Science.gov

Sample records for accretion rate increases

  1. On the stream-accretion disk interaction - Response to increased mass transfer rate

    NASA Technical Reports Server (NTRS)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  2. Low Accretion Rate Expected From G2 Gas Cloud

    NASA Astrophysics Data System (ADS)

    Gracey, Brandon; Morsony, Brian; Workman, Jared

    2015-08-01

    We present high-resolution simulations of the encounter of the G2 gas cloud with Sag A*, focusing on the mass that can be accreted onto the supermassive black hole. Even assuming G2 is a gas cloud of a few time the mass of Earth, we find that very little material should be expected to be accreted. From 5 years before to 5 years after pericenter passage, at most 0.1% of the cloud mass is accreted. The total amount of material accreted by Sag A* increases by at most 20% over this period, and in many cases actually decreases due to the passage of G2. Even over very long timescales, out to 30 years after pericenter passage, only a few 10th's of a percent of the cloud will be accreted, with no significant increase in the overall mass accretion rate of Sag A*.We find that the size of the accretion radius in our simulations has a large effect on the accretion rate, with a smaller accretion radius having a smaller accretion rate. Changing the size of the accretion radius has a larger effect than changing the density profile of the cloud or changing the structure of the background material around Sag A*.

  3. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  4. Binary accretion rates: dependence on temperature and mass ratio

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2015-09-01

    We perform a series of 2D smoothed particle hydrodynamics simulations of gas accretion on to binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios (q). We show that increasing the gas temperature increases the accretion rate on to the primary for all values of the binary mass ratio: for example, for q = 0.1 and a fixed binary separation, an increase of normalized sound speed by a factor of 5 (from our `cold' to `hot' simulations) changes the fraction of the accreted gas that flows on to the primary from 10 to ˜40 per cent. We present a simple parametrization for the average accretion rate of each binary component accurate to within a few per cent and argue that this parametrization (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of q during circumbinary disc accretion and argue that the period distribution of stellar `twin' binaries is strong evidence for the importance of circumbinary accretion. We also show that our parametrization of binary accretion increases the minimum mass ratio needed for spin alignment of supermassive black holes to q ˜ 0.4, with potentially important implications for the magnitude of velocity kicks acquired during black hole mergers.

  5. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  6. The Accretion Rate Dependence of Burst Oscillation Amplitude

    NASA Astrophysics Data System (ADS)

    Ootes, Laura S.; Watts, Anna L.; Galloway, Duncan K.; Wijnands, Rudy

    2017-01-01

    Neutron stars in low-mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analyzed previously by Muno et al., who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ({A}{{rms}}≤slant 0.10) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes (0.05≤slant {A}{{rms}}≤slant 0.20). In this paper we present the results of our analysis and discuss these in the light of current burst oscillation models. Additionally, we investigate the bursts of two sources without previously detected oscillations. Despite the fact that these sources have been observed at accretion rates where burst oscillations might be expected, we find their behavior not to be anomalous compared to oscillation sources.

  7. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  8. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  9. ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES

    SciTech Connect

    Trump, Jonathan R.; Impey, Christopher D.; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Kelly, Brandon C.; Civano, Francesca; Hao, Heng; Lanzuisi, Giorgio; Merloni, Andrea; Salvato, Mara; Urry, C. Megan; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Liu, Charles; Mainieri, Vincenzo; Scoville, Nick Z.

    2011-05-20

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L{sub int}) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L{sub int}/L{sub Edd} > 10{sup -2}), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L{sub int}/L{sub Edd} < 10{sup -2}) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L{sub int}/L{sub Edd} < 10{sup -2} narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L{sub int}/L{sub Edd} > 10{sup -2} broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L{sub int}/L{sub Edd} < 10{sup -2} AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical 'axis' of AGN unification, as described by a simple model.

  10. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    PubMed

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  11. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-06-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions {sup 15}O(α, γ){sup 19}Ne and {sup 18}Ne(α, p){sup 21}Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the {sup 15}O(α, γ){sup 19}Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true {sup 15}O(α, γ){sup 19}Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  12. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  13. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  14. Accretion Rate and the Physical Nature of Unobscured Active Galaxies

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, Christopher D.; Kelly, Brandon C.; Civano, Francesca; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Merloni, Andrea; Urry, C. Megan; Hao, Heng; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Lanzuisi, Giorgio; Liu, Charles; Mainieri, Vincenzo; Salvato, Mara; Scoville, Nick Z.

