the embedded phase of protostar evolution can produce the observed luminosity spread in the Herzsprung-Russell diagram (HRD) of young clusters has recently been called into question. Observations of FU Ori, for instance, suggest an expansion of the star during strong accretion events, whereas the luminosity spread implies a contraction of the accreting objects, decreasing their radiating surface. In this paper, we present a global scenario based on calculations coupling episodic accretion histories derived from numerical simulations of collapsing cloud prestellar cores of various masses and subsequent protostar evolution. Our calculations show that, assuming an initial protostar mass Mi ~ 1 M Jup, typical of the second Larson's core, both the luminosity spread in the HRD and the inferred properties of FU Ori events (mass, radius, accretion rate) can be explained by this scenario, providing two conditions. First, there must be some variation within the fraction of accretion energy absorbed by the protostar during the accretion process. Second, the range of this variation should increase with increasing accretion burst intensity and thus with the initial core mass and final star mass. The numerical hydrodynamics simulations of collapsing cloud prestellar cores indeed show that the intensity of the accretion bursts correlates with the mass and initial angular momentum of the prestellar core. Massive prestellar cores with high initial angular momentum are found to produce intense bursts characteristic of FU Ori-like events. Our results thus suggest a link between the burst intensities and the fraction of accretion energy absorbed by the protostar, with some threshold in the accretion rate, of the order of 10-5 M ⊙ yr-1, delimitating the transition from "cold" to "hot" accretion. Such a transition might reflect a change in the accretion geometry with increasing accretion rate, i.e., a transition from magnetospheric or thin-disk to thick-disk accretion, or in the magnetospheric interaction between the star and the disk. Conversely, the luminosity spread can also be explained by a variation of the initial protostar mass within the ~1-5 M Jup range, although it is unclear for now whether such a spread among the second Larson's core can be produced during the prestellar core second collapse. This unified picture confirms the idea that early accretion during protostar and proto-brown dwarf formation/evolution can explain the observed luminosity spread in young clusters without invoking any significant age spread, and that the concept of a well-defined birthline does not apply for low-mass objects. Finally, we examine the impact of accretion on the determination of the initial mass function in young clusters.

  7. Accretion and Propeller Torque in the Spin-Down Phase of Neutron Stars: The case of transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Ertan, Ünal

    2018-05-01

    The spin-down rate of PSR J1023+0038, one of the three confirmed transitional millisecond pulsars, was measured in both radio pulsar (RMSP) and X-ray pulsar (LMXB) states. The spin-down rate in the LMXB state is only about 27% greater than in the RMSP state (Jaodand et al. 2016). The inner disk radius, rin, obtained recently by Ertan (2017) for the propeller phase, which is close to the co-rotation radius, rco, and insensitive to the mass-flow rate, can explain the observed torques together with the X-ray luminosities, Lx . The X-ray pulsar and radio pulsar states correspond to accretion with spin-down (weak propeller) and strong propeller situations respectively. Several times increase in the disk mass-flow rate takes the source from the strong propeller with a low Lx to the weak propeller with a higher Lx powered by accretion on to the star. The resultant decrease in rin increases the magnetic torque slightly, explaining the observed small increase in the spin-down rate. We have found that the spin-up torque exerted by accreting material is much smaller than the magnetic spin-down torque exerted by the disk in the LMXB state.

  8. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  9. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management decisions of salt marshes. In our study accretion rates were higher than the current SLR. Further research is needed to include grazing effects into sedimentation models, given the importance of grazing management in the Wadden Sea area.

  10. Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States

    USGS Publications Warehouse

    Preston, T.M.; Sojda, R.S.; Gleason, R.A.

    2013-01-01

    Increased sedimentation and nutrient cycle changes in Prairie Pothole Region wetlands associated with agriculture threaten the permanence and ecological functionality of these important resources. To determine the effects of land use on sedimentation and nutrient cycling, soil cores were analyzed for cesium-137 (137Cs), lead-210 (210Pb), and potassium-40 (40K) activities; textural composition; organic and inorganic carbon (C); and total nitrogen (N) from twelve wetlands surrounded by cropland, Conservation Reserve Program (CRP) lands, or native prairie uplands. Separate soil cores from nine of these wetlands were also analyzed for phosphorus (P), nitrate (NO3), and ammonium (NH4) concentrations. Wetlands surrounded by cropland had significantly greater linear sediment accretion rates than wetlands surrounded by CRP or native prairie. Linear sediment accretion rates from wetlands surrounded by cropland were 2.7 and 6 times greater than wetlands surrounded by native prairie when calculated from the initial and peak occurrence of 137Cs, respectively, and 0.15 cm y−1 (0.06 in yr−1) greater when calculated from 210Pb. Relative to wetlands surrounded by CRP, linear sediment accretion rates for wetlands surrounded by cropland were 4.4 times greater when calculated from the peak occurrence of 137Cs. No significant differences existed between the linear sediment accretion rates between wetlands surrounded by native prairie or CRP uplands. Wetlands surrounded by cropland had increased clay, P, NO3, and NH4, and decreased total C and N concentrations compared to wetlands surrounded by native prairie. Wetlands surrounded by CRP had the lowest P and NO3 concentrations and had clay, NH4, C, and N concentrations between those of cropland and native prairie wetlands. We documented increased linear sediment accretion rates and changes in the textural and chemical properties of sediments in wetlands with cultivated uplands relative to wetlands with native prairie uplands. These findings demonstrate the value of the CRP at protecting wetland catchments to reduce sedimentation.

  11. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  12. Calcification and Reef Building: Lessons from Recent History and The Holocene

    NASA Astrophysics Data System (ADS)

    Hubbard, D. K.

    2016-02-01

    Over the past four decades, coral abundance has declined while the rate of sea-level rise has accelerated. Calcification has also been negatively impacted due to changing ocean chemistry. As we consider the impact of these realities on the accretion rate of coral reefs and those who live near them, it is important to remember that the links between coral growth and reef accretion are complex. In the early 1980s a detailed carbonate budget was completed on the north coast of St. Croix in the US Virgin Islands. The study quantified coral cover, carbonate-production rates, bioerosion, sediment export and long-term reef accretion along two, shore-normal transects. A repeat of these measurements along one of the transects in 2014 revealed a 50% reduction in coral cover and a similar decline in the agents of bioerosion (primarily fish, sponges and urchins). When combined with modeling of increased sediment export as wave climate intensifies, these data suggest that Holocene reef-accretion rates will decline. To estimate the impact of this pattern on the ability of coral reefs to track rising sea level in the 21st century, Holocene accretion rates were compiled for 200 cores from 35 reefs representing all oceans. The accretion rates for over half of these were below the present rate of sea-level rise (3.3 mm/yr). Also, the rate of reef accretion was not strongly correlated with paleo-water depth. The declining carbonate budget from the US Virgin Islands (and elsewhere) suggests that many of the reefs that could have kept up with present-day sea-level rise can no longer do so. In addition, the lack of a consistent relationship between reef building and water depth suggests that biological factors (e.g., calcification and bioerosion) are insufficient to characterize reef building either in the past or the immediate future. The missing piece is the redistribution and export of sediment and rubble. While it is obvious that this will rise as storm intensity increases, we still need to do a better job of integrating what we know about the complex interplay between physical, biological and chemical controls of reef building.

  13. Thermal wind from hot accretion flows at large radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yang, Xiao-Hong

    2018-06-01

    We study slowly rotating accretion flow at parsec and subparsec scales irradiated by low-luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination, and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6-10-3) LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate on to the black hole. ɛ lies in the range 10-4-1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.

  14. Accretion rates of protoplanets

    NASA Astrophysics Data System (ADS)

    Greenzweig, Yuval

    The giant planets' solid cores must have formed prior to the dispersal of the primordial solar nebula, to allow the capture of their massive, gaseous envelopes from the nebula. Recent observations of disks of dust surrounding nearby solar-like stars lead to estimates of nebula lifetimes at 106 to 107 years. Thus, theories of solid particle accretion must explain how the solid cores of the giant planets may have formed within comparable timescales. Calculations are presented which support the sole currently hypothesized mechanism of planetary accretion in which the duration of the stage of growth from planetesimals (1 to 10 km size bodies) to moon- or planet-size bodies lies within the widely accepted time constraint mentioned above. It has been shown that under certain conditions a growth advantage is given to the larger bodies of a swarm of Sun-orbiting planetesimals, resulting in runaway growth of the largest body (or bodies) in the swarm. The gravitational cross section of the protoplanet (the largest body in the swarm) increases with its size, eventually requiring the inclusion of the effect of the solar tidal force on the interaction between it and a passing planetesimal. Thus, numerical integrations of the three-body problem (Sun, protoplanet and planetesimal) are needed to determine the accretion rates of protoplanets. Existing analytical formulas are refined for the two-body (no solar tidal force) accretion rates of planetesimals or small protoplanets, and numerically derives the three-body accretion rates of large protoplanets. The three-body accretion rates calculated span a wide range of protoplanetary orbital radii, masses, and densities, and a wide range of planetesimal orbital eccentricities and inclinations. The most useful numerical results are approximated by algebraic expressions, to facilitate their use in accretion calculations, particularly by numerical codes. Since planetary accretion rates depend strongly on planetesimal random velocities, the effect of the three body encounter on the velocity dispersion was also studied. It was found that protoplanets are more effective perturbers of planetesimal eccentricities than previously noted.

  15. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwang Ho; Ricotti, Massimo, E-mail: kpark@astro.umd.edu, E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillationsmore » decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.« less

  16. The close environments of accreting massive black holes are shaped by radiative feedback.

    PubMed

    Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C; Weigel, Anna; Bauer, Franz E; Paltani, Stephane; Fabian, Andrew C; Xie, Yanxia; Gehrels, Neil

    2017-09-27

    The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

  17. The close environments of accreting massive black holes are shaped by radiative feedback

    NASA Astrophysics Data System (ADS)

    Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J.; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C.; Weigel, Anna; Bauer, Franz E.; Paltani, Stephane; Fabian, Andrew C.; Xie, Yanxia; Gehrels, Neil

    2017-09-01

    The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

  18. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  19. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas

    NASA Technical Reports Server (NTRS)

    Hubickyj, Olenka

    1997-01-01

    Models were developed to simulate planet formation. Three major phases are characterized in the simulations: (1) planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted; (2) occurs when both solid and gas accretion rates are small and nearly independent of time; and (3) starts when the solid and gas masses are about equal and is marked by runaway gas accretion. The models applicability to planets in our Solar System are judged using two basic "yardsticks". The results suggest that the solar nebula dissipated while Uranus and Neptune were in the second phase, during which, for a relatively long time, the masses of their gaseous envelopes were small but not negligible compared to the total masses. Background information, results and a published article are included in the report.

  20. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  1. Pulsed Accretion in the T Tauri Binary TWA 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Herczeg, Gregory J.

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolvemore » over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.« less

  2. Centrifugally driven winds from protostellar accretion discs - I. Formulation and initial results

    NASA Astrophysics Data System (ADS)

    Nolan, C. A.; Salmeron, R.; Federrath, C.; Bicknell, G. V.; Sutherland, R. S.

    2017-10-01

    Protostellar discs play an important role in star formation, acting as the primary mass reservoir for accretion on to young stars and regulating the extent to which angular momentum and gas is released back into stellar nurseries through the launching of powerful disc winds. In this study, we explore how disc structure relates to the properties of the wind-launching region, mapping out the regions of protostellar discs where wind launching could be viable. We combine a series of 1.5D semi-analytic, steady-state, vertical disc-wind solutions into a radially extended 1+1.5D model, incorporating all three diffusion mechanisms (Ohm, Hall and ambipolar). We observe that the majority of mass outflow via disc winds occurs over a radial width of a fraction of an astronomical unit, with outflow rates attenuating rapidly on either side. We also find that the mass accretion rate, magnetic field strength and surface density profile each have significant effects on both the location of the wind-launching region and the ejection/accretion ratio \\dot{M}_out/\\dot{M}_in. Increasing either the accretion rate or the magnetic field strength corresponds to a shift of the wind-launching region to smaller radii and a decrease in \\dot{M}_out/\\dot{M}_in, while increasing the surface density corresponds to launching regions at larger radii with increased \\dot{M}_out/\\dot{M}_in. Finally, we discover a class of disc winds containing an ineffective launching configuration at intermediate radii, leading to two radially separated regions of wind launching and diminished \\dot{M}_out/\\dot{M}_in. We find that the wind locations and ejection/accretion ratio are consistent with current observational and theoretical estimates.

  3. The Impact of Late Holocene Land Use Change, Climate Variability, and Sea Level Rise on Carbon Storage in Tidal Freshwater Wetlands on the Southeastern United States Coastal Plain

    NASA Astrophysics Data System (ADS)

    Jones, Miriam C.; Bernhardt, Christopher E.; Krauss, Ken W.; Noe, Gregory B.

    2017-12-01

    This study examines Holocene impacts of changes in climate, land use, and sea level rise (SLR) on sediment accretion, carbon accumulation rates (CAR), and vegetation along a transect of tidal freshwater forested wetlands (TFFW) to oligohaline marsh along the Waccamaw River, South Carolina (four sites) and along the Savannah River, Georgia (four sites). We use pollen, plant macrofossils, accretion, and CAR from cores, spanning the last 1,500-6,000 years to test the hypothesis that TFFW have remained stable throughout the late Holocene and that marshes transitioned from TFFW during elevated SLR during the Medieval Climate Anomaly, with further transformation resulting from colonial land use change. Results show low and stable accretion and CAR through much of the Holocene, despite moderate changes associated with Holocene paleoclimate. In all records, the largest observed change occurred within the last 400 years, driven by colonial land clearance, shifting terrigenous sediment into riparian wetlands, resulting in order-of-magnitude increases in accretion and C accumulation. The oligohaline marshes transitioned from TFFW 300-500 years ago, coincident with colonial land clearance. Postcolonial decreases in CAR and accretion occur because of watershed reforestation over the last century. All sites show evidence of recent (decades to century) swamp forest decline due to increasing salinity and tidal inundation from SLR. This study suggests that allochthonous sediment input during colonialization helped maintain TFFW but that current SLR rates are too high for TFFW to persist, although higher accretion rates in oligohaline marshes increase the resilience of tidal wetlands as they transition from TFFW to marsh.

  4. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK

    NASA Astrophysics Data System (ADS)

    Pye, K.; Blott, S. J.

    2008-12-01

    Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However, preliminary analysis has indicated only a modest relationship between dune erosion/accretion rates and the North Atlantic Oscillation index.

  5. Upper stellar mass limit by radiative feedback at low-metallicities: metallicity and accretion rate dependence

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Omukai, Kazuyuki; Hosokawa, Takashi

    2018-02-01

    We investigate the upper stellar mass limit set by radiative feedback for a forming star with various accretion rates and metallicities. Thus, we numerically solve the structures of both a protostar and its surrounding accretion envelope assuming a spherical symmetric and steady flow. The optical depth of the dust cocoon, a dusty part of the accretion envelope, differs for direct light from the stellar photosphere and diffuse light re-emitted as dust thermal emission. As a result, varying the metallicity qualitatively changes the way that the radiative feedback suppresses the accretion flow. With a fixed accretion rate of 10-3 M⊙ yr-1, both direct and diffuse light jointly operate to prevent mass accretion at Z ≳ 10-1 Z⊙. At Z ≲ 10-1 Z⊙, the diffuse light is no longer effective and the direct light solely limits the mass accretion. At Z ≲ 10-3 Z⊙, formation of the H II region plays an important role in terminating the accretion. The resultant upper mass limit increases with decreasing metallicity, from a few × 10 M⊙ to ∼103 M⊙ over Z = 1 Z⊙-10-4 Z⊙. We also illustrate how the radiation spectrum of massive star-forming cores changes with decreasing metallicity. First, the peak wavelength of the spectrum, which is located around 30 μm at 1 Z⊙, shifts to < 3 μm at Z ≲ 0.1 Z⊙. Secondly, a characteristic feature at 10 μm due to the amorphous silicate band appears as a dip at 1 Z⊙, but changes to a bump at Z ≲ 0.1 Z⊙. Using these spectral signatures, we can search massive accreting protostars in nearby low-metallicity environments with upcoming observations.

  6. Migration of accreting planets in radiative discs from dynamical torques

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to explain the presence of massive planets on wide orbits.

  7. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.

  8. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that themore » survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.« less

  9. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  10. Contribution of recent hurricanes to wetland sedimentation in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, Kam-biu; Bianchette, Thomas; Zou, Lei; Qiang, Yi; Lam, Nina

    2017-04-01

    Hurricanes are important agents of sediment deposition in the wetlands of coastal Louisiana. Since Hurricanes Katrina and Rita of 2005, coastal Louisiana has been impacted by Hurricanes Gustav (2008), Ike (2008), and Isaac (2012). By employing the principles and methods of paleotempestology we have identified the storm deposits attributed to the three most recent hurricanes in several coastal lakes and swamps in Louisiana. However, the spatial distribution and volume of these storm depositions cannot be easily inferred from stratigraphic data derived from a few locations. Here we report on results from a GIS study to analyze the spatial and temporal patterns of storm deposition based on data extracted from the voluminous CRMS (Coastal Reference Monitoring System) database, which contains vertical accretion rate measurements obtained from 390 wetland sites over various time intervals during the past decade. Wetland accretion rates averaged about 2.89 cm/yr from stations sampled before Hurricane Isaac, 4.04 cm/yr during the 7-month period encompassing Isaac, and 2.38 cm/yr from sites established and sampled after Isaac. Generally, the wetland accretion rates attributable to the Isaac effects were 40% and 70% greater than before and after the event, respectively. Accretion rates associated with Isaac were highest at wetland sites along the Mississippi River and its tributaries instead of along the path of the hurricane, suggesting that freshwater flooding from fluvial channels, enhanced by the storm surge from the sea, is the main mechanism responsible for increased accretion in the wetlands. Our GIS work has recently been expanded to include other recent hurricanes. Preliminary results indicate that, for non-storm periods, the average wetland accretion rates between Katrina/Rita and Gustav/Ike was 2.58 cm/yr; that between Gustav/Ike and Isaac was 1.95 cm/yr; and that after Isaac was 2.37 cm/yr. In contrast, the accretion rates attributable to the effects of Gustav/Ike and Isaac were 4.41 cm/yr and 3.52 cm/yr, respectively. These results show that hurricane-related accretion rates in wetlands are 50 - 225% higher than the normal rates typical of non-storm periods.

  11. Primordial black holes as seeds of magnetic fields in the universe

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher

    2018-06-01

    Although it is assumed that magnetic fields in accretion disks are dragged from the interstellar medium, the idea is likely not applicable to primordial black holes (PBHs) formed in the early universe. Here we show that magnetic fields can be generated in initially unmagnetized accretion disks around PBHs through the Biermann battery mechanism, and therefore provide the small scale seeds of magnetic field in the universe. The radial temperature and vertical density profiles of these disks provide the necessary conditions for the battery to operate naturally. The generated seed fields have a toroidal structure with opposite sign in the upper and lower half of the disk. In the case of a thin accretion disk around a rotating PBH, the field generation rate increases with increasing PBH spin. At a fixed r/risco, where r is the radial distance from the PBH and risco is the radius of the innermost stable circular orbit, the battery scales as M-9/4, where M is the PBH's mass. The very weak dependency of the battery on accretion rate, makes this mechanism a viable candidate to provide seed fields in an initially unmagnetized accretion disk, following which the magnetorotational instability could take over.

  12. LAMP: the long-term accretion monitoring programme of T Tauri stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Costigan, G.; Scholz, A.; Stelzer, B.; Ray, T.; Vink, J. S.; Mohanty, S.

    2012-12-01

    We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region, based on ˜300 high-resolution optical spectra from the Fibre Large Area Multi-Element Spectrograph (FLAMES) at the European Southern Observatory (ESO) Very Large Telescope (VLT). 25 objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Hα (6562.81 Å) and Ca II (8662.1 Å) as accretion indicators, we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Hα equivalent width, Hα 10 per cent width and Ca II (8662.1 Å) equivalent width. We found that the Hα equivalent widths of accretors varied by ˜7-100 Å over the 15-month period. This corresponds to a mean amplitude of variations in the derived accretion rate of ˜0.37 dex. The amplitudes of variations in the derived accretion rate from Ca II equivalent width were ˜0.83 dex and those from Hα 10 per cent width were ˜1.11 dex. Based on the large amplitudes of variations in accretion rate derived from the Hα 10 per cent width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Assuming the variations in Hα and Ca II equivalent width accretion rates to be closer to the true value, these suggest that the spread that was found around the accretion rate to stellar-mass relation is not due to the variability of individual objects on time-scales of weeks to ˜1 year. From these variations, we can also infer that the accretion rates are stable within <0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur over periods shorter than the shortest time-scales in our observations, 8-25 days, which are comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows and it also suggests that observations on time-scales of ˜a couple of weeks are sufficient to limit the total extent of accretion-rate variations in typical young stars. No episodic accretion was observed: all 10 accretors accreted continuously for the entire period of observations and, though they may have undetected low accretion rates, the non-accretors never showed any large changes in their emission that would imply a jump in accretion rate.

  13. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Min; Qiu, Jie; Du, Pu

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energymore » distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.« less

  14. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS. II. FEEDBACK, STAR-FORMATION EFFICIENCY, AND OUTFLOW BROADENING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov

    2016-11-20

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less

  15. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags

    NASA Astrophysics Data System (ADS)

    Du, Pu; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Zhang, Yue; Lu, Kai-Xing; Hu, Chen; Li, Yan-Rong; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2018-03-01

    As one paper in a series reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 2015–2017. Six of them are observed for the first time, and have generally higher 5100 Å luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the Hβ time lags of the newly observed objects are shorter than the values predicted by the canonical R Hβ –L 5100 relation of sub-Eddington AGNs, by factors of ∼2–6, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the R Hβ –L 5100 relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe II and the profile of the Hβ emission line can be used as proxies of accretion rate, showing that the shortening of Hβ lags depends on accretion rates. The recent SDSS-RM discovery of shortened Hβ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical R Hβ –L 5100 relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates.

  16. AGN self-regulation in cooling flow clusters

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Teyssier, R.

    2007-04-01

    We use three-dimensional high-resolution adaptive-mesh-refinement simulations to investigate if mechanical feedback from active galactic nucleus jets can halt a massive cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We start with a 3 × 109 Msolar black hole at the centre of a spherical halo with the mass of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in hydrostatic equilibrium within the dark matter's gravitational potential. The black hole accretes the surrounding gas at the Bondi rate, and a fraction of the accretion power is returned into the intracluster medium mechanically through the production of jets. The accretion, initially slow (~2 × 10-4 Msolaryr-1), becomes catastrophic, as the gas cools and condenses in the dark matter's potential. Therefore, it cannot prevent the cooling catastrophe at the centre of the cluster. However, after this rapid phase, where the accretion rate reaches a peak of ~0.2Msolaryr-1, the cavities inflated by the jets become highly turbulent. The turbulent mixing of the shock-heated gas with the rest of the intracluster medium puts a quick end to this short-lived rapid-growth phase. After dropping by almost two orders of magnitudes, the black hole accretion rate stabilizes at ~0.006 Msolaryr-1, without significant variations for several billions of years, indicating that a self-regulated steady state has been reached. This accretion rate corresponds to a negligible increase of the black hole mass over the age of the Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.

  17. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  18. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    NASA Astrophysics Data System (ADS)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  19. Tidal Barrier and the Asymptotic Mass of Proto-Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian; Li, Shu Lin; Lin, D. N. C.

    2007-05-01

    According to the conventional sequential accretion scenario, observed extrasolar planets acquired their current masses via efficient gas accretion onto super-Earth cores with accretion timescales that rapidly increase with mass. Gas accretion in weak-line T Tauri disks may be quenched by global depletion of gas, but such a mechanism is unlikely to have stalled the growth in planetary systems that contain relatively low-mass, close-in planets together with more massive, longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both its Bondi and Roche radii. Above the critical mass where the Roche and Bondi radii are equal to the disk thickness, the protoplanet's tidal perturbation induces the formation of a gap. However, despite continued diffusion into the gap, the azimuthal flux across the protoplanet's Roche lobe will be quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Gas accretion is quenched, yielding relatively low protoplanetary masses, in regions with low aspect ratios. This becomes important for determining the gas giant planet's mass function, the distribution of their masses within multiple-planet systems, and for suppressing the emergence of gas giants around low-mass stars. Finally, we find that accretion rates onto protoplanets declines gradually on a characteristic timescale of a few Myr, during which the protracted accretion timescale onto circumplanetary disks may allow for the formation and retention of regular satellites.

  20. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    PubMed

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA extremely susceptible changes in ocean water pH, emphasizing the far-reaching threat that ocean acidification poses to the ecological function and persistence of coral reefs worldwide.

  1. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs

    PubMed Central

    Vargas-Ángel, Bernardo; Richards, Cristi L.; Vroom, Peter S.; Price, Nichole N.; Schils, Tom; Young, Charles W.; Smith, Jennifer; Johnson, Maggie D.; Brainard, Russell E.

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA extremely susceptible changes in ocean water pH, emphasizing the far-reaching threat that ocean acidification poses to the ecological function and persistence of coral reefs worldwide. PMID:26641885

  2. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  3. On the Accretion Rates of SW Sextantis Nova-like Variables

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald-Louis; Sion, Edward M.

    2009-06-01

    We present accretion rates for selected samples of nova-like variables having IUE archival spectra and distances uniformly determined using an infrared method by Knigge. A comparison with accretion rates derived independently with a multiparametric optimization modeling approach by Puebla et al. is carried out. The accretion rates of SW Sextantis nova-like systems are compared with the accretion rates of non-SW Sextantis systems in the Puebla et al. sample and in our sample, which was selected in the orbital period range of three to four and a half hours, with all systems having distances using the method of Knigge. Based upon the two independent modeling approaches, we find no significant difference between the accretion rates of SW Sextantis systems and non-SW Sextantis nova-like systems insofar as optically thick disk models are appropriate. We find little evidence to suggest that the SW Sex stars have higher accretion rates than other nova-like cataclysmic variables (CVs) above the period gap within the same range of orbital periods.

  4. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  5. RADIO IMAGING OBSERVATIONS OF PSR J1023+0038 IN AN LMXB STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deller, A. T.; Moldon, J.; Patruno, A.

    2015-08-10

    The transitional millisecond pulsar (MSP) binary system PSR J1023+0038 re-entered an accreting state in 2013 June in which it bears many similarities to low-mass X-ray binaries (LMXBs) in quiescence or near-quiescence. At a distance of just 1.37 kpc, PSR J1023+0038 offers an unsurpassed ability to study low-level accretion onto a highly magnetized compact object. We have monitored PSR J1023+0038 intensively using radio imaging with the Karl G. Jansky Very Large Array, the European VLBI Network and the Low Frequency Array, seeing rapidly variable, flat spectrum emission that persists over a period of six months. The flat spectrum and variability aremore » indicative of synchrotron emission originating in an outflow from the system, most likely in the form of a compact, partially self-absorbed jet, as is seen in LMXBs at higher accretion rates. The radio brightness, however, greatly exceeds extrapolations made from observations of more vigorously accreting neutron star LMXB systems. We postulate that PSR J1023+0038 is undergoing radiatively inefficient “propeller-mode” accretion, with the jet carrying away a dominant fraction of the liberated accretion luminosity. We confirm that the enhanced γ-ray emission seen in PSR J1023+0038 since it re-entered an accreting state has been maintained; the increased γ-ray emission in this state can also potentially be associated with propeller-mode accretion. Similar accretion modes can be invoked to explain the radio and X-ray properties of the other two known transitional MSP systems XSS J12270–4859 and PSR J1824–2452I (M28I), suggesting that radiatively inefficient accretion may be a ubiquitous phenomenon among (at least one class of) neutron star binaries at low accretion rates.« less

  6. Formation Of the Giant Planets By Concurrent Accretion Of Solids And Gas

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.; Podolak, Morris; Greenzweig, Yuval; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    New numerical simulations of the formation of the giant planets are presented, in which for the first time both the gas and planetesimal accretion rates are calculated in a self-consistent, interactive fashion. The simulations combine three elements: 1) three-body accretion cross-sections of solids onto an isolated planetary embryo, 2) a stellar evolution code for the planet's gaseous envelope, and 3) a planetesimal dissolution code within the envelope, used to evaluate the planet's effective capture radius and the energy deposition profile of accreted material. Major assumptions include: The planet is embedded in a disk of gas and small planetesimals with locally uniform initial surface mass density, and planetesimals are not allowed to migrate into or out of the planet's feeding zone. All simulations are characterized by three major phases. During the first phase, the planet's mass consists primarily of solid material. The planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted. During the second phase, both solid and gas accretion rates are small and nearly independent of time. The third phase, marked by runaway gas accretion, starts when the solid and gas masses are about equal. It is engendered by a strong positive feedback on the gas accretion rates, driven by the rapid contraction of the gaseous envelope and the rapid expansion of the outer boundary, which depends on the planet's total mass. The overall evolutionary time scale is generally determined by the length of the second phase. The actual rates at which the giant planets accreted small planetesimals is probably intermediate between the constant rates assumed in most previous studies and the highly variable rates that we have used. Within the context, of the adopted model of planetesimal accretion, the joint constraints of the time scale for dissipation of the solar nebula and the current high-Z masses of the giant planets lead to estimates of the initial surface density (sigma(sub init)) of planetesimals in the outer region of the solar nebula. The results show sigma(sub init) approx. = 10 g/sq cm near Jupiter's orbit and that sigma(sub init) proportional to alpha(sup -2), where alpha is the distance from the Sun. These values are a factor of 3 - 4 times as high as that of the "minimum mass" solar nebula at Jupiter's distance and a factor of 2 - 3 times as high it Saturn's distance. Our estimates for the formation time of Jupiter and Saturn are 1 - 10 million years while those for Uranus fall in the range of 2 - 16 million years. These estimates follow from the properties of our Solar System and do not necessarily apply to giant planets in other planetary systems.

  7. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(

  8. The influence of large-scale magnetic field in the structure of supercritical accretion flow with outflow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam; Abbassi, Shahram

    2017-08-01

    We present the effects of ordered large-scale magnetic field on the structure of supercritical accretion flow in the presence of an outflow. In the cylindrical coordinates (r, φ, z), we write the 1.5-dimensional, steady-state (partial /partial t= 0) and axisymmetric (partial /partial \\varphi = 0) inflow-outflow equations by using self-similar solutions. Also, a model for radiation pressure supported accretion flow threaded by both toroidal and vertical components of magnetic field has been formulated. For studying the outflows, we adopt a radius-dependent mass accretion rate as \\dot{M}=\\dot{M}_{out}{(r/r_{out})^{s+1/2}} with s = 1/2. Also, by following the previous works, we have considered the interchange of mass, radial and angular momentum and the energy between inflow and outflow. We have found numerically that two components of magnetic field have the opposite effects on the thickness of the disc and similar effects on the radial and angular velocities of the flow. We have found that the existence of the toroidal component of magnetic field will lead to an increase in the radial and azimuthal velocities as well as the relative thickness of the disc. Moreover, in a magnetized flow, the thickness of the disc decreases with increase in the vertical component of magnetic field. The solutions indicated that the mass inflow rate and the specific energy of outflow strongly affect the advection parameter. We have shown that by increasing the two components of magnetic field, the temperature of the accretion flow decreases significantly. On the other hand, we have shown that the bolometric luminosity of the slim discs for high values of \\dot{m} (\\dot{m}>>1)\\dot{m} (\\dot{m}≫ 1) is not sensitive to mass accretion rate and is kept constant (L ≈ 10LE).

  9. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  10. Accretional Heating by Periodic Dwarf Nova Outburst Events

    NASA Astrophysics Data System (ADS)

    Godon, P.; Sion, E. M.

    2001-12-01

    We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.

  11. Influence of tidal range on the stability of coastal marshland

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2010-01-01

    Early comparisons between rates of vertical accretion and sea level rise across marshes in different tidal ranges inspired a paradigm that marshes in high tidal range environments are more resilient to sea level rise than marshes in low tidal range environments. We use field-based observations to propose a relationship between vegetation growth and tidal range and to adapt two numerical models of marsh evolution to explicitly consider the effect of tidal range on the response of the marsh platform channel network system to accelerating rates of sea level rise. We find that the stability of both the channel network and vegetated platform increases with increasing tidal range. Our results support earlier hypotheses that suggest enhanced stability can be directly attributable to a vegetation growth range that expands with tidal range. Accretion rates equilibrate to the rate of sea level rise in all experiments regardless of tidal range, suggesting that comparisons between accretion rate and tidal range will not likely produce a significant relationship. Therefore, our model results offer an explanation to widely inconsistent field-based attempts to quantify this relationship while still supporting the long-held paradigm that high tidal range marshes are indeed more stable.

  12. Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, Daniel; Nagamine, Kentaro

    2011-11-01

    We test how accurately the smoothed particle hydrodynamics (SPH) numerical technique can follow spherically symmetric Bondi accretion. Using the 3D SPH code GADGET-3, we perform simulations of gas accretion on to a central supermassive black hole of mass 108 M⊙ within the radial range of 0.1-200 pc. We carry out simulations without and with radiative heating by a central X-ray corona and radiative cooling. For an adiabatic case, the radial profiles of hydrodynamical properties match the Bondi solution, except near the inner and outer radius of the computational domain. The deviation from the Bondi solution close to the inner radius is caused by the combination of numerical resolution, artificial viscosity and our inner boundary condition. Near the outer radius (≤200 pc), we observe either an outflow or development of a non-spherical inflow unless the outer boundary conditions are very stringently implemented. Despite these issues related to the boundary conditions, we find that adiabatic Bondi accretion can be reproduced for durations of a few dynamical times at the Bondi radius, and for longer times if the outer radius is increased. In particular, the mass inflow rate at the inner boundary, which we measure, is within 3-4 per cent of the Bondi accretion rate. With radiative heating and cooling included, the spherically accreting gas takes a longer time to reach a steady state than the adiabatic Bondi accretion runs, and in some cases does not reach a steady state even within several hundred dynamical times. We find that artificial viscosity causes excessive heating near the inner radius, making the thermal properties of the gas inconsistent with a physical solution. This overheating occurs typically only in the supersonic part of the flow, so that it does not affect the mass accretion rate. We see that increasing the X-ray luminosity produces a lower central mass inflow rate, implying that feedback due to radiative heating is operational in our simulations. With a sufficiently high X-ray luminosity, the inflowing gas is radiatively heated up, and an outflow develops. We conclude that the SPH simulations can capture the gas dynamics needed to study radiative feedback, provided artificial viscosity alters only highly supersonic part of the inflow.