    2011-05-01

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L int) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L int/L Edd > 10-2), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L int/L Edd < 10-2) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L int/L Edd < 10-2 narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L int/L Edd > 10-2 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L int/L Edd < 10-2 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical "axis" of AGN unification, as described by a simple model. Based on observations with the XMM-Newton satellite, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the Magellan telescope, operated by the Carnegie Observatories; the ESO Very Large Telescope; and the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian

  15. Variable protostellar mass accretion rates in cloud cores

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lou, Yu-Qing

    2017-03-01

    Spherical hydrodynamic models with a polytropic equation of state (EoS) for forming protostars are revisited in order to investigate the so-called luminosity conundrum highlighted by observations. For a molecular cloud (MC) core with such an EoS with polytropic index γ > 1, the central mass accretion rate (MAR) decreases with increasing time as a protostar emerges, offering a sensible solution to this luminosity problem. As the MAR decreases, the protostellar luminosity also decreases, meaning that it is invalid to infer the star formation time from the currently observed luminosity using an isothermal model. Furthermore, observations of radial density profiles and the radio continua of numerous MC cores evolving towards protostars also suggest that polytropic dynamic spheres of γ > 1 should be used in physical models.

  16. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Huang, Ying-Ke; Cheng, Cheng; Qiu, Jie; Li, Yan-Rong; Zhang, Yang-Wei; Fan, Xu-Liang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Kaspi, Shai; Ho, Luis C.; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2015-06-01

    We have completed two years of photometric and spectroscopic monitoring of a large number of active galactic nuclei (AGNs) with very high accretion rates. In this paper, we report on the result of the second phase of the campaign, during 2013-2014, and the measurements of five new Hβ time lags out of eight monitored AGNs. All five objects were identified as super-Eddington accreting massive black holes (SEAMBHs). The highest measured accretion rates for the objects in this campaign are \\mathscr{\\dot{M}} {\\mkern 1mu} ≳ 200, where \\mathscr{\\dot{M}} {\\mkern 1mu} ={{\\dot{M}}\\bullet }/{{L}Edd}{{c}-2}, {{\\dot{M}}\\bullet } is the mass accretion rates, {{L}Edd} is the Eddington luminosity and c is the speed of light. We find that the Hβ time lags in SEAMBHs are significantly shorter than those measured in sub-Eddington AGNs, and the deviations increase with increasing accretion rates. Thus, the relationship between broad-line region size ({{R}_{Hβ }}) and optical luminosity at 5100 Å, {{R}_{Hβ }}-{{L}5100}, requires accretion rate as an additional parameter. We propose that much of the effect may be due to the strong anisotropy of the emitted slim-disk radiation. Scaling {{R}_{Hβ }} by the gravitational radius of the black hole (BH), we define a new radius-mass parameter (Y) and show that it saturates at a critical accretion rate of \\mathscr{\\dot{M}} {\\mkern 1mu} {{}c}=6˜ 30, indicating a transition from thin to slim accretion disk and a saturated luminosity of the slim disks. The parameter Y is a very useful probe for understanding the various types of accretion onto massive BHs. We briefly comment on implications to the general population of super-Eddington AGNs in the universe and applications to cosmology.

  17. ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS

    SciTech Connect

    Ohtsuki, Keiji; Yasui, Yuki; Daisaka, Hiroshi

    2013-08-01

    We examine the gravitational capture probability of colliding particles in circumplanetary particle disks and accretion rates of small particles onto an embedded moonlet, using analytic calculation, three-body orbital integrations, and N-body simulations. Expanding our previous work, we take into account the Rayleigh distribution of particles' orbital eccentricities and inclinations in our analytic calculation and orbital integration and confirm agreement between them when the particle velocity dispersion is comparable to or larger than their mutual escape velocity and the ratio of the sum of the physical radii of colliding particles to their mutual Hill radius (r-tilde{sub p}) is much smaller than unity. As shown by our previous work, the capture probability decreases significantly when the velocity dispersion is larger than the escape velocity and/or r-tilde{sub p}{approx}>0.7. Rough surfaces of particles can enhance the capture probability. We compare the results of three-body calculations with N-body simulations for accretion of small particles by an embedded moonlet and find agreement at the initial stage of accretion. However, when particles forming an aggregate on the moonlet surface nearly fill the Hill sphere, the aggregate reaches a quasi-steady state with a nearly constant number of particles covering the moonlet, and the accretion rate is significantly reduced compared to the three-body results.

  18. Accretion rate of extraterrestrial 41Ca in Antarctic snow samples

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, J. M.; Bishop, S.; Faestermann, T.; Famulok, N.; Fimiani, L.; Hain, K.; Jahn, S.; Korschinek, G.; Ludwig, P.; Rodrigues, D.

    2015-10-01

    Interplanetary Dust Particles (IDPs) are small grains, generally less than a few hundred micrometers in size. Their main source is the Asteroid Belt, located at 3 AU from the Sun, between Mars and Jupiter. During their flight from the Asteroid Belt to the Earth they are irradiated by galactic and solar cosmic rays (GCR and SCR), thus radionuclides are formed, like 41Ca and 53Mn. Therefore, 41Ca (T1/2 = 1.03 × 105 yr) can be used as a key tracer to determine the accretion rate of IDPs onto the Earth because there are no significant terrestrial sources for this radionuclide. The first step of this study consisted to calculate the production rate of 41Ca in IDPs accreted by the Earth during their travel from the Asteroid Belt. This production rate, used in accordance with the 41Ca/40Ca ratios that will be measured in snow samples from the Antarctica will be used to calculate the amount of extraterrestrial material accreted by the Earth per year. There challenges for this project are, at first, the much longer time for the flight needed by the IDPs to travel from the Asteroid Belt to the Earth in comparison with the 41Ca half-life yields an early saturation for the 41Ca/40Ca ratio, and second, the importance of selecting the correct sampling site to avoid a high influx of natural 40Ca, preventing dilution of the 41Ca/40Ca ratio, the quantity measured by AMS.

  19. ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE

    SciTech Connect

    Kim, Dohyeong; Im, Myungshin; Glikman, Eilat; Woo, Jong-Hak; Urrutia, Tanya E-mail: mim@astro.snu.ac.kr

    2015-10-10

    Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, which is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.

  20. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  1. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  2. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  3. Planetary Population Synthesis: the importance of the solids accretion rate

    NASA Astrophysics Data System (ADS)

    Fortier, A.; Alibert, Y.; Carron, F.; Mordasini, C.; Benz, W.

    2011-10-01

    In the framework of the nucleated instability model, the formation time-scale of giant planets is very sensitive to the time it takes to build the solid core. The accretion of solids can be described by two different, consecutive regimes: it first proceeds in a very fast fashion, known as runaway growth, and later on in a much slower regime, the so-called oligarchic growth. The transition between the runaway and the oligarchic growth depends on many parameters (e.g. the isolation mass and the size of the accreted planetesimals), but as a general rule we can assume that an embryo of a Lunar mass is already an oligarch. Then, the timescale to build a 10 Earth masses (M⊙) core is regulated by the oligarchic regime, as the previous runaway stage proceeds in a negligible amount of time compared to the oligarchic timescale. In this work we show the results of adopting the oligarchic growth for the core in planetary population synthesis calculations. In previous works (see [1], [2]) a fast solids accretion rate was prescribed, leading to a very fast formation of massive solid embryos. Here we show that when considering the oligarchic growth, the formation of giant planets is more difficult, especially in the outer parts of the disk, where the formation of big planets is almost impossible under these hypothesis. On the other hand, many Earth to Super- Earth sized planets are found in the very innermost parts of the disk. However, if the size of the accreted planetesimals is reduced, the formation of giant planets is more likely, preserving also a large amount of smaller planets. We also consider the formation of planetary systems, including the N-body interaction between the forming planets and the collisions that may occur among them during their migration. In the case of many planets forming in the same disk, we find that the final masses of the planets are smaller (but not too small) than in the case of a single planet per star.

  4. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  5. Black hole accretion versus star formation rate: theory confronts observations

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-09-01

    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction (`stochastic' phase), during the `merger' proper, lasting ˜0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bivariate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star-forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bivariate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.

  6. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillations decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.

  7. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-01-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disk at the pericenter scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 10^{44} {erg s^{-1}}, implies that we observe only ˜1% of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. (2015) suggested that the observed optical TDE emission is powered by shocks at the apocenter between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature, and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the SMBH before circularization. As a result, the efficiency is only ˜1-10% of a standard accretion disk's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  8. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  9. ACCRETION RATES FOR T TAURI STARS USING NEARLY SIMULTANEOUS ULTRAVIOLET AND OPTICAL SPECTRA

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Blaty, Alex; Herczeg, Gregory; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander E-mail: ncalvet@umich.edu

    2013-04-20

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, {eta} Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (M-dot ) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of M-dot to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the M-dot estimates, to produce correlations between accretion indicators (H{beta}, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  10. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-04-01

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  11. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    SciTech Connect

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.; Montesinos, B.; Najita, J. R.; Brittain, S. D.; Van den Ancker, M. E.

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  12. MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS

    SciTech Connect

    Donehew, Brian; Brittain, Sean E-mail: sbritt@clemson.edu

    2011-02-15

    The accretion rate of young stars is a fundamental characteristic of these systems. While accretion onto T Tauri stars has been studied extensively, little work has been done on measuring the accretion rate of their intermediate-mass analogs, the Herbig Ae/Be stars. Measuring the stellar accretion rate of Herbig Ae/Bes is not straightforward both because of the dearth of metal absorption lines available for veiling measurements and the intrinsic brightness of Herbig Ae/Be stars at ultraviolet wavelengths where the brightness of the accretion shock peaks. Alternative approaches to measuring the accretion rate of young stars by measuring the luminosity of proxies such as the Br {gamma} emission line have not been calibrated. A promising approach is the measurement of the veiling of the Balmer discontinuity. We present measurements of this veiling as well as the luminosity of Br {gamma}. We show that the relationship between the luminosity of Br {gamma} and the stellar accretion rate for classical T Tauri stars is consistent with Herbig Ae stars but not Herbig Be stars. We discuss the implications of this finding for understanding the interaction of the star and disk for Herbig Ae/Be stars.