  13. Wind accretion and formation of disk structures in symbiotic binary systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  14. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  15. Single Degenerate Models for Type Ia Supernovae: Progenitor's Evolution and Nucleosynthesis Yields

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Leung, Shing-Chi

    2018-06-01

    We review how the single degenerate models for Type Ia supernovae (SNe Ia) works. In the binary star system of a white dwarf (WD) and its non-degenerate companion star, the WD accretes either hydrogen-rich matter or helium and undergoes hydrogen and helium shell-burning. We summarize how the stability and non-linear behavior of such shell-burning depend on the accretion rate and the WD mass and how the WD blows strong wind. We identify the following evolutionary routes for the accreting WD to trigger a thermonuclear explosion. Typically, the accretion rate is quite high in the early stage and gradually decreases as a result of mass transfer. With decreasing rate, the WD evolves as follows: (1) At a rapid accretion phase, the WD increase its mass by stable H burning and blows a strong wind to keep its moderate radius. The wind is strong enough to strip a part of the companion star's envelope to control the accretion rate and forms circumstellar matter (CSM). If the WD explodes within CSM, it is observed as an "SN Ia-CSM". (X-rays emitted by the WD are absorbed by CSM.) (2) If the WD continues to accrete at a lower rate, the wind stops and an SN Ia is triggered under steady-stable H shell-burning, which is observed as a super-soft X-ray source: "SN Ia-SSXS". (3) If the accretion continues at a still lower rate, H shell-burning becomes unstable and many flashes recur. The WD undergoes recurrent nova (RN) whose mass ejection is smaller than the accreted matter. Then the WD evolves to an "SN Ia-RN". (4) If the companion is a He star (or a He WD), the accretion of He can trigger He and C double detonations at the sub-Chandrasekhar mass or the WD grows to the Chandrasekhar mass while producing a He-wind: "SN Ia-He CSM". (5) If the accreting WD rotates quite rapidly, the WD mass can exceed the Chandrasekhar mass of the spherical WD, which delays the trigger of an SN Ia. After angular momentum is lost from the WD, the (super-Chandra) WD contracts to become a delayed SN Ia. The companion star has become a He WD and CSM has disappeared: "SN Ia-He WD". We update nucleosynthesis yields of the carbon deflagration model W7, delayed detonation model WDD2, and the sub-Chandrasekhar mass model to provide some constraints on the yields (such as Mn) from the comparison with the observations. We note the important metallicity effects on 58Ni and 55Mn.

  16. The Story of a Boring Encounter with a Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Remember the excitement three years ago before the gas cloud G2s encounter with the supermassive black hole at the center of our galaxy, Sgr A*? Did you notice that not much was said about it after the fact? Thats because not much happened and a new study suggests that this isnt surprising.An Anticipated ApproachG2,an object initially thought to be a gas cloud, was expected to make its closest approach to the 4.6-million-solar-mass Sgr A* in 2014. At the pericenter of its orbit, G2 was predicted to pass as close as 36 light-hours from the black hole.Log-scale column density plots from one of the authors simulations, showing the cloud at a time relative to periapsis (t=0) of 5, 1, 0, 1, 5, and 10 yr (left to right, top to bottom). [Morsony et al. 2017]This close brush with such a massive black hole was predicted to tear G2 apart, causing much of its material to accrete onto Sgr A*. It was thought that this process would temporarily increase the accretion rate onto the black hole relative to its normal background accretion rate, causing Sgr A*s luminosity to increase for a time.Instead, Sgr A* showed a distinct lack of fireworks, with very minimal change to its brightness after G2s closest approach. This cosmic fizzle has raised questions about the nature of G2: was it really a gas cloud? What else might it have been instead? Now, a team of scientists led by Brian Morsony (University of Maryland and University of Wisconsin-Madison) have run a series of simulations of the encounter to try to address these questions.No FireworksMorsony and collaborators ran three-dimensional hydrodynamics simulations using the FLASH code. They used a range of different simulation parameters, like cloud structure, background structure, background density, grid resolution, and accretion radius, in order to better understand how these factors might have affected the accretion rate and corresponding luminosity of Sgr A*.Accretion rate vs. time for two of the simulations, one with a wind background and one with no wind background. The accretion rate in both cases displays no significant increase when G2 reaches periapsis. [Morsony et al. 2017]Based on their simulations, the authors showed that we actually shouldnt expect G2s encounter to have caused a significant change in Sgr A*s accretion rate relative to its normal rate from background accretion: with the majority of the simulation parameters used, only 321% of the material Sgr A* accreted from 05 years after periapsis is from the cloud, and only 0.0310% of the total cloud mass is accreted.Not Just a Cloud?By comparing their simulations to observations of G2 after its closest approach, Morsony and collaborators find that to fit the observations, G2 cannot be solely a gas cloud. Instead, two components are likely needed: an extended, cold, low-mass gas cloud responsible for most of the emission before G2 approached pericenter, and a very compact component such as a dusty stellar object that dominates the emission observed since pericenter.The authors argue that any future emission detected should no longer be from the cloud, but only from the compact core or dusty stellar object. Future observations should help us to confirm this model but in the meantime these simulations give us a better sense of why G2s encounter with Sgr A* was such a fizzle.CitationBrian J. Morsony et al 2017 ApJ 843 29. doi:10.3847/1538-4357/aa773d

  17. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  18. Accretion and canal impacts in a rapidly subsiding wetland II: Feldspar marker horizon technique

    USGS Publications Warehouse

    Cahoon, D.R.; Turner, R.E.

    1989-01-01

    Recent (6-12 months) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in a Spartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr-1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr-1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackish Spatina patens marsh on Louisiana's chenier plain, vertical accretion rates were the same along natural and canal waterways (3-4 mm yr-1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr-1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.

  19. On the efficiency of jet production in FR II radio galaxies and quasars

    NASA Astrophysics Data System (ADS)

    Rusinek, Katarzyna; Sikora, Marek; Kozieł-Wierzbowska, Dorota; Godfrey, Leith

    2017-04-01

    Jet powers in many radio galaxies with extended radio structures appear to exceed their associated accretion luminosities. In systems with very low accretion rates, this is likely due to the very low accretion luminosities resulting from radiatively inefficient accretion flows. In systems with high accretion rates, the accretion flows are expected to be radiatively efficient, and the production of such powerful jets may require an accretion scenario, which involves magnetically arrested discs (MADs). However, numerical simulations of the MAD scenario indicate that jet production efficiency is large only for geometrically thick accretion flows and scales roughly with (H/R)2, where H is the disc height and R is the distance from the black hole. Using samples of FR II radio galaxies and quasars accreting at moderate accretion rates, we show that their jets are much more powerful than predicted by the MAD scenario. We discuss possible origins of this discrepancy, suggesting that it can be related to approximations adopted in magnetohydrodynamic simulations to treat optically thick accretion flow within the MAD zone, or may indicate that accretion discs are geometrically thicker than the standard theory predicts.

  20. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  1. ULXs from Accreting Neutron Stars: the Light Cylinder, the Stellar Surface, and Everything in Between

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Tchekhovskoy, A.

    2017-10-01

    I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.

  2. The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam

    2018-06-01

    We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.

  3. Gravitational Collapse of Spherical Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Ogino, Shinya; Tomisaka, Kohji; Nakamura, Fumitaka

    1999-10-01

    In this paper, the gravitational collapse of spherical interstellar clouds is discussed based on hydro\\-dynamical simulations. The evolution is divided into two phases: former runaway collapse phase, in which the central density increases greatly on a finite time scale, and later contraction, associated with accretion onto a newborn star. The initial density distribution is expressed using a ratio of the gravitational force to the pressure force alpha . The equation of state for a polytropic gas is used. The central, high-density part of the solution converges on a self-similar solution, which was first derived for the runaway collapse by Larson and Penston (LP). In the later accretion phase, gas behaves like a particle, and the infall speed is accelerated by the gravity of the central object. The solution at this stage is qualitatively similar to the inside-out similarity solutions first found by Shu. However, it is shown that the gas-inflow (accretion) rate is time-dependent, in contrast to the constant rate of the inside-out similarity solutions. For isothermal models in which the pressure is important, 1 <~ alpha <~ 3.35, the accretion rate reaches its maximum when the central part, which obeys the LP solution, contracts and accretes. On the other hand, in isothermal models in which gravity is dominant, alpha >~ 3.35, the accretion becomes most active at the epoch when the outer part of the cloud falls onto the center. The effect of the non-isothermal equation of state is discussed.

  4. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  5. Characterization of exoplanets from their formation. III. The statistics of planetary luminosities

    NASA Astrophysics Data System (ADS)

    Mordasini, C.; Marleau, G.-D.; Mollière, P.

    2017-12-01

    Context. This paper continues a series in which we predict the main observable characteristics of exoplanets based on their formation. In Paper I we described our global planet formation and evolution model that is based on the core accretion paradigm. In Paper II we studied the planetary mass-radius relationship with population syntheses. Aims: In this paper we present an extensive study of the statistics of planetary luminosities during both formation and evolution. Our results can be compared with individual directly imaged extrasolar (proto)planets and with statistical results from surveys. Methods: We calculated three populations of synthetic planets assuming different efficiencies of the accretional heating by gas and planetesimals during formation. We describe the temporal evolution of the planetary mass-luminosity relation. We investigate the relative importance of the shock and internal luminosity during formation, and predict a statistical version of the post-formation mass vs. entropy "tuning fork" diagram. Because the calculations now include deuterium burning we also update the planetary mass-radius relationship in time. Results: We find significant overlap between the high post-formation luminosities of planets forming with hot and cold gas accretion because of the core-mass effect. Variations in the individual formation histories of planets can still lead to a factor 5 to 20 spread in the post-formation luminosity at a given mass. However, if the gas accretional heating and planetesimal accretion rate during the runaway phase is unknown, the post-formation luminosity may exhibit a spread of as much as 2-3 orders of magnitude at a fixed mass. As a key result we predict a flat log-luminosity distribution for giant planets, and a steep increase towards lower luminosities due to the higher occurrence rate of low-mass (M ≲ 10-40 M⊕) planets. Future surveys may detect this upturn. Conclusions: Our results indicate that during formation an estimation of the planetary mass may be possible for cold gas accretion if the planetary gas accretion rate can be estimated. If it is unknown whether the planet still accretes gas, the spread in total luminosity (internal + accretional) at a given mass may be as large as two orders of magnitude, therefore inhibiting the mass estimation. Due to the core-mass effect even planets which underwent cold accretion can have large post-formation entropies and luminosities, such that alternative formation scenarios such as gravitational instabilities do not need to be invoked. Once the number of self-luminous exoplanets with known ages and luminosities increases, the resulting luminosity distributions may be compared with our predictions.

  6. The Spatial Variability of Organic Matter and Decomposition Processes at the Marsh Scale

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, Fateme; Silvestri, Sonia; D'Alpaos, Andrea; Roner, Marcella; Marani, Marco

    2017-04-01

    Coastal salt marshes sequester carbon as they respond to the local Rate of Relative Sea Level Rise (RRSLR) and their accretion rate is governed by inorganic soil deposition, organic soil production, and soil organic matter (SOM) decomposition. It is generally recognized that SOM plays a central role in marsh vertical dynamics, but while existing limited observations and modelling results suggest that SOME varies widely at the marsh scale, we lack systematic observations aimed at understanding how SOM production is modulated spatially as a result of biomass productivity and decomposition rate. Marsh topography and distance to the creek can affect biomass and SOM production, while a higher topographic elevation increases drainage, evapotranspiration, aeration, thereby likely inducing higher SOM decomposition rates. Data collected in salt marshes in the northern Venice Lagoon (Italy) show that, even though plant productivity decreases in the lower areas of a marsh located farther away from channel edges, the relative contribution of organic soil production to the overall vertical soil accretion tends to remain constant as the distance from the channel increases. These observations suggest that the competing effects between biomass production and aeration/decomposition determine a contribution of organic soil to total accretion which remains approximately constant with distance from the creek, in spite of the declining plant productivity. Here we test this hypothesis using new observations of SOM and decomposition rates from marshes in North Carolina. The objective is to fill the gap in our understanding of the spatial distribution, at the marsh scale, of the organic and inorganic contributions to marsh accretion in response to RRSLR.

  7. Mapping accretion and its variability in the young open cluster NGC 2264: a study based on u-band photometry

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Flaccomio, E.; Alencar, S. H. P.; Irwin, J.; Stauffer, J. R.; Cody, A. M.; Teixeira, P. S.; Sousa, A. P.; Micela, G.; Cuillandre, J.-C.; Peres, G.

    2014-10-01

    Context. The accretion process has a central role in the formation of stars and planets. Aims: We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). Methods: We performed a deep ugri mapping as well as a simultaneous u-band+r-band monitoring of the star-forming region with CFHT/MegaCam in order to directly probe the accretion process onto the star from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range ~0.1-2 M⊙. About 40% of the sample are classical (accreting) T Tauri stars, based on various diagnostics (Hα, UV and IR excesses). The remaining non-accreting members define the (photospheric + chromospheric) reference UV emission level over which flux excess is detected and measured. Results: We revise the membership status of cluster members based on UV accretion signatures, and report a new population of 50 classical T Tauri star (CTTS) candidates. A large range of UV excess is measured for the CTTS population, varying from a few times 0.1 to ~3 mag. We convert these values to accretion luminosities and accretion rates, via a phenomenological description of the accretion shock emission. We thus obtain mass accretion rates ranging from a few 10-10 to ~10-7 M⊙/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6σ correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for censored data (upper limits), yields Ṁacc ∝ M*1.4±0.3. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, i.e., much smaller than the observed spread in accretion rates. We suggest that a non-negligible age spread across the star-forming region may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different Ṁacc regimes. Conclusions: A huge variety of accretion properties is observed for young stellar objects in the NGC 2264 cluster. While a definite correlation seems to hold between mass accretion rate and stellar mass over the mass range probed here, the origin of the large intrinsic spread observed in mass accretion rates at any given mass remains to be explored. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A82

  8. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  9. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due tomore » electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.« less

  10. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  11. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  12. Asm-Triggered too Observations of Z Sources at Low Accretion Rate

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    We propose to perform a pointed observation if the ASM shows that a Z source has entered a state of low accretion rate. This would provide a unique opportunity to detect millisecond pulsations. In Sco X-1 we would expect to discover beat-frequency QPO, and could perform a unique high count rate study of them. At sufficiently low accretion rate it would be possible to study the accretion flow when the magnetospheric radius approaches the corotation radius. The frequency of the horizontal branch QPO should go to zero here, and centrifugal inhibition of the accretion should set in, providing direct tests of the magnetospheric model of Z sources.

  13. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  14. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    NASA Astrophysics Data System (ADS)

    Johansen, Anders; Mac Low, Mordecai-Mark; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  15. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  16. Sedimentation rates in the marshes of Sand Lake National Wildlife Refuge

    USGS Publications Warehouse

    Gleason, R.A.; Euliss, N.H.; Holmes, C.W.

    2003-01-01

    Impoundments located within river systems in the Northern Great Plains are vulnerable to sediment inputs because intensive agriculture in watersheds has increased soil erosion and sediments in rivers. At the request of the U.S. Fish and Wildlife Service (FWS), we evaluated the vertical accretion of sediment in the Mud Lake impoundment of Sand Lake National Wildlife Refuge (NWR), Brown County, South Dakota. The Mud Lake impoundment was created in 1936 by constructing a low-head dam across the James River. We collected sediment cores from the Mud Lake impoundment during August 2000 for determination of vertical accretion rates. Accretion rates were estimated using cesium-13 7 and lead-210 isotopic dating techniques to estimate sediment accretion over the past 100 years. Accretion rates were greatest near the dam (1.3 cm yr-1) with less accretion (0.2 cm yr-1) occurring in the upper reaches of Mud Lake. As expected, accretion was highest near the dam where water velocities and greater water depth facilitates sediment deposition. Higher rates of sedimentation (accretion> 2.0 cm year-1) occurred during the 1990s when river flows were especially high. Since 1959, sediment accretion has reduced maximum pool depth of Mud Lake near the dam by 55 cm. Assuming that sediment accretion rates remain the same in the future, we project Mud Lake will have a maximum pool depth of 77 and 51 cm by 2020 and 2040, respectively. Over this same time frame, water depths in the upper reaches of Mud Lake would be reduced to< 2 cm. Projected future loss of water depth will severely limit the ability of managers to manipulate pool levels in Mud Lake to cycle vegetation and create interspersion of cover and water to meet current wildlife habitat management objectives. As predicted for major dams constructed on rivers throughout the world, Mud Lake will have a finite life span. Our data suggests that the functional life span of Mud Lake since construction will be < 100 years. We anticipate that over the next 20 years, sediments entering Mud Lake will reduce water depths to the point that current wildlife management objectives cannot be achieved through customary water-level manipulations. Sedimentation impacts are not unique to the Sand Lake NWR. It is widely accepted that impoundments trap sediments and shallow impoundments, such as those managed by the FWS, are especially vulnerable. Given the ecological impacts associated with loss of water depths, we recommend that managers begin evaluating the long-term wildlife management goals for the refuge relative to associated costs and feasibility of options available to enhance and maximize the life span of existing impoundments, including upper watershed management.

  17. Radiation-driven Turbulent Accretion onto Massive Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less

  18. The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Hale, C. L.; Jarvis, M. J.; Delvecchio, I.; Hatfield, P. W.; Novak, M.; Smolčić, V.; Zamorani, G.

    2018-03-01

    Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over ˜2 deg2 of the Cosmological Evolution Survey (COSMOS) field. We split the radio source population into star-forming galaxies (SFGs) and active galactic nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to z < 1, we find SFGs have a bias, b = 1.5 ^{+0.1}_{-0.2}, at a median redshift of z = 0.62. On the other hand, AGN are significantly more strongly clustered with b = 2.1 ± 0.2 at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low accretion rate AGN are more clustered (b = 2.9 ± 0.3) than high accretion rate AGN (b = 1.8^{+0.4}_{-0.5}) at the same redshift (z ˜ 0.7), suggesting that low accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low accretion rate AGN appear to reside in halo masses of Mh ˜ 3-4 × 1013 h-1 M⊙ at all redshifts. On the other hand, the efficient accreters reside in haloes of Mh ˜ 1-2 × 1013 h-1 M⊙ at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at z ≥ 1 compared to z < 1.

  19. MINERAL METABOLISM OF FRACTURES OF THE TIBIA IN MAN STUDIED WITH EXTERNAL COUNTING OF Sr$sup 8$$sup 5$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendberg, B.

    1961-01-01

    A study was made of 51 adult patients with tibial fractures by external counting with scintillation detectors over the thighs, knees, and tibias during a 14-day period after intravenous injection of 25 to 50 mu c Sr/sup 85/. The pattern of activity curves recorded over the fractured leg compared to those recorded over the control leg varied significantly with the age of the fracture (2 days to 9 yr). Increased uptake of Sr/sup 85/ was observed in all cases. The activity ratio fracture/control tibia obtained 14 days after injection rose during the 1st months after fracture to reach a peakmore » value 6 to 8 months after fracture. The mean 14-day fracture/ control ratios obtained 5 to 10 months after fracture was 15.5 plus or minus 7.2; then it dropped. Even 6 to 9 yr after fracture the counting rate over the fracture was higher than that over the intact tibia. No differences in activity uptake were observed between normally healing fractures and fractures showing delayed or nonunion. Activity curves obtained over the thigh, knee, and tibia of the fractured and intact legs 1 to l4 days after injection of Sr/sup 85/ could be simulated on the basis of a 2-compartment model for the kinetics of Sr in the body. Based on this kinetic analysis the externally recorded Sr/sup 85/ activity values may be interpreted as follows: The activity ratios fractured/intact leg obtained during early intervals after injection are mainly related to differences in the size of the exchangeable mineral spaces under the detector. The 14-day activity ratio of 2 anatomically comparable locations may be used as a relative index of the difference in the accretion rate (rate of irreversible deposition of bone mineral) in these locations, but is somewhat lower than the absolute dfference in the accretion rate. The bone salt laid down in the fracture callus is derived from the body fluids. The accretion rate in the fracture region is increased within a week of the fracture. It rapidly increases during the first months after fracture to reach a peak value at 6 to 8 months after fracture. The accretion rate in the entire fractured leg is increased some months after fracture. The traumatic osteopenia is caused by increased resorption and not by decreased accretion. (H.H.D.)« less

  20. Mixed ice accretion on aircraft wings

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  1. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  2. NGC 4051: Black hole mass and photon index-mass accretion rate correlation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Chekhtman, Alexandre; Titarchuk, Lev

    2018-05-01

    We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in an active galactic nucleus, NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM-Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6 × 105 solar masses.

  3. Unveiling slim accretion disc in AGN through X-ray and Infrared observations

    NASA Astrophysics Data System (ADS)

    Castelló-Mor, Núria; Kaspi, Shai; Netzer, Hagai; Du, Pu; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Wang, Jian-Min

    2017-05-01

    In this work, which is a continuation of Castelló-Mor et al., we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we rigorously explore the dependence of the optical-to-X-ray spectral index αOX and the IR-to-optical spectral index on the dimensionless accretion rate, \\dot{M} = \\dot{m}/η, where \\dot{m} = LAGN/LEdd and η is the mass-to-radiation conversion efficiency, in low- and high-accretion rate sources. We find that the spectral energy distribution (SED) of the faster accreting sources is surprisingly similar to those from the comparison sample of sources with lower accretion rate. In particular: (I) The optical-to-UV AGN SED of slow and fast accreting AGN can be fitted with thin accretion disc (AD) models. (II) The value of αOX is very similar in slow and fast accreting systems up to a dimensionless accretion rate \\dot{M}c ˜ 10. We only find a correlation between αOX and \\dot{M} for sources with \\dot{M} > \\dot{M}c. In such cases, the faster accreting sources appear to have systematically larger αOX values. (III) We also find that the torus in the faster accreting systems seems to be less efficient in reprocessing the primary AGN radiation having lower IR-to-optical spectral slopes. These findings, failing to recover the predicted differences between the SEDs of slim and thin ADs within the observed spectral window, suggest that additional physical processes or very special geometry act to reduce the extreme-UV radiation in fast accreting AGN. This may be related to photon trapping, strong winds and perhaps other yet unknown physical processes.

  4. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations

    DOE PAGES

    Ryan, Benjamin R.; Ressler, Sean M.; Dolence, Joshua C.; ...

    2017-07-31

    In this paper, we present axisymmetric numerical simulations of radiatively inefficient accretion flows onto black holes combining general relativity, magnetohydrodynamics, self-consistent electron thermodynamics, and frequency-dependent radiation transport. We investigate a range of accretion rates up tomore » $${10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$ onto a $${10}^{8}\\,{M}_{\\odot }$$ black hole with spin $${a}_{\\star }=0.5$$. We report on averaged flow thermodynamics as a function of accretion rate. We present the spectra of outgoing radiation and find that it varies strongly with accretion rate, from synchrotron-dominated in the radio at low $$\\dot{M}$$ to inverse-Compton-dominated at our highest $$\\dot{M}$$. In contrast to canonical analytic models, we find that by $$\\dot{M}\\approx {10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$, the flow approaches $$\\sim 1 \\% $$ radiative efficiency, with much of the radiation due to inverse-Compton scattering off Coulomb-heated electrons far from the black hole. Finally, these results have broad implications for modeling of accreting black holes across a large fraction of the accretion rates realized in observed systems.« less

  5. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Benjamin R.; Ressler, Sean M.; Dolence, Joshua C.

    In this paper, we present axisymmetric numerical simulations of radiatively inefficient accretion flows onto black holes combining general relativity, magnetohydrodynamics, self-consistent electron thermodynamics, and frequency-dependent radiation transport. We investigate a range of accretion rates up tomore » $${10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$ onto a $${10}^{8}\\,{M}_{\\odot }$$ black hole with spin $${a}_{\\star }=0.5$$. We report on averaged flow thermodynamics as a function of accretion rate. We present the spectra of outgoing radiation and find that it varies strongly with accretion rate, from synchrotron-dominated in the radio at low $$\\dot{M}$$ to inverse-Compton-dominated at our highest $$\\dot{M}$$. In contrast to canonical analytic models, we find that by $$\\dot{M}\\approx {10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$, the flow approaches $$\\sim 1 \\% $$ radiative efficiency, with much of the radiation due to inverse-Compton scattering off Coulomb-heated electrons far from the black hole. Finally, these results have broad implications for modeling of accreting black holes across a large fraction of the accretion rates realized in observed systems.« less

  6. The mass function of black holes 1

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada; Volonteri, Marta

    2012-05-01

    In this paper, we compare the observationally derived black hole mass function (BHMF) of luminous (>1045-1046 erg s-1) broad-line quasars (BLQSOs) at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS) presented by Kelly et al., with models of merger-driven black hole (BH) growth in the context of standard hierarchical structure formation models. In these models, we explore two distinct black hole seeding prescriptions at the highest redshifts: 'light seeds'- remnants of Population III stars and 'massive seeds' that form from the direct collapse of pre-galactic discs. The subsequent merger triggered mass build-up of the black hole population is tracked over cosmic time under the assumption of a fixed accretion rate as well as rates drawn from the distribution derived by Merloni & Heinz. Four model snapshots at z= 1.25, 2, 3.25 and 4.25 are compared with the SDSS-derived BHMFs of BLQSOs. We find that the light seed models fall short of reproducing the observationally derived mass function of BLQSOs at MBH > 109 M⊙ throughout the redshift range; the massive seed models with a fixed accretion rate of 0.3 Edd, or with accretion rates drawn from the Merloni & Heinz distribution provide the best fit to the current observational data at z > 2, although they overestimate the high-mass end of the mass function at lower redshifts. At low redshifts, a drastic drop in the accretion rate is observed and this is explained as arising due to the diminished gas supply available due to consumption by star formation or changes in the geometry of the inner feeding regions. Therefore, the overestimate at the high-mass end of the black hole mass function for the massive seed models can be easily modified, as the accretion rate is likely significantly lower at these epochs than what we assume. For the Merloni & Heinz model, examining the Eddington ratio distributions fEdd, we find that they are almost uniformly sampled from fEdd= 10-2 to 1 at z≃ 1, while at high redshift, current observations suggest accretion rates close to Eddington, if not mildly super-Eddington, at least for these extremely luminous quasars. Our key findings are that the duty cycle of super-massive black holes powering BLQSOs increases with increasing redshift for all models and models with Population III remnants as black hole seeds are unable to fit the observationally derived BHMFs for BLQSOs, lending strong support for the massive seeding model.

  7. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites affected by this process yields an average net accretion rate of 3.5 mm/yr, similar to the long term rate of 3-5 mm/yr derived from dated organic material from the base of marsh cores and local sea level rise of 3.8 mm/yr since 1984 recorded at the Washington, DC tide gage. The Potomac River shore sites affected by berm sedimentation average 45 mm/yr of accretion, though the majority of this was deposited as a 20-cm-thick packet in the winter of 2009-2010. Some additional elevation control is provided by a land survey of the marsh performed in 1992 in conjunction with a hydraulic modeling study, which indicates an average of 11 mm/yr of accretion across the marsh. All available evidence suggests that marsh surfaces have the capacity to keep up with sea level rise; however, rapid bank erosion poses a severe threat to the sustainability of the marsh.

  8. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-04-01

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  9. TESTING THE PROPAGATING FLUCTUATIONS MODEL WITH A LONG, GLOBAL ACCRETION DISK SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J Drew; Reynolds, Christopher S.

    2016-07-20

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin ( h / r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in themore » accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.« less

  10. Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A.

    PubMed

    Muzerolle; Calvet; Briceño; Hartmann; Hillenbrand

    2000-05-20

    We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.

  11. Bondi flow from a slowly rotating hot atmosphere

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Fabian, Andrew C.

    2011-08-01

    A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate determined by the properties of the gas at the Bondi radius and the mass of the black hole. X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster, indicate a Bondi accretion rate ? which roughly matches the total kinetic power of the jets, suggesting that there is a tight coupling between the jet power and the mass accretion rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has some angular momentum, which previous studies have shown could decrease the accretion rate drastically. We investigate here the possibility that viscosity acts at all radii to transport angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations in which the gas accretes at just a factor of a few less than ?. These solutions assume that the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the viscosity parameter is large, α≥ 0.1, both of which are reasonable for the problem at hand. The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus, the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight feedback to occur. We show that jet powers of a few per cent of ? are expected if either a fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped by a strong magnetic field pressed against the black hole by the pressure of the accretion flow. We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that these as well as magnetohydrodynamic effects may invalidate the model. If the latter comes to pass, it would imply that the rough agreement between observed jet powers and the Bondi accretion rate is a coincidence and jet power is determined by factors other than the mass accretion rate.

  12. Anti-correlation between X-ray luminosity and pulsed fraction in the Small Magellanic Cloud pulsar SXP 1323

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Zezas, Andreas; Coe, Malcolm J.; Drake, Jeremy J.; Hong, JaeSub; Laycock, Silas G. T.; Wik, Daniel R.

    2018-05-01

    We report the evidence for the anti-correlation between pulsed fraction (PF) and luminosity of the X-ray pulsar SXP 1323, found for the first time in a luminosity range 1035-1037 erg s-1 from observations spanning 15 years. The phenomenon of a decrease in X-ray PF when the source flux increases has been observed in our pipeline analysis of other X-ray pulsars in the Small Magellanic Cloud (SMC). It is expected that the luminosity under a certain value decreases as the PF decreases due to the propeller effect. Above the propeller region, an anti-correlation between the PF and flux might occur either as a result of an increase in the un-pulsed component of the total emission or a decrease of the pulsed component. Additional modes of accretion may also be possible, such as spherical accretion and a change in emission geometry. At higher mass accretion rates, the accretion disk could also extend closer to the neutron star (NS) surface, where a reduced inner radius leads to hotter inner disk emission. These modes of plasma accretion may affect the change in the beam configuration to fan-beam dominant emission.

  13. Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu

    Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.

  14. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  15. Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales

    NASA Astrophysics Data System (ADS)

    Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke

    2017-09-01

    We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc)3 Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes vary over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star-disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.

  16. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  17. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  18. Simulations of small solid accretion on to planetesimals in the presence of gas

    NASA Astrophysics Data System (ADS)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  19. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  20. Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Fryxell, B. A.

    1989-01-01

    A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.

  1. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    PubMed

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  2. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  3. Three-dimensional hydrodynamic Bondi-Hoyle accretion. 2: Homogeneous medium at Mach 3 with gamma = 5/3

    NASA Technical Reports Server (NTRS)

    Ruffert, Maximilian; Arnett, David

    1994-01-01

    We investigate the hydrodynamics of three-dimensional classical Bondi-Hoyle accretion. Totally absorbing spheres of varying sizes (from 10 down to 0.01 accretion radii) move at Mach 3 relative to a homogeneous and slightly perturbed medium, which is taken to be an ideal gas (gamma = 5/3). To accommodate the long-range gravitational forces, the extent of the computational volume is 32(exp 3) accretion radii. We examine the influence of numerical procedure on physical behavior. The hydrodynamics is modeled by the 'piecewise parabolic method.' No energy sources (nuclear burning) or sinks (radiation, conduction) are included. The resolution in the vicinity of the accretor is increased by multiply nesting several (5-10) grids around the sphere, each finer grid being a factor of 2 smaller in zone dimension that the next coarser grid. The largest dynamic range (ratio of size of the largest grid to size of the finest zone) is 16,384. This allows us to include a coarse model for the surface of the accretor (vacuum sphere) on the finest grid, while at the same time evolving the gas on the coarser grids. Initially (at time t = 0-10), a shock front is set up, a Mach cone develops, and the accretion column is observable. Eventually the flow becomes unstable, destroying axisymmetry. This happens approximately when the mass accretion rate reaches the values (+/- 10%) predicted by the Bondi-Hoyle accretion formula (factor of 2 included). However, our three-dimensional models do not show the highly dynamic flip-flop flow so prominent in two-dimensional calculations performed by other authors. The flow, and thus the accretion rate of all quantities, shows quasi-periodic (P approximately equals 5) cycles between quiescent and active states. The interpolation formula proposed in an accompanying paper is found to follow the collected numerical data to within approximately 30%. The specific angular momentum accreted is of the same order of magnitude as the values previously found for two-dimensional flows.

  4. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  5. An Accretion Model for Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  6. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  7. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations

    NASA Technical Reports Server (NTRS)

    Simonelli, D. P.; Pollack, J. B.; McKay, C. P.

    1997-01-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.

  8. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P

    1997-02-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.

  9. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  10. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades.

    USGS Publications Warehouse

    Breithaupt, Josh L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-01-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  11. Massive black hole factories: Supermassive and quasi-star formation in primordial halos

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad

    2013-10-01

    Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.

  12. Accretion onto a higher dimensional black hole

    NASA Astrophysics Data System (ADS)

    John, Anslyn J.; Ghosh, Sushant G.; Maharaj, Sunil D.

    2013-11-01

    We examine the steady-state spherically symmetric accretion of relativistic fluids, with a polytropic equation of state, onto a higher-dimensional Schwarzschild black hole. The mass accretion rate, critical radius, and flow parameters are determined and compared with results obtained in standard four dimensions. The accretion rate, M˙, is an explicit function of the black hole mass, M, as well as the gas boundary conditions and the dimensionality, D, of the spacetime. We also find the asymptotic compression ratios and temperature profiles below the accretion radius and at the event horizon. This analysis is a generalization of Michel’s solution to higher dimensions and of the Newtonian expressions of Giddings and Mangano, which consider the accretion of TeV black holes.

  13. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  14. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    USGS Publications Warehouse

    Krauss, K.W.; Allen, J.A.; Cahoon, D.R.

    2003-01-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types - prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba - on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year-1) more than pneumatophores or bare soil controls (mean, 8.3 mm year-1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year-1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year-1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests. ?? 2003 Elsevier Science B.V. All rights reserved.

  15. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  16. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-07-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects (MYSOs), but instead is only detected towards approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near-infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳10-4 M⊙ yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲10-6 M⊙ yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  17. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  18. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  19. REVIEWS OF TOPICAL PROBLEMS: The nature of accretion disks of close binary stars: overreflection instability and developed turbulence

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Bisikalo, D. V.

    2008-06-01

    The current status of the physics of accretion disks in close binary stars is reviewed, with an emphasis on the hydrodynamic overreflection instability, which is a factor leading to the accretion disk turbulence. The estimated turbulent viscosity coefficients are in good agreement with observations and explain the high angular momentum transfer rate and the measured accretion rate. Based on the observations, a power-law spectrum for the developed turbulence is obtained.