  13. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs

    PubMed Central

    Vargas-Ángel, Bernardo; Richards, Cristi L.; Vroom, Peter S.; Price, Nichole N.; Schils, Tom; Young, Charles W.; Smith, Jennifer; Johnson, Maggie D.; Brainard, Russell E.

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  14. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    PubMed

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  15. The Influence of Accretion Rate and Metallicity on Thermonuclear Bursts: Predictions from KEPLER Models

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Heger, Alexander; Galloway, Duncan K.

    2016-03-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated light curve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from η =1.1 to 1.24. We identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  16. X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE

    SciTech Connect

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Guenther, H. M.; Wolk, S. J.; Luna, G. J. M.

    2012-12-01

    Diagnostics of electron temperature (T{sub e} ), electron density (n{sub e} ), and hydrogen column density (N{sub H}) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 Multiplication-Sign 10{sup -9} M{sub Sun} yr{sup -1}, for a stellar magnetic field strength of 600 G and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N{sub H}, T{sub e} , and n{sub e} by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.

  17. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    USGS Publications Warehouse

    Krauss, K.W.; Allen, J.A.; Cahoon, D.R.

    2003-01-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types - prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba - on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year-1) more than pneumatophores or bare soil controls (mean, 8.3 mm year-1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year-1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year-1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests. ?? 2003 Elsevier Science B.V. All rights reserved.

  18. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    NASA Astrophysics Data System (ADS)

    Krauss, K. W.; Allen, J. A.; Cahoon, D. R.

    2003-02-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types—prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba—on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year -1) more than pneumatophores or bare soil controls (mean, 8.3 mm year -1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year 1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year -1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests.

  19. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Technical Reports Server (NTRS)

    Seifana, Elena; Titarchuk, Lev

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram, We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites, We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and Gaussian component We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keY to 4.5 keY, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by factor four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+ I was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries. This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at

  20. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    PubMed

    Abrams, Steven A

    2006-11-01

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailability of calcium between infant formulas are unlikely to have long-term consequences. Long-term studies of the effects of infant feeding type on ultimate bone mass are needed. For now, the vitamin-replete breast-fed infant's rate of calcium accretion during the first year of life should be the standard targeted for infant formulas.

  1. Perturbation of mass accretion rate, associated acoustic geometry and stability analysis

    NASA Astrophysics Data System (ADS)

    Bollimpalli, Deepika A.; Bhattacharya, Sourav; Das, Tapas K.

    2017-02-01

    We investigate the stability of stationary integral solutions of an ideal irrotational fluid in a general static and spherically symmetric background, by studying the profile of the perturbation of the mass accretion rate. We consider low angular momentum axisymmetric accretion flows for three different accretion disk models and consider time dependent and radial linear perturbation of the mass accretion rate. First we show that the propagation of such perturbation can be determined by an effective 2 × 2 matrix, which has qualitatively similar acoustic causal properties as one obtains via the perturbation of the velocity potential. Next, using this matrix we analytically address the stability issues, for both standing and travelling wave configurations generated by the perturbation. Finally, based on this general formalism we briefly discuss the explicit example of the Schwarzschild spacetime and compare our results of stability with the existing literature, which instead address this problem via the perturbation of the velocity potential.

  2. Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States

    USGS Publications Warehouse

    Preston, T.M.; Sojda, R.S.; Gleason, R.A.

    2013-01-01

    Increased sedimentation and nutrient cycle changes in Prairie Pothole Region wetlands associated with agriculture threaten the permanence and ecological functionality of these important resources. To determine the effects of land use on sedimentation and nutrient cycling, soil cores were analyzed for cesium-137 (137Cs), lead-210 (210Pb), and potassium-40 (40K) activities; textural composition; organic and inorganic carbon (C); and total nitrogen (N) from twelve wetlands surrounded by cropland, Conservation Reserve Program (CRP) lands, or native prairie uplands. Separate soil cores from nine of these wetlands were also analyzed for phosphorus (P), nitrate (NO3), and ammonium (NH4) concentrations. Wetlands surrounded by cropland had significantly greater linear sediment accretion rates than wetlands surrounded by CRP or native prairie. Linear sediment accretion rates from wetlands surrounded by cropland were 2.7 and 6 times greater than wetlands surrounded by native prairie when calculated from the initial and peak occurrence of 137Cs, respectively, and 0.15 cm y−1 (0.06 in yr−1) greater when calculated from 210Pb. Relative to wetlands surrounded by CRP, linear sediment accretion rates for wetlands surrounded by cropland were 4.4 times greater when calculated from the peak occurrence of 137Cs. No significant differences existed between the linear sediment accretion rates between wetlands surrounded by native prairie or CRP uplands. Wetlands surrounded by cropland had increased clay, P, NO3, and NH4, and decreased total C and N concentrations compared to wetlands surrounded by native prairie. Wetlands surrounded by CRP had the lowest P and NO3 concentrations and had clay, NH4, C, and N concentrations between those of cropland and native prairie wetlands. We documented increased linear sediment accretion rates and changes in the textural and chemical properties of sediments in wetlands with cultivated uplands relative to wetlands with native prairie uplands. These

  3. Accretion rate of cosmic spherules measured at the South Pole

    NASA Astrophysics Data System (ADS)

    Taylor, Susan; Lever, James H.; Harvey, Ralph P.

    1998-04-01

    Micrometeorites are terrestrially collected, extraterrestrial particles smaller than about 1mm, which account for most of the mass being accreted to the Earth,. Compared with meteorites, micrometeorites more completely represent the Earth-crossing meteoroid complex, and should include fragments of asteroids, comets, Mars and our Moon, as well as pre-solar and interstellar grains,. Previous measurements of the flux of micrometeoroids that survive to the Earth's surface have large uncertainties owing to the destruction of particles by weathering, inefficiencies in magnetic collection or separation techniques, low particle counts,, poor age constraint,, or highly variable concentrating processes,. Here we describe an attempt to circumvent these problems through the collection of thousands of well preserved and dated micrometeorites from the bottom of the South Pole water well, which supplies drinking water for the Scott-Amundsen station. Using this collection, we have determined precise estimates of the flux and mass distribution for 50-700-µm cosmic spherules (melted micrometeorites). Allowing for the expected abundance of unmelted micrometeorites in the samples, our results indicate that about 90% of the incoming mass of submillimetre particles evaporates during atmospheric entry. Our data indicate the loss of glass-rich and small stony spherules from deep-sea deposits,, and they provide constraints for models describing the survival probability of micrometeoroids,.

  4. Chernobyl {sup 137}Cs used to determine sediment accretion rates at selected northern European coastal wetlands

    SciTech Connect

    Callaway, J.C.; DeLaune, R.D.; Patrick, W.H. Jr.

    1996-05-01

    Sediment cores were collected form five coastal wetlands along the North Sea (England and Netherlands) and Baltic Sea (Poland). {sup 137}Cs dating was used to assess sediment accretion rates, including rates based on the {sup 137}Cs peak from the 1986 accident at Chernobyl. Peaks form the Chernobyl fallout were found in cores from the Oder and Vistula Rivers in Poland, from the Eastern Scheldt in the Netherlands, and in one of the two cores from Stiffkey Marsh, UK. No evidence of Chernobyl fallout was found in cores from Dengie Marsh, UK. The Chernobyl {sup 137}Cs peak serves as an excellent marker for short-term accretion rates because of its high activity. Vertical accretion rates (cm yr{sup {minus}1}) based on 1963 and 1986 peaks were similar at most sites; differences may be due to large inputs of sediment from storms or recent accumulation of organic matter. Large differences in sediment characteristics and accretion rates were found between samples from Poland and western Europe. Vertical accretion rates over the period 1963-1986 ranged from 0.26 to 0.85 cm{sup {minus}1} and from 0.30 to 1.90 cm yr{sup {minus}1} over the 1986-1991 period. Vertical accretion rates for the period these sites are in imminent danger of excessive flooding. The Chernobyl {sup 137}Cs peak will be especially useful for studies of short-term (i.e. very recent) sedimentation in the near future and for comparisons of sediment processes over different time scales. 33 refs., 4 figs., 4 tabs.

  5. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish

    NASA Astrophysics Data System (ADS)

    Cramer, Katie L.; O'Dea, Aaron; Clark, Tara R.; Zhao, Jian-Xin; Norris, Richard D.

    2017-01-01

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence.

  6. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish

    PubMed Central

    Cramer, Katie L.; O'Dea, Aaron; Clark, Tara R.; Zhao, Jian-xin; Norris, Richard D.

    2017-01-01

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence. PMID:28112169

  7. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish.

    PubMed

    Cramer, Katie L; O'Dea, Aaron; Clark, Tara R; Zhao, Jian-Xin; Norris, Richard D

    2017-01-23

    Caribbean coral reefs have transformed into algal-dominated habitats over recent decades, but the mechanisms of change are unresolved due to a lack of quantitative ecological data before large-scale human impacts. To understand the role of reduced herbivory in recent coral declines, we produce a high-resolution 3,000 year record of reef accretion rate and herbivore (parrotfish and urchin) abundance from the analysis of sediments and fish, coral and urchin subfossils within cores from Caribbean Panama. At each site, declines in accretion rates and parrotfish abundance were initiated in the prehistorical or historical period. Statistical tests of direct cause and effect relationships using convergent cross mapping reveal that accretion rates are driven by parrotfish abundance (but not vice versa) but are not affected by total urchin abundance. These results confirm the critical role of parrotfish in maintaining coral-dominated reef habitat and the urgent need for restoration of parrotfish populations to enable reef persistence.