  20. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  1. MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froning, Cynthia S.; France, Kevin; Khargharia, Juthika

    2011-12-10

    We present contemporaneous X-ray, ultraviolet, optical, near-infrared, and radio observations of the black hole binary system, A0620-00, acquired in 2010 March. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00 as well as NUV observations with the Space Telescope Imaging Spectrograph. The observed spectrum is flat in the FUV and very faint (with continuum fluxes {approx_equal} 1e - 17 erg cm{sup -2} s{sup -1} A{sup -1}). The UV spectra also show strong, broad (FWHM {approx} 2000 km s{sup -1}) emission lines of Si IV, C IV, He II, Fe II,more » and Mg II. The C IV doublet is anomalously weak compared to the other lines, which is consistent with the low carbon abundance seen in NIR spectra of the source. Comparison of these observations with previous NUV spectra of A0620-00 shows that the UV flux has varied by factors of 2-8 over several years. We compiled the dereddened, broadband spectral energy distribution (SED) of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at {approx_equal}3000 A. The peak can be fit with a T = 10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that {approx}90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10{sup 5} the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion. We compared our broadband SED to two models of A0620-00 in quiescence: the advection-dominated accretion flow model and the maximally jet-dominated model. The comparison suggests that strong outflows may be present in the system, indicated by the discrepancies in accretion rates and the FUV upturn in flux in the SED.« less

  2. A magnetic accretion switch in pre-cataclysmic binaries

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Garraffo, Cecilia; Takei, Dai; Gaensicke, Boris

    2014-02-01

    We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 h period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion time-scales for gravitational settling imply dot{M} ˜ 10^{-16} M_{odot } yr-1 for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 XMM-Newton observation. This is the first time that large accretion rate variations have been seen in a detached pre-cataclysmic variable (pre-CV). A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the XMM-Newton observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind `accretion switch', a mechanism that can be tested by X-ray and ultraviolet monitoring. If so, QS Vir and similar pre-CVs could provide powerful insights into hitherto inscrutable CV and M dwarf magnetospheres, and mass- and angular-momentum-loss rates.

  3. Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke, E-mail: kueffmeier@nbi.ku.dk

    2017-09-01

    We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc){sup 3} Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes varymore » over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star–disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.« less

  4. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or anticorrelate with the observed X-ray luminosity fluctuations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres nearmore » periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.« less

  6. DASCH ON KU Cyg: A {approx} 5 YEAR DUST ACCRETION EVENT IN {approx} 1900

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Sumin; Grindlay, Jonathan; Los, Edward

    2011-09-01

    KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a {approx}0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg ismore » probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.« less

  7. Spectra of black hole accretion models of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Sa̧dowski, Aleksander; Soria, Roberto

    2017-08-01

    We present general relativistic radiation magnetohydrodynamics simulations of super-Eddington accretion on a 10 M⊙ black hole. We consider a range of mass accretion rates, black hole spins and magnetic field configurations. We compute the spectra and images of the models as a function of viewing angle and compare them with the observed properties of ultraluminous X-ray sources (ULXs). The models easily produce apparent luminosities in excess of 1040 erg s-1 for pole-on observers. However, the angle-integrated radiative luminosities rarely exceed 2.5 × 1039 erg s-1 even for mass accretion rates of tens of Eddington. The systems are thus radiatively inefficient, though they are energetically efficient when the energy output in winds and jets is also counted. The simulated models reproduce the main empirical types of spectra - disc-like, supersoft, soft, hard - observed in ultraluminous X-ray sources (ULXs). The magnetic field configuration, whether 'standard and normal evolution' (SANE) or 'magnetically arrested disc' (MAD), has a strong effect on the results. In SANE models, the X-ray spectral hardness is almost independent of accretion rate, but decreases steeply with increasing inclination. MAD models with non-spinning black holes produce significantly softer spectra at higher values of \\dot{M}, even at low inclinations. MAD models with rapidly spinning black holes are unique. They are radiatively efficient (efficiency factor ˜10-20 per cent), superefficient when the mechanical energy output is also included (70 per cent) and produce hard blazar-like spectra. In all models, the emission shows strong geometrical beaming, which disagrees with the more isotropic illumination favoured by observations of ULX bubbles.

  8. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  9. Are Gravitational Waves Spinning Down PSR J1023+0038?

    PubMed

    Haskell, B; Patruno, A

    2017-10-20

    The pulsar J1023+0038 rotates with a frequency ν≈592  Hz and has been observed to transition between a radio state, during which it is visible as a millisecond radio pulsar, and a low-mass x-ray binary (LMXB) state, during which accretion powered x-ray pulsations are visible. Timing during the two phases reveals that during the LMXB phase the neutron star is spinning down at a rate of ν[over ˙]≈-3×10^{-15}  Hz/s, which is approximately 27% faster than the rate measured during the radio phase, ν[over ˙]≈-2.4×10^{-15}  Hz/s, and is at odds with the predictions of accretion models. We suggest that the increase in spin-down rate is compatible with gravitational wave emission, particularly with the creation of a "mountain" during the accretion phase. We show that asymmetries in pycnonuclear reaction rates in the crust can lead to a large enough mass quadrupole to explain the observed spin-down rate, which thus far has no other self-consistent explanation. We also suggest two observational tests of this scenario, involving radio timing at the onset of the next millisecond radio pulsar phase, when the mountain should dissipate, and accurate timing during the next LMXB phase to track the increase in torque as the mountain builds up. Another possibility is that an unstable r mode with an amplitude α≈5×10^{-8} may be present in the system.

  10. Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; McKinney, Jonathan C.; Markoff, Sera; Tchekhovskoy, Alexander

    2014-05-01

    Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high-luminosity hard-to-soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence the accretion state directly, and hence the magnetic field structure is an important second parameter in explaining observations of accreting black holes across the mass and luminosity scales.

  11. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.

    PubMed

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-07

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

  12. Carbon accretion in unthinned and thinned young-growth forest stands of the Alaskan perhumid coastal temperate rainforest.

    PubMed

    D'Amore, David V; Oken, Kiva L; Herendeen, Paul A; Steel, E Ashley; Hennon, Paul E

    2015-12-01

    Accounting for carbon gains and losses in young-growth forests is a key part of carbon assessments. A common silvicultural practice in young forests is thinning to increase the growth rate of residual trees. However, the effect of thinning on total stand carbon stock in these stands is uncertain. In this study we used data from 284 long-term growth and yield plots to quantify the carbon stock in unthinned and thinned young growth conifer stands in the Alaskan coastal temperate rainforest. We estimated carbon stocks and carbon accretion rates for three thinning treatments (basal area removal of 47, 60, and 73 %) and a no-thin treatment across a range of productivity classes and ages. We also accounted for the carbon content in dead trees to quantify the influence of both thinning and natural mortality in unthinned stands. The total tree carbon stock in naturally-regenerating unthinned young-growth forests estimated as the asymptote of the accretion curve was 484 (±26) Mg C ha -1 for live and dead trees and 398 (±20) Mg C ha -1 for live trees only. The total tree carbon stock was reduced by 16, 26, and 39 % at stand age 40 y across the increasing range of basal area removal. Modeled linear carbon accretion rates of stands 40 years after treatment were not markedly different with increasing intensity of basal area removal from reference stand values of 4.45 Mg C ha -1  year -1 to treatment stand values of 5.01, 4.83, and 4.68 Mg C ha -1  year -1 respectively. However, the carbon stock reduction in thinned stands compared to the stock of carbon in the unthinned plots was maintained over the entire 100 year period of observation. Thinning treatments in regenerating forest stands reduce forest carbon stocks, while carbon accretion rates recovered and were similar to unthinned stands. However, that the reduction of carbon stocks in thinned stands persisted for a century indicate that the unthinned treatment option is the optimal choice for short-term carbon sequestration. Other ecologically beneficial results of thinning may override the loss of carbon due to treatment. Our model estimates can be used to calculate regional carbon losses, alleviating uncertainty in calculating the carbon cost of the treatments.

  13. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motie, Iman; Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-calledmore » the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.« less

  14. Accretion onto a charged Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ditta, A.

    2018-04-01

    Accretion of matter onto a compact is one of the interesting astrophysical processes. Here, we study the accretion of matter onto a charged Kiselev black hole. The problem of static and spherically symmetric accretion of a polytropic fluid is explored for the analytic solution of equations of motion. We have investigated the necessary conditions for existence of the critical flow points and the mass accretion rate. Finally, we discuss the polytropic gas accretion in detail. It has been found that in the accretion process the quintessence and charge parameters play a dominant role.

  15. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Technical Reports Server (NTRS)

    Seifana, Elena; Titarchuk, Lev

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram, We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites, We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and Gaussian component We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keY to 4.5 keY, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by factor four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+ I was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries. This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at high values of mass accretion rate.

  16. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Titarchuk, Lev

    2012-03-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and Beppo SAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component. We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Γ is almost constant (Γ = 2.00 ± 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index Γ and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli & Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at high values of mass accretion rate.

  17. Segmentation Control on Crustal Accretion: Insights From the Chile Ridge

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Karsten, J. L.; Milman, M. S.; Klein, E. M.

    2002-12-01

    Controls on crustal accretion at mid-ocean ridges include spreading rate and mantle temperature and composition. Less studied is the effect of the segmentation geometry, although it has been known for some time that large offset transforms have significant effects on the extent of melting and lava compositions produced by ridges in their vicinity. The PANORAMA 4 expedition surveyed the Chile Ridge between 36°-43°S in order to examine the effects of ridge segmentation on crustal accretion. This section of the ridge is spreading uniformly at intermediate rates (~53 mm/yr) and rock sampling and regional data indicate a largely uniform mantle composition with no systematic changes in mantle thermal structure. Thus the segmentation geometry is the primary crustal accretion variable. The survey mapped and sampled 19 first order ridge segments and their transform offsets. The ridges range from 130 to 10 km in length with mapped transform offsets from 168 to 19 km. The segments primarily have axial valley morphology, with segments longer than ~65 km typically displaying central highs deepening toward segment ends. Mantle Bouguer anomalies (MBAs) show that these segments also have bulls eye lows associated with the central highs indicating thicker crust than at segment ends. Overall the mapped segments displays a trend of increasing depth and MBA, implying diminishing crustal production, with decreasing segment length and increasing transform offset. We examine the cause of this trend by modeling the mantle flow pattern generated by finite length ridge segments using the Phipps-Morgan and Forsyth (1988) algorithm. The results indicate that at a constant spreading rate mantle upwelling rates are greatest and extend deeper near the segment center, and that for segments that are significantly offset, upwelling rates decrease overall with decreasing segment length. The modeling implies that segmentation itself, even without cooling and lithospheric relief at transforms has a strong influence on mantle advection and therefore on crustal production.

  18. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  19. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.

  20. Detection of Accretion X-Rays from QS Vir: Cataclysmic or a Lot of Hot Air?

    NASA Astrophysics Data System (ADS)

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny

    2012-03-01

    An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of \\dot{M} = 1.7 \\times 10^{-13} \\,M_\\odot yr-1. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of \\dot{M}\\sim 2\\times 10^{-12}\\,M_\\odot yr-1 if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is LX = 3 × 1028 erg s-1, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.

  1. Accreting white dwarf models for type 1 supernovae. 1: Presupernova evolution and triggering mechanisms

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.

  2. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  3. Planetesimal Growth through the Accretion of Small Solids: Hydrodynamics Simulations with Gas-Particle Coupling

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2016-10-01

    The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.

  4. Constraining Engine Paradigms of Pre-Planetary Nebulae Using Kinematic Properties of their Outflows

    NASA Astrophysics Data System (ADS)

    Blackman, E.

    2014-04-01

    Binary interactions and accretion plausibly conspire to produce the ubiquitous collimated outflows from planetary nebulae (PN) and their presumed pre-planetary nebulae (PPN) progenitors. But which accretion engines are viable? The difficulty in observationally resolving the engines warrants indirect constraints. I discuss how momentum outflow data for PPN can be used to determine the minimum required accretion rate for presumed main sequence (MS) or white dwarf (WD) accretors by comparing to several example accretion rates inferred from published models. While the main goal is to show the method in anticipation of more data and better theoretical constraints, taking the present results at face value already rule out modes of accretion: Bondi-Hoyle Lyttleton (BHL) wind accretion and wind Roche lobe overflow (M-WRLOF, based on Mira parameters) are too feeble for all 19/19 objects for a MS accretor. For a WD accretor, BHL is ruled out for 18/19 objects and M-WRLOF for 15/19 objects. Roche lobe overflow from the primary can accommodate 7/19 objects but only common envelope evolution accretion modes seem to be able to accommodate all 19 objects. Sub-Eddington rates for a MS accretor are acceptable but 8/19 would require super-Eddington rates for a WD. I also briefly discuss a possible anti-correlation between age and maximum observed outflow speed, and the role of magnetic fields.

  5. Stable accretion from a cold disc in highly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.

    2017-11-01

    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  6. A Strong Shallow Heat Source in the Accreting Neutron Star MAXI J0556-332

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Page, Dany

    2015-08-01

    An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star’s crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is ≈4-10 MeV per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to ≈6-16 MeV. This shallow heating is still required to fit the light curve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ({T}b≳ {10}9 {{K}}) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the light curve disfavor the presence of Urca cooling pairs in the crust.

  7. Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki

    2018-05-01

    Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.

  8. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von Huene, Roland E.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  9. A coupled geomorphic and ecological model of tidal marsh evolution.

    PubMed

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  10. Measurements of mass accretion rates in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Donehew, Brian

    Herbig Ae/Be stars(HAeBes) are young stellar objects of spectral class F2 through B0, with the central star often surrounded by a circumstellar disk of gas and dust. They are the higher mass analogs to T Tauri stars. The interaction between the star and the disk is not well understood, nor is the disk structure. The central star will often accrete mass from the disk, and the mass accretion rate is an important parameter for modeling the disk structure and evolution. The methods for measuring mass accretion rates of T Tauri stars are generally not applicable to HAeBe stars. As such, reliable measurements of mass accretion rates for HAeBes are rare. Garrison(1978) saw that the Balmer Discontinuity of HAeBes was veiled, and attributed this veiling to accretion luminosity. Building on Garrison(1978) and the work of Muzerolle et al. (2004), I determine the mass accretion rates and accretion luminosities of a large sample of HAeBe stars by measuring the veiling of the Balmer Discontinuity due to the accretion luminosity. Muzerolle et al. (1998) established a strong correlation between the accretion luminosity of T Tauri stars and the luminosity of Br gamma, and this correlation seems to extend to the evolutionary precursors to HAeBes, intermediate T Tauri stars, as well Calvet et al. (2004). I test this correlation for HAeBes and discover that it is valid for HAe stars but not for HBe stars. From examining the HAeBes of my sample from spectral range A3 to B7, there does not seem to be a particular spectral type at which the correlation fails. A few of the late HBe stars are consistent with the correlation, but most of the HBe stars have Br gamma luminosities much larger than what one would expect from the correlation. This suggests that there might be a significant stellar wind component to the Br gamma luminosity for many of the HBe stars. T Tauri stars accrete mass from their disks magnetospherically, in which the strong stellar field of the star truncates the disk at some distance from the star and the disk material than falls to the stellar surface along the magnetic field lines. HAeBe stars are not expected to have strong stellar magnetic fields, and observations have failed to find any such fields for most HAeBes (Alecian 2007). However, circumstantial evidence suggests that some HAeBe stars are accreting magnetospherically (Muzerolle et al. 2004, Brittain et al. 2009). Since the correlation between accretion luminosity and Br γ luminosity is valid for both T Tauri stars and HAe stars, this suggests that the same basic accretion process is occuring for both.

  11. The long-term intensity behavior of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Swartz, K.; Giacconi, R.; Fabbiano, G.; Morin, J.

    1976-01-01

    In three years of observation, the X-ray source Cen X-3 appears to alternate between 'high states', with an intensity of 150 counts/s (2-6 keV) or greater, and 'low states', where the source is barely detectable. The time scale of this behavior is of the order of months, and no apparent periodicity has been observed. Analysis of two transitions between these states is reported. During two weeks in July 1972, the source increased from about 20 counts/s to 150 counts/s. The detailed nature of this turn-on is interpreted in terms of a model in which the supergiant's stellar wind decreases in density. A second transition, a turnoff in February 1973, is similarly analyzed and found to be consistent with a simple decrease in accretion rate. The presence of absorption dips during transitions at orbital phases 0.4-0.5 as well as at phase 0.75 is discussed. The data are consistent with a stellar-wind accretion model and with different kinds of extended lows caused by increased wind density masking the X-ray emission or by decreased wind density lowering the accretion rate.

  12. Theory of quasi-spherical accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  13. Far Ultraviolet Spectroscopy of Seven Nova-Like Variables

    NASA Astrophysics Data System (ADS)

    Mizusawa, Trisha; Merritt, Jason; Ballouz, Ronald-Louis; Bonaro, Michael; Foran, Sean; Plumberg, Christopher; Stewart, Heather; Wiley, Trayer; Sion, Edward M.

    2010-03-01

    We present the results of a multicomponent synthetic spectral analysis of the archival far ultraviolet spectra of several key nova-like variables including members of the SW Sex, RW Tri, UX UMa, and VY Scl subclasses: KR Aur, RW Tri, V825 Her, V795 Her, BP Lyn, V425 Cas, and HL Aqr. Accretion rates as well as the possible flux contribution of the accreting white dwarf are included in our analysis. Except for RW Tri, which has a reliable trigonometric parallax, we computed the distances to the nova-like systems using the method of Knigge. Our analysis of seven archival IUE spectra of RW Tri at its parallax distance of 341 pc consistently indicates a low mass (˜0.4 M⊙) white dwarf and an average accretion rate, . For KR Aur, we estimate that the white dwarf has Teff = 29,000 ± 2000 K, log g = 8.4, and contributes 18% of the far-UV flux, while an accretion disk with accretion rate at an inclination of 41° contributes the remainder. We find that an accretion disk dominates the far-UV spectrum of V425 Cas but a white dwarf contributes nonnegligibly with approximately 18% of the far-UV flux. For the two high state nova-likes, HL Aqr and V825 Her, their accretion disks totally dominate with and 3 × 10-9 M⊙ yr-1, respectively. For BP Lyn we find while for V795 Her, we find an accretion rate of . We discuss the implications of our results for the evolutionary status of nova-like variables.

  14. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  15. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2012-10-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  16. Nutrient and hormonal regulation of proteolysis through FOXO signaling pathways in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    It is established in mammals that insulin like growth factor-I (IGF-I) and insulin promote protein accretion by both increasing rates of protein synthesis and decreasing rates of protein degradation. The suppression of ubiquitin ligase expression is a mechanism that contributes to the effects that ...

  17. The Role of the Outer Boundary Condition in Accretion Disk Models: Theory and Application

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Peng, Qiuhe; Lu, Ju-fu; Wang, Jianmin

    2000-07-01

    In a previous paper, we find that the outer boundary conditions (OBCs) of an optically thin accretion flow play an important role in determining the structure of the flow. Here in this paper, we further investigate the influence of OBCs on the dynamics and radiation of the accretion flow on a more detailed level. Bremsstrahlung and synchrotron radiations amplified by Comptonization are taken into account, and two-temperature plasma assumption is adopted. The three OBCs we adopted are the temperatures of the electrons and ions and the specific angular momentum of the accretion flow at a certain outer boundary. We investigate the individual role of each of the three OBCs on the dynamical structure and the emergent spectrum. We find that when the general parameters such as the mass accretion rate M and the viscous parameter α are fixed the peak flux at various bands such as radio, IR, and X-ray can differ by as much as several orders of magnitude under different OBCs in our example. Our results indicate that the OBC is both dynamically and radiatively important and therefore should be regarded as a new ``parameter'' in accretion disk models. As an illustrative example, we further apply the above results to the compact radio source Sgr A* located at the center of our Galaxy. The advection-dominated accretion flow (ADAF) model has turned out to be a great success in explaining its luminosity and spectrum. However, there exists a discrepancy between the mass accretion rate favored by ADAF models in the literature and that favored by the three-dimensional hydrodynamical simulation, with the former being 10-20 times smaller than the latter. By seriously considering the outer boundary condition of the accretion flow, we find that because of the low specific angular momentum of the accretion gas the accretion in Sgr A* should belong to a new accretion pattern, which is characterized by the possession of a very large sonic radius. This accretion pattern can significantly reduce the discrepancy between the mass accretion rates. We argue that the accretion occurred in some detached binary systems; the core of nearby elliptical galaxies and active galactic nuclei very possibly belongs to this accretion pattern.

  18. The evolution of supermassive Population III stars

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J.

    2018-02-01

    Supermassive primordial stars forming in atomically cooled haloes at z ˜ 15-20 are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of 0.1-1 M⊙ yr-1 until the general relativistic instability triggers its collapse to a black hole at masses of ˜105 M⊙. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionizing radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates 0.001-10 M⊙ yr-1, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We compute for the first time evolutionary tracks in the mass range M > 105 M⊙. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than 0.01 M⊙ yr-1, the stars evolve as red, cool supergiants with surface temperatures below 104 K towards masses >105 M⊙. Moreover, even with the lower rates 0.001 M_{⊙} yr{^{-1}}<\\dot{M}< 0.01 M⊙ yr-1, the surface temperature is substantially reduced from 105 to 104 K for M ≳ 600 M⊙. Compared to previous studies, our results extend the range of masses and accretion rates at which the ionizing feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars. We provide numerical tables for the surface properties of our models.

  19. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  20. Accretion Rate and the Physical Nature of Unobscured Active Galaxies

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, Christopher D.; Kelly, Brandon C.; Civano, Francesca; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Merloni, Andrea; Urry, C. Megan; Hao, Heng; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Lanzuisi, Giorgio; Liu, Charles; Mainieri, Vincenzo; Salvato, Mara; Scoville, Nick Z.

    2011-05-01

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L int) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L int/L Edd > 10-2), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L int/L Edd < 10-2) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L int/L Edd < 10-2 narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L int/L Edd > 10-2 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L int/L Edd < 10-2 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical "axis" of AGN unification, as described by a simple model. Based on observations with the XMM-Newton satellite, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the Magellan telescope, operated by the Carnegie Observatories; the ESO Very Large Telescope; and the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the Subaru Telescope, operated by the National Astronomical Observatory of Japan; and the NASA/ESA Hubble Space Telescope, operated at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  1. On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan

    2013-01-01

    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.

  2. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus

    PubMed Central

    Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J=3–2 and other molecular lines from the “water-fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0⋅″35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm−3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10−4 M⊙ yr−1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed. PMID:28191303

  3. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus.

    PubMed

    Sahai, R; Vlemmings, W H T; Gledhill, T; Sánchez Contreras, C; Lagadec, E; Nyman, L-Å; Quintana-Lacaci, G

    2017-01-20

    We have mapped 12 CO J=3-2 and other molecular lines from the "water-fountain" bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with [Formula: see text] resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 10 6 cm -3 ), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10 -4 M ⊙ yr -1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M ⊙ ) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.

  4. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J = 3-2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ˜0.″35 resolution using Atacama Large Millimeter/submillimeter Array. We find (I) two very high-speed knotty, jet-like molecular outflows; (II) a central high-density (> {few}× {10}6 cm-3), expanding torus of diameter 1300 au; and (III) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5× {10}-4 M⊙ yr-1 in the past ˜455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 M⊙) of very large (˜millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age ˜160 years) and the younger high-velocity outflow (age ˜110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.

  5. The evolution of a binary in a retrograde circular orbit embedded in an accretion disk

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.; Paardekooper, S.-J.; Polnarev, A. G.

    2015-04-01

    Aims: Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary with a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate the time scales for inward migration that leads to coalescence and the accretion rate to the secondary component. Methods: We employed both semi-analytic methods and two-dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. Results: We develop the theory of type I migration in this case and go on to determine the conditions for gap formation. We find that when this happens inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed accretion disk. The accretion rate onto the secondary itself is found to only play a minor role in the orbital evolution as it is of the order of q1/3 of that to the primary. We obtain good general agreement between the semi-analytic and fully numerical approaches and note that the former can be applied to disks with a wide dynamic range on long time scales. Conclusions: We conclude that inward migration induced by interaction with the disk can enable the binary to migrate inwards, alleviating the so-called final parsec problem. When q is sufficiently small, there is no well-pronounced cavity inside the binary orbit, unlike the prograde case. The accretion rate to the secondary does not influence the binary orbital evolution much, but can lead to some interesting observational consequences, provided the accretion efficiency is sufficiently large. In this case the binary may be detected as, for example, two sources of radiation rotating around each other. However, the study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Also, torques acting between a circumbinary accretion disk, which has a non-zero inclination with respect to a retrograde binary orbit at large distances, may cause the inclination to increase on a time scale that can be similar to, or smaller than, the time scale of orbital evolution, depending on the disk parameters and binary mass ratio. This is also an aspect for future study. The movies are available in electronic form at http://www.aanda.org

  6. Changes in evaporation and potential hazards associated with ice accretion in a "New Arctic"

    NASA Astrophysics Data System (ADS)

    Boisvert, L.

    2016-12-01

    The Arctic sea ice acts as a barrier between the ocean and atmosphere inhibiting the exchange of heat, momentum, and moisture. Recently, the Arctic has seen unprecedented declines in the summer sea ice area, changing to a "New Arctic" climate system, one that is dominated by processes affected by large ice-free areas for the majority of the year as the melt season lengthens. Using atmospheric data from the Atmospheric Infrared Sounder (AIRS) instrument, we found that accompanying this loss of sea ice, the Arctic is becoming warmer and wetter. Evaporation, which plays an important role in the Arctic energy budget, water vapor feedback, and Arctic amplification, is also changing. The largest increases seen in evaporation are in the Arctic coastal seas during the spring and fall where there has been a reduction in sea ice cover and an increase in sea surface temperatures. Increases in evaporation also correspond to increases in low-level clouds. In this "New Arctic" transportation and shipping throughout the Arctic Ocean is becoming a more viable option as the areas in which ships can travel and the time period for ship travel continue to increase. There are various hazards associated with Arctic shipping, one being ice accretion. Ice accretion is the build up of ice on the surface of ships as they travel through regions of specific meteorological conditions unique to high-latitude environments. Besides reduced visibility, this build up of ice can cause ships to sink or capsize (by altering the ships center of gravity) depending on the severity and/or the location of ice build-up. With these changing atmospheric conditions in the Arctic, we expect there have been increases in the ice accretion potential over recent years, and an increase in the likelihood of high, and potentially dangerous ice accretion rates. Improved understanding of how this rapid loss of sea ice affects the "New Arctic" climate system, how evaporation is changing and how ice accretion could change will allow scientists, policy makers and the shipping/travel industry to make improved decisions in the future.

  7. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration

    2018-04-01

    Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

  8. Star Formation in Massive Clusters via Bondi Accretion

    NASA Astrophysics Data System (ADS)

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl <~ 5 × 10-2 of the GMC, radii r cl ~ 1 pc, and free-fall times τcl ~ 2 × 105 yr. We show that clumps inside GMCs should accrete at a modified Bondi accretion rate, which depends on clump mass as \\dot{M}_{cl}\\sim M_{cl}^{5/4}. This rate is initially rather slow, usually slower than the initial star formation rate inside the clump (we adopt the common assumption that inside the clump, \\dot{M}_*=\\epsilon _ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  9. Estimation of bipolar jets from accretion discs around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che

    We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IRmore » photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi /LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.« less

  11. Type I X-Ray Bursts at Low Accretion Rates

    NASA Astrophysics Data System (ADS)

    Peng, Fang; Brown, E. F.; Truran, J. W.

    2006-06-01

    Neutron stars, with their strong surface gravity, have interestingly short timescales for the sedimentation of heavy elements. Recent observations of unstable thermonuclear burning (observed as X-ray bursts) on the surfaces of slowly accreting neutron stars (< 0.01 of the Eddington rate) motivate us to examine how sedimentation of CNO isotopes affects the ignition of these bursts. For neutron stars accreting at rates less than 0.1 Eddington, there is sufficient time for CNO to settle out of the accreted envelope. We estimate the burst development using a simple one-zone model with a full reaction network. At the lowest accretion rates, 0.1 Eddington, there can still be an effect. We note that the reduced proton-to-seed ratio favors the production of 12C--an important ingredient for subsequent superbursts.This work is supported by the U.S. DOE under grant B523820 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago, JINA under NSF-PFC grant PHY 02-16783, NSF under grant AST-0507456 and U.S. DOE under contract No. W-31-109-ENG-38.

  12. Accretion signatures in the X-shooter spectrum of the substellar companion to SR12

    NASA Astrophysics Data System (ADS)

    Santamaría-Miranda, Alejandro; Cáceres, Claudio; Schreiber, Matthias R.; Hardy, Adam; Bayo, Amelia; Parsons, Steven G.; Gromadzki, Mariusz; Aguayo Villegas, Aurora Belén

    2018-04-01

    About a dozen substellar companions orbiting young stellar objects or pre-main sequence stars at several hundred au have been identified in the last decade. These objects are interesting both due to the uncertainties surrounding their formation, and because their large separation from the host star offers the potential to study the atmospheres of young giant planets and brown dwarfs. Here, we present X-shooter spectroscopy of SR 12 C, a ˜2 Myr young brown dwarf orbiting SR 12 at an orbital separation of 1083 au. We determine the spectral type, gravity, and effective temperature via comparison with models and observational templates of young brown dwarfs. In addition, we detect and characterize accretion using several accretion tracers. We find SR 12 C to be a brown dwarf of spectral type L0 ± 1, log g = 4 ± 0.5, an effective temperature of 2600 ± 100 K. Our spectra provide clear evidence for accretion at a rate of ˜10-10 M⊙ yr-1. This makes SR 12 one of the few sub-stellar companions with a reliable estimate for its accretion rate. A comparison of the ages and accretion rates of sub-stellar companions with young isolated brown dwarfs does not reveal any significant differences. If further accretion rate measurements of a large number of substellar companions can confirm this trend, this would hint towards a similar formation mechanism for substellar companions at large separations and isolated brown dwarfs.

  13. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.

  14. Anomalous accretion activity and the spotted nature of the DQ Tau binary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Petersen, Michael S.

    2014-09-01

    We report the detection of an anomalous accretion flare in the tight eccentric pre-main-sequence binary system DQ Tau. In a multi-epoch survey consisting of randomly acquired low- to moderate-resolution near-infrared spectra obtained over a period of almost 10 yr, we detect a significant and simultaneous brightening of four standard accretion indicators (Ca II infrared triplet, the Paschen and Brackett series H I lines, and He I 1.083 μm), on back-to-back nights (φ = 0.372 and 0.433) with the flare increasing in strength as the system approached apastron (φ = 0.5). The mass accretion rate measured for the anomalous flare ismore » nearly an order of magnitude stronger than the average quiescent rate. While previous observations established that frequent, periodic accretion flares phased with periastron passages occur in this system, these data provide evidence that orbitally modulated accretion flares occur near apastron, when the stars make their closest approach to the circumbinary disk. The timing of the flare suggests that this outburst is due to interactions of the stellar cores (or the highly truncated circumstellar disks) with material in non-axisymmetric structures located at the inner edge of the circumbinary disk. We also explore the optical/infrared spectral type mismatch previously observed for T Tauri stars (TTSs) and successfully model the shape of the spectra from 0.8 to 1.0 μm and the strengths of the TiO and FeH bands as manifestations of large cool spots on the surfaces of the stellar companions in DQ Tau. These findings illustrate that a complete model of near-infrared spectra of many TTSs must include parameters for spot filling factors and temperatures.« less

  15. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    USGS Publications Warehouse

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  16. AGN-driven perturbations in the intracluster medium of the cool-core cluster ZwCl 2701

    NASA Astrophysics Data System (ADS)

    Vagshette, Nilkanth D.; Sonkamble, Satish S.; Naik, Sachindra; Patil, Madhav K.

    2016-09-01

    We present the results obtained from a total of 123 ks X-ray (Chandra) and 8 h of 1.4 GHz radio (Giant Metrewave Radio Telescope - GMRT) observations of the cool-core cluster ZwCl 2701 (z = 0.214). These observations of ZwCl 2701 showed the presence of an extensive pair of ellipsoidal cavities along the east and west directions within the central region < 20 kpc. Detection of bright rims around the cavities suggested that the radio lobes displaced X-ray-emitting hot gas forming shell-like structures. The total cavity power (mechanical power) that directly heated the surrounding gas and cooling luminosity of the cluster were estimated to be ˜2.27 × 1045 erg s-1 and 3.5 × 1044 erg s-1 , respectively. Comparable values of cavity power and cooling luminosity of ZwCl 2701 suggested that the mechanical power of the active galactic nuclei (AGN) outburst is large enough to balance the radiative cooling in the system. The star formation rate derived from the Hα luminosity was found to be ˜0.60 M⊙ yr-1, which is about three orders of magnitude lower than the cooling rate of ˜196 M⊙ yr-1. Detection of the floor in entropy profile of ZwCl 2701 suggested the presence of an alternative heating mechanism at the centre of the cluster. Lower value of the ratio (˜10-2) between black hole mass accretion rate and Eddington mass accretion rate suggested that launching of jet from the super massive black hole is efficient in ZwCl 2701. However, higher value of ratio (˜103) between black hole mass accretion rate and Bondi accretion rate indicated that the accretion rate required to create cavities is well above the Bondi accretion rate.

  17. Implementation of two-component advective flow solution in XSPEC

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu

    2014-05-01

    Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86

  18. Jet and disc luminosities in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Piran, Tsvi; Sądowski, Aleksander; Tchekhovskoy, Alexander

    2015-10-01

    Tidal disruption events (TDEs) explore the whole range of accretion rates and configurations. A challenging question is what the corresponding light curves of these events are. We explore numerically the disc luminosity and the conditions within the inner region of the disc using a fully general relativistic slim disc model. Those conditions determine the magnitude of the magnetic field that engulfs the black hole and this, in turn, determines the Blandford-Znajek jet power. We estimate this power in two different ways and show that they are self-consistent. We find, as expected earlier from analytic arguments , that neither the disc luminosity nor the jet power follows the accretion rate throughout the disruption event. The disc luminosity varies only logarithmically with the accretion rate at super-Eddington luminosities. The jet power follows initially the accretion rate but remains constant after the transition from super- to sub-Eddington. At lower accretion rates at the end of the magnetically arrested disc (MAD) phase, the disc becomes thin and the jet may stop altogether. These new estimates of the jet power and disc luminosity that do not simply follow the mass fallback rate should be taken into account when searching for TDEs and analysing light curves of TDE candidates. Identification of some of the above-mentioned transitions may enable us to estimate better TDE parameters.

  19. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets - a survey

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2016-03-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  20. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szulágyi, J.; Morbidelli, A.; Crida, A.

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate.more » Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.« less

  1. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    NASA Astrophysics Data System (ADS)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T 0 and pressure P 0. At low temperatures ({T}0≲ 300-1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface-interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}⊙ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04˜ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L˜ {10}-4 {L}⊙ .

  2. Characteristics of lambs fed concentrates or grazed on ryegrass to traditional or heavy slaughter weights. II. Wholesale cuts and tissue accretion.