  8. THE LINK BETWEEN THE HIDDEN BROAD LINE REGION AND THE ACCRETION RATE IN SEYFERT 2 GALAXIES

    SciTech Connect

    Marinucci, Andrea; Bianchi, Stefano; Matt, Giorgio; Nicastro, Fabrizio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M{sub BH}-{sigma}{sub *} relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L{sub bol}/L{sub Edd} = -1.9) and in luminosity (log L{sub bol} = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  9. The Link between the Hidden Broad Line Region and the Accretion Rate in Seyfert 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea; Bianchi, Stefano; Nicastro, Fabrizio; Matt, Giorgio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M BH-σsstarf relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L bol/L Edd = -1.9) and in luminosity (log L bol = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  10. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  11. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  12. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  13. Heterozygosity increases microsatellite mutation rate

    PubMed Central

    Amos, William

    2016-01-01

    Whole genome sequencing of families of Arabidopsis has recently lent strong support to the heterozygote instability (HI) hypothesis that heterozygosity locally increases mutation rate. However, there is an important theoretical difference between the impact on base substitutions, where mutation rate increases in regions surrounding a heterozygous site, and the impact of HI on sequences such as microsatellites, where mutations are likely to occur at the heterozygous site itself. At microsatellite loci, HI should create a positive feedback loop, with heterozygosity and mutation rate mutually increasing each other. Direct support for HI acting on microsatellites is limited and contradictory. I therefore analysed AC microsatellites in 1163 genome sequences from the 1000 genomes project. I used the presence of rare alleles, which are likely to be very recent in origin, as a surrogate measure of mutation rate. I show that rare alleles are more likely to occur at locus-population combinations with higher heterozygosity even when all populations carry exactly the same number of alleles. PMID:26740567

  14. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  15. Formation of a proto-Jovian envelope for various planetary accretion rates

    NASA Astrophysics Data System (ADS)

    Ikoma, M.; Emori, H.; Nakazawa, K.

    1998-12-01

    The formation of a proto-Jovian envelope has been simulated on the basis of a core accretion model and the maximum mass that a proto-Jovian planet can have while keeping its envelope gravitationally stable, called the critical core mass, has also been investigated extensively over a wide range of the core accretion rate. The value of the critical core mass has been found to depend strongly on the core accretion rate; for example, it is less than or equal to 0953-8984/10/49/040/img1 for the typical accretion rates for Uranus and Neptune. Furthermore, through simulations of the quasi-static evolution of the envelope beyond the critical core mass, we have found that the characteristic times of envelope contraction are 0953-8984/10/49/040/img2 and 0953-8984/10/49/040/img3 for the cases where the core accretion rates are 0953-8984/10/49/040/img4 per year, 0953-8984/10/49/040/img5 per year and 0953-8984/10/49/040/img6 per year, respectively. Also, in the last case, the core mass of the Jovian planet can be estimated to be about 0953-8984/10/49/040/img7. We conclude that if a given one of the Jovian planets of our solar system has a core smaller than about 0953-8984/10/49/040/img8, it is very hard to see how the core could have attracted a gaseous envelope from our solar nebula and formed the Jovian envelope. Determination of the sizes of the cores in our Jovian planets should give fruitful information for the theory of the formation of our solar system.

  16. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  17. Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Machetel, P.; Garrido, C. J.

    2013-10-01

    We designed a thermo-mechanical numerical model for fast-spreading mid-ocean ridge with variable viscosity, hydrothermal cooling, latent heat release, sheeted dyke layer, and variable melt intrusion possibilities. The model allows for modulating several accretion possibilities such as the "gabbro glacier" (G), the "sheeted sills" (S) or the "mixed shallow and MTZ lenses" (M). These three crustal accretion modes have been explored assuming viscosity contrasts of 2 to 3 orders of magnitude between strong and weak phases and various hydrothermal cooling conditions depending on the cracking temperatures value. Mass conservation (stream-function), momentum (vorticity) and temperature equations are solved in 2-D cartesian geometry using 2-D, alternate direction, implicit and semi-implicit finite-difference scheme. In a first step, an Eulerian approach is used solving iteratively the motion and temperature equations until reaching steady states. With this procedure, the temperature patterns and motions that are obtained for the various crustal intrusion modes and hydrothermal cooling hypotheses display significant differences near the mid-ocean ridge axis. In a second step, a Lagrangian approach is used, recording the thermal histories and cooling rates of tracers travelling from the ridge axis to their final emplacements in the crust far from the mid-ocean ridge axis. The results show that the tracer's thermal histories are depending on the temperature patterns and the crustal accretion modes near the mid-ocean ridge axis. The instantaneous cooling rates obtained from these thermal histories betray these discrepancies and might therefore be used to characterize the crustal accretion mode at the ridge axis. These deciphering effects are even more pronounced if we consider the average cooling rates occurring over a prescribed temperature range. Two situations were tested at 1275-1125 °C and 1050-850 °C. The first temperature range covers mainly the crystallization range

  18. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  19. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  20. Helium Ignition on Accreting Neutron Stars with a New Triple-α Reaction Rate

    NASA Astrophysics Data System (ADS)

    Peng, Fang; Ott, Christian D.