    PubMed

    Borton, R J; Loerch, S C; McClure, K E; Wulf, D M

    2005-06-01

    Targhee x Hampshire lambs (average BW 24 +/- 1 kg) were used to determine the effect of finishing on concentrate or by grazing ryegrass forage on slaughter weights of 52 kg (N) or 77 kg (H) on tissue accretion and lamb wholesale cutout. When fed to similar slaughter weights, the wholesale cuts of concentrate-fed lambs were heavier (P < 0.05) than the same cuts from forage-fed lambs; however, when expressed as a percentage of side weight, carcasses of forage-fed lambs had a higher (P < 0.001) percentage of leg than concentrate-fed lambs. Increasing slaughter weight from 52 to 77 kg resulted in a 1-kg increase in loin weight for lambs finished on concentrate and a 0.60-kg increase for lambs finished on forage (diet x slaughter weight, P < 0.03); however, the increased loin weight for lambs finished on concentrate was due largely to increased fat deposition. For lambs slaughtered at 77 kg, those finished on forage had more lean mass in the leg, loin, rack, and shoulder than those finished on concentrate, but lean mass in these cuts did not differ between diets for lambs slaughtered at 52 kg (diet x slaughter weight, P < 0.01). At the normal slaughter weight (52 kg), concentrate-fed lambs had 50% more dissectible fat than forage-fed lambs, whereas at the heavy slaughter weight, a 79% greater amount of dissectible fat was observed for concentrate- vs. forage-fed lambs (diet x slaughter weight, P < 0.001). Lean and fat accretion rates were higher (P < 0.001) for concentrate-fed lambs than for forage-fed lambs. The lean-to-fat ratio of forage-fed lambs was higher (P < 0.001) than that of concentrate-fed lambs; however, forage finishing decreased accretion rates of all tissues compared with concentrate feeding, and these differences between forage and concentrate feeding were magnified at heavier slaughter weights.

  3. Hot accretion flow with anisotropic viscosity

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Bu, De-Fu; Gan, Zhao-Ming; Yuan, Ye-Fei

    2017-12-01

    In extremely low accretion rate systems, the ion mean-free path can be much larger than the gyroradius. Therefore, gas pressure is anisotropic with respect to magnetic field lines. The effects of pressure anisotropy can be modeled by an anisotropic viscosity with respect to magnetic field lines. Angular momentum can be transferred by anisotropic viscosity. In this paper, we investigate hot accretion flow with anisotropic viscosity. We consider the case that anisotropic viscous stress is much larger than Maxwell stress. We find that the flow is convectively unstable. We also find that the mass inflow rate decreases towards a black hole. Wind is very weak; its mass flux is 10-15% of the mass inflow rate. The inward decrease of inflow rate is mainly due to convective motions. This result may be useful to understand the accretion flow in the Galactic Center Sgr A* and M 87 galaxy.

  4. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    NASA Astrophysics Data System (ADS)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  5. Spatial Variability of Salt Marsh Vertical Accretion and Carbon Burial Rates along the Gulf of Mexico at Local and Regional Scales

    NASA Astrophysics Data System (ADS)

    Arriola, J.; Cable, J. E.

    2017-12-01

    Many studies quantifying salt marsh vertical accretion and carbon burial have been conducted along the Gulf of Mexico over the past several decades. These results are often used in conjunction with sea level rise estimates to evaluate the long term storage, and potential release, of carbon as salt marshes are overtaken by rising waters. However, results from these studies are not always comparable because of diverse sampling and analytical methods, which may skew regional averages. In addition, salt marsh vertical accretion and carbon burial rates can be highly variable on local scales depending on sampling locations within the marsh, e.g. levee vs marsh plain, and methods to determine carbon quantity, such as utilizing linear relationships between % organic matter and % carbon from other studies. Anthropogenic impacts on accretion and carbon burial may also influence interpretation of results. Utilizing consistent methods for local and regional marsh research will improve the accuracy of accretion and burial rates which is fundamental to our ability to predict responses to climate change. Our study examined sediment cores extracted from 6 salt marshes - 5 marshes along Texas to Florida coasts and 1 marsh on the Florida Atlantic coast. These marshes were selected for minimal human influence and consistent sampling and analytical methodologies were employed to compare vertical accretion and carbon burial variability on local and regional scales. Total organic carbon (TOC) and total nitrogen were determined via direct measurement and accretion rates were calculated based on 210Pb via 210Po alpha spectrometry. The lowest TOC inventory was found at Mission-Aransas, TX (18.57 g OC), whereas the highest was found at Apalachicola, FL (35.05 g OC). Anahuac, TX, was found to have the highest modern vertical accretion rates of all 6 sites, whereas Guana Tolomato-Matanzas, FL, has the lowest. This research yields regional carbon burial estimates for the Gulf of Mexico using comparable analyses to improve climate change and sea level rise predictions.

  6. New closed analytical solutions for geometrically thick fluid tori around black holes. Numerical evolution and the onset of the magneto-rotational instability

    NASA Astrophysics Data System (ADS)

    Witzany, V.; Jefremov, P.

    2018-06-01

    Context. When a black hole is accreting well below the Eddington rate, a geometrically thick, radiatively inefficient state of the accretion disk is established. There is a limited number of closed-form physical solutions for geometrically thick (nonselfgravitating) toroidal equilibria of perfect fluids orbiting a spinning black hole, and these are predominantly used as initial conditions for simulations of accretion in the aforementioned mode. However, different initial configurations might lead to different results and thus observational predictions drawn from such simulations. Aims: We aim to expand the known equilibria by a number of closed multiparametric solutions with various possibilities of rotation curves and geometric shapes. Then, we ask whether choosing these as initial conditions influences the onset of accretion and the asymptotic state of the disk. Methods: We have investigated a set of examples from the derived solutions in detail; we analytically estimate the growth of the magneto-rotational instability (MRI) from their rotation curves and evolve the analytically obtained tori using the 2D magneto-hydrodynamical code HARM. Properties of the evolutions are then studied through the mass, energy, and angular-momentum accretion rates. Results: The rotation curve has a decisive role in the numerical onset of accretion in accordance with our analytical MRI estimates: in the first few orbital periods, the average accretion rate is linearly proportional to the initial MRI rate in the toroids. The final state obtained from any initial condition within the studied class after an evolution of ten or more orbital periods is mostly qualitatively identical and the quantitative properties vary within a single order of magnitude. The average values of the energy of the accreted fluid have an irregular dependency on initial data, and in some cases fluid with energies many times its rest mass is systematically accreted.

  7. DIBS independent of accretion in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghandour, Louma; Jenniskens, Peter; Hartigan, P.

    1994-01-01

    The examination of high resolution spectra (5200 - 7000 Angstroms) of 36 T Tauri stars ranging in accretion rates was performed. Only the lambda lambda 5780, 5797, and 6613 bands were found detectable to within an equivalent width of 10 micro Angstroms. They are strongest in DG Tau, DR Tau, Dl Tau, and AS 353A. DR Tau was monitored over the course of four years; during this time, the accretion rate varied by a factor of five, but the equivalent widths of the DIB's (Diffuse Interstellar Bands) remained constant. The lack of correlation of the strength of the bands with the accretion rates implies that the bands are not directly produced by UV radiation from the accretion process. The bands have line strengths and ratios characteristic of the diffuse interstellar medium, from which we conclude that the diffuse interstellar bands seen in the spectra of T Tauri stars do not originate in the stars' immediate environment. Instead, they are part of a foreground extinction, probably due to the parent molecular cloud.

  8. On the Disappearance of Kilohertz Quasi-periodic Oscillations at a High Mass Accretion Rate in Low-Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Cui, Wei

    2000-05-01

    For all sources in which the phenomenon of kilohertz quasi-periodic oscillation (kHz QPO) is observed, the QPOs disappear abruptly when the inferred mass accretion rate exceeds a certain threshold. Although the threshold cannot at present be accurately determined (or even quantified) observationally, it is clearly higher for bright Z sources than for faint atoll sources. Here we propose that the observational manifestation of kHz QPOs requires direct interaction between the neutron star magnetosphere and the Keplerian accretion disk and that the cessation of kHz QPOs at a high accretion rate is due to the lack of such an interaction when the Keplerian disk terminates at the last stable orbit and yet the magnetosphere is pushed farther inward. The threshold is therefore dependent on the magnetic field strength-the stronger the magnetic field, the higher the threshold. This is certainly in agreement with the atoll/Z paradigm, but we argue that it is also generally true, even for individual sources within each (atoll or Z) category. For atoll sources, the kHz QPOs also seem to vanish at a low accretion rate. Perhaps the ``disengagement'' between the magnetosphere and the Keplerian disk also takes place under such circumstances because of, for instance, the presence of quasi-spherical advection-dominated accretion flow (ADAF) close to the neutron star. Unfortunately, in this case, the estimation of the accretion rate threshold would require a knowledge of the physical mechanisms that cause the disengagement. If the ADAF is responsible, the threshold is likely dependent on the magnetic field of the neutron star.

  9. Accretion rates of protoplanets. II - Gaussian distributions of planetesimal velocities

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1992-01-01

    In the present growth-rate calculations for a protoplanet that is embedded in a disk of planetesimals with triaxial Gaussian velocity dispersion and uniform surface density, the protoplanet is on a circular orbit. The accretion rate in the two-body approximation is found to be enhanced by a factor of about 3 relative to the case where all planetesimals' eccentricities and inclinations are equal to the rms values of those disk variables having locally Gaussian velocity dispersion. This accretion-rate enhancement should be incorporated by all models that assume a single random velocity for all planetesimals in lieu of a Gaussian distribution.

  10. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    NASA Astrophysics Data System (ADS)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  11. Fundamental studies in X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Lightman, A. P.

    1982-01-01

    An analytical model calculation of the ionization structure of matter accreting onto a degenerate dwarf was carried out. Self-consistent values of the various parameters are used. The possibility of nuclear burning of the accreting matter is included. We find the blackbody radiation emitted from the stellar surface keeps hydrogen and helium ionized out to distances much larger than a typical binary separation. Except for low mass stars or high accretion rates, the assumption of complete ionization of the elements heavier than helium is a good first approximation. For low mass stars or high accretion rates the validity of assuming complete ionization depends sensitivity on the distribution of matter in the binary system.

  12. Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral

    NASA Astrophysics Data System (ADS)

    Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.

    2018-04-01

    The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.

  13. Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander

    2017-05-01

    Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate, the double Compton process can dominate in radiation-dominated regions, while the cyclo-synchrotron can dominate in strongly magnetized regions like a corona or a jet. We present an extension to the general relativistic radiation magnetohydrodynamic code harmrad to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature opal opacities, as well as Thomson and Compton scattering. The harmrad code and associated analysis and visualization codes have been made open-source and are publicly available at the github repository website. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's blackbody temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae and jets.

  14. Feeding supermassive black holes through supersonic turbulence and ballistic accretion

    NASA Astrophysics Data System (ADS)

    Hobbs, Alexander; Nayakshin, Sergei; Power, Chris; King, Andrew

    2011-06-01

    It has long been recognized that the main obstacle to the accretion of gas on to supermassive black holes (SMBHs) is a large specific angular momentum. It is feared that the gas settles in a large-scale disc, and that accretion would then proceed too inefficiently to explain the masses of the observed SMBHs. Here we point out that, while the mean angular momentum in the bulge is very likely to be large, the deviations from the mean can also be significant. Indeed, cosmological simulations show that velocity and angular momentum fields of gas flows on to galaxies are very complex. Furthermore, inside bulges the gas velocity distribution can be further randomized by the velocity kicks due to feedback from star formation. We perform hydrodynamical simulations of gaseous rotating shells infalling on to an SMBH, attempting to quantify the importance of velocity dispersion in the gas at relatively large distances from the black hole. We implement this dispersion by means of a supersonic turbulent velocity spectrum. We find that, while in the purely rotating case the circularization process leads to efficient mixing of gases with different angular momenta, resulting in a low accretion rate, the inclusion of turbulence increases this accretion rate by up to several orders of magnitude. We show that this can be understood based on the notion of 'ballistic' accretion, whereby dense filaments, created by convergent turbulent flows, travel through the ambient gas largely unaffected by hydrodynamical drag. This prevents the efficient gas mixing that was found in the simulations without turbulence, and allows a fraction of gas to impact the innermost boundary of the simulations directly. Using the ballistic approximation, we derive a simple analytical formula that captures the numerical results to within a factor of a few. Rescaling our results to astrophysical bulges, we argue that this 'ballistic' mode of accretion could provide the SMBHs with sufficient fuel without the need to channel the gas via large-scale discs or bars. We therefore argue that star formation in bulges can be a strong catalyst for SMBH accretion.

  15. He-accreting carbon-oxygen white dwarfs and Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Podsiadlowski, Philipp; Han, Zhanwen

    2017-12-01

    He accretion on to carbon-oxygen white dwarfs (CO WDs) plays a fundamental role when studying the formation of Type Ia supernovae (SNe Ia). Employing the MESA stellar evolution code, we calculated the long-term evolution of He-accreting CO WDs. Previous studies usually supposed that a WD can grow in mass to the Chandrasekhar limit in the stable He burning region and finally produce an SN Ia. However, in this study, we find that off-centre carbon ignition occurs in the stable He burning region if the accretion rate is above a critical value (∼2.05 × 10-6 M⊙ yr-1), resulting in accretion-induced collapse rather than an SN Ia. If the accretion rate is below the critical value, explosive carbon ignition will eventually happen in the centre producing an SN Ia. Taking into account the possibility of off-centre carbon ignition, we have re-determined the initial parameter space that produces SNe Ia in the He star donor channel, one of the promising channels to produce SNe Ia in young populations. Since this parameter space is smaller than was found in the previous study of Wang et al. (2009), the SN Ia rates are also correspondingly smaller. We also determined the chemical abundance profile of the He-accreting WDs at the moment of explosive carbon ignition, which can be used as initial input for SN Ia explosion models.

  16. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-01

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  17. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  18. The BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Berney, Simon; Schawinski, Kevin; Balokovic, Mislav; Baronchelli, Linda; Gehrels, Neil; Stern, Daniel; Mushotzky, Richard; Veilleux, Sylvain; Ueda, Yoshihiro; Crenshaw, D. Michael; Harrison, Fiona; Fischer, Travis C.; Treister, Ezequiel; BASS Team; Swift BAT Team

    2017-01-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at z<0.2. Starting from an all-sky catalog of AGN detected based on their 14-195 keV flux from the 70-month Swift/BAT catalog, we analyze a total of 1279 optical spectra, taken from twelve dierent telescopes, for a total of 642 spectra of unique AGN. We present the absorption and emission line measurements as well as black hole masses and accretion rates for the majority of obscured and un-obscured AGN (473), representing more than a factor of 10 increase from past studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics. Additionally, we discuss follow-on efforts to study the variation of [OIII] to Xray measurements, a new method to measure accretion rates from using line ratios, a sample of 100 AGN observed with NIR spectroscopy, and an effort to measure the accretion rates and obscuration with merger stage in a subsample of mergers.

  19. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.

  20. GX 3+1: THE STABILITY OF SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifina, Elena; Titarchuk, Lev, E-mail: seif@sai.msu.ru, E-mail: titarchuk@fe.infn.it, E-mail: lev@milkyway.gsfc.nasa.gov

    2012-03-10

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and Beppo SAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component.more » We argue that the electron temperature kT{sub e} of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index {Gamma} is almost constant ({Gamma} = 2.00 {+-} 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index {Gamma} and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli and Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at high values of mass accretion rate.« less

  1. An Accretion Model for the Growth of the Central Black Holes Associated with Ionization Instability in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.

  2. On the Maximum Mass of Accreting Primordial Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.

    2017-06-01

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  3. The Growth of Central Black Hole and the Ionization Instability of Quasar Disk

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.

  4. X-shooter observations of low-mass stars in the η Chamaeleontis association

    NASA Astrophysics Data System (ADS)

    Rugel, Michael; Fedele, Davide; Herczeg, Gregory

    2018-01-01

    The nearby η Chamaeleontis association is a collection of 4-10 Myr old stars with a disk fraction of 35-45%. In this study, the broad wavelength coverage of VLT/X-shooter is used to measure the stellar and mass accretion properties of 15 low-mass stars in the η Chamaeleontis association. For each star, the observed spectrum is fitted with a non-accreting stellar template and an accretion spectrum obtained from assuming a plane-parallel hydrogen slab. Five of the eight stars with an IR disk excess show excess UV emission, indicating ongoing accretion. The accretion rates measured here are similar to those obtained from previous measurements of excess UV emission, but tend to be higher than past measurements from Hα modeling. The mass accretion rates are consistent with those of other young star forming regions. This work is based on observations made with ESO Telescopes at the Paranal Observatory under program ID 084.C-1095.

  5. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon - links to flooding frequency and climate change.

    PubMed

    Bellucci, L G; Frignani, M; Cochran, J K; Albertazzi, S; Zaggia, L; Cecconi, G; Hopkins, H

    2007-01-01

    Five salt marsh sediment cores from different parts of the Venice Lagoon were studied to determine their depositional history and its relationship with the environmental changes occurred during the past approximately 100 years. X-radiographs of the cores show no disturbance related to particle mixing. Accretion rates were calculated using a constant flux model applied to excess (210)Pb distributions in the cores. The record of (137)Cs fluxes to the sites, determined from (137)Cs profiles and the (210)Pb chronologies, shows inputs from the global fallout of (137)Cs in the late 1950s to early 1960s and the Chernobyl accident in 1986. Average accretion rates in the cores are comparable to the long-term average rate of mean sea level rise in the Venice Lagoon ( approximately 0.25 cm y(-1)) except for a core collected in a marsh presumably affected by inputs from the Dese River. Short-term variations in accretion rate are correlated with the cumulative frequency of flooding, as determined by records of Acqua Alta, in four of the five cores, suggesting that variations in the phenomena causing flooding (such as wind patterns, storm frequency and NAO) are short-term driving forces for variations in marsh accretion rate.

  6. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    NASA Astrophysics Data System (ADS)

    Lii, Patrick; Romanova, Marina; Lovelace, Richard

    2014-01-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  7. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  8. Evolution of a rotating black hole with a magnetized accretion disk.

    NASA Astrophysics Data System (ADS)

    Lee, H. K.; Kim, H.-K.

    2000-03-01

    The effect of an accretion disk on the Blandford-Znajek process and the evolution of a black hole are discussed using a simplified system for the black hole-accretion disk in which the accretion rate is supposed to be dominated by the strong magnetic field on the disk. The evolution of the mass and the angular momentum of the black hole are formulated and discussed with numerical calculations.

  9. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A47

  10. Disorder in the Disk: The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo.

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2018-01-01

    The evolution of the magnetic field from the enigmatic large-scale dynamo is often considered a central feature of the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the growth and decay of the field strength, along with the change in field orientation, are thought to be intimately tied to variability from the disk. Several factors are at play, but the dynamo can either be directly tied to observable signatures through modulation of the heating rate, or indirectly as the source of quasiperiodic oscillations, the driver of nonlinear structure from propagating fluctuations in mass accretion rate, or even the trigger of state transitions. We present a selection of results from a recent study of this process using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary the scale height ratio and find the large-scale dynamo fails to develop above a scale height ratio of h/r ≥ 0.2. Using “butterfly” diagrams of the azimuthal magnetic field, we show the large-scale dynamo exists in the thinner accretion disk models, but fails to excite when the scale height ratio is increased, a feature which is also reflected in 2D Fourier transforms. Additionally, we calculate the dynamo α-parameter through correlations in the averaged magnetic field and turbulent electromotive force, and also generate synthetic light curves from the disk cooling. Using our emission proxy, we find the disks have markedly different characters as photometric fluctuations are larger and less ordered when the disk is thicker and the dynamo is absent.

  11. Active Galactic Nucleus Feedback in an Isolated Elliptical Galaxy: The Effect of Strong Radiative Feedback in the Kinetic Mode

    NASA Astrophysics Data System (ADS)

    Gan, Zhaoming; Yuan, Feng; Ostriker, Jeremiah P.; Ciotti, Luca; Novak, Gregory S.

    2014-07-01

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hot accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ~= 10-3.5), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.

  12. Do Supernovae Make or Kill Pulsars?

    NASA Astrophysics Data System (ADS)

    Geppert, U.; Page, D.; Zannias, T.

    1998-12-01

    The effect of post core-collapse accretion on the magnetic field (MF) of a new born neutron star (NS) is considered. If this accretion is hypercritical than any initially in the NS matter frozen in MF will be submerged beneath the accreted matter. If the accreted matter is non magnetized, NS produced by SN in which hypercritical accretion occured are born with weak surface MF. This mechanism may contribute to the deficit of observed PSR in SNR and may also explain the discrepancy between the estimated PSR birthrate and type Ib + II SN rates. The dependence of the re-diffusion of the submerged MF on the fall-back accretion is discussed too.

  13. DETECTION OF A COOL, ACCRETION-SHOCK-GENERATED X-RAY PLASMA IN EX LUPI DURING THE 2008 OPTICAL ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.

    2012-11-20

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak ofmore » the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a {approx}0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.« less

  14. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    NASA Technical Reports Server (NTRS)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  15. Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants

    USGS Publications Warehouse

    Stumpner, Elizabeth; Kraus, Tamara; Liang, Yan; Bachand, Sandra M.; Horwath, William R.; Bachand, Philip A.M.

    2018-01-01

    In many regions of the world, subsidence of organic rich soils threatens levee stability and freshwater supply, and continued oxidative loss of organic matter contributes to greenhouse gas production. To counter subsidence in the Sacramento-San Joaquin Delta of northern California, we examined the feasibility of using constructed wetlands receiving drainage water treated with metal-based coagulants to accrete mineral material along with wetland biomass, while also sequestering carbon in wetland sediment. Nine field-scale wetlands were constructed which received local drainage water that was either untreated (control), or treated with polyaluminum chloride (PAC) or iron sulfate (FeSO4) coagulants. After 23 months of flooding and coagulant treatment, sediment samples were collected near the inlet, middle, and outlet of each wetland to determine vertical accretion rates, bulk density, sediment composition, and carbon sequestration rates. Wetlands treated with PAC had the highest and most spatially consistent vertical accretion rates (~6 cm year-1), while the FeSO4 wetlands had similarly high accretion rates near the inlet but rates similar to the untreated wetland (~1.5 cm year-1) at the middle and outlet sites. The composition of the newly accreted sediment in the PAC and FeSO4 treatments was high in the added metal (aluminum and iron, respectively), but the percent metal by weight was similar to native soils of California. As has been observed in other constructed wetlands, the newly accreted sediment material had lower bulk densities than the native soil material (0.04-0.10 g cm-3 versus 0.2-0.3 g cm-3), suggesting these materials will consolidate over time. Finally, this technology accelerated carbon burial, with rates in PAC treated wetland (0.63 kg C m-2 yr-1) over 2-fold greater than the untreated control (0.28 kg C m-2 yr-1). This study demonstrates the feasibility of using constructed wetlands treated with coagulants to reverse subsidence by accreting the resulting organo-metal flocculent and storing carbon at rates exceeding untreated wetlands. Management and design questions remain for how to best integrate this technology into heavily subsided land to lower the risks and consequences associated with levee failure, improve water quality, and ultimately restore these lands to tidal wetlands.

  16. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  17. The nature of very low luminosity objects (VeLLOs)

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Dunham, Michael M.; Guedel, Manuel

    2017-04-01

    Aims: The nature of very low luminosity objects (VeLLOs) with the internal luminosity Lobj ≤ 0.1 L⊙ is investigated by means of numerical modeling coupling the core collapse simulations with the stellar evolution calculations. Methods: The gravitational collapse of a large sample of model cores in the mass range 0.1-2.0 M⊙ is investigated. Numerical simulations were started at the pre-stellar phase and terminated at the end of the embedded phase when 90% of the initial core mass had been accreted onto the forming protostar plus disk system. The disk formation and evolution was studied using numerical hydrodynamics simulations, while the formation and evolution of the central star was calculated using a stellar evolution code. Three scenarios for mass accretion from the disk onto the star were considered: hybrid accretion in which a fraction of accreted energy absorbed by the protostar depends on the accretion rate, hot accretion wherein a fraction of accreted energy is constant, and cold accretion wherein all accretion energy is radiated away. Results: Our conclusions on the nature of VeLLOs depend crucially on the character of protostellar accretion. In the hybrid accretion scenario, most VeLLOs (90.6%) are expected to be the first hydrostatic cores (FHSCs) and only a small fraction (9.4%) are true protostars. In the hot accretion scenario, all VeLLOs are FHSCs due to overly high photospheric luminosity of protostars. In the cold accretion scenario, on the contrary, the majority of VeLLOs belong to the Class I phase of stellar evolution. The reason is that the stellar photospheric luminosity, which sets the floor for the total internal luminosity of a young star, is lower in cold accretion, thus enabling more VeLLOs in the protostellar stage. VeLLOs are relatively rare objects occupying 7%-11% of the total duration of the embedded phase and their masses do not exceed 0.3 M⊙. When compared with published observations inferring a fraction of VeLLOs in the protostellar stage of 6.25%, we find that cold accretion provides a much better fit to observations than hybrid accretion (5.7% for cold accretion vs. 0.7% for hybrid accretion). Both accretion scenarios predict more VeLLOs in the Class I phase than in the Class 0 phase, in contrast to observations. Finally, when accretion variability with episodic bursts is artificially filtered out from our numerically derived accretion rates, the fraction of VeLLOs in the protostellar stage drops significantly, suggesting a causal link between the two phenomena.

  18. Accretion onto CO White Dwarfs using MESA

    NASA Astrophysics Data System (ADS)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  19. A search for passive protoplanetary discs in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Duchêne, Gaspard; Becker, Adam; Yang, Yizhe; Bouy, Hervé; De Rosa, Robert J.; Patience, Jennifer; Girard, Julien H.

    2017-08-01

    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disc but have a weak H α line, a common accretion tracer for young stars, in order to determine whether they host a passive circumstellar disc. We used medium-resolution optical spectroscopy to assess the accretion status of the objects and to measure the H α line. We found no convincing examples of passive discs: only transition disc and debris disc systems in our sample are non-accreting. Among accretors, we found no example of flickering accretion, leading to an upper limit of 2.2 per cent on the duty cycle of accretion gaps, assuming that all accreting TTS experience such events. When combining literature results with our observations, we found that the reliability of traditional H α-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We found a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10) of the H α line that does not seem to be related to variations in free-fall velocity. Finally, our data revealed a positive correlation between the H α equivalent width and its W10, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the H α W10 through a common physical mechanism.

  20. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

  1. Temporal studies of black hole X-ray transients during outburst decay

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah

    Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.

  2. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish

    PubMed Central

    Cramer, Katie L.; O'Dea, Aaron; Clark, Tara R.; Zhao, Jian-xin; Norris, Richard D.

    2017-01-01

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence. PMID:28112169

  3. On the Maximum Mass of Accreting Primordial Supermassive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using themore » stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.« less

  4. Coastal environmental monitoring using remotely sensed data and GIS techniques in the Modern Yellow River delta, China.

    PubMed

    Zhang, Yang

    2011-08-01

    On the basis of remote sensing and GIS techniques, the Landsat data obtained in 1987, 1996, and 2008 were used to examine coastline changes in the Modern Yellow River (MYR) delta in China. The coastal land lost and gained illustrations were derived, the rates of coastal change were estimated, and the coastal parts that experienced severe changes were identified. The results revealed that the accretion rates in the MYR delta coast has been decelerating while the accretion effect remained. Taken the artificial coast from the south of ShenXianGou (SXG) to Gudong Oil Field (GOF) as the landmark, the coast in the south of the landmark showed an accretion pattern, while the coast in the west of the landmark showed an erosion pattern. Wherein, the coast from Chao River Estuary (CRE) to Zhuang 106 (Z106) showed an erosion pattern with the transition from erosion to accretion and the accelerated rates from east to west. The coast from Z106 to the south border of GOF also showed erosion pattern but significant differences existed among the internal coastal parts. The coast from the south border of GOF to XiaoDao River Estuary (XDRE) showed a pattern from rapid accretion to dynamic balance of accretion/erosion, and the trend towards erosion. The coast from XDRE to XiaoQing River Estuary (XQRE) showed slow accretion pattern. Human activities have heavily influenced the natural evolution of the MYR delta coast.

  5. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less

  6. A Simple test for the existence of two accretion modes in active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretionmore » rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.« less

  7. Multi-scale simulations of black hole accretion in barred galaxies. Self-gravitating disk models

    NASA Astrophysics Data System (ADS)

    Jung, M.; Illenseer, T. F.; Duschl, W. J.

    2018-06-01

    Due to the non-axisymmetric potential of the central bar, in addition to their characteristic arms and bar, barred spiral galaxies form a variety of structures within the thin gas disk, such as nuclear rings, inner spirals, and dust lanes. These structures in the inner kiloparsec are extremely important in order to explain and understand the rate of black hole feeding. The aim of this work is to investigate the influence of stellar bars in spiral galaxies on the thin self-gravitating gas disk. We focus on the accretion of gas onto the central supermassive black hole and its time-dependent evolution. We conducted multi-scale simulations simultaneously resolving the galactic disk and the accretion disk around the central black hole. In all the simulations we varied the initial gas disk mass. As an additional parameter we chose either the gas temperature for isothermal simulations or the cooling timescale for non-isothermal simulations. Accretion was either driven by a gravitationally unstable or clumpy accretion disk or by energy dissipation in strong shocks. Most of the simulations show a strong dependence of the accretion rate at the outer boundary of the central accretion disk (r < 300 pc) on the gas flow at kiloparsec scales. The final black hole masses reach up to 109 M⊙ after 1.6 Gyr. Our models show the expected influence of the Eddington limit and a decline in growth rate at the corresponding sub-Eddington limit.

  8. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  9. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    NASA Astrophysics Data System (ADS)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  10. Radio outburst from a massive (proto)star. When accretion turns into ejection

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (<14%), lending strong support to the idea that the neutral component is dominant in thermal jets. Our findings strongly suggest that recurrent accretion + ejection episodes may be the main route to the formation of massive stars. Based on observations carried out with the VLA, IRAM/NOEMA, and ALMA. This article is dedicated to the memory of MalcolmWalmsley, who passed away before the present study could be completed. Without his insights and enlightened advice this work would have been impossible. We will always remember all the stimulating discussions with him, as well as his delightful personality.

  11. Ultraluminous X-ray sources as neutrino pulsars

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Suleimanov, Valery F.; Poutanen, Juri

    2018-05-01

    The classical limit on the accretion luminosity of a neutron star is given by the Eddington luminosity. The advanced models of accretion on to magnetized neutron stars account for the appearance of magnetically confined accretion columns and allow the accretion luminosity to be higher than the Eddington value by a factor of tens. However, the recent discovery of pulsations from ultraluminous X-ray source (ULX) in NGC 5907 demonstrates that the accretion luminosity can exceed the Eddington value up to by a factor of 500. We propose a model explaining observational properties of ULX-1 in NGC 5907 without any ad hoc assumptions. We show that the accretion column at extreme luminosity becomes advective. Enormous energy release within a small geometrical volume and advection result in very high temperatures at the bottom of accretion column, which demand to account for the energy losses due to neutrino emission which can be even more effective than the radiation energy losses. We show that the total luminosity at the mass accretion rates above 1021 g s-1 is dominated by the neutrino emission similarly to the case of core-collapse supernovae. We argue that the accretion rate measurements based on detected photon luminosity in case of bright ULXs powered by neutron stars can be largely underestimated due to intense neutrino emission. The recently discovered pulsating ULX-1 in galaxy NGC 5907 with photon luminosity of {˜ } 10^{41} {erg s^{-1}} is expected to be even brighter in neutrinos and is thus the first known Neutrino Pulsar.

  12. Properties of two-temperature dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  13. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    NASA Astrophysics Data System (ADS)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  14. Recent accretion in two managed marsh impoundments in coastal Louisiana

    USGS Publications Warehouse

    Cahoon, D.R.

    1994-01-01

    Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.

  15. Accretion flow dynamics during 1999 outburst of XTE J1859+226—modeling of broadband spectra and constraining the source mass

    NASA Astrophysics Data System (ADS)

    Nandi, Anuj; Mandal, S.; Sreehari, H.; Radhika, D.; Das, Santabrata; Chattopadhyay, I.; Iyer, N.; Agrawal, V. K.; Aktar, R.

    2018-05-01

    We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (˜166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3-150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\\dot{m}d), sub-Keplerian accretion rate (\\dot{m}h), shock location (rs) and black hole mass (M_{bh}) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as L^{obs}_{jet} ˜3-6 ×10^{37} erg s^{-1} during one of the observed radio flares which indicates that jet power corresponds to 8-16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (˜14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2-7.9 M_{⊙} with 90% confidence.

  16. Helium shell flashes and evolution of accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Fujimoto, M. Y.; Sugimoto, D.

    1982-06-01

    The evolution of accreting white dwarfs is investigated from the onset of accretion through the helium shell flash. Properties of the helium shell flashes are studied by means of a generalized theory of shell flash and by numerical computations, and it is found that the shell flash grows up to the strength of a supernova explosion when the mass of the helium zone is large enough on a massive white dwarf. Although accretion onto a hot white dwarf causes a weaker shell flash than those onto cool ones, a strong tendency exists for the strength to be determined mainly by the accretion rate. For fast accretion, the shell flashes are weak and triggered recurrently, while for slow accretion the helium shell flash, once triggered, develops into a detonation supernova.

  17. Leucine and protein metabolism in obese zucker rats

    USDA-ARS?s Scientific Manuscript database

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however they increase in obesity and appear to prognosticate diabetes onset. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1...

  18. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  19. Accretion in Radiative Equipartition (AiRE) Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks andmore » show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.« less

  20. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Walter, Frederick M.; Linsky, Jeffrey L.; Gahm, Gösta F.; Ardila, David R.; Brown, Alexander; Johns-Krull, Christopher M.; Simon, Michal; Valenti, Jeff A.

    2005-06-01

    We present far-ultraviolet (FUV) spectra of the classical T Tauri star RU Lup covering the 912-1710 Å spectral range, as observed by the Hubble Space Telescope STIS and the Far Ultraviolet Spectroscopic Explorer satellite. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV~0.07 mag, which we confirm with other diagnostics. We estimate a mass accretion rate of (5+/-2)×10-8 Msolar yr-1 using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lup's spectrum varies significantly in the FUV; our STIS observations occurred when RU Lup was brighter than several other observations in the FUV, possibly because of a high mass accretion rate.

  1. Accretion in Radiative Equipartition (AiRE) Disks

    NASA Astrophysics Data System (ADS)

    Yazdi, Yasaman K.; Afshordi, Niayesh

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (I.e., inner disk) need to be modified. Here, we present a modification to the Shakura & Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  2. On a thermonuclear origin for the 1980-81 deep light minimum of the symbiotic nova PU Vul

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.

    1993-01-01

    The puzzling 1980-81 deep light minimum of the symbiotic nova PU Vul is discussed in terms of a sequence of quasi-static evolutionary models of a hot, 0.5 solar mass white dwarf accreting H-rich matter at a rate 1 x 10 exp -8 solar mass/yr. On the basis of the morphological behavior of the models, it is suggested that the deep light minimum of PU Vul could have been the result of two successive, closely spaced, hydrogen shell flashes on an accreting white dwarf whose core thermal structure and accreted H-rich envelope was not in a long-term thermal 'cycle-averaged' steady state with the rate of accretion.

  3. OGLE-2014-SN-073 as a fallback accretion powered supernova

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.

    2018-03-01

    We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.

  4. Relative roles of synthesis and degradation in regulating metallothionein accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurin, D.E.