    2010-12-01

    We investigate the effect of a new triple-α reaction rate from Ogata et al. on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultracompact X-ray binaries (UCXBs), which are believed to have nearly pure helium donors. For \\dot{m}> 0.001 \\dot{m}_{{Edd}}, the new triple-α reaction rate from Ogata et al. predicts a maximum helium ignition column of ~3 × 109 g cm-2, corresponding to a burst energy of ~4 × 1040 erg. For \\dot{m}˜ 0.01 \\dot{m}_{{Edd}} at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-α reaction rate of Ogata et al. by the low-mass stellar evolution results of Dotter & Paxton.

  1. The role of angular momentum transport in establishing the accretion rate-protostellar mass correlation

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2017-02-01

    We model the mass accretion rate M˙ to stellar mass M* correlation that has been inferred from observations of intermediate to upper mass T Tauri stars-that is M˙ ∝ M*1.3±0.3. We explain this correlation within the framework of quiescent disk evolution, in which accretion is driven largely by gravitational torques acting in the bulk of the mass and volume of the disk. Stresses within the disk arise from the action of gravitationally driven torques parameterized in our 1D model in terms of Toomre's Q criterion. We do not model the hot inner sub-AU scale region of the disk that is likely stable according to this criterion, and appeal to other mechanisms to remove or redistribute angular momentum and allow accretion onto the star. Our model has the advantage of agreeing with large-scale angle-averaged values from more complex nonaxisymmetric calculations. The model disk transitions from an early phase (dominated by initial conditions inherited from the burst mode of accretion) into a later self-similar mode characterized by a steeper temporal decline in M˙. The models effectively reproduce the spread in mass accretion rates that have been observed for protostellar objects of 0.2 M⊙ ≤ M* ≤ 3.0 M⊙, such as those found in the ρ Ophiuchus and Taurus star forming regions. We then compare realistically sampled populations of young stellar objects produced by our model to their observational counterparts. We find these populations to be statistically coincident, which we argue is evidence for the role of gravitational torques in the late time evolution of quiescent protostellar disks.

  2. Mass accretion rates from multiband photometry in the Carina Nebula: the case of Trumpler 14

    NASA Astrophysics Data System (ADS)

    Beccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, G.; Romaniello, M.; Zoccali, M.; Weidner, C.

    2015-01-01

    Context. We present a study of the mass accretion rates of pre-main sequence (PMS) stars in the cluster Trumpler 14 (Tr 14) in the Carina Nebula. Using optical multiband photometry we were able to identify 356 PMS stars showing Hα excess emission with equivalent width EW(Hα) > 20 Å. We interpret this observational feature as an indication that these objects are still actively accreting gas from their circumstellar medium. From a comparison of the HR diagram with PMS evolutionary models we derive ages and masses of the PMS stars. We find that most of the PMS objects are younger than 10 Myr with a median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we determine the mass accretion rate (Ṁacc) and discuss its dependence on mass and age. We finally combine the optical photometry with near-IR observations to build the spectral energy distribution (SED) for each PMS star in Tr 14. The analysis of the SEDs suggests the presence of transitional discs in which a large amount of gas is still present and sustains accretion onto the PMS object at ages older than 10 Myr. Our results, discussed in light of recent recent discoveries with Herschel of transitional discs containing a massive gas component around the relatively old PMS stars TW Hydrae, 49 Ceti, and HD 95086, support a new scenario n which old and evolved debris discs still host a significant amount of gas. Aims: Methods: Results:

  3. On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada

    2017-02-01

    We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}ȯ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}ȯ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (∼85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ∼ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (i.e., z≳ 10).

  4. Variations in the accretion rate and luminosity in gravitationally unstable protostellar disks

    NASA Astrophysics Data System (ADS)

    Elbakyan, V. G.; Vorobyov, E. I.; Glebova, G. M.

    2016-10-01

    Self-consistent modeling of a protostar and protostellar disk is carried out for early stages of their evolution. The accretion rate at distances of sevral astronomical units from the protostar is appreciably variable, which is reflected in the protostar's luminosity. The amplitude of the variations in the accretion rate and luminosity grows together with the sampling period, as a consequence of the nature of gravitationally unstable protostellar disks. A comparison of model luminosity variations with those derived from observations of nearby sites of star formation shows that the model variations are appreciably lower than the observed values for sampling periods of less than 10 years, indicating the presence of additional sources of variability on small dynamical distances from the protostar.

  5. NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

    SciTech Connect

    Schaefer, Bradley E.; Collazzi, Andrew C.