    1989-01-01

    Decay kinetics of {sup 35}S-cysteine (cys) in metallothionein (MT) were used to simultaneously measure rates of MT synthesis and degradation in a HD11 chicken-macrophage cell-line. A reverse-phase (RP) high-performance liquid-chromatography procedure was used to purify 2 MT-isoforms from cytosols with approximately 94% purity. The medium that the macrophages were incubated in was validated to ensure that it contained enough unlabeled cys to adequately chase {sup 35}S-cys released by the degradation of labeled protein. The addition of Zn{sup 2+} and unlabeled cys to the medium did not change the fractional-rates of MT synthesis (FRS) and degradation (FRD). These measurements were alsomore » validated by showing that the measured fractional-rate of MT accretion closely approximated the difference between FRS and FRD. When macrophages were incubated in medium supplemented with 50 or 25 {mu}M Zn{sup 2+} the absolute-rate of MT synthesis (ARS) and FRD increased and decreases, respectively. When macrophages were incubated in medium supplemented with 20 or 10 {mu}M Cd{sup 2+}, the ARS increased but the FDR was not changed.« less

  5. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubovas, Kastytis; King, Andrew, E-mail: kastytis.zubovas@ftmc.lt

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to {approx}10-50 times this in BAL QSOs. For UFOs this implies black holemore » accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-{sigma} relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.« less

  6. BAL QSOs and Extreme UFOs: The Eddington Connection

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2013-05-01

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to ~10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-σ relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  7. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  8. Stochastic events lead to accretion in Saturn’s rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2009-12-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: they can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance’ can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini’s observations of Saturn in 2004.

  9. Stochastic events lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2010-05-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004.

  10. Thermal evolution and differentiation of planetesimals and planetary embryos

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane

    2012-01-01

    In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.

  11. Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.; hide

    2012-01-01

    The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.

  12. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia

    USGS Publications Warehouse

    Rogers, K.; Saintilan, N.; Cahoon, D.

    2005-01-01

    Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.

  13. Turbulent Collapse of Gravitationally Bound Clouds

    NASA Astrophysics Data System (ADS)

    Murray, Daniel W.

    In this dissertation, I explore the time-variable rate of star formation, using both numerical and analytic techniques. I discuss the dynamics of collapsing regions, the effect of protostellar jets, and development of software for use in the hydrodynamic code RAMSES. I perform high-resolution adaptive mesh refinement simulations of star formation in self-gravitating turbulently driven gas. I have run simulations including hydrodynamics (HD), and HD with protostellar jet feedback. Accretion begins when the turbulent fluctuations on largescales, near the driving scale, produce a converging flow. I find that the character of the collapse changes at two radii, the disk radius rd, and the radius r* where the enclosed gas mass exceeds the stellar mass. This is the first numerical work to show that the density evolves to a fixed attractor, rho(r, t) → rho( r), for rd < r < r*; mass flows through this structure onto a sporadically gravitationally unstable disk, and from thence onto the star. The total stellar mass M*(t) (t - t*)2, where (t - t *)2 is the time elapsed since the formation of the first star. This is in agreement with previous numerical and analytic work that suggests a linear rate of star formation. I show that protostellar jets change the normalization of the stellar mass accretion rate, but do not strongly affect the dynamics of star formation in hydrodynamics runs. In particular, M*(t) infinity (1 - f jet)2(t - t*) 2 is the fraction of mass accreted onto the protostar, where fjet is the fraction ejected by the jet. For typical values of fjet 0.1 - 0.3 the accretion rate onto the star can be reduced by a factor of two or three. However, I find that jets have only a small effect (of order 25%) on the accretion rate onto the protostellar disk (the "raw" accretion rate). In other words, jets do not affect the dynamics of the infall, but rather simply eject mass before it reaches the star. Finally, I show that the small scale structure--the radial density, velocity, and mass accretion profiles--are very similar in the jet and no-jet cases.

  14. Active galactic nucleus feedback in an isolated elliptical galaxy: The effect of strong radiative feedback in the kinetic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhaoming; Yuan, Feng; Ostriker, Jeremiah P.

    2014-07-10

    Based on two-dimensional high-resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central active galactic nucleus (AGN) on the cosmological evolution of an isolated elliptical galaxy. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. It is well known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hotmore » accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ≅ 10{sup –3.5}), and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.« less

  15. On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.

    1997-01-01

    Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.

  16. Ultraviolet spectroscopy of V Sagittae in high, intermediate and low states from HST and IUE satellites

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2015-11-01

    We present the first phase resolved ultraviolet spectroscopic study of V Sge in high, intermediate and low states observed with the Hubble Space Telescope High Resolution Spectrograph (HST HRS) and International Ultraviolet Explorer (IUE) during the period 1978-1996 to diagnose the ultraviolet fluxes of C IV 1550 Å and He II 1640 Å emission lines originating in the accretion disk during different orbital phases. Different spectra showing the variations in line fluxes at different orbital phases are presented. The reddening of V Sge is determined from the 2200 Å feature. We concentrated on calculating the line fluxes of C IV & He II emission lines. From HST and IUE data, we derived an accretion luminosity and an accretion rate for V Sge. The average temperature of the outer rim of the accretion disk {˜}10000 K. Our results show that there are variations in line fluxes, accretion luminosities and accretion rates with time for V Sge. These variations are attributed to the variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. These results from the HST and IUE observations are consistent with the binary model consisting of a white dwarf, a disk around the white dwarf, and a lobe-filling main-sequence companion (Hachisu & Kato, Astrophys. J. 598:527H, 2003).

  17. The combined effects of sediment accretion (burial) and nutrient enrichment on the growth and propagation of Phalaris arundinacea

    PubMed Central

    Chen, Xinsheng; Liao, Yulin; Xie, Yonghong; Wu, Chao; Li, Feng; Deng, Zhengmiao; Li, Xu

    2017-01-01

    Sediment accretion (burial) and nutrient enrichment occur concurrently in lacustrine wetlands, but the role of these two aspects of sedimentation on macrophyte performance has rarely been examined. Here, we investigated the concurrent effects of sediment accretion and nutrient enrichment on the growth and propagation of Phalaris arundinacea L. using a factorial sediment burial by nutrient addition experimental design. Regardless of burial depth, nutrient addition increased biomass accumulation, shoot mass ratio, the number of rhizomes, and the length of ramets and rhizomes. While burial had little effect on plant growth and propagation, it had an interactive effect with nutrient addition on belowground growth and ramet production. These results indicate that P. arundinacea is tolerant to burial, which allows it to grow in habitats with high sedimentation rates. However, the enhanced growth and propagation of P. arundinacea following sedimentation were primarily related to nutrient enrichment. This suggests that nutrient enrichment of sediments, which occurs in many lacustrine wetlands, increases the risk of invasion by P. arundinacea. PMID:28054590

  18. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    NASA Astrophysics Data System (ADS)

    Meisel, Zach

    2018-06-01

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion rates \\dot{M} are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single \\dot{M} and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ)19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that \\dot{M} must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.

  19. A large sample of Kohonen-selected SDSS quasars with weak emission lines: selection effects and statistical properties

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Balafkan, N.

    2014-08-01

    Aims: A tiny fraction of the quasar population shows remarkably weak emission lines. Several hypotheses have been developed, but the weak line quasar (WLQ) phenomenon still remains puzzling. The aim of this study was to create a sizeable sample of WLQs and WLQ-like objects and to evaluate various properties of this sample. Methods: We performed a search for WLQs in the spectroscopic data from the Sloan Digital Sky Survey Data Release 7 based on Kohonen self-organising maps for nearly 105 quasar spectra. The final sample consists of 365 quasars in the redshift range z = 0.6 - 4.2 (z¯ = 1.50 ± 0.45) and includes in particular a subsample of 46 WLQs with equivalent widths WMg ii< 11 Å and WC iv< 4.8 Å. We compared the luminosities, black hole masses, Eddington ratios, accretion rates, variability, spectral slopes, and radio properties of the WLQs with those of control samples of ordinary quasars. Particular attention was paid to selection effects. Results: The WLQs have, on average, significantly higher luminosities, Eddington ratios, and accretion rates. About half of the excess comes from a selection bias, but an intrinsic excess remains probably caused primarily by higher accretion rates. The spectral energy distribution shows a bluer continuum at rest-frame wavelengths ≳1500 Å. The variability in the optical and UV is relatively low, even taking the variability-luminosity anti-correlation into account. The percentage of radio detected quasars and of core-dominant radio sources is significantly higher than for the control sample, whereas the mean radio-loudness is lower. Conclusions: The properties of our WLQ sample can be consistently understood assuming that it consists of a mix of quasars at the beginning of a stage of increased accretion activity and of beamed radio-quiet quasars. The higher luminosities and Eddington ratios in combination with a bluer spectral energy distribution can be explained by hotter continua, i.e. higher accretion rates. If quasar activity consists of subphases with different accretion rates, a change towards a higher rate is probably accompanied by an only slow development of the broad line region. The composite WLQ spectrum can be reasonably matched by the ordinary quasar composite where the continuum has been replaced by that of a hotter disk. A similar effect can be achieved by an additional power-law component in relativistically boosted radio-quiet quasars, which may explain the high percentage of radio quasars. The full catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A114

  20. Accretion onto a moving Reissner-Nordström black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Lei; Yang, Rongjia, E-mail: jiaoleizhijia@163.com, E-mail: yangrongjia@tsinghua.org.cn

    We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ( P =ρ) onto a Reissner-Nordström black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.

  1. Changing-Look Quasars: Radical Changes in Accretion Rate?

    NASA Astrophysics Data System (ADS)

    Green, Paul

    2017-09-01

    Over a dozen 'changing look quasars' (CLQs) that switch between quasar and galaxy states have recently been discovered. CLQ transitions have variously been attributed to tidal disruption events, significant changes in intrinsic absorption, or in accretion rate, but all these models suffer strong theoretical or empirical challenges. We propose Chandra ToO observations of strong CLQ candidates with existing X-ray observations, triggered after confirmation via optical imaging and spectroscopy. Our approved Cycle 18 CLQ ToO program is as yet untriggered, so we propose again here to achieve our primary goals: to directly probe CLQ changes in nuclear X-ray luminosity, intrinsic absorption, and accretion rate, adding information crucial to distinguish between models.

  2. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  3. MULTIWAVELENGTH PHOTOMETRY AND HUBBLE SPACE TELESCOPE SPECTROSCOPY OF THE OLD NOVA V842 CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Szkody, Paula; Mukadam, Anjum

    2013-08-01

    We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 {+-} 0.3 s with an amplitude of 8.9 {+-} 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis ofmore » an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R{sub wd} and 5 R{sub wd} yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data.« less

  4. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion rammore » pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.« less

  5. A Spatial Analysis of Calcium Carbonate Accretion Rates on South Pacific Reefs

    NASA Astrophysics Data System (ADS)

    Bartlett, T.; Misa, P.; Vargas-Angel, B.

    2016-02-01

    The potential effects of ocean acidification (OA) are of particular concern in the ocean sciences community, predominantly as it pertains to the health and survival of marine calcifying organisms, such as reef corals. As part of NOAA's Pacific Islands Fisheries Science Center, Coral Reef Ecosystem Division's long-term coral reef ecosystem monitoring, Calcification Accretion Units (CAU) are deployed every 2-3 years in different regions in the US Pacific. The purpose of this project is to examine temporal and spatial variability of calcium carbonate (CaCO3) accretion rates and their potential association with physical and biological drivers. The research presented in this study is based on laboratory work and processing of samples obtained from the last two expeditions to American Samoa and the Pacific Remote Island Areas (PRIA), specifically from CAU retrievals in Tutuila Island and Rose Atoll, from 2 deployments in 2010 and 2012. This study uses in situ net CaCO3 accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities to Calcification Accretion Unit (CAU) plates deployed at 24 discrete sites on Tutuila Island and Rose Atoll to quantify the efficiency of the recruited calcifying organisms. Accretion rates were determined via indirect measurements of CaCO3 on each plate and normalized for surface area and length of deployment time in days. Through statistical analysis it was then determined whether or not there is variability between sites, islands, or over time. The findings of this study will determine whether CAU plates can be used as a viable OA monitoring tool.

  6. HD 100453: An evolutionary link between protoplanetary disks and debris disks

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2008-12-01

    Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.

  7. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  8. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less

  9. Transitional millisecond pulsars in the low-level accretion state

    NASA Astrophysics Data System (ADS)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  10. Low-radiative efficiency accretion: Microphysics and applications to low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot James Leo

    There is growing dynamical evidence that most nearby galaxies contain central ``massive dark objects,'' most likely supermassive black holes. Accretion onto a supermassive black hole may therefore be commonplace, and not just restricted to quasars and active galactic nuclei (AGN). This hypothesis is supported by observational surveys which show that the majority of nearby galaxies have nuclear emission properties reminiscent of AGN. Their emission-line and bolometric luminosities are, however, ~102 - 105 times smaller than typical AGN. In this thesis I explore several issues related to the physics of these low luminosity active galactic nuclei (LLAGN). In particular, it has been proposed that LLAGN are supermassive black holes accreting mass via a radiatively inefficient advection-dominated accretion flow, in which most of the energy dissipated by turbulence is carried with the gas through the event horizon rather than being radiated. This requires that turbulence dissipate most of its energy into the protons, rather than the electrons. I calculate the heating of electrons and protons by the collisionless dissipation of magneto-hydrodynamic turbulence and argue that preferential proton heating can only be achieved for relatively subthermal magnetic fields (roughly β >~ 10, where β is the average ratio of the gas pressure to the magnetic pressure in the accretion flow). For stronger, near equipartition, magnetic fields (β ~ 1), the electrons receive most of the turbulent energy. I give an independent argument, based on a fluid model for the radial evolution of the magnetic energy density in the accretion flow, that magnetic fields in advection- dominated accretion flows may be somewhat subthermal. An alternative explanation for LLAGN is that they accrete mass at very low rates. This is, however, inconsistent with accretion rate estimates (based on Bondi's method) in nearby massive elliptical galaxies and the center of our Galaxy. I give a detailed discussion of such estimates for the Galactic Center. The Bondi accretion rate estimates reflect the gas properties far from the black hole, rather than near the event horizon where most of the radiation originates. Part of the explanation for LLAGN may therefore be that most of the mass supplied to the accretion flow does not reach the central object, but is lost to an outflow/wind. I explore the observational consequences of this proposal and argue that current observations of all low luminosity accreting systems are consistent with significant mass loss from the accretion flow, provided that the electrons receive a reasonable fraction (~30%) of the turbulent energy. I give a detailed discussion of future observations which can assess the importance of mass loss in LLAGN. I conclude this thesis by analyzing the constraints on the physics of accretion imposed by broad-band spectral observations of four well-known LLAGN (M81, M87, NGC 4579, and NGC 4594).

  11. Accretion rates of protoplanets 2: Gaussian distribution of planestesimal velocities

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1991-01-01

    The growth rate of a protoplanet embedded in a uniform surface density disk of planetesimals having a triaxial Gaussian velocity distribution was calculated. The longitudes of the aspses and nodes of the planetesimals are uniformly distributed, and the protoplanet is on a circular orbit. The accretion rate in the two body approximation is enhanced by a factor of approximately 3, compared to the case where all planetesimals have eccentricity and inclination equal to the root mean square (RMS) values of those variables in the Gaussian distribution disk. Numerical three body integrations show comparable enhancements, except when the RMS initial planetesimal eccentricities are extremely small. This enhancement in accretion rate should be incorporated by all models, analytical or numerical, which assume a single random velocity for all planetesimals, in lieu of a Gaussian distribution.

  12. Structure of protoplanetary discs with magnetically driven winds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.

    2018-04-01

    We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.

  13. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    NASA Technical Reports Server (NTRS)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  14. Geomorphic influences on the contribution of vegetation to soil C accumulation and accretion in Spartina alterniflora marshes

    NASA Astrophysics Data System (ADS)

    Elsey-Quirk, Tracy; Unger, Viktoria

    2018-01-01

    Salt marshes are important hotspots of long-term belowground carbon (C) storage, where plant biomass and allochthonous C can be preserved in the soil for thousands of years. However, C accumulation rates, as well as the sources of C, may differ depending on environmental conditions influencing plant productivity, allochthonous C deposition, and C preservation. For this study, we examined the relationship between belowground root growth, turnover, decay, above- and belowground biomass, and previously reported longer-term rates of total, labile, and refractory organic C accumulation and accretion in Spartina alterniflora-dominated marshes across two mid-Atlantic, US estuaries. Tidal range, long-term rates of mineral sedimentation, C accumulation, and accretion were higher and salinities were lower in marshes of the coastal plain estuary (Delaware Bay) than in the coastal lagoon (Barnegat Bay). We expected that the conditions promoting high rates of C accumulation would also promote high plant productivity and greater biomass. We further tested the influence of environmental conditions on belowground growth (roots + rhizomes), decomposition, and biomass of S. alterniflora. The relationship between plant biomass and C accumulation rate differed between estuaries. In the sediment-limited coastal lagoon, rates of total, labile, and refractory organic C accumulation were directly and positively related to above- and belowground biomass. Here, less flooding and a higher mineral sedimentation rate promoted greater above- and belowground biomass and, in turn, higher soil C accumulation and accretion rates. In the coastal plain estuary, the C accumulation rate was related only to aboveground biomass, which was positively related to the rate of labile C accumulation. Soil profiles indicated that live root and rhizome biomass was positively associated with labile C density for most marshes, yet high labile C densities below the live root zone and in marshes with high mineral sedimentation rates and low biomass signify the potential contribution of allochthonous C and the preservation of labile C. Overall, our findings illustrate the importance of sediment supply to marshes both for promoting positive plant-C accumulation-accretion feedbacks in geomorphic settings where mineral sediment is limiting and for promoting allochthonous inputs and preservation of labile C leading to high C accumulation and accretion rates in geomorphic settings where sediment supply is abundant.

  15. Ultraviolet Spectral Behavior of TVCol During and After Flaring Activity

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2018-01-01

    We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E ( B - V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s-1 and 9 × 1030 erg s-1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s-1 (4.76 × 10-11 M ⊙ yr-1) and 5 × 1013 erg s-1 (7.93 × 10-13 M ⊙ yr-1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.

  16. TESTING WIND AS AN EXPLANATION FOR THE SPIN PROBLEM IN THE CONTINUUM-FITTING METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Bei; Czerny, Bożena; Sobolewska, Małgosia

    2016-04-20

    The continuum-fitting method is one of the two most advanced methods of determining the black hole spin in accreting X-ray binary systems. There are, however, still some unresolved issues with the underlying disk models. One of these issues manifests as an apparent decrease in spin for increasing source luminosity. Here, we perform a few simple tests to establish whether outflows from the disk close to the inner radius can address this problem. We employ four different parametric models to describe the wind and compare these to the apparent decrease in spin with luminosity measured in the sources LMC X-3 andmore » GRS 1915+105. Wind models in which parameters do not explicitly depend on the accretion rate cannot reproduce the spin measurements. Models with mass accretion rate dependent outflows, however, have spectra that emulate the observed ones. The assumption of a wind thus effectively removes the artifact of spin decrease. This solution is not unique; the same conclusion can be obtained using a truncated inner disk model. To distinguish among the valid models, we will need high-resolution X-ray data and a realistic description of the Comptonization in the wind.« less

  17. Spatial-temporal evolution of the eastern Nanhui mudflat in the Changjiang (Yangtze River) Estuary under intensified human activities

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Zhang, Yexin; Zhu, Longhai; Chi, Wanqing; Yang, Zuosheng; Wang, Biying; Lv, Kai; Wang, Hongmin; Lu, Zhiyong

    2018-05-01

    The eastern Nanhui mudflat (ENM), located in the southern flank of the Changjiang (Yangtze River) Estuary, plays a key role in storm protection, defense against sea level rise, and land resource provision for Shanghai, China's largest city. Recently, there has been a great deal of concern for its evolutionary fate, since a drastic reduction in the Changjiang sediment discharge rate and an increased number of estuarine enclosures might negatively impact the environmental protection functions that this mudflat provides. In this paper, a novel method, which employed the envelope lines of instantaneous shoreline positions identified in 436 Landsat satellite images from 1975 to 2016, was used to demonstrate the evolution of the mudflat high and low tide lines in a detailed, quantitative way. Our study reveals the southeast progradation rate of the mudflat doubled from 24 m/yr in 713-1974 CE to 49 m/yr in 1975-1995 CE, probably due to the influence of the estuarine turbidity maximum zone shifting to the ENM. Under the ample sediment input directly from the turbidity maximum zone, the spatial evolution of the ENM was governed predominantly by the changing morphology of the South Passage due to the quick progradation of the ENM, which narrowed the South Passage by pushing the South Passage Trumpet southeastward. Therefore, the ENM experienced rapid accretion during 1975-2016. The accretion rate of the high tide line increased 2-13 times due to vegetation and intertidal enclosures, resulting in the rapid reduction of the intertidal area. The area decreased from 97 km2 in 1976 to 66 km2 in 1995, mainly due to vegetation, and continued decreasing to 12 km2 in 2006 due to the intertidal enclosures. In contrast, the accretion rate of the low tide line increased by 25 times due to subtidal enclosures and caused the intertidal area increased to 78 km2 in 2015. The almost disappeared intertidal zones in 2006 reappeared. However, this reappearance might be a temporary transitional state, and once the subtidal enclosures are completed, most of the intertidal zones will be replaced by enclosure land. Our study reveals that the drastic reduction in the Changjiang sediment flow to the sea has not caused a decline in the ENM. In contrast, the ENM has experienced rapid accretion in the past 40 years, resulting in the strengthening of its functional abilities to protect Shanghai, an unexpected outcome.

  18. How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes?

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Chandra, Mani; Gammie, Charles F.; Quataert, Eliot; Tchekhovskoy, Alexander

    2017-09-01

    Black holes with accretion rates well below the Eddington rate are expected to be surrounded by low-density, hot, geometrically thick accretion discs. This includes the two black holes being imaged at subhorizon resolution by the Event Horizon Telescope. In these discs, the mean free path for Coulomb interactions between charged particles is large, and the accreting matter is a nearly collisionless plasma. Despite this, numerical simulations have so far modelled these accretion flows using ideal magnetohydrodynamics. Here, we present the first global, general relativistic, 3D simulations of accretion flows on to a Kerr black hole including the non-ideal effects most likely to affect the dynamics of the disc: the anisotropy between the pressure parallel and perpendicular to the magnetic field, and the heat flux along magnetic field lines. We show that for both standard and magnetically arrested discs, the pressure anisotropy is comparable to the magnetic pressure, while the heat flux remains dynamically unimportant. Despite this large pressure anisotropy, however, the time-averaged structure of the accretion flow is strikingly similar to that found in simulations treating the plasma as an ideal fluid. We argue that these similarities are largely due to the interchangeability of the viscous and magnetic shear stresses as long as the magnetic pressure is small compared to the gas pressure, and to the subdominant role of pressure/viscous effects in magnetically arrested discs. We conclude by highlighting outstanding questions in modelling the dynamics of low-collisionality accretion flows.

  19. On the area of accretion curtains from fast aperiodic time variability of the intermediate polar EX Hya

    NASA Astrophysics Data System (ADS)

    Semena, Andrey N.; Revnivtsev, Mikhail G.; Buckley, David A. H.; Kotze, Marissa M.; Khabibullin, Ildar I.; Breytenbach, Hannes; Gulbis, Amanda A. S.; Coppejans, Rocco; Potter, Stephen B.

    2014-08-01

    We present results of a study of the fast timing variability of the magnetic cataclysmic variable (mCV) EX Hya. It was previously shown that one may expect the rapid flux variability of mCVs to be smeared out at time-scales shorter than the cooling time of hot plasma in the post-shock region of the accretion curtain near the white dwarf (WD) surface. Estimates of the cooling time and the mass accretion rate, thus provide us with a tool to measure the density of the post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have probed the high frequencies in the aperiodic noise of one of the brightest mCV EX Hya with the help of optical telescopes, namely Southern African Large Telescope and the South African Astronomical Observatory 1.9 m telescope. We place upper limits on the plasma cooling time-scale τ < 0.3 s, on the fractional area of the accretion curtain footprint f < 1.6 × 10-4, and a lower limit on the specific mass accretion rate Ṁ/A>3 g s-1 cm-2. We show that measurements of accretion column footprints via eclipse mapping highly overestimate their areas. We deduce a value of Δr/r ≲ 10- 3 as an upper limit to the penetration depth of the accretion disc plasma at the boundary of the magnetosphere.

  20. The link between tidal interaction and nuclear activity in galaxies

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Pringle, J. E.; Rees, M. J.

    1988-01-01

    It is considered how nuclear activity in galaxies may be induced by the tidal perturbation of companion galaxies. It is suggested that if the central regions of the galaxies contain marginally self-gravitating disks of gas, trailing spiral density waves, triggered by nonaxisymmetric gravitational instability, lead to efficient angular momentum transport. If the net effect of the external perturbation is to increase the effect of self-gravity in the gas, then the result is to induce a considerable increase in the mass accretion rate into the central region on a relatively short time scale. With a simple prescription, the evolution of self-gravitating accretion disks is examined in this context. These results are discussed in the context of the frequent occurrence of nuclear activity in interacting galaxies.

  1. On the role of disks in the formation of stellar systems: A numerical parameter study of rapid accretion

    DOE PAGES

    Kratter, Kaitlin M.; Matzner, Christopher D.; Krumholz, Mark R.; ...

    2009-12-23

    We study rapidly accreting, gravitationally unstable disks with a series of idealized global, numerical experiments using the code ORION. Our numerical parameter study focuses on protostellar disks, showing that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the infall rate to the disk sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infallmore » rate and governed by gravitational torques generated by low-m spiral modes. Furthermore, we also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.« less

  2. Shortest recurrence periods of novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi

    Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ☉} WD with a mass accretion rate of 3.6 × 10{sup –7} M {sub ☉} yr{sup –1}. A 1 yr recurrence period is realized for very massivemore » (≳ 1.3 M {sub ☉}) WDs with very high accretion rates (≳ 1.5 × 10{sup –7} M {sub ☉} yr{sup –1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.« less

  3. Far-Ultraviolet Spectroscopy of Three Long-Period Novalike Variables

    NASA Astrophysics Data System (ADS)

    Bisol, Alexandra C.; Godon, Patrick; Sion, Edward M.

    2012-02-01

    We have selected three novalike variables at the long-period extreme of novalike orbital periods: V363 Aur, RZ Gru, and AC Cnc, all with IUE archival far-ultraviolet spectra. All are UX UMa-type novalike variables and all have Porb > 7 hr. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru has not proven to be a member of the SW Sex subclass. We have carried out the first synthetic spectral analysis of far-ultraviolet spectra of the three systems using state-of-the-art models of both accretion disks and white dwarf photospheres. We find that the FUV spectral energy distribution of both V363 Aur and RZ Gru are in agreement with optically thick steady-state accretion disk models in which the luminous disk accounts for 100% of the FUV light. We present accretion rates and model-derived distances for V363 Aur and RZ Gru. For AC Cnc, we find that a hot accreting white dwarf accounts for ˜60% of the FUV light, with an accretion disk providing the rest. We compare our accretion rates and model-derived distances with estimates in the literature.

  4. SPH Simulations of Spherical Bondi Accretion: First Step of Implementing AGN Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, D.; Nagamine, K.

    2011-01-01

    Our motivation is to numerically test the assumption of Black Hole (BH) accretion (that the central massive BH of a galaxy accretes mass at the Bondi-Hoyle accretion rate, with ad-hoc choice of parameters), made in many previous galaxy formation studies including AGN feedback. We perform simulations of a spherical distribution of gas, within the radius range 0.1 - 200 pc, accreting onto a central supermassive black hole (the Bondi problem), using the 3D Smoothed Particle Hydrodynamics code Gadget. In our simulations we study the radial distribution of various gas properties (density, velocity, temperature, Mach number). We compute the central mass inflow rate at the inner boundary (0.1 pc), and investigate how different gas properties (initial density and velocity profiles) and computational parameters (simulation outer boundary, particle number) affect the central inflow. Radiative processes (namely heating by a central X-ray corona and gas cooling) have been included in our simulations. We study the thermal history of accreting gas, and identify the contribution of radiative and adiabatic terms in shaping the gas properties. We find that the current implementation of artificial viscosity in the Gadget code causes unwanted extra heating near the inner radius.

  5. EFFECTS OF BIASES IN VIRIAL MASS ESTIMATION ON COSMIC SYNCHRONIZATION OF QUASAR ACCRETION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhardt, Charles L.

    2011-09-01

    Recent work using virial mass estimates and the quasar mass-luminosity plane has yielded several new puzzles regarding quasar accretion, including a sub-Eddington boundary (SEB) on most quasar accretion, near-independence of the accretion rate from properties of the host galaxy, and a cosmic synchronization of accretion among black holes of a common mass. We consider how these puzzles might change if virial mass estimation turns out to have a systematic bias. As examples, we consider two recent claims of mass-dependent biases in Mg II masses. Under any such correction, the surprising cosmic synchronization of quasar accretion rates and independence from themore » host galaxy remain. The slope and location of the SEB are very sensitive to biases in virial mass estimation, and various mass calibrations appear to favor different possible physical explanations for feedback between the central black hole and its environment. The alternative mass estimators considered do not simply remove puzzling quasar behavior, but rather replace it with new puzzles that may be more difficult to solve than those using current virial mass estimators and the Shen et al. catalog.« less

  6. Standing shocks in magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2018-02-01

    We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.

  7. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    DOE PAGES

    Meisel, Zach

    2018-06-21

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion ratesmore » $$\\dot{M}$$ are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single $$\\dot{M}$$ and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ) 19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that $$\\dot{M}$$ must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Lastly, features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.« less

  8. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisel, Zach

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion ratesmore » $$\\dot{M}$$ are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single $$\\dot{M}$$ and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ) 19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that $$\\dot{M}$$ must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Lastly, features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.« less

  9. Accretion onto a noncommutative geometry inspired black hole

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Ghosh, Sushant G.

    2017-09-01

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  10. 20 Years of sea-levels, accretion, and vegetation on two Long Island Sound salt marshes

    EPA Science Inventory

    The long-term 1939-2013 rate of RSLR (Relative Sea-Level Rise) at the New London, CT tide gauge is ~2.6 mm/yr, near the maximum rate of salt marsh accretion reported in eastern Long Island Sound salt marshes. Consistent with recent literature RSLR at New London has accelerated si...

  11. Geophysics Fatally Flawed by False Fundamental Philosophy

    NASA Astrophysics Data System (ADS)

    Myers, L. S.

    2004-05-01

    For two centuries scientists have failed to realize Laplace's nebular hypothesis \\(1796\\) of Earth's creation is false. As a consequence, geophysicists today are misinterpreting and miscalculating many fundamental aspects of the Earth and Solar System. Why scientists have deluded themselves for so long is a mystery. The greatest error is the assumption Earth was created 4.6 billion years ago as a molten protoplanet in its present size, shape and composition. This assumption ignores daily accretion of more than 200 tons/day of meteorites and dust, plus unknown volumes of solar insolation that created coal beds and other biomass that increased Earth's mass and diameter over time! Although the volume added daily is minuscule compared with Earth's total mass, logic and simple addition mandates an increase in mass, diameter and gravity. Increased diameter from accretion is proved by Grand Canyon stratigraphy that shows a one kilometer increase in depth and planetary radius at a rate exceeding three meters \\(10 ft\\) per Ma from start of the Cambrian \\(540 Ma\\) to end of the Permian \\(245 Ma\\)-each layer deposited onto Earth's surface. This is unequivocal evidence of passive external growth by accretion, part of a dual growth and expansion process called "Accreation" \\(creation by accretion\\). Dynamic internal core expansion, the second stage of Accreation, did not commence until the protoplanet reached spherical shape at 500-600 km diameter. At that point, gravity-powered compressive heating initiated core melting and internal expansion. Expansion quickly surpassed the external accretion growth rate and produced surface volcanoes to relieve explosive internal tectonic pressure and transfer excess mass (magma)to the surface. Then, 200-250 Ma, expansion triggered Pangaea's breakup, first sundering Asia and Australia to form the Pacific Ocean, followed by North and South America to form the Atlantic Ocean, by the mechanism of midocean ridges, linear underwater volcanoes, that enable planetary expansion the same way cranial sutures permit human skulls to grow to maturity. Expansion is shown by the Asian and Australian trenches, from Kamchatka to the Marianas, and from Samoa to the tip of Macquarie Ridge south of New Zealand, that are mirror images of the western coasts of North and South America. This is clear evidence neither the Atlantic nor the Pacific Ocean existed 250 Ma when Earth was much smaller. In just 250 Ma external accretion and internal core expansion increased Earth's diameter from 7640 km to 12,735 km and increased total surface area to 361,060,000 sq. km, the area occupied by today's oceans-oceans that did not exist 250 Ma when Earth was slightly larger than Mars is today \\(6787 km\\). The fallacy of the nebular hypothesis did not become apparent until after Oliver and Isacks introduced the concept of subduction in 1967. Subduction was based on the false assumption that Earth's diameter is constant and unchanging, and spawned the theory of Plate Tectonics that "revolutionized" geophysics in a short period of time-a "revolution" destined for failure. Evidence is presented showing all solar bodies originate as comets \\(fragments of supernovae explosions\\) captured by the Sun that become meteoroids or asteroids by external accretion of meteorites and dust from over 370 known meteor streams.\\(Terentjeva, 1964\\) Accreation replaces the nebular hypothesis and rejuvenates Carey's Earth Expansion theory that, unfortunately, was pushed aside by plate tectonics because it lacked a plausible mechanism. However, expansion carries an ultimate threat to Mankind's tenure on Earth and exploration of Mars as the future home of Mankind takes on added significance.

  12. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material

    NASA Astrophysics Data System (ADS)

    Bonsor, Amy; Farihi, Jay; Wyatt, Mark C.; van Lieshout, Rik

    2017-06-01

    Infrared excesses around metal-polluted white dwarfs have been associated with the accretion of dusty planetary material. This work analyses the available infrared data for an unbiased sample of white dwarfs and demonstrates that no more than 3.3 per cent can have a wide, flat, opaque dust disc, extending to the Roche radius, with a temperature at the disc inner edge of Tin = 1400 K, the standard model for the observed excesses. This is in stark contrast to the incidence of pollution of about 30 per cent. We present four potential reasons for the absence of an infrared excess in polluted white dwarfs, depending on their stellar properties and inferred accretion rates: (I) their dust discs are opaque, but narrow, thus evading detection if more than 85 per cent of polluted white dwarfs have dust discs narrower than δr < 0.04r, (II) their dust discs have been fully consumed, which only works for the oldest white dwarfs with sinking time-scales longer than hundreds of years, (III) their dust is optically thin, which can supply low accretion rates of <107 gs-1 if dominated by (Poynting-Robertson) PR-drag, and higher accretion rates, if inwards transport of material is enhanced, e.g. due to the presence of gas, (IV) their accretion is supplied by a pure gas disc, which could result from the sublimation of optically thin dust for T* > 20 000 K. Future observations sensitive to faint infrared excesses or the presence of gas can test the scenarios presented here, thereby better constraining the nature of the material fuelling accretion in polluted white dwarfs.

  14. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  15. Helium ignition in rotating magnetized CO white dwarfs leading to fast and faint rather than classical Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Neunteufel, P.; Yoon, S.-C.; Langer, N.

    2017-06-01

    Context. Based mostly on stellar models that do not include rotation, CO white dwarfs that accrete helium at rates of about 10-8M⊙/ yr have been put forward as candidate progenitors for a number of transient astrophysical phenomena, including Type Ia supernovae and the peculiar and fainter Type Iax supernovae. Aims: Here we study the impact of accretion-induced spin-up including the subsequent magnetic field generation, angular momentum transport, and viscous heating on the white dwarf evolution up to the point of helium ignition. Methods: We resolve the structure of the helium accreting white dwarf models with a one-dimensional Langrangian hydrodynamic code, modified to include rotational and magnetic effects, in 315 model sequences adopting different mass-transfer rates (10-8-10-7M⊙/ yr), and initial white dwarf masses (0.54-1.10 M⊙) and luminosities (0.01-1 L⊙). Results: We find magnetic angular momentum transport, which leads to quasi-solid-body rotation, profoundly impacts the evolution of the white dwarf models, and the helium ignition conditions. Our rotating lower mass (0.54 and 0.82 M⊙) models accrete up to 50% more mass up to ignition than the non-rotating case, while it is the opposite for our more massive models. Furthermore, we find that rotation leads to helium ignition densities that are up to ten times smaller, except for the lowest adopted initial white dwarf mass. Ignition densities on the order of 106 g/cm3 are only found for the lowest accretion rates and for large amounts of accreted helium (≳0.4M⊙). However, correspondingly massive donor stars would transfer mass at much higher rates. We therefore expect explosive He-shell burning to mostly occur as deflagrations and at Ṁ > 2 × 10-8M⊙/ yr, regardless of white dwarf mass. Conclusions: Our results imply that helium accretion onto CO white dwarfs at the considered rates is unlikely to lead to the explosion of the CO core or to classical Type Ia supernovae, but may instead produce events that belong to the recently identified classes of faint and fast hydrogen-free supernovae.

  16. Relationships between Watershed Alterations and Sediment Accretion Rates in Willapa Bay Washington and Yaquina Bay, Oregon

    EPA Science Inventory

    The Pacific Northwest (PNW) is one of the leading regions of timber production in the United States. It also undergoes aperiodic episodes of catastrophic forest fires, and systematic slash burns following logging activities. Such conditions raise concerns regarding increased re...

  17. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  18. Fake age hiatus in a loess section revealed by OSL dating of calcrete nodules

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Li, Sheng-Hua; Sun, Jimin; Hao, Qingzhen

    2018-04-01

    Optically stimulated luminescence (OSL) dating on potassium feldspar has been performed with high resolution in the Luochuan section in the Chinese Loess Plateau. An age hiatus of ∼ 15 ka is found at the top of L2 layer within the loess/paleosol sequences. The age of the potassium feldspar from the calcrete nodules along the S1/L2 boundary is significantly older than those of the paleosol and loess samples lying above and below the boundary. The age overestimation of the potassium feldspar from calcrete nodules is caused by the underestimation of the dose rate, because accretion of carbonates could dilute the radioactivity. The age hiatus at the top of L2 also resulted from the underestimation of the dose rates of four loess samples beneath this hiatus. These four loess samples have high CaO concentrations. Ages of these samples are overestimated in the similar way as the nodules, but with smaller degrees. All results suggest that the accretion of carbonates happened after the loess deposition. The carbonate accretion process of the calcrete nodules has been simulated with accumulation models. The accretion can be as young as 46 ka, assuming the calcrete nodules formed rapidly at a certain time point. For slow and gradual accretion models, the carbonate started to accumulate slowly since the dust deposition and the accumulation became faster afterwards. The transition of the accretion rate may relate to the climate change or a change in the carbonate leaching and re-precipitation system.

  19. Brightness variations of the FUor-type eruptive star V346 Normae

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Westhues, Ch.; Haas, M.

    2017-01-01

    Decades after the beginning of its FU Orionis-type outburst, V346 Nor unexpectedly underwent a fading event of ΔK = 4.6 mag around 2010. We obtained near-infrared observations and re-analyzed data from the VISTA/VVV survey to outline the brightness evolution. In our VLT/NaCO images, we discovered a halo of scattered light around V346 Nor with a size of about 0".04 (30 au). The VISTA data outlined a well-defined minimum in the light curve in late 2010/early 2011, and tentatively revealed a small-amplitude periodic modulation of 58 days. Our latest data points from 2016 demonstrate that the source is still brightening but has not yet reached the 2008 level. We used a simple accretion disk model with varying accretion rate and line-of-sight extinction to reproduce the observed near-infrared magnitudes and colors. We found that the flux changes of V346 Nor before 2008 were caused by a correlated change of extinction and accretion rate, while the minimum around 2010 was mostly due to decreasing accretion. The source reached a highest accretion rate of ≈ 10-4M⊙ yr-1 in 1992. A combination of accretion and extinction changes has been invoked in the literature to interpret the flux variations of certain embedded young eruptive stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 71.C-0526(A), 179.B-2002, and 381.C-0241(A).

  20. On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada

    2017-02-01

    We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}⊙ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}⊙ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (˜85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ˜ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (I.e., z≳ 10).

  1. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  2. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2015-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  3. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2014-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a "magnetic switch" found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  4. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2016-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  5. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction ofmore » massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.« less

  6. bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport

    DOE PAGES

    Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.

    2015-06-25

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and tomore » a slowly accreting Kerr black hole in axisymmetry.« less

  7. The enigma of the magnetic pulsar SXP1062: a new look with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia

    2012-10-01

    SXP 1062 is an exceptional case of a young neutron star with known age in a wind-fed HMXB. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. All current accretion scenarios encounter major difficulties explaining the spin-down rate of this accretion-powered pulsar. This study will allow us to construct a spin period-luminosity relation as a powerful tool for distinguishing between different accretion and evolution scenarios. The XMM-Newton observations of SXP 1062 will thus shed new light on the physics of accreting neutron stars.

  8. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field.

    PubMed

    Jahangiri, Leila; Sharpe, Michka; Novikov, Natasha; González-Rosa, Juan Manuel; Borikova, Asya; Nevis, Kathleen; Paffett-Lugassy, Noelle; Zhao, Long; Adams, Meghan; Guner-Ataman, Burcu; Burns, Caroline E; Burns, C Geoffrey

    2016-01-01

    The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage. © 2016. Published by The Company of Biologists Ltd.

  9. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang

    2016-12-01

    The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, I.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the Fundamental Plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when LX ≳ 1.5 × 1042 erg s- 1. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.

  10. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    NASA Astrophysics Data System (ADS)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  11. Launching of Jets and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.; Livio, Mario

    2001-05-01

    The launching of magnetohydrodynamic outflows from accretion disks is considered. We formulate a model for the local vertical structure of a thin disk threaded by a poloidal magnetic field of dipolar symmetry. The model consists of an optically thick disk matched to an isothermal atmosphere. The disk is supposed to be turbulent and possesses an effective viscosity and an effective magnetic diffusivity. In the atmosphere, if the magnetic field lines are inclined sufficiently to the vertical, a magnetocentrifugal outflow is driven and passes through a slow magnetosonic point close to the surface. We determine how the rate of mass loss varies with the strength and inclination of the magnetic field. In particular, we find that for disks in which the mean poloidal field is sufficiently strong to stabilize the disk against the magnetorotational instability, the mass-loss rate decreases extremely rapidly with increasing field strength and is maximal at an inclination angle of 40°-50°. For turbulent disks with weaker mean fields, the mass-loss rate increases monotonically with increasing strength and inclination of the field, but the solution branch terminates before achieving excessive mass-loss rates. Our results suggest that efficient jet launching occurs for a limited range of field strengths and a limited range of inclination angles in excess of 30°. In addition, we determine the direction and rate of radial migration of the poloidal magnetic flux and discuss whether configurations suitable for jet launching can be maintained against dissipation.

  12. ATOMIC ENERGY COMMISSION PROGRESS REPORT ON BONE RESEARCH , 1960-1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    A review of osteoporosis concepts is presented. Activities in an experimental program to study osteoporosis by examining mineral metabolism in bone and by examining bone composition and density are reported. Sr/sup 85/ was administered to seven osteoporotic patients as a tracer for skeletal mineral metabolism. The activity levels in the blood and the excretion rate were measured. From these data the accretion rate and the diffusible component volume were calculated. It was found that the accretion rate was not increased in any case. The size of the diffusible component was normal in six patients and reduced in one. Concurrent experimentsmore » with estrogen administration were conducted. Over-all results indicate that in osteoporosis, the rate of bone accretion is never elevated and an effect of estrogen administration was the decrease of bone resorption rather than stimulation of bone formation. In studies of skeletal metabolism, the kinetics of Sr/sup 85/ metabolism was compared in normal subjects and patients with skeletal disorders. Various aspects of the results are analyzed and it is concluded that values obtained by kinetic studies appear to be quantitative, reproducible, and to correlate with presently established information on alterations of bone metabolism in systemic deseases. In studies of peripheral circulation and bone growth, I/sup 131tagged human serum albumin was injected in animals. The investigation was conducted to determine blood volumne turnover rate in extremities, to correlate changes in this rate with fractures and bone disorders, and to examine the method for use in evaluation of circulation under certain pathological conditions. Data and findings are included. Data are also included on in vitro mobilization of Sr/ sup 85/ during bone formation and bone density studies. (J.R.D.)« less

  13. Propeller-driven outflows from an MRI disc

    NASA Astrophysics Data System (ADS)

    Lii, Patrick S.; Romanova, Marina M.; Ustyugova, Galina V.; Koldoba, Alexander V.; Lovelace, Richard V. E.

    2014-06-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and plays a dominant role in the inner disc dynamics by inhibiting matter accretion on to the star. In this work, we investigate the dynamics of the propeller regime using axisymmetric MHD simulations of MRI-driven accretion on to a rapidly rotating magnetized star. The disc matter is inhibited from accreting on to the star and instead accumulates at the disc-magnetosphere boundary, slowly building up a reservoir of matter. Some of this matter diffuses into the outer magnetosphere where it picks up angular momentum and is ejected as an outflow which gradually collimates at larger distances from the star. If the ejection rate is smaller than the disc's accretion rate, then the matter accumulates at the disc-magnetosphere boundary faster than it can be ejected. In this situation, accretion on to the propelling star proceeds through the episodic accretion cycle in which episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion on to the star. In addition to the matter-dominated wind component, the propeller also drives a well-collimated, magnetically dominated Poynting jet which transports energy and angular momentum away from the star. The propelling stars undergo strong spin-down due to the outflow of angular momentum in the wind and jet. We measure spin-down time-scales of ˜1.2 Myr for a cTTs in the strong propeller regime of accretion. The propeller mechanism may explain some of the jets and winds observed around some T Tauri stars as well as the nature of their ejections. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  14. Jet Power vs. Black Hole Mass in Blazars: Exploring the Relationship in the Context of the B-Z Mechanism

    NASA Astrophysics Data System (ADS)

    Fernandes, Sunil; Schlegel, E.

    2012-01-01

    Recently, a tentative negative correlation between jet power and BH mass in a sample of GeV-TeV BL Lac objects(Zhang et al 2011). It was suggested that spin energy extraction could play a significant role in producing the jets and the jets are not purely accretion driven. Broderick et al (2011) recently explored the relationship between jet power and radio core luminosity building on Blanford et al (1979) theoretical work. Using this work we have studied the relationship between radio core luminosity (as a stand in for jet power) and black hole mass and have found a possible positive correlation in a sample of nearby BL Lac objects. The present poster attempts to explore this relationship in the context of the Blanford-Znajek mechanism which predicts jet power increases with black hole mass, spin rate, and accretion rate.

  15. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    PubMed

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xi<1&solm0;2). The Bernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  16. Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.

    1991-01-01

    IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.

  17. Studies of neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W. J.

    Neutron stars represent the endpoint in stellar evolution for stars with initial masses between ~3 and 8 solar masses. They are the densest non- singularities in the universe, cramming more than a solar mass of matter into a sphere with a radius of about 10 km. Such a large mass-to-radius ratio implies deep potential wells, so that when mass transfer is taking place ~10% of the rest-mass is liberated as gravitational binding energy, resulting in prodigious amounts of X-ray emission that contains valuable information on the physical characteristics in accreting binary systems. Much of my research in this dissertation focuses on the spectroscopic and timing properties of the canonical thermonuclear bursting source GS 1826-238. By measuring the relationship between the X-ray flux (which is assumed to trace the accretion rate onto the stellar surface) and the time intervals between subsequent bursts, I find that although the intervals usually decreased proportionately as the persistent flux increased, a few measurements of the flux-recurrence time relationship were significant outliers. Accompanying spectral and timing changes strongly suggest that the accretion disk extends down to smaller radial distances from the source during these atypical episodes. This result is important for understanding the nature of accretion flows around neutron stars because it indicates that accretion disks probably evaporate at some distance from the neutron star surface at lower accretion rates. I also contribute to our understanding of two newly discovered and heavily- absorbed pulsars (neutron stars with strong magnetic fields) by determining the orbital parameters of the systems through pulse timing analysis. Orbital phase- resolved spectroscopy of one source revealed evidence for an "accretion wake" trailing the pulsar through its orbit, showing that X-rays emanating from the surface can ionize the stellar wind in its vicinity. Finally, I develop an innovative application of dust scattering halos (diffuse emission surrounding X-ray sources, resulting from photons scattering from dust grains) to geometrically determine the distance and the distribution of dust along the line of sight to X-ray sources. The distance is clearly important for inferring the absolute luminosities of systems from measured fluxes, and knowledge of the distribution of dust can further understanding of the interstellar medium.

  18. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  19. Black Hole Spin Evolution and Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Chen, W.; Cui, W.; Zhang, S. N.

    1999-04-01

    We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.

  20. Chandra Survey of Nearby Galaxies: Testing the Accretion Model for Low-luminosity AGNs

    NASA Astrophysics Data System (ADS)

    She, Rui; Ho, Luis C.; Feng, Hua; Cui, Can

    2018-06-01

    From a Chandra sample of active galactic nuclei (AGNs) in nearby galaxies, we find that for low-luminosity AGNs, either the intrinsic absorption column density, or the fraction of absorbed AGNs, positively scales with the Eddington ratio for L bol/L Edd ≲ 10‑2. Such a behavior, along with the softness of the X-ray spectrum at low luminosities, is in good agreement with the picture that they are powered by hot accretion flows surrounding supermassive black holes. Numerical simulations find that outflows are inevitable with hot accretion flows, and the outflow rate is correlated with the innermost accretion rate in the low-luminosity regime. This agrees well with our results, suggesting that the X-ray absorption originates from, or is associated with, the outflow material. Gas and dust on larger scales may also produce the observed correlation. Future correlation analyses may help differentiate the two scenarios.

  1. Dynamical Evolution of Ring-Satellite Systems

    NASA Technical Reports Server (NTRS)

    Ohtsuki, Keiji

    2005-01-01

    The goal of this research was to understand dynamical processes related to the evolution of size distribution of particles in planetary rings and application of theoretical results to explain features in the present rings of giant planets. We studied velocity evolution and accretion rates of ring particles in the Roche zone. We developed a new numerical code for the evolution of ring particle size distribution, which takes into account the above results for particle velocity evolution and accretion rates. We also studied radial diffusion rate of ring particles due to inelastic collisions and gravitational encounters. Many of these results can be also applied to dynamical evolution of a planetesimal disk. Finally, we studied rotation rates of moonlets and particles in planetary rings, which would influence the accretional evolution of these bodies. We describe our key accomplishments during the past three years in more detail in the following.

  2. Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics

    NASA Technical Reports Server (NTRS)

    Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.

    2014-01-01

    High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.

  3. Changes in the metallicity of gas giant planets due to pebble accretion

    NASA Astrophysics Data System (ADS)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  4. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  5. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Michael T.; Wood, Kent S.; Becker, Peter A.

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters inmore » the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.« less

  6. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; de Lépinay, Bernard Mercier

    1997-11-01

    Analysis of seismic reflection profiles, swath bathymetry, side-scan sonar imagery, and sediment samples reveal the three-dimensional structure, morphology, and stratigraphic evolution of the central to southern Hikurangi margin accretionary wedge, which is developing in response to thick trench fill sediment and oblique convergence between the Australian and Pacific plates. A seismic stratigraphy of the trench fill turbidites and frontal part of the wedge is constrained by seismic correlations to an already established stratigraphic succession nearby, by coccolith and foraminifera biostratigraphy of three core and dredge samples, and by estimates of stratigraphic thicknesses and rates of accumulation of compacted sediment. Structural and stratigraphic analyses of the frontal part of the wedge yield quantitative data on the timing of inception of thrust faults and folds, on the growth and mechanics of frontal accretion under variable convergence obliquity, and on the amounts and rates of horizontal shortening. The data place constraints on the partitioning of geological strain across the entire southern Hikurangi margin. The principal deformation front at the toe of the wedge is discontinuous and represented by right-stepping thrust faulted and folded ridges up to 1 km high, which develop initially from discontinuous protothrusts. In the central part of the margin near 41°S, where the convergence obliquity is 50°, orthogonal convergence rate is slow (27 mm/yr), and about 75% of the total 4 km of sediment on the Pacific Plate is accreted frontally, the seismically resolvable structures within 30 km of the deformation front accommodate about 6 km of horizontal shortening. At least 80% of this shortening has occurred within the last 0.4±0.1 m.y. at an average rate of 12±3 mm/yr. This rate indicates that the frontal 30 km of the wedge accounts for about 33-55% of the predicted orthogonal contraction across the entire plate boundary zone. Despite plate convergence obliquity of 50°, rapid frontal accretion has occurred during the late Quaternary with the principal deformation front migrating seaward up to 50 km within the last 0.5 m.y. (i.e., at a rate of 100 km/m.y.). The structural response to this accretion rate has been a reduction in wedge taper and, consequently, internal deformation behind the present deformation front. Near the southwestern termination of the wedge, where there is an along-the-margin transition to continental transpressional tectonics, the convergence obliquity increases to >56°, and the orthogonal convergence rate decreases to 22 mm/yr, the wedge narrows to 13 km and is characterized simply by two frontal backthrusts and landward-verging folds. These structures have accommodated not more than 0.5 km of horizontal shortening at a rate of < 1 mm/yr, which represents < 5% of the predicted orthogonal shortening across the entire plate boundary in southern North Island. The landward-vergent structural domain may represent a transition zone from rapid frontal accretion associated with low basal friction and high pore pressure ratio in the central part of the margin, to the northern South Island region where the upper and lower plates are locked or at least very strongly coupled.

  7. ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohyeong; Im, Myungshin; Glikman, Eilat

    Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, whichmore » is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.« less

  8. The Formation of Mini-Neptunes

    NASA Astrophysics Data System (ADS)

    Venturini, Julia; Helled, Ravit

    2017-10-01

    Mini-Neptunes seem to be common planets. In this work we investigate the possible formation histories and predicted occurrence rates of mini-Neptunes, assuming that the planets form beyond the iceline. We consider pebble and planetesimal accretion accounting for envelope enrichment and two different opacity conditions. We find that the formation of mini-Neptunes is a relatively frequent output when envelope enrichment by volatiles is included, and that there is a “sweet spot” for mini-Neptune formation with a relatively low solid accretion rate of ˜10-6 M ⊕ yr-1. This rate is typical for low/intermediate-mass protoplanetary disks and/or disks with low metallicities. With pebble accretion, envelope enrichment and high opacity favor the formation of mini-Neptunes, with more efficient formation at large semimajor axes (˜30 au) and low disk viscosities. For planetesimal accretion, such planets can also form without enrichment, with the opacity being a key aspect in the growth history and favorable formation location. Finally, we show that the formation of Neptune-like planets remains a challenge for planet formation theories.

  9. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  10. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  11. MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.

    The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less

  12. Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; García, Javier A.; Eikmann, Wiebke; McClintock, Jeffrey E.; Brenneman, Laura W.; Dauser, Thomas; Fabian, Andrew C.

    2017-02-01

    Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339-4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state’s accretion rate. For bright hard states, we show that disk truncation to large scales R\\gg {R}{ISCO} is unlikely as this would require accretion rates far in excess of the observed \\dot{M} of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.

  13. Truncated disks - advective tori solutions around BHs. I. The effects of conduction and enhanced Coulomb coupling

    NASA Astrophysics Data System (ADS)

    Hujeirat, A.; Camenzind, M.

    2000-10-01

    We present the first 2D quasi-stationary radiative hydrodynamical calculations of accretion flows onto BHs taking into account cooling via Bremsstrahlung, Compton, Synchrotron and conduction. The effect of enhanced Coulomb coupling is investigated also. Based on the numerical results obtained, we find that two-temperature (2T) accretion flows are best suited to describe hard states, and one-temperature (1T) in the soft states, with transition possibly depending on the accretion rate. In the 2T case, the ion-conduction enlarges the disk-truncation-radius from 5 to 9 Schwarzschild radii (RS). The ion-pressure powers outflows, hence substantially decreasing the accretion rate with decreasing radius. The spectrum is partially modified BB with hard photons emitted from the inner region and showing a cutoff at 100 keV. In the 1T case, conduction decreases the truncation radius from 7 to 5 RS and lowers the maximum gas temperature. The outflows are weaker, the spectrum is pre-dominantly modified BB and the emitted photons from the inner region are much harder (up to 175 keV). In both cases, the unsaturated Comptonization region coincides with the transition region between the disk and the advective torus. When gradually enhancing the Coulomb coupling, we find that the ion-temperature Ti decreases and the electron temperature Te increases, asymptotically converging to 1T flows. However, once the dissipated energy goes into heating the ions, ion-electron thermal decoupling is inevitable within the last stable orbit (RMS) even when the Coulomb interaction is enhanced by an additional two orders of magnitude.

  14. A comparative study of AGN feedback algorithms

    NASA Astrophysics Data System (ADS)

    Wurster, J.; Thacker, R. J.

    2013-05-01

    Modelling active galactic nuclei (AGN) feedback in numerical simulations is both technically and theoretically challenging, with numerous approaches having been published in the literature. We present a study of five distinct approaches to modelling AGN feedback within gravitohydrodynamic simulations of major mergers of Milky Way-sized galaxies. To constrain differences to only be between AGN feedback models, all simulations start from the same initial conditions and use the same star formation algorithm. Most AGN feedback algorithms have five key aspects: the black hole accretion rate, energy feedback rate and method, particle accretion algorithm, black hole advection algorithm and black hole merger algorithm. All models follow different accretion histories, and in some cases, accretion rates differ by up to three orders of magnitude at any given time. We consider models with either thermal or kinetic feedback, with the associated energy deposited locally around the black hole. Each feedback algorithm modifies the region around the black hole to different extents, yielding gas densities and temperatures within r ˜ 200 pc that differ by up to six orders of magnitude at any given time. The particle accretion algorithms usually maintain good agreement between the total mass accreted by dot{M} dt and the total mass of gas particles removed from the simulation, although not all algorithms guarantee this to be true. The black hole advection algorithms dampen inappropriate dragging of the black holes by two-body interactions. Advecting the black hole a limited distance based upon local mass distributions has many desirably properties, such as avoiding large artificial jumps and allowing the possibility of the black hole remaining in a gas void. Lastly, two black holes instantly merge when given criteria are met, and we find a range of merger times for different criteria. This is important since the AGN feedback rate changes across the merger in a way that is dependent on the specific accretion algorithm used. Using the MBH-σ relation as a diagnostic of the remnants yields three models that lie within the one-sigma scatter of the observed relation and two that fall below the expected relation. The wide variation in accretion behaviours of the models reinforces the fact that there remains much to be learnt about the evolution of galactic nuclei.

  15. Black Hole Variability in MHD: A Numerical Test of the Propagating Fluctuations Model

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-08-01

    The variability properties of accreting black hole systems offer a crucial probe of the accretion physics providing the angular momentum transport and enabling the mass accretion. A few of the most telling signatures are the characteristic log-normal flux distributions, linear RMS-flux relations, and frequency-dependent time lags between energy bands. These commonly observed properties are often interpreted as evidence of inward propagating mass accretion rate fluctuations where fluctuations in the accretion flow combine multiplicatively. We present recent results from a long, semi-global MHD simulation of a thin (h/r=0.1) accretion disk that naturally reproduces this phenomenology. This bolsters the theoretical underpinnings of the “propagating fluctuations” model and demonstrates the viability of this process manifesting in MHD turbulence driven by the magnetorotational instability. We find that a key ingredient to this model is the modulation of the effective α parameter by the magnetic dynamo.

  16. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  17. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).

  18. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-06-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  19. Deformation of Forearcs during Aseismic Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Zeumann, S.; Hampel, A.

    2014-12-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To identify the crucial parameters for forearc deformation we created 3D finite-element models representing both erosive and accretive forearcs as well as migrating and non-migrating ridges. As natural examples we choose the Cocos ridge subducting stationary beneath the erosive margin of Costa Rica and the Nazca and Gagua Ridges that migrate along the erosive Peruvian margin and the accretive accretive Ryukyu margin, respectively. A series of models show that the deformation of the forearc depends on the ridge shape (height, width), on the frictional coupling along the plate interface and the mechanical strength of the forearc. The forearc is uplifted and moved sideward during ridge subduction. Strain components show domains of both, shortening and extension. Along the ridge axis, extension occurs except at the ridge tip, where shortening prevails. The strain component normal to the ridge axis reveals extension at the ridge tip and contraction above the ridge flanks. Shortening and extension increase with increasing ridge height. Higher friction coefficients lead to less extension and more shortening. Accretive wedges show larger indentation at the model trench. For stationary ridges (Cocos Ridge) the deformation pattern of the forearc is symmetric with respect to the ridge axis whereas for migrating ridges (Nazca Ridge, Gagua Ridge) the oblique convergence direction leads to asymmetric deformation of the forearc. In case of ridge migration, uplift occurs at the leading flank of the ridge and subsidence at the trailing flank, in agreement with field observations and analogue models. For a model with a 200-km-wide and 1500-m-high ridge (i.e. similar to the dimensions of the Nazca Ridge), the modelled uplift rate at the southern ridge flank of the ridge is ~1 mm/a, which agrees well with uplift rates of ~0.7 mm/a derived from the elevation of marine terraces in southern Peru.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soker, Noam, E-mail: soker@physics.technion.ac.il

    I suggest a spiral-in process in which a stellar companion grazes the envelope of a giant star while both the orbital separation and the giant radius shrink simultaneously, forming a close binary system. The binary system might be viewed as evolving in a constant state of 'just entering a common envelope (CE) phase.' In cases where this process takes place, it can be an alternative to CE evolution where the secondary star is immersed in the giant's envelope. Grazing envelope evolution (GEE) is made possible only if the companion manages to accrete mass at a high rate and launches jetsmore » that remove the outskirts of the giant envelope, hence preventing the formation of a CE. The high accretion rate is made possible by the accretion disk launching jets which efficiently carry the excess angular momentum and energy from the accreted mass. The orbital decay itself is caused by the gravitational interaction of the secondary star with the envelope inward of its orbit, i.e., dynamical friction (gravitational tide). Mass loss through the second Lagrangian point can carry additional angular momentum and envelope mass. The GEE lasts for tens to hundreds of years. The high accretion rate, with peaks lasting from months to years, might lead to a bright object referred to as the intermediate luminosity optical transient (Red Novae; Red Transients). A bipolar nebula and/or equatorial ring are formed around the binary remnant.« less

  1. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.

  2. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River

    PubMed Central

    Tabak, Nava M.; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary. PMID:27043136

  3. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    PubMed

    Tabak, Nava M; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  4. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    USGS Publications Warehouse

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  5. Growing massive black holes through supercritical accretion of stellar-mass seeds

    NASA Astrophysics Data System (ADS)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  6. On the Minimum Core Mass for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Piso, Ana-Maria; Youdin, Andrew; Murray-Clay, Ruth

    2013-07-01

    The core accretion model proposes that giant planets form by the accretion of gas onto a solid protoplanetary core. Previous studies have found that there exists a "critical core mass" past which hydrostatic solutions can no longer be found and unstable atmosphere collapse occurs. This core mass is typically quoted to be around 10Me. In standard calculations of the critical core mass, planetesimal accretion deposits enough heat to alter the luminosity of the atmosphere, increasing the core mass required for the atmosphere to collapse. In this study we consider the limiting case in which planetesimal accretion is negligible and Kelvin-Helmholtz contraction dominates the luminosity evolution of the planet. We develop a two-layer atmosphere model with an inner convective region and an outer radiative zone that matches onto the protoplanetary disk, and we determine the minimum core mass for a giant planet to form within the typical disk lifetime for a variety of disk conditions. We denote this mass as critical core mass. The absolute minimum core mass required to nucleate atmosphere collapse is ˜ 8Me at 5 AU and steadily decreases to ˜ 3.5Me at 100 AU, for an ideal diatomic gas with a solar composition and a standard ISM opacity law. Lower opacity and disk temperature significantly reduce the critical core mass, while a decrease in the mean molecular weight of the nebular gas results in a larger critical core mass. Our results yield lower mass cores than corresponding studies for large planetesimal accretion rates.

  7. Stochastic events may lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    Stochastic events may lead to accretion in Saturn's rings Larry W. Esposito LASP, University of Colorado UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption. . . just as `irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. I present a simple predator-prey model. This system's unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004. Unlike other interpretations of the peculiar events seen near Saturn Equinox, I emphasize the kinetic description of particle interactions rather than a fluid instability approach; and the dominance of stochastic events involving individual aggregates over free and/or driven modes in a flat disk.

  8. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  9. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    PubMed

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  10. Elemental Fractionation During Rapid Accretion of the Moon Triggered by a Giant Impact

    NASA Technical Reports Server (NTRS)

    Abe, Y.; Zahnle, K. J.; Hashimoto, A.

    1998-01-01

    Recently, Ida et al. made an N-body simulation of lunar accretion from a protolunar disk formed by a giant impact. One of their important conclusions is that the accretion time of the Moon is as short as one month. Such rapid accretion is a necessary consequence of the high surface density of a lunar mass disk accreting just beyond the Roche limit (about 3Re); the Safronov accretion time (a few days) is even shorter. The energy of accretion always exceeds the gravitational binding energy of newly arriving matter. Hence, without an energy sink, the accreting body is thermally unstable. For the Earth and other planets, radiation acts as the sink. However, in such a short accretion time, the Moon cannot radiate the accretional energy. Even radiating at a silicate cloudtop temperature of roughly 2000 K, it would take more than 100 yr to radiatively cool the Moon. The plausible alternative heat sinks are heat capacity, latent heat of vaporization, and thermal escape of the gas to space (i.e., hydrodynamic blowoff). The latter becomes plausible for the Moon because the scale height at 2000 K (about 300 km) is a significant fraction of the lunar radius. The early stages of lunar (or "lunatesimal") growth release relatively little energy and can occur simply by heating the material, especially if the accreting material is originally cold. However, the material is unlikely to be cold, because the disk itself is hot and cooling time is long, while the lunar accretion time iss very short. Therefore, the moon is likely to accrete condensed material just after it condenses. Accordingly, the newly accreted material will be on the verge of vaporization and will have very little heat capacity to spare. The immediate heat sink is the latent heat of vaporization. Most of the vapor will escape from the moon, because the thermal energy in the gas can be used to drive escape. However, vaporization is generally incomplete. the latent heat of vaporization exceeds the energy of accretion. Viewed globally, the accretional energy is about half the energy required to vaporize the entire Moon. Thus to first approximation, half of the Moon-forming material can be vaporized and lost during accretion. During this process, we would expect preferential loss of relatively volatile elements. Escape will retard the rate of accretion. To test these ideas, we computed detailed models of the thermal state of the Moon during accretion. We pay special attention to the structure of the silicate atmosphere and its loss rate by calculating the chemical species at equilibrium. We used the PHEQ program which includes 12 elements (H,O,C,Mg,Si,Fe,Ca, Al, Na,Ti, and N.) and 272 compounds (including ionic compounds). Because of the large heats of vaporization and ionization, the adiabatic atmosphere is nearly isothermal and massive escape is expected. The pressure of the atmosphere is determined by the balance between vaporization of a accreting material and escape. If the accretion time is one month, a 0.3 bar atmosphere is expected. Elemental fractionation depends strongly on the temperature of the accreting material. The initial temperature of the material can be estimated from the condition of gravitational instability in the protolunar disk. As shown by Ida et al, accretion starts when gravitational instability occurs when more than 99% of the material condenses. At this point, all of Ca, Al, Si, Mg, and Fe, and 95% of Na (probably K also), are in condensed phases. If the moon is formed from the accretion of such material, volatile elements such as Na, and K are retained by the moon only early in accretion. At later times, K and Na are lost and a fraction of the MG, Si and Fe is lost. However, refractory elements such as Ca and Al are retained and so achieve a mild degree (factor 2) of superabundance.

  11. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    USGS Publications Warehouse

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  12. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    USGS Publications Warehouse

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.

  13. Sediment accretion rates for natural levee and backswamp riparian forests in the Mobile-Tensaw Bottomlands, Alabama

    Treesearch

    Kathryn R. Kidd; Carolyn A. Copenheaver; W. Michael Aust

    2016-01-01

    Several methods to quantify sediment deposition patterns in riparian forested wetlands have been used during recent decades. In this study, we used a dendrogeomorphic technique with green ash (Fraxinus pennsylvanica) to estimate sediment accretion rates for two time periods (1881 to 2012 and 1987 to 2012) along a natural levee (35 m from river) and...

  14. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  15. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  16. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in many systems, such as hot galactic haloes, groups and clusters. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. Chaotic accretion can generate high-velocity clouds, likely leading to strong variations in the AGN luminosity, and the deflection or mass-loading of jets. During phases of overheating, the hot mode becomes the single channel of accretion, though strongly suppressed by turbulence. High-resolution data could determine the current mode of accretion: assuming quiescent feedback, the cold mode results in a quasi-flat-temperature core as opposed to the cuspy profile of the hot mode.

  17. Planet population synthesis driven by pebble accretion in cluster environments

    NASA Astrophysics Data System (ADS)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp < 0.1 au) preferably form in the inner disc. We find that the formation of gas giants via pebble accretion is in agreement with the metallicity correlation, meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  18. Relativistic particle transport in hot accretion disks

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas; Maisack, Michael

    1994-01-01

    Accretion disks around rapidly rotating black holes provide one of the few plausible models for the production of intense radiation in Acitve Galactic Nuclei (AGNs) above energies of several hundred MeV. The rapid rotation of the hole increases the binding energy per nucleon in the last stable orbit relative to the Schwarzschild case, and naturally leads to ion temperatures in the range 10(exp 12) - 10(exp 13) K for sub-Eddington accretion rates. The protons in the hot inner region of a steady, two-temperature disk form a reservoir of energy that is sufficient to power the observed Energetic Gamma Ray Experiment Telescope (EGRET) outbursts if the black hole mass is 10(exp 10) solar mass. Moreover, the accretion timescale for the inner region is comparable to the observed transient timescale of approximately 1 week. Hence EGRET outbursts may be driven by instabilities in hot, two-temperature disks around supermassive black holes. In this paper we discuss turbulent (stochastic) acceleration in hot disks as a possible source of GeV particles and radiation. We constrain the model by assuming the turbulence is powered by a collective instability that drains energy from the hot protons. We also provide some ideas concerning new, high-energy Penrose processes that produce GeV emission be directly tapping the rotational energy of Kerr black holes.

  19. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  20. Interpreting MAD within multiple accretion regimes

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Guo, Xinyi

    2015-02-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes in the radiatively inefficient regime show that systems with sufficient magnetic poloidal flux become magnetically arrested disc (MAD) systems, with a well-defined relationship between the magnetic flux and the mass accretion rate. Recently, Zamaninasab et al. report that the jet magnetic flux and accretion disc luminosity are tightly correlated over 7 orders of magnitude for a sample of 76 radio-loud active galaxies, concluding that the data are explained by the MAD mode of accretion. Their analysis assumes radiatively efficient accretion, and their sample consists primarily of radiatively efficient sources, while GRMHD simulations of MAD thus far have been carried out in the radiatively inefficient regime. We propose a model to interpret MAD systems in the context of multiple accretion regimes, and apply it to the sample in Zamaninasab et al., along with additional radiatively inefficient sources from archival data. We show that most of the radiatively inefficient radio-loud galaxies are consistent with being MAD systems. Assuming the MAD relationship found in radiatively inefficient simulations holds at other accretion regimes, a significant fraction of our sample can be candidates for MAD systems. Future GRMHD simulations have yet to verify the validity of this assumption.

  1. Constraining the dipolar magnetic field of M82 X-2 by the accretion model

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong

    2017-02-01

    Recently, ultraluminous X-ray source (ULX) M82 X-2 has been identified to be an accreting neutron star, which has a P = 1.37 s spin period, and is spinning up at a rate dot{P}=-2.0× 10^{-10} s s^{-1}. Interestingly, its isotropic X-ray luminosity Liso = 1.8 × 1040 erg s- 1 during outbursts is 100 times the Eddington limit for a 1.4 M⊙ neutron star. In this Letter, based on the standard accretion model we attempt to constrain the dipolar magnetic field of the pulsar in ULX M82 X-2. Our calculations indicate that the accretion rate at the magnetospheric radius must be super-Eddington during outbursts. To support such a super-Eddington accretion, a relatively high multipole field ( ≳ 1013 G) near the surface of the accretor is invoked to produce an accreting gas column. However, our constraint shows that the surface dipolar magnetic field of the pulsar should be in the range of 1.0-3.5 × 1012 G. Therefore, our model supports that the neutron star in ULX M82 X-2 could be a low-magnetic-field magnetar (proposed by Tong) with a normal dipolar field (˜1012 G) and relatively strong multipole field. For the large luminosity variations of this source, our scenario can also present a self-consistency interpretation.

  2. Bondi Accretion and the Problem of the Missing Isolated Neutron Stars

    NASA Technical Reports Server (NTRS)

    Perna, Rosalba; Narayan, Ramesh; Rybicki, George; Stella, Luigi; Treves, Aldo

    2003-01-01

    A large number of neutron stars (NSs), approximately 10(exp 9), populate the Galaxy, but only a tiny fraction of them is observable during the short radio pulsar lifetime. The majority of these isolated NSs, too cold to be detectable by their own thermal emission, should be visible in X-rays as a result of accretion from the interstellar medium. The ROSAT All-Sky Survey has, however, shown that such accreting isolated NSs are very elusive: only a few tentative candidates have been identified, contrary to theoretical predictions that up to several thousand should be seen. We suggest that the fundamental reason for this discrepancy lies in the use of the standard Bondi formula to estimate the accretion rates. We compute the expected source counts using updated estimates of the pulsar velocity distribution, realistic hydrogen atmosphere spectra, and a modified expression for the Bondi accretion rate, as suggested by recent MHD simulations and supported by direct observations in the case of accretion around supermassive black holes in nearby galaxies and in our own. We find that, whereas the inclusion of atmospheric spectra partly compensates for the reduction in the counts due to the higher mean velocities of the new distribution, the modified Bondi formula dramatically suppresses the source counts. The new predictions are consistent with a null detection at the ROSAT sensitivity.

  3. Accretion Models for Young Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.

    2003-07-01

    Interaction with possible fallback material, along with the magnetic fields and rotation rates at birth should determine the fates and categories of young neutron stars. This paper addresses some issues related to pure or hybrid accretion models for explaining the properties of young neutron stars.

  4. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  5. Constraint on the black hole spin of M87 from the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Feng, Jianchao; Wu, Qingwen

    2017-09-01

    The millimetre bump, as found in high-resolution multiwaveband observations of M87 by Prieto et al., most possibly comes from the synchrotron emission of thermal electrons in advection-dominated accretion flow (ADAF). It is possible to constrain the accretion rate near the horizon if both the nuclear millimetre emission and its polarization are produced by the hot plasma in the accretion flow. The jet power of M87 has been extensively explored, which is around 8_-3^{+7}× 10^{42} erg s-1 based on the analysis of the X-ray cavity. The black hole (BH) spin can be estimated if the jet power and the accretion rate near the horizon are known. We model the multiwavelength spectral energy distribution (SED) of M87 with a coupled ADAF-jet model surrounding a Kerr BH, where the full set of relativistic hydrodynamical equations of the ADAF are solved. The hybrid jet formation model, as a variant of the Blandford-Znajek model, is used to model the jet power. We find that the SMBH should be fast rotating with a dimensionless spin parameter a_{*}˜eq 0.98_-0.02^{+0.012}.

  6. Accretion and Diffusion in the DAZ White Dwarf GALEX J1931+0117

    NASA Astrophysics Data System (ADS)

    Vennes, Stéphane; Kawka, Adéla; Németh, Péter

    2011-03-01

    We present an analysis of high-dispersion and high signal-to-noise ratio spectra of the DAZ white dwarf GALEX J1931+0117. The spectra obtained with the VLT-Kueyen/UV-Visual Echelle Spectrograph show several well-resolved Si II spectral lines enabling a study of pressure effects on line profiles. We observed large Stark shifts in silicon lines in agreement with laboratory measurements. A model atmosphere analysis shows that the magnesium, silicon and iron abundances exceed solar abundances, while the oxygen and calcium abundances are below solar. Also, we compared the observed line profiles to synthetic spectra computed with variable accretion rates and vertical abundance distributions assuming diffusion steady-state. The inferred accretion rates vary from Ṁ = 2×106 for calcium to 2×109 g s-1 for oxygen and indicate that the accretion flow is dominated by oxygen, silicon and iron while being deficient in carbon, magnesium and calcium. The lack of radial velocity variations between two measurement epochs suggests that GALEX J1931+0117 is probably not in a close binary and that the source of the accreted material resides in a debris disc.

  7. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmer, Bernd; Leroy, Adam K., E-mail: bvollmer@astro.u-strasbg.fr

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproducedmore » by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.« less

  8. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  9. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  10. Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.

    2017-11-01

    Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.

  11. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited

    USGS Publications Warehouse

    Cahoon, D.R.; Reed, D.J.; Day, J.W.

    1995-01-01

    Simultaneous measurements of vertical accretion and change in surface elevation relative to a shallow (3-5 m) subsurface datum were made in selected coastal salt marshes of Louisiana, Florida, and North Carolina to quantitatively test Kaye and Barghoorn's contention that vertical accretion is not a good surrogate for surface elevation change because of autocompaction of the substrate. Rates of subsidence of the upper 3-5 m of marsh substrate were calculated for each marsh as the difference between vertical accretion and elevation change measured with feldspar marker horizons and a sedimentation-erosion table. Surface elevation change was significantly lower than vertical accretion at each site after 2 years, indicating a significant amount of shallow subsidence had occurred, ranging from 0.45 to 4.90 cm. The highest rate of shallow subsidence occurred in the Mississippi delta. Results confirm Kaye and Barghoorn's contention that vertical accretion is not generally a good surrogate for elevation change because of processes occurring in the upper few meters of the substrate, including not only compaction but also apparently shrink-swell from water storage and/or plant production--decomposition at some sites. Indeed, surface elevation change was completely decoupled from vertical accretion at the Florida site. The assumption of a 1:1 relationship between accretionary and substrate processes. Consequently, the potential for coastal marsh submergence should be expressed as an elevation deficit based on direct measures of surface elevation change rather than accretion deficits. These findings also indicate the need for greater understanding of the influence of subsurface and small-scale hydrologic processes on marsh surface elevation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Long; Zhang, Shu; Chen, YuPeng

    We report on a study of GS 1826-238 using all available Rossi X-Ray Timing Explorer observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30-50 keV prompted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 ± 1.2 s. The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of themore » type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.« less

  13. Star–Disk Interactions in Multiband Photometric Monitoring of the Classical T Tauri Star GI Tau

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Herczeg, Gregory J.; Jose, Jessy; Fu, Jianning; Chiang, Po-Shih; Grankin, Konstantin; Michel, Raúl; Kesh Yadav, Ram; Liu, Jinzhong; Chen, Wen-ping; Li, Gang; Xue, Huifang; Niu, Hubiao; Subramaniam, Annapurni; Sharma, Saurabh; Prasert, Nikom; Flores-Fajardo, Nahiely; Castro, Angel; Altamirano, Liliana

    2018-01-01

    The variability of young stellar objects is mostly driven by star–disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of {{Δ }}V∼ 2.5 mag that last for days to months and often appear to occur stochastically. In 2014–2015, extinctions that repeated with a quasi-period of 21 days over several months are the first empirical evidence of slow warps predicted by magnetohydrodynamic simulations to form at a few stellar radii away from the central star. The reddening is consistent with {R}V=3.85+/- 0.5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015–2016 multiband light curve includes variations in spot coverage, extinction, and accretion, each of which results in different traces in color–magnitude diagrams. This light curve is initially dominated by a month-long extinction event and a return to the unocculted brightness. The subsequent light curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly spaced extinction events. The accretion rate measured from U-band photometry ranges from 1.3× {10}-8 to 1.1× {10}-10 M ⊙ yr‑1 (excluding the highest and lowest 5% of high- and low- accretion rate outliers), with an average of 4.7 × {10}-9 M ⊙ yr‑1. A total of 50% of the mass is accreted during bursts of > 12.8× {10}-9 M ⊙ yr{}-1, which indicates limitations on analyses of disk evolution using single-epoch accretion rates.

  14. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  15. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our calculations also suggest that the relatively low disk accretion rates characteristic of T Tauri stars below the birthline cause low-mass stars to contract only slightly faster than normal Hayashi track evolution, so that ages for older pre-main-sequence stars estimated from H-R diagram positions are relatively secure.

  16. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.

  17. Accretion of Fat-Free Mass Rather Than Fat Mass in Infancy Is Positively Associated with Linear Growth in Childhood.

    PubMed

    Admassu, Bitiya; Ritz, Christian; Wells, Jonathan C K; Girma, Tsinuel; Andersen, Gregers S; Belachew, Tefera; Owino, Victor; Michaelsen, Kim F; Abera, Mubarek; Wibaek, Rasmus; Friis, Henrik; Kæstel, Pernille

    2018-04-01

    We have previously shown that fat-free mass (FFM) at birth is associated with height at 2 y of age in Ethiopian children. However, to our knowledge, the relation between changes in body composition during early infancy and later linear growth has not been studied. This study examined the associations of early infancy fat mass (FM) and FFM accretion with linear growth from 1 to 5 y of age in Ethiopian children. In the infant Anthropometry and Body Composition (iABC) study, a prospective cohort study was carried out in children in Jimma, Ethiopia, followed from birth to 5 y of age. FM and FFM were measured ≤6 times from birth to 6 mo by using air-displacement plethysmography. Linear mixed-effects models were used to identify associations between standardized FM and FFM accretion rates during early infancy and linear growth from 1 to 5 y of age. Standardized accretion rates were obtained by dividing FM and FFM accretion by their respective SD. FFM accretion from 0 to 6 mo of age was positively associated with length at 1 y (β = 0.64; 95% CI: 0.19, 1.09; P = 0.005) and linear growth from 1 to 5 y (β = 0.63; 95% CI: 0.19, 1.07; P = 0.005). The strongest association with FFM accretion was observed at 1 y. The association with linear growth from 1 to 5 y was mainly engendered by the 1-y association. FM accretion from 0 to 4 mo was positively associated with linear growth from 1 to 5 y (β = 0.45; 95% CI: 0.02, 0.88; P = 0.038) in the fully adjusted model. In Ethiopian children, FFM accretion was associated with linear growth at 1 y and no clear additional longitudinal effect from 1 to 5 y was observed. FM accretion showed a weak association from 1 to 5 y. This trial was registered at www.controlled-trials.com as ISRCTN46718296.

  18. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the Comptonization in a bulk motion region near an accreting black hole by Laurent & Titarchuk (2010) strongly support this scenario. strongly support this scenario

  19. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  20. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    2015-04-01

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these objects with effective temperatures greater than 1500 K are similar to the spectra of older more massive brown dwarfs at the same temperature, in contrast to objects at 1000 K that exhibit distinct L-band SEDs. The oldest object in my sample of young companions, 50 My old CD-35 2722 B, appears redder than field dwarfs with similar spectral type based on 1--2.5mum spectra. This could indicate reduced cloud opacity compared to field dwarfs at the same temperature. I also present work to better understand the supermassive blackhole at the center of our Galaxy. Astrometric monitoring of stellar orbits about the black hole have been used to sketch the gravitational potential, revealing 4 x 106 [solar masses] within a radius of 40 AU. Further constraints on the gravitational potential, and the detection of post-Newtonian effects on the stellar orbits, will require improved astrometric precision. Currently confusion noise in the crowded central cluster limits astrometric precision. Increased spatial resolution can alleviate confusion noise. Dual field phase referencing on large-aperture infrared interferometers provides the sensitivity needed to observe the Galactic center, providing the fastest route to increased spatial resolution. I present simulations of dual-field phase referencing performance with the Keck Interferometer and with the VLTI GRAVITY instrument, to describe the potential contributions each could make to Galactic center stellar astrometry. I demonstrate that the near-future GRAVITY instrument at the VLTI will have a large impact on the ability to precisely track the paths of stars orbiting there, as long as a star with K-band apparent magnitude less than 20 exists within 70 milliarcseconds of the blackhole. Many of the stars orbiting the blackhole are in a post-main sequence wind phase. The wind from these stars is feeding an accretion flow falling onto the blackhole. This flow is radiatively inefficient, producing only 10-8 times the Eddington limit. Thus our relative proximity to the center of our own Galaxy, provides the opportunity to study a low-luminosity accretion mode that would be difficult or impossible to observe in more remote galaxies. Variable emission from the accretion flow arises from very deep within the flow and could be used to reveal the physics of the accretion process. Characterizing the variability is challenging because all wavelength regimes from radio through X-ray are affected by the process(es) that gives rise to the variations. I report observations of variability at wavelengths that are difficult or challenging to observe from the ground using the SPIRE instrument onboard the Herschel Space Observatory. My work provides the first constraints on the flux of the accretion flow at 250mum. Variations at 500, 350, and 250mum observed with Herschel exhibit typical amplitudes similar to the variations observed at 1300mum from the ground, but the amplitude distribution of flux variations observe with Herschel does not exhibit a tail to large amplitudes that is seen at 1300mum. This could suggest a connection between large-amplitude mm/submillimeter variations and X-ray activity, since no increased X-ray activity was observed during our Herschel monitoring.

  1. Star-Forming Clouds Feed, Churn, and Fall

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of clouds, the authors zoom in and explore three clouds in high-resolution to learn more about the details.Watching Clouds EvolveIbez-Meja and collaborators find that mass accretion occurring after the molecular clouds form plays an important role in the clouds evolution, increasing the mass available to form stars and carrying kinetic energy into the cloud. The accretion process is driven both by background turbulent flows and gravitational attraction as the cloud draws in the gas in its nearby environment.Plots of the cloud mass and radius (top) and mass accretion rate (bottom) for one of the three zoomed-in clouds, shown as a function of time over the 10-Myr simulation. [Adapted from Ibez-Meja et al. 2017]The simulations show that nearby supernovae have two opposing effects on a cloud. On one hand, the blast waves from supernovae compress the envelope of the cloud, increasing the instantaneous rate of accretion. On the other hand, the blast waves disrupt parts of the envelope and erode mass from the clouds surface, decreasing accretion overall. These events ensure that the mass accretion rate of molecular clouds is non-uniform, regularly punctuated by sporadic increases and decreases as the clouds are battered by nearby explosions.Lastly, Ibez-Meja and collaborators show that mass accretion alone isnt enough to power the turbulent internal motions we observe inside molecular clouds. Instead, they conclude, the cloud motions must be primarily powered by gravitational potential energy being converted into kinetic energy as the cloud contracts.The authors simulations therefore show that molecular clouds exist in a state of precarious balance, prevented from collapsing by internal turbulence driven by interactions with their environment and by their own contraction. These results give us an intriguing glimpse into the complex environments in which stars are born.BonusCheck out the animated figure below, which displays how the clouds in the authors simulations evolve over the span of 10 million years.http://cdn.iopscience.com/images/0004-637X/850/1/62/Full/apjaa93fef1_video.mp4CitationJuan C. Ibez-Meja et al 2017 ApJ 850 62. doi:10.3847/1538-4357/aa93fe

  2. Wind-Driven Global Evolution of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    It has been realized in the recent years that magnetized disk winds disk- likely play a decisive role in the global evolution of protoplanetary disks protoplanetary evolution (PPDs). Motivated by recent local simulations local , we first describe a global magnetized disk wind model, from which wind-driven accretion rate -rate wind-driven and wind mass loss rate can be reliably estimated. Both rates are shown to strongly depend on the amount of magnetic flux magnetic threading the disk. Wind kinematics is also affected by thermodynamics in the wind zone (particularly far UV heating/ionization), and the mass loss process loss- can be better termed as "magneto-photoevaporation." We then construct a framework of PPD global evolution global that incorporates wind-driven and viscously driven accretion viscously-driven as well as wind mass loss. For typical PPD accretion rates, the required field strength would lead to wind mass loss rate at least comparable to disk accretion rate, and mass loss is most significant in the outer disk (beyond ˜ 10 AU). Finally, we discuss the transport of magnetic flux in PPDs, which largely governs the long-term evolution long-term of PPDs.

  3. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  4. Frequent bursts from the 11 Hz transient pulsar IGR J17480-2446

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manoneeta; Mukherjee, Arunava; Bhattacharyya, S.

    Accreted matter falling on the surface of the neutron star in a Low Mass X-ray Binary (LMXB) system gives rise to intense X-ray bursts originating from unstable thermonuclear conflagration and these bursts can be used as a tool to constrain the equation of state. A series of such X-ray bursts along with millihertz (mHz) quasi-periodic oscillations (QPOs) at the highest source luminosities were observed during the 2010 outburst of the transient LMXB pulsar IGR J17480--2446. The quite diverse burst properties compared to typical type-I bursts suggested them to be the type-II bursts originating from accretion disc instability. We show that the bursts are indeed of thermonuclear origin and thus confirm the quasi-stable burning model for mHz QPOs. Various properties of the bursts such as, peak flux, fluence, periodicity and duration, were highly dependent on the source spectral states and their variation over a large accretion rate range revealed the evolution of the burning process at different accretion rate regimes.

  5. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  6. Andromeda's SMBH Projected Accretion Rate

    NASA Astrophysics Data System (ADS)

    Wilson, John

    2014-03-01

    A formula for calculating the half-life of galaxy clusters is proposed. A galactic half-life is the estimated amount of time that the most massive supermassive black hole (SMBH) in the galaxy cluster will have accreted one half of the mass in the cluster. The calculation is based on a projection of the SMBH continuing its exponentially decreasing rate of accretion that it had in its first 13 billion years. The calculated half-life for the Andromeda SMBH is approximately 1.4327e14 years from the Big Bang. Several proposals have suggested that black holes could be significant factors in the formation of new universes. Part of the verification or falsification of this hypothesis could be done by an N-body simulation. These simulations require an enormous amount of computer power and time. Some plausible projection of the growth of the supermassive black hole is needed to prepare an N-body simulation budget proposal. For now, this method provides an estimate for the growth rate of the Andromeda SMBH and deposition of the outcome of most of the galaxy cluster's mass which is either accreted by the SMBH, lost by ejection from the cluster, or lost in the form of energy.

  7. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  8. Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment

    NASA Astrophysics Data System (ADS)

    Gieles, Mark; Charbonnel, Corinne; Krause, Martin G. H.; Hénault-Brunet, Vincent; Agertz, Oscar; Lamers, Henny J. G. L. M.; Bastian, Nathan; Gualandris, Alessia; Zocchi, Alice; Petts, James A.

    2018-04-01

    We present a model for the concurrent formation of globular clusters (GCs) and supermassive stars (SMSs, ≳ 103 M⊙) to address the origin of the HeCNONaMgAl abundance anomalies in GCs. GCs form in converging gas flows and accumulate low-angular momentum gas, which accretes onto protostars. This leads to an adiabatic contraction of the cluster and an increase of the stellar collision rate. A SMS can form via runaway collisions if the cluster reaches sufficiently high density before two-body relaxation halts the contraction. This condition is met if the number of stars ≳ 106 and the gas accretion rate ≳ 105 M⊙/Myr, reminiscent of GC formation in high gas-density environments, such as - but not restricted to - the early Universe. The strong SMS wind mixes with the inflowing pristine gas, such that the protostars accrete diluted hot-hydrogen burning yields of the SMS. Because of continuous rejuvenation, the amount of processed material liberated by the SMS can be an order of magnitude higher than its maximum mass. This `conveyor-belt' production of hot-hydrogen burning products provides a solution to the mass budget problem that plagues other scenarios. Additionally, the liberated material is mildly enriched in helium and relatively rich in other hot-hydrogen burning products, in agreement with abundances of GCs today. Finally, we find a super-linear scaling between the amount of processed material and cluster mass, providing an explanation for the observed increase of the fraction of processed material with GC mass. We discuss open questions of this new GC enrichment scenario and propose observational tests.

  9. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    USGS Publications Warehouse

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  10. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.

    PubMed

    Wigand, Cathleen; Roman, Charles T; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B; Moran, S Bradley; Cahoon, Donald R; Lynch, James C; Rafferty, Patricia

    2014-06-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  11. Dynamics of Mass Transfer in Wide Symbiotic Systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  12. Identifying a Robust and Practical Quasar Accretion-Rate Indicator Using the Chandra Archive

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2017-09-01

    Understanding the rapid growth of supermassive black holes and the assembly of their host galaxies is severely limited by the lack of reliable estimates of black-hole mass and accretion rate in distant quasars. We propose to utilize the Chandra archive to identify the most reliable and practical Eddington-ratio indicator by investigating diagnostics of quasar accretion power in the hard-X-ray, C IV, and Hbeta spectral bands of a carefully-selected sample of optically-selected sources. We will perform a ``stress test'' to each of these diagnostics, relying critically on the hard-X-ray observable properties, and deliver a prescription for the most robust Eddington-ratio estimate that can be utilized economically at the highest accessible redshifts.

  13. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.

  14. Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.

    2004-01-01

    In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.

  15. Accretion Disk and Dust Emission in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Biddle, Lauren I.; Mason, Rachel; Alonso-Herrero, Almudena; Colina, Luis; Diaz, Ruben; Flohic, Helene; Gonzalez-Martin, Omaira; Ho, Luis C.; Lira, Paulina; Martins, Lucimara; McDermid, Richard; Perlman, Eric S.; Ramos Almeida, Christina; Riffel, Rogerio; Ardila, Alberto; Ruschel Dutra, Daniel; Schiavon, Ricardo; Thanjavur, Karun; Winge, Claudia

    2015-01-01

    Observations obtained in the near-infrared (near-IR; 0.8 - 2.5 μm) can assist our understanding of the physical and evolutionary processes of galaxies. Using a set of near-IR spectra of nearby galaxies obtained with the cross-dispersed mode of GNIRS on the Gemini North telescope, we investigate how the accretion disk and hot dust emission depend on the luminosity of the active nucleus. We recover faint AGN emission from the starlight-dominated nuclear regions of the galaxies, and measure properties such as the spectral shape and luminosity of the accretion disk and dust. The aim of this work is to establish whether the standard thin accretion disk may be truncated in low-accretion-rate AGN, as well as evaluate whether the torus of the AGN unified model still exists at low luminosities.

  16. On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Yates, K.; Siem, E.

    2017-12-01

    The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that at this distance, it does not accrete enough mass to surpass the mass limit for hydrogen fusion. Finally, we apply this method to brown dwarfs orbiting a 15 solar mass star at Jupiter's distance. It is found that a significantly smaller amount of mass is accreted when compared to the same brown dwarfs orbiting our Sun at the same distance.

  17. The accretion and spreading of matter on white dwarfs

    NASA Astrophysics Data System (ADS)

    Fisker, Jacob Lund; Balsara, Dinshaw S.; Burger, Tom

    2006-10-01

    For a slowly rotating non-magnetized white dwarf the accretion disk extends all the way to the star. At the interface between the accretion disk and the star, the matter moves through a boundary layer (BL) and then spreads toward the poles as new matter continuously piles up behind it. We have solved the 3d compressible Navier-Stokes equations on an axisymmetric grid to determine the structure of this BL for different accretion rates (states). The high states show a spreading BL which sets off a gravity wave in the surface matter. The accretion flow moves supersonically over the cusp making it susceptible to the rapid development of gravity wave and/or Kelvin-Helmholtz instabilities. This BL is optically thick and extends more than 30° to either side of the disk plane after 3/4 of a Keplerian rotation period (tK = 19 s). The low states also show a spreading BL, but here the accretion flow does not set off gravity waves and it is optically thin.

  18. Episodic accretion in binary protostars emerging from self-gravitating solar mass cores

    NASA Astrophysics Data System (ADS)

    Riaz, R.; Vanaverbeke, S.; Schleicher, D. R. G.

    2018-06-01

    Observations show a large spread in the luminosities of young protostars, which are frequently explained in the context of episodic accretion. We tested this scenario with numerical simulations that follow the collapse of a solar mass molecular cloud using the GRADSPH code, thereby varying the strength of the initial perturbations and temperature of the cores. A specific emphasis of this paper is to investigate the role of binaries and multiple systems in the context of episodic accretion and to compare their evolution to the evolution in isolated fragments. Our models form a variety of low-mass protostellar objects including single, binary, and triple systems in which binaries are more active in exhibiting episodic accretion than isolated protostars. We also find a general decreasing trend in the average mass accretion rate over time, suggesting that the majority of the protostellar mass is accreted within the first 105 years. This result can potentially help to explain the surprisingly low average luminosities in the majority of the protostellar population.

  19. Nanoparticle growth by particle-phase chemistry

    NASA Astrophysics Data System (ADS)

    Apsokardu, Michael J.; Johnston, Murray V.

    2018-02-01

    The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  20. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  1. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  2. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Annual report, February 24, 1993--February 23, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, V.J.

    1994-07-07

    The primary objective of this project was to evaluate the utility of a device called the ``beach cone`` in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations, and six sites were actually used. Six hundred beach cones were installed at the six sites in late July and early August, 1992. An additional 109 cones were installed at an eighth site in December of 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island. At the eighth installation the amount of accreted materialmore » was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. The average increase in elevation was about 7 inches (0. 18 in) with a maximum buildup of 3 ft. (I in). At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard of sand or approximately $500,000 per mile of beach, which would be much lower if the cones were mass produced. The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is negligible, does not hinder their effectiveness. We do not yet have sufficient data to state the categorical success of the beach cones, but results to date are encouraging.« less

  3. Effect of magnetic field on beta processes in a relativistic moderately degenerate plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ognev, I. S., E-mail: ognev@uniyar.ac.ru

    The effect of a magnetic field of arbitrary strength on the beta decay and crossing symmetric processes is analyzed. A covariant calculation technique is used to derive the expression for the squares of S-matrix elements of these reactions, which is also valid in reference frames in which the medium moves as a single whole along magnetic field lines. Simple analytic expressions obtained for the neutrino and antineutrino emissivities for a moderately degenerate plasma fully characterize the emissivity and absorbability of the studied medium. It is shown that the approximation used here is valid for core collapse supernovae and accretion disksmore » around black holes; beta processes in these objects are predominantly neutrino reactions. The analytic expressions obtained for the emissivities can serve as a good approximation for describing the interaction of electron neutrinos and antineutrinos with the medium of the objects in question and hold for an arbitrary magnetic field strength. Due to their simplicity, these expressions can be included in the magnetohydrodynamic simulation of supernovae and accretion disks to calculate neutrino and antineutrino transport in them. The rates of beta processes and the energy and momentum emitted in them are calculated for an optically transparent matter. It is shown that the macroscopic momentum transferred in the medium increases linearly with the magnetic field strength and can substantially affect the dynamics of supernovae and accretion disks in the regions of a degenerate matter. It is also shown that the rates of beta processes and the energy emission for a magnetic field strength of B ≲ 10{sup 15} G typical of supernovae and accretion disks are lower than in the absence of field. This suppression is stronger for reactions with neutrinos.« less

  4. Interpreting radiative efficiency in radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2018-04-01

    Radiative efficiency in radio-loud active galactic nuclei is governed by the accretion rate onto the central black hole rather than directly by the type of accreted matter; while it correlates with real differences in host galaxies and environments, it does not provide unambiguous information about particular objects.

  5. Damping of prominence longitudinal oscillations due to mass accretion

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.

  6. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  7. Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation

    NASA Astrophysics Data System (ADS)

    Takeo, Eishun; Inayoshi, Kohei; Ohsuga, Ken; Takahashi, Hiroyuki R.; Mineshige, Shin

    2018-05-01

    We perform two-dimensional radiation hydrodynamical simulations of accretion flows on to a black hole (BH) with a mass of 103 ≤ MBH/ M⊙ ≲ 106 in order to study rapid growth of BHs in the early Universe. For spherically symmetric flows, hyper-Eddington accretion from outside the Bondi radius can occur unimpeded by radiation feedback when MBH ≳ 104 M⊙(n∞/105 cm - 3) - 1(T∞/104 K)3/2, where the density and temperature of ambient gas are initially set to n∞ = 105 cm-3 and T∞ = 104 K. Here, we study accretion flows exposed to anisotropic radiation from a nuclear accretion disc with a luminosity higher than the Eddington value (LEdd) due to collimation towards the bipolar directions. We find that, unlike the spherically symmetric case, even less massive BHs with MBH < 104 M⊙ can be fed at high accretion rates of ≳ LEdd/c2 through the equatorial region, while ionized regions expand towards the poles producing hot outflows with T ˜ 105 K. For more massive BHs with MBH ≳ 5 × 105 M⊙, intense inflows of neutral gas through the equator totally cover the central radiating region due to the non-radial gas motions. Because of efficient recombination by hydrogen, the entire flow settles in neutral and warm gas with T ≃ 8000 K. The BH is fed at a rate of ˜5 × 104LEdd/c2 (a half of the inflow rate from the Bondi radius). Moreover, radiation momentum absorbed by neutral hydrogen produces warm outflows towards the bipolar directions at ˜ 10 per cent of the BH feeding rate and with a velocity several times higher than the escaping value.

  8. Mesozoic Calcareous Nannofossil Evolution: Relation to Paleoceanographic Events

    NASA Astrophysics Data System (ADS)

    Roth, Peter H.

    1987-12-01

    The taxonomic evolution of Jurassic and Cretaceous calcareous nannofossil species is described using the following indices: species diversity, rate of speciation, rate of extinction, rate of diversification, rate of turnover, survivorship, and species accretion. The Jurassic prior to the late Oxfordian is characterized by positive diversification rates, that is, rates of speciation exceeded rates of extinction. Highest rates of diversification occurred in the late Lias and early Oxfordian. During the generally regressive latest Jurassic, diversification rates remained low and rates of extinctions exceed rates of speciation. In the early Cretaceous, rates of diversification are positive and peak in the early Valanginian, early Aptian, and middle Albian, after which time rates of extinction generally exceed rates of speciation. Such peaks in rate of evolution coincide with times of increased accumulation of organic carbon in the ocean ("anoxic events"). Peaks in rates of extinction result in very high rates of turnover during times of major regressions, in particular, in the Tithonian and Maastrichtian. Survivorship analyses for three datum planes (74.5, 144, and 160 Ma) show relatively constant extinction rates with some stepping in the older part; they are best explained by a temporally fluctuating abiotic environment causing changes in the probability of extinction. Species accretion curves are also relatively linear with some indication of changing rates of speciation. The coincidences of major changes in evolutionary rates with major paleoceanographic events are indicative of a predominantly abiotic control of nannoplankton evolution. Relationships of evolutionary rates of calcareous nannoplankton with deep ocean ventilation, sea level, and ocean fertility indicates that global tectonic processes are the ultimate causes of evolutionary change.

  9. The awakening of a classical nova from hibernation.

    PubMed

    Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2016-09-29

    Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.

  10. The Maximum Mass of a Planet

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-06-01

    Giant planet occurrence is a steeply increasing function of FGK dwarf host star metallicity, and this is interpreted as support for the core-accretion model of giant planet formation. On the other hand, the occurrence of low-mass stellar companions to FGK dwarf stars does not appear to depend on stellar metallicity. The mass at which objects no longer prefer metal-rich FGK dwarf host stars can therefore be used to infer the maximum mass of objects that form like planets through core accretion. I'll show that objects more massive than about 10 M_Jup do not orbit metal-rich host stars and that this transition is coincident with a minimum in the occurrence rate of such objects. These facts suggest that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 M_Jup. This observation can be used to infer the properties of protoplanetary disks and reveals that the Type I and Type II disk migration problems---two major issues for the modern model of planet formation---are not problems at all.

  11. Regulation of star formation in giant galaxies by precipitation, feedback and conduction.

    PubMed

    Voit, G M; Donahue, M; Bryan, G L; McDonald, M

    2015-03-12

    The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.

  12. Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Richards, Simon; Bernal, Juan Pablo; Cerdeira-Estrada, Sergio; Ibarra, M. Socrates; Corona-Martínez, Liliana; Martell-Dubois, Raúl

    2017-10-01

    Predicting the impact of sea-level (SL) rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230Th ages shows the reef is composed of an 2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and redistribute clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.

  13. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  14. On the energy dissipation rate at the inner edge of circumbinary discs

    NASA Astrophysics Data System (ADS)

    Terquem, Caroline; Papaloizou, John C. B.

    2017-01-01

    We study, by means of numerical simulations and analysis, the details of the accretion process from a disc on to a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements that drift into the cavity and, before being accreted, are accelerated on to trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate on to the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation at the inner edge and also irradiation arising there from reprocessing of light from the stars. We find that, for tight PMS binaries, the SED is dominated by emission from the inner edge at wavelengths between 1-4 and 10 μm. This may apply to systems like CoRoT 223992193 and V1481 Ori.

  15. The characteristic black hole mass resulting from direct collapse in the early Universe

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Schmidt, W.; Niemeyer, J. C.

    2013-12-01

    Black holes of a billion solar masses are observed in the infant Universe a few hundred million years after the big bang. The direct collapse of protogalactic gas clouds in primordial haloes with Tvir ≥ 104 K provides the most promising way to assemble massive black holes. In this study, we aim to determine the characteristic mass scale of seed black holes and the time evolution of the accretion rates resulting from the direct collapse model. We explore the formation of supermassive black holes via cosmological large eddy simulations (LES) by employing sink particles and following their evolution for 20 000 yr after the formation of the first sink. As the resulting protostars were shown to have cool atmospheres in the presence of strong accretion, we assume here that UV feedback is negligible during this calculation. We confirm this result in a comparison run without sinks. Our findings show that black hole seeds with characteristic mass of 105 M⊙ are formed in the presence of strong Lyman-Werner flux which leads to an isothermal collapse. The characteristic mass is about two times higher in LES compared to the implicit large eddy simulations. The accretion rates increase with time and reach a maximum value of 10 M⊙ yr-1 after 104 yr. Our results show that the direct collapse model is clearly feasible as it provides the expected mass of the seed black holes.

  16. Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh

    NASA Astrophysics Data System (ADS)

    Kelleway, Jeffrey J.; Saintilan, Neil; Macreadie, Peter I.; Baldock, Jeffrey A.; Ralph, Peter J.

    2017-08-01

    Coastal salt marshes are dynamic, intertidal ecosystems that are increasingly being recognised for their contributions to ecosystem services, including carbon (C) accumulation and storage. The survival of salt marshes and their capacity to store C under rising sea levels, however, is partially reliant upon sedimentation rates and influenced by a combination of physical and biological factors. In this study, we use several complementary methods to assess short-term (days) deposition and medium-term (months) accretion dynamics within a single marsh that contains three salt marsh vegetation types common throughout southeastern (SE) Australia.We found that surface accretion varies among vegetation assemblages, with medium-term (19 months) bulk accretion rates in the upper marsh rush (Juncus) assemblage (1.74 ± 0.13 mm yr-1) consistently in excess of estimated local sea-level rise (1.15 mm yr-1). Accretion rates were lower and less consistent in both the succulent (Sarcocornia, 0.78 ± 0.18 mm yr-1) and grass (Sporobolus, 0.88 ± 0.22 mm yr-1) assemblages located lower in the tidal frame. Short-term (6 days) experiments showed deposition within Juncus plots to be dominated by autochthonous organic inputs with C deposition rates ranging from 1.14 ± 0.41 mg C cm-2 d-1 (neap tidal period) to 2.37 ± 0.44 mg C cm-2 d-1 (spring tidal period), while minerogenic inputs and lower C deposition dominated Sarcocornia (0.10 ± 0.02 to 0.62 ± 0.08 mg C cm-2 d-1) and Sporobolus (0.17 ± 0.04 to 0.40 ± 0.07 mg C cm-2 d-1) assemblages.Elemental (C : N), isotopic (δ13C), mid-infrared (MIR) and 13C nuclear magnetic resonance (NMR) analyses revealed little difference in either the source or character of materials being deposited among neap versus spring tidal periods. Instead, these analyses point to substantial redistribution of materials within the Sarcocornia and Sporobolus assemblages, compared to high retention and preservation of organic inputs in the Juncus assemblage. By combining medium-term accretion quantification with short-term deposition measurements and chemical analyses, we have gained novel insights into above-ground biophysical processes that may explain previously observed regional differences in surface dynamics among key salt marsh vegetation assemblages. Our results suggest that Sarcocornia and Sporobolus assemblages may be particularly susceptible to changes in sea level, though quantification of below-ground processes (e.g. root production, compaction) is needed to confirm this.

  17. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka

    USGS Publications Warehouse

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.

    2017-01-01

    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  18. Optical veiling, disk accretion, and the evolution of T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar massmore » is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs.« less

  19. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  20. The sustainable growth of the first black holes

    NASA Astrophysics Data System (ADS)

    Pezzulli, Edwige; Volonteri, Marta; Schneider, Raffaella; Valiante, Rosa

    2017-10-01

    Super-Eddington accretion has been suggested as a possible formation pathway of 109 M⊙ supermassive black holes (SMBHs) 800 Myr after the big bang. However, stellar feedback from BH seed progenitors and winds from BH accretion discs may decrease BH accretion rates. In this work, we study the impact of these physical processes on the formation of z ˜ 6 quasar, including new physical prescriptions in the cosmological, data-constrained semi-analytic model GAMETE/QSOdust. We find that the feedback produced by the first stellar progenitors on the surrounding does not play a relevant role in preventing SMBHs formation. In order to grow the z ≳ 6 SMBHs, the accreted gas must efficiently lose angular momentum. Moreover, disc winds, easily originated in super-Eddington accretion regime, can strongly reduce duty cycles. This produces a decrease in the active fraction among the progenitors of z ˜ 6 bright quasars, reducing the probability to observe them.

  1. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  2. You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-01-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.

  3. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  4. An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8 percent of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  5. An Approach to Detect and Mitigate Ice Particle Accretion in Aircraft Engine Compression Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  6. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  7. Corona accretion in active galactic nuclei and the observational test

    NASA Astrophysics Data System (ADS)

    Qiao, E.; Liu, B.; Taam, R.; Yuan, W.

    2017-10-01

    In this talk, we propose a new accretion model, in which the matter is accreted initially in the form of a vertically extended, hot gas (corona) to the central supermassive black hole by capturing the interstellar medium or the stellar wind in active galactic nuclei (AGNs). In this scenario, when the initial mass accretion rate is greater than about 0.01 \\dot M_{Edd}, at a critical radius r_{d}, part of the hot gas begins to condense on to the equatorial disc plane of the black hole, forming an inner cold accretion disc. Then, the matter is accreted in the form of a disc-corona structure extending down to the ISCO of the black hole. We calculate the theoretical structure and the corresponding emergent spectra of the model. It is shown that the model can naturally explain the origin of the X-ray emission in AGNs. Meanwhile the model predicts a new geometry of the accretion flow, which can very well explain some observations, such as the correlation between the hard X-ray slope Γ and the reflection scaling factor R found in AGNs. Finally, we discuss the potential applications of the model to high mass X-ray binaries.

  8. Roto-chemical heating in a neutron star with fall-back disc accretion

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping

    2018-07-01

    Recent research on the classical pulsar B0950+08 demonstrates that the explanation of its high surface temperature by roto-chemical heating encounters some difficulties. We assume that there is a fall-back disc around the newborn neutron star, which originates from the supernova ejecta and influences the spin and magnetic evolution of the star. By taking into account disc accretion and magnetic field evolution simultaneously, the effect of the fall-back disc accretion process on the roto-chemical heating in the neutron star is studied. The results show that there are two roto-chemical deviation phases (spin-up deviation and spin-down deviation), but that only the spin-down deviation leads to heating. The specific cooling curve depends on the accretion disc mass, the initial magnetic field and the magnetic field decay rate. Most importantly, the observations of surface temperature, magnetic field strength and spin period of the classical pulsar B0950+08 are well explained by the accretion roto-chemical heating model. The fall-back accretion process is important in roto-chemical heating for explanations of classical pulsars with high temperature. Given the absence of any evidence of fall-back accretion on to B0950+08, our study is purely hypothetical.

  9. The power of relativistic jets is larger than the luminosity of their accretion disks.

    PubMed

    Ghisellini, G; Tavecchio, F; Maraschi, L; Celotti, A; Sbarrato, T

    2014-11-20

    Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.

  10. Dynamical and Radiative Modeling of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2011-09-01

    Sgr A* in our Galactic Center is the closest supermassive black hole (SMBH) with the largest event horizon angular size. Most other SMBHs are likely in the same dormant low-luminosity accretion state as Sgr A*. Thus, the important physical effects in lives of BHs can be best observed and studied in our Galactic Center. One of these effects is electron heat conduction. Conduction may be the main reason why Sgr A* is so dramatically underluminous: it transfers heat outwards from the inner flow and unbinds the outer flow, quenching the accretion. In Chapter 3 I build a realistic model of accretion with conduction, which incorporates feeding by stellar winds. In a model with accretion rate < 1% of the naive Bondi estimate I achieve agreement of the X-ray surface brightness profile and Faraday rotation measure to observations. An earlier model proposed in Chapter 2 with adiabatic accretion of turbulent magnetized medium cannot be tweaked to match the observations. Its accretion rate appears too large, so turbulent magnetic field cannot stop gas from falling in. Low accretion rate leads to a peculiar radiation pattern from near the BH: cyclo-synchrotron polarized radiation is observed in radio/sub-mm. Since it comes from several Schwarzschild radii, the BH spin can be determined, when we overcome all modeling challenges. I fit the average observed radiation spectrum with a theoretical spectrum, which is computed by radiative transfer over a simulation-based model. Relevant plasma effects responsible for the observed polarization state are accurately computed for thermal plasma in Chapter 4. The prescription of how to perform the correct general relativistic polarized radiative transfer is elaborated in Chapter 5. Application of this technique to three-dimensional general relativistic magneto hydrodynamic numerical simulations is reported in Chapter 6. The main results of analysis are that the spin inclination angle is estimated to lie within a narrow range theta est = 50° -- 59°, and most probable value of BH spin is a* = 0.9. I believe the researched topics will play a central role in future modeling of typical SMBH accretion and will lead to effective ways to determine the spins of these starving eaters. Computations of plasma effects reported here will also find applications when comparing models of jets to observations.

  11. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.

  12. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal galaxies with σb being the stellar velocity dispersion in the galactic bulge; in our scenario, the central SMBH formation precedes that of the galactic bulge.

  13. NuSTAR rules out a cyclotron line in the accreting magnetar candidate 4U2206+54.

    NASA Astrophysics Data System (ADS)

    Torrejón, J. M.; Reig, P.; Fürst, F.; Martinez-Chicharro, M.; Postnov, K.; Oskinova, L.

    2018-06-01

    Based on our new NuSTAR X-ray telescope data, we rule out any cyclotron line up to 60 keV in the spectra of the high mass X-ray binary 4U2206+54. In particular, we do not find any evidence of the previously claimed line around 30 keV, independently of the source flux, along the spin pulse. The spin period has increased significantly, since the last observation, up to 5750 ± 10 s, confirming the rapid spin down rate \\dot{ν }=-1.8× 10^{-14} Hz s-1. This behaviour might be explained by the presence of a strongly magnetized neutron star (Bs > several times 1013 G) accreting from the slow wind of its main sequence O9.5 companion.

  14. HST FUV monitoring of TW Hya

    NASA Astrophysics Data System (ADS)

    Guenther, Hans; Brickhouse, N. S.; Dupree, A. K.; Luna, G.; Schneider, P. C.; Wolk, S. J.

    2014-01-01

    Classical T Tauri stars (CTTS) show strong, broad and asymmetric FUV emission lines. Neither the width, nor the line profile is understood. Likely, different mechanisms influence the line profile; the best candidates are accretion, winds and stellar activity. We monitored the C IV 1548/1550 Å doublet in the nearby, bright CTTS TW Hya to correlate it with i) the cool wind, as seen in COS NUV Mg II line profiles, ii) the photometric period from joint ground-based monitoring, iii) the accretion rate as determined from the UV continuum and iv) the Ha line profile from independent ground-based observations. The observations span 10 orbits distributed over a few weeks to cover the typical time scales of stellar rotation, accretion and winds. On short time scales (seconds) the variability in the data is compatible with counting statistics when we take certain instrumental effects (the detector dead-time fraction increases when the wavelength calibration lamps are switched on). This rules out any type of coherent accretion shock fluctuation as predicted in some simulations. On longer time scales (days) variability of a factor of 3 in the continuum and similarly massive changes in the line shape are seen. The ratio of the two lines of the doublet indicates that the lines are optically thick, calling into question the idea that the blue-shifted components of the C IV lines are formed in the pre-shock region.

  15. Pebble Accretion in Turbulent Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  16. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  17. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  18. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  19. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  20. Nucleosynthesis in the neighborhood of a black hole

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Sandip K.

    1986-01-01

    The preliminary results from simulations of nucleosynthesis inside a thick accretion disk around a black hole are discussed as a function of the accretion rate, the viscosity parameter, and the mass of the black hole. Results for the Bondi accretion case are also presented. Taking the case of a 10-solar mass and a 10 to the 6th-solar mass central Schwarzschild hole, detailed evolution of a representative element of matter as it accretes into the hole is presented in the case when the initial abundance (at the outer edge of the disk) is the same as the solar abundance. It is suggested that such studies may eventually shed light on the composition of the outgoing jets observed in the active galaxies and SS433.

  1. Accreting transition discs with large cavities created by X-ray photoevaporation in C and O depleted discs

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Weber, Michael L.; Owen, James E.

    2018-01-01

    Circumstellar discs with large dust depleted cavities and vigorous accretion on to the central star are often considered signposts for (multiple) giant planet formation. In this Letter, we show that X-ray photoevaporation operating in discs with modest (factors 3-10) gas-phase depletion of carbon and oxygen at large radii ( > 15 au) yields the inner radius and accretion rates for most of the observed discs, without the need to invoke giant planet formation. We present one-dimensional viscous evolution models of discs affected by X-ray photoevaporation assuming moderate gas-phase depletion of carbon and oxygen, well within the range reported by recent observations. Our models use a simplified prescription for scaling the X-ray photoevaporation rates and profiles at different metallicity, and our quantitative result depends on this scaling. While more rigorous hydrodynamical modelling of mass-loss profiles at low metallicities is required to constrain the observational parameter space that can be explained by our models, the general conclusion that metal sequestering at large radii may be responsible for the observed diversity of transition discs is shown to be robust. Gap opening by giant planet formation may still be responsible for a number of observed transition discs with large cavities and very high accretion rate.

  2. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Pu; Lu, Kai-Xing; Hu, Chen

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 andmore » Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.« less

  3. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    PubMed

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P < 0.05). Absolute hindlimb blood flow was reduced in IUGR (IUGR: 32.9 ± 5.6 ml min -1 ; CON: 60.9 ± 6.5 ml min -1 ; P < 0.005), although flow normalized to hindlimb weight was similar between groups. Hindlimb oxygen consumption rate was lower in IUGR (IUGR: 10.4 ± 1.4 μmol min -1  100 g -1 ; CON: 14.7 ± 1.3 μmol min -1  100 g -1 ; P < 0.05). Hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was lower in IUGR (IUGR: 1.3 ± 0.5 μmol min -1  100 g -1 ; CON: 2.9 ± 0.2 μmol min -1  100 g -1 ; P < 0.05). Blood O 2 saturation (r 2  = 0.80, P < 0.0001) and plasma glucose (r 2  = 0.68, P < 0.0001), insulin (r 2  = 0.40, P < 0.005) and insulin-like growth factor (IGF)-1 (r 2  = 0.80, P < 0.0001) were positively associated and norepinephrine (r 2  = 0.59, P < 0.0001) was negatively associated with hindlimb weight. Slower hindlimb linear growth and muscle protein synthesis rates match reduced hindlimb blood flow and oxygen consumption rates in the IUGR fetus. Metabolic adaptations to slow hindlimb growth are probably hormonally-mediated by mechanisms that include increased fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  4. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  5. Can Oregon marshes keep up with the rising tide? A study of short and long term marsh accretion - CERF 2015

    EPA Science Inventory

    More frequent inundation of Oregon coastal marshlands associated with rising sea level threatens these important and diverse habitats. Accretion rates determined by the marker horizon method and longer term peak Cs137 detection in nine marsh systems from Coquille to Tillamook we...

  6. Can Oregon Marshes Keep Up With The Rising Tide? A Study of Short and Long Term Marsh Accretion.

    EPA Science Inventory

    More frequent inundation of Oregon coastal marshlands associated with rising sea level threatens these important and diverse habitats. Study plot accretion rates determined by the marker horizon method and longer term peak Cs137 detection in eight marsh systems from Coquille to ...

  7. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, D.; et al.

    We present accretion disk size measurements for 15 luminous quasars atmore » $$0.7 \\leq z \\leq 1.9$$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.« less

  8. NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin

    NASA Astrophysics Data System (ADS)

    El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Chistensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.; Tomsick, J.; Walton, D. J.; Zhang, W. W.

    2016-07-01

    We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 “hard” state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a={cJ}/{{GM}}2≥slant 0.98 (1σ statistical limits only). The fits also require a high inclination: θ ≃ 75{(2)}\\circ . Strong “dips” are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.

  9. NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin

    NASA Technical Reports Server (NTRS)

    El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.; hide

    2016-01-01

    We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/ GM(sup 2) > or = 0.98 (1(sigma) statistical limits only). The fits also require a high inclination: theta approx. = 75(2)deg. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.

  10. Origin of Large and Highly Variable Changes in the Apparent Spin Frequencies of Accretion-Powered Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.; Dorris, D.; Clare, A.; Van Wassenhove, S.; Yu, W.; Miller, M. C.

    2006-09-01

    The spin-frequency behavior of accretion-powered millisecond pulsars is usually inferred by power spectral analysis of their X-ray waveforms. The reported behavior of the spin frequencies of several accretion-powered millisecond pulsars is puzzling in two respects. First, analysis of the waveforms of these pulsars indicates that their spin frequencies are changing faster than predicted by the standard model of accretion torques. Second, there are wild swings of both signs in their apparent spin frequencies that are not correlated with the mass accretion rates inferred from their X-ray fluxes. We have computed the expected X-ray waveforms of pulsars like these, including special and general relativistic effects, and find that the changes in their waveforms produced by physically plausible changes in the flow of accreting matter onto their surfaces can explain their apparently anomalous spin-frequency behavior. This research was supported in part by NASA grant NAG 5-12030, NSF grant AST 0098399, and funds of the Fortner Endowed Chair at Illinois, and NSF grant AST 0098436 at Maryland.

  11. Accretion states in X-ray binaries and their connection to GeV emission

    NASA Astrophysics Data System (ADS)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  12. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  13. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    NASA Technical Reports Server (NTRS)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  14. In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning

    PubMed Central

    Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian

    2013-01-01

    In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409

  15. Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children.

    PubMed

    Abera, Mubarek; Tesfaye, Markos; Admassu, Bitiya; Hanlon, Charlotte; Ritz, Christian; Wibaek, Rasmus; Michaelsen, Kim F; Friis, Henrik; Wells, Jonathan C; Andersen, Gregers S; Girma, Tsinuel; Kæstel, Pernille

    2018-06-01

    Early nutrition and growth have been found to be important early exposures for later development. Studies of crude growth in terms of weight and length/height, however, cannot elucidate how body composition (BC) might mediate associations between nutrition and later development. In this study, we aimed to examine the relation between fat mass (FM) or fat-free mass (FFM) tissues at birth and their accretion during early infancy, and later developmental progression. In a birth cohort from Ethiopia, 455 children who have BC measurement at birth and 416 who have standardised rate of BC growth during infancy were followed up for outcome variable, and were included in the statistical analysis. The study sample was restricted to mothers living in Jimma town who gave birth to a term baby with a birth weight ≥1500 g and no evident congenital anomalies. The relationship between the exposure and outcome variables was examined using linear-mixed regression model. The finding revealed that FFM at birth was positively associated with global developmental progression from 1 to 5 years (β=1·75; 95 % CI 0·11, 3·39) and from 4 to 5 years (β=1·34; 95 % CI 0·23, 2·44) in the adjusted model. Furthermore, the rate of postnatal FFM tissue accretion was positively associated with development at 1 year of age (β=0·50; 95 % CI 0·01, 0·99). Neither fetal nor postnatal FM showed a significant association. In conclusion, fetal, rather than postnatal, FFM tissue accretion was associated with developmental progression. Intervention studies are needed to assess whether nutrition interventions increasing FFM also increase cognitive development.

  16. A 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in black hole systems: a higher order polynomial approximation

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu

    2017-09-01

    The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solutions at high turbulent viscosity parameter α (≳ 0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field B P is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-{r}2{\\bar{B}}\\varphi {\\bar{B}}z) increases with the increase in \\dot{M}. {\\bar{B}}{{P}}, -{r}2{\\bar{B}}\\varphi {\\bar{B}}z as well as the plasma beta β P get strongly augmented with the increase in the value of α, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.

  17. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  18. Low Carbon sink capacity of Red Sea mangroves.

    PubMed

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  19. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    USGS Publications Warehouse

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in fresh, brackish/ intermediate, and saline marshes. In fresh marshes, the mechanism of hurricane influence varied across the landscape. In the western region, saltwater storm surge inundated freshwater marshes and remained for weeks, effectively causing damage that reset the vegetation community. This is in contrast to the direct physical disturbance of the storm surge in the eastern region, which flipped and relocated marsh mats, thereby stressing the vegetation communities and providing an opportunity for disturbance species to colonize. In the brackish/intermediate marsh, disturbance species took advantage of the opportunity provided by shifting species composition caused by physical and saltwater-induced perturbations, although this shift is likely to be short lived. Saline marsh sites were not negatively impacted to a severe degree by the hurricanes. Species composition of vegetation in saline marshes was not affected, and sediment deposition appeared to increase vegetative productivity. The coastal landscape of Louisiana is experiencing high rates of land loss resulting from natural and anthropogenic causes and is experiencing subsidence rates greater than 10.0 millimeters per year (mm yr-1); therefore, it is important to understand how hurricanes influence sedimentation and soil properties. We document long-term vertical accretion rates and accumulation rates of organic matter, bulk density, carbon and nitrogen. Analyses using caesium-137 to calculate long-term vertical accretion rates suggest that accretion under impounded conditions is less than in nonimpounded conditions in the brackish marsh of the chenier plain. Our data also support previous studies indicating that accumulation rates of organic matter explain much of the variability associated with vertical accretion in brackish/intermediate and saline marshes. In fresh marshes, more of the variability associated with vertical accretion was explained by mineral accumulation than in the other mars

  20. ROSSI X-RAY TIMING EXPLORER OBSERVATIONS OF THE LOW-MASS X-RAY BINARY 4U 1608-522 IN THE UPPER-BANANA STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiromitsu; Sakurai, Soki; Makishima, Kazuo, E-mail: hirotaka@hep01.hepl.hiroshima-u.ac.jp

    To investigate the physics of mass accretion onto weakly magnetized neutron stars (NSs), 95 archival Rossi X-Ray Timing Explorer data sets of an atoll source 4U 1608-522, acquired over 1996-2004 in the so-called upper-banana state, were analyzed. The object meantime exhibited 3-30 keV luminosity in the range of {approx}< 10{sup 35}-4 x 10{sup 37} erg s{sup -1}, assuming a distance of 3.6 kpc. The 3-30 keV Proportional Counter Array spectra, produced one from each data set, were represented successfully with a combination of a soft and a hard component, the presence of which was revealed in a model-independent manner bymore » studying spectral variations among the observations. The soft component is expressed by the so-called multi-color disk model with a temperature of {approx}1.8 keV, and is attributed to the emission from an optically thick standard accretion disk. The hard component is a blackbody (BB) emission with a temperature of {approx}2.7 keV, thought to be emitted from the NS surface. As the total luminosity increases, a continuous decrease is observed in the ratio of the BB luminosity to that of the disk component. This property suggests that it gradually becomes difficult for the matter flowing through the accretion disk to reach the NS surface, presumably forming outflows driven by the increased radiation pressure. On timescales of hours to days, the overall source variability was found to be controlled by two independent variables: the mass accretion rate and the innermost disk radius, which changes both physically and artificially.« less

  1. DISSECTING THE POWER SOURCES OF LOW-LUMINOSITY EMISSION-LINE GALAXY NUCLEI VIA COMPARISON OF HST-STIS AND GROUND-BASED SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Anca; Castillo, Christopher A.; Shields, Joseph C.

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less

  2. Magnetic fields in giant planet formation and protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in accretion powered by large-scale fields. An equilibrium model is presented for the radial structure of an axisymmetric, magnetically-braked accretion disc connected to a force-free external field. The accretion rate is multivalued at protoplanetary disc column densities, featuring an `S-curve' associated with models of accretion outbursting. A local, linear analysis of the stability of radial modes finds that the rapidly accreting, middle and upper solution branches are unstable, further highlighting the potential for eruptive accretion events.

  3. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt

    NASA Technical Reports Server (NTRS)

    Aly, Mohamed H.; Klein, Andrew G.; Giardino, John R.

    2005-01-01

    The Nile River Delta is experiencing rapid rates of coastal change. The rate of both coastal retreat and accretion in the Eastern Nile Delta requires regular, accurate detection and measurement. Current techniques used to monitor coastal changes in the delta are point measurements and, thus, they provide a spatially limited view of the ongoing coastal changes. SAR interferometry can provide measurements of subtle coastal change at a significantly improved spatial resolution and over large areas (100 sq km). Using data provided by the ERS-1&2 satellites, monitoring can be accomplished as frequently as every 35 days when needed. Radar interferometry is employed in this study to detect segments of erosion and accretion during the 1993-2000 period. The average rates of erosion and accretion in the Eastern Nile Delta are measured to be -11.64 m/yr and +5.12 m/yr, respectively. The results of this interferometric study can be used effectively for coastal zone management and integrated sustainable development for the Nile River Delta.

  4. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature 497.7451 (2013): 607-610.

  5. On the thickness of accretion curtains on magnetized compact objects from analysis of their fast aperiodic time variability.

    NASA Astrophysics Data System (ADS)

    Semena, Andrey

    It is widely accepted that accretion onto magnetized compact objects is channelled to some areas close to magnetic poles of the star. Thickness of this channelled accretion flow intimately depends on details of penetration of highly conducting plasma of the flow to the compact object magnetosphere, i.e. on magnetic diffusivity etc. Until now our knowledge of these plasma properties is scarce. In our work we present our attempts to estimate the thickness of the plasma flow on top of the magnetosphere from observations of accreting intermediate polars (magnetized white dwarfs). We show that properties of aperiodic noise of accreting intermediate polars can be used to put constrains on cooling time of hot plasma, heated in the standing shock wave above the WD surface. Estimates of the cooling time and the mass accretion rate provide us a tool to measure the density of post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have studied aperiodic noise of emission of one of the brightest intermediate polar EX Hya with the help of data in optical and X-ray energy bands. We put an upper limit on the plasma cooling timescale tau <0.2-0.5 sec, on the fractional area of the accretion curtain footprint f < 1.6 × 10(-4) . We show that measurements of accretion column footprints, combined with results of the eclipse mapping, can be used to obtain an upper limit on the penetration depth of the accretion disc plasma at the boundary of the magnetosphere, Delta r / r ≈ 10(-3) If the magnetospheres of accreting neutron stars have similar plasma penetration depths at their boundaries, we predict that footprints of their accretion columns should be very small, with fractional areas < 10(-6) .

  6. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid, E-mail: jgli@astro.princeton.edu

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radiusmore » down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.« less

  7. Star formation with disc accretion and rotation. I. Stars between 2 and 22 M⊙ at solar metallicity

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2013-09-01

    Context. The way angular momentum is built up in stars during their formation process may have an impact on their further evolution. Aims: In the framework of the cold disc accretion scenario, we study how angular momentum builds up inside the star during its formation for the first time and what the consequences are for its evolution on the main sequence (MS). Methods: Computation begins from a hydrostatic core on the Hayashi line of 0.7 M⊙ at solar metallicity (Z = 0.014) rotating as a solid body. Accretion rates depending on the luminosity of the accreting object are considered, which vary between 1.5 × 10-5 and 1.7 × 10-3 M⊙ yr-1. The accreted matter is assumed to have an angular velocity equal to that of the outer layer of the accreting star. Models are computed for a mass-range on the zero-age main sequence (ZAMS) between 2 and 22 M⊙. Results: We study how the internal and surface velocities vary as a function of time during the accretion phase and the evolution towards the ZAMS. Stellar models, whose evolution has been followed along the pre-MS phase, are found to exhibit a shallow gradient of angular velocity on the ZAMS. Typically, the 6 M⊙ model has a core that rotates 50% faster than the surface on the ZAMS. The degree of differential rotation on the ZAMS decreases when the mass increases (for a fixed value of vZAMS/vcrit). The MS evolution of our models with a pre-MS accreting phase show no significant differences with respect to those of corresponding models computed from the ZAMS with an initial solid-body rotation. Interestingly, there exists a maximum surface velocity that can be reached through the present scenario of formation for masses on the ZAMS larger than 8 M⊙. Typically, only stars with surface velocities on the ZAMS lower than about 45% of the critical velocity can be formed for 14 M⊙ models. Reaching higher velocities would require starting from cores that rotate above the critical limit. We find that this upper velocity limit is smaller for higher masses. In contrast, there is no restriction below 8 M⊙, and the whole domain of velocities to the critical point can be reached.

  8. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  9. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves

    Treesearch

    Richard A. MacKenzie; Patra B. Foulk; J. Val Klump; Kimberly Weckerly; Joko Purbospito; Daniel Murdiyarso; Daniel C. Donato; Vien Ngoc Nam

    2016-01-01

    Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and...

  10. How to quench a galaxy

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Tremmel, Michael; Roth, Nina; Peiris, Hiranya V.; Saintonge, Amélie; Volonteri, Marta; Quinn, Tom; Governato, Fabio

    2017-02-01

    We show how the interplay between active galactic nuclei (AGNs) and merger history determines whether a galaxy quenches star formation (SF) at high redshift. We first simulate, in a full cosmological context, a galaxy of total dynamical mass Mvir = 1012 M⊙ at z = 2. Then we systematically alter the accretion history of the galaxy by minimally changing the linear overdensity in the initial conditions. This `genetic modification' approach allows the generation of three sets of Λ CDM initial conditions leading to maximum merger ratios of 1:10, 1:5 and 2:3, respectively. The changes leave the final halo mass, large-scale structure and local environment unchanged, providing a controlled numerical experiment. Interaction between the AGN physics and mergers in the three cases leads, respectively, to a star-forming, temporarily quenched and permanently quenched galaxy. However, the differences do not primarily lie in the black hole accretion rates, but in the kinetic effects of the merger: the galaxy is resilient against AGN feedback unless its gaseous disc is first disrupted. Typical accretion rates are comparable in the three cases, falling below 0.1 M⊙ yr-1, equivalent to around 2 per cent of the Eddington rate or 10-3 times the pre-quenching star formation rate, in agreement with observations. This low level of black hole accretion can be sustained even when there is insufficient dense cold gas for SF. Conversely, supernova feedback is too distributed to generate outflows in high-mass systems, and cannot maintain quenching over periods longer than the halo gas cooling time.

  11. How does the cosmic web impact assembly bias?

    NASA Astrophysics Data System (ADS)

    Musso, M.; Cadiou, C.; Pichon, C.; Codis, S.; Kraljic, K.; Dubois, Y.

    2018-06-01

    The mass, accretion rate, and formation time of dark matter haloes near protofilaments (identified as saddle points of the potential) are analytically predicted using a conditional version of the excursion set approach in its so-called upcrossing approximation. The model predicts that at fixed mass, mass accretion rate and formation time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially along the main axis of filaments, while more massive and younger haloes are found closer to the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur because the saddle condition is anisotropic, and because the statistics of these observables depend on both the conditional means and their covariances. The theory is extended to other critical points of the potential field. The response of the mass function to variations of the matter density field (the so-called large-scale bias) is computed, and its trend with accretion rate is shown to invert along the filament. The signature of this model should correspond at low redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as recently reported in spectroscopic and photometric surveys and in hydrodynamical simulations. The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or morphological diversity.

  12. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    NASA Astrophysics Data System (ADS)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  13. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉}more » = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.« less

  15. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. The PSL test has helped to calibrate the engine icing computational tool to assess the risk of ice accretion. The results from the computer simulation identified prevalent trends in wet bulb temperature, ice particle melt ratio, and engine inlet temperature as a function of altitude for predicting engine icing risk due to ice crystal ingestion.

  16. Connection between jets, winds and accretion in T Tauri stars. The X-shooter view

    NASA Astrophysics Data System (ADS)

    Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Giannini, T.; Manara, C. F.; Natta, A.; Fedele, D.; Biazzo, K.

    2018-01-01

    Mass loss from jets and winds is a key ingredient in the evolution of accretion discs in young stars. While slow winds have been recently extensively studied in T Tauri stars, little investigation has been devoted on the occurrence of high velocity jets and on how the two mass-loss phenomena are connected with each other, and with the disc mass accretion rates. In this framework, we have analysed the [O I]6300 Å line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and σ Orionis star forming regions. The stars were observed with the X-shooter spectrograph at the Very Large Telescope and have mass accretion rates spanning from 10-12 to 10-7M⊙ yr-1. The line profile was deconvolved into a low velocity component (LVC, | Vr | < 40 km s-1) and a high velocity component (HVC, | Vr | > 40 km s-1), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The fraction of HVC detections slightly increases (i.e. 39%) in the sub-sample of stronger accretors (i.e. with log (Lacc/L⊙) >-3). The [O I]6300 Å luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. L∗, M∗, Lacc, Ṁacc), with similar slopes for the two components. The line luminosity correlates better (i.e. has a lower dispersion) with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass ejection rates (Ṁjet) measured from the detected HVC [O I]6300 Å line luminosity span from 10-13 to 10-7M⊙ yr-1. The corresponding Ṁjet/Ṁacc ratio ranges from 0.01 to 0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a Ṁjet/Ṁacc ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase. This will be possible in the near future thanks to space facilities such as the James Webb space telescope (JWST). Based on Observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Programme IDs: 084.C-0269, 084.C-1095, 085.C-0238, 085.C-0764, 086.C-0173, 087.C-0244, 089.C-0143, 090.C-0253, 093.C-0506, 094.C-0913, 095.C-0134 and 097.C-0349.

  17. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) ×more » 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.« less

  18. Black Hole Disk Accretion in Supernovae

    NASA Astrophysics Data System (ADS)

    Nomura, H.; Mineshige, S.; Hirose, M.; Nomoto, K.; Suzuki, T.

    Hydrodynamical disk accretion flow onto a new-born black hole in a supernova is studied using the SPH (Smoothed Particle Hydrodynamics) method. It has been suggested that a mass of ~0.1Modot falls back to a black hole by a reverse shock. If the progenitor was rotating before the explosion, the accreting material should have a certain amount of angular momentum, thus forming an accretion disk. Disk material will eventually accrete towards the central object via viscosity with a supercritical accretion rate, dotM / dotMc > 106, for first several tens of days. (Here, dotMc is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection-dominated; that is, the disk is so hot that produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity (~1038erg s-1). The disk becomes hot and dense; for dotM / dotMc ~106 and the viscosity parameter alphavis ~0.01, for example, T ~109K and rho ~103gcm-3 in the vicinity of the central object. Efficient nucleosynthesis is hence expected even for reasonable viscosity magnitudes, although produced elements may be swallowed by the black hole.

  19. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  20. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

Top