    2010-05-15

    We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500 Cyg, V1974 Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500 Cyg. V1500 Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500 Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

  6. Critical temperature and accretion rate of outbursts in long-period dwarf novae

    NASA Astrophysics Data System (ADS)

    Kim, Soon-Wook

    2015-11-01

    Dwarf nova outbursts are nonlinear phenomena, and a time-dependent disk model is necessary to account for observations in detail. However, it is also necessary to elaborate a simpler steady-state fit to interpret observations. To know in what condition the outburst is initiated, understanding of the dwarf nova outburst is important. The parameterized, steady-state fitting formulae are suggested by Smak (Acta Astron. 52, 429 (2002); ibid 60, 83 (2010)) for the critical disk temperature and mass accretion rate above which the disk becomes thermally unstable. The fits give a single-valued temperature and accretion rate and are radius-independent whereas the observations show that the outbursts are radius-dependent phenomena of the ionizaton propagating in the disk. The fits have been tested to account for the observed outbursts only for systems with orbital periods shorter than a half day. Therefore, we examine the fits for orbital period as long as 2 days and compare the fits to the time-dependent model of a long-period dwarf nova GK Per. The fits are not much different from the time-dependent result for the critical temperature. However, the fits for the critical mass accretion rate above which the disk enters the hot state overestimate the time-dependent model for a long-period system like GK Per. The critical mass accretion rate in the intermediate state is consistent with that from the time-dependent disk model. However, the fit value should be treated as a maximum possible value below which the disk maintains the intermediate state, which is consistent with an interpretation for the observations of the Z Cam stars.

  7. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  8. The radial dependence of pebble accretion rates: A source of diversity in planetary systems. I. Analytical formulation

    NASA Astrophysics Data System (ADS)

    Ida, S.; Guillot, T.; Morbidelli, A.

    2016-06-01

    Context. The classical planetesimal accretion scenario for the formation of planets has recently evolved with the idea that pebbles, centimeter- to meter-sized icy grains migrating in protoplanetary disks, can control planetesimal and/or planetary growth. Aims: We investigate how pebble accretion depends on disk properties and affects the formation of planetary systems. Methods: We construct analytical models of pebble accretion onto planetary embryos that consistently account for the mass and orbital evolution of the pebble flow and reflect disk structure. Results: We derive simple formulas for pebble accretion rates in the so-called settling regime for planetary embryos that are more than 100 km in size. For relatively smaller embryos or in outer disk regions, the accretion mode is three-dimensional (3D), meaning that the thickness of the pebble flow must be taken into account, and resulting in an accretion rate that is independent of the embryo mass. For larger embryos or in inner regions, the accretion is in a two-dimensional (2D) mode, i.e., the pebble disk may be considered infinitely thin. We show that the radial dependence of the pebble accretion rate is different (even the sign of the power-law exponent changes) for different disk conditions such as the disk heating source (viscous heating or stellar irradiation), drag law (Stokes or Epstein, and weak or strong coupling), and in the 2D or 3D accretion modes. We also discuss the effect of the sublimation and destruction of icy pebbles inside the snow line. Conclusions: Pebble accretion easily produces a large diversity of planetary systems. In other words, to infer the results of planet formation through pebble accretion correctly, detailed prescriptions of disk evolution and pebble growth, sublimation, destruction and migration are required.

  9. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  10. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    PubMed

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  11. Mapping the average AGN accretion rate in the SFR-M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5

    NASA Astrophysics Data System (ADS)

    Delvecchio, I.; Lutz, D.; Berta, S.; Rosario, D. J.; Zamorani, G.; Pozzi, F.; Gruppioni, C.; Vignali, C.; Brusa, M.; Cimatti, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Lanzuisi, G.; Oliver, S.; Rodighiero, G.; Santini, P.; Symeonidis, M.

    2015-05-01

    We study the relation of AGN accretion, star formation rate (SFR) and stellar mass (M*) using a sample of ≈8600 star-forming galaxies up to z = 2.5 selected with Herschel imaging in the GOODS and COSMOS fields. For each of them we derive SFR and M*, both corrected, when necessary, for emission from an active galactic nucleus (AGN), through the decomposition of their spectral energy distributions (SEDs). About 10 per cent of the sample are detected individually in Chandra observations of the fields. For the rest of the sample, we stack the X-ray maps to get average X-ray properties. After subtracting the X-ray luminosity expected from star formation and correcting for nuclear obscuration, we derive the average AGN accretion rate for both detected sources and stacks, as a function of M*, SFR and redshift. The average accretion rate correlates with SFR and with M*. The dependence on SFR becomes progressively more significant at z > 0.8. This may suggest that SFR is the original driver of these correlations. We find that average AGN accretion and star formation increase in a similar fashion with offset from the star-forming `main-sequence'. Our interpretation is that accretion on to the central black hole and star formation broadly trace each other, irrespective of whether the galaxy is evolving steadily on the main-sequence or bursting.

  12. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  13. POISSON project. III. Investigating the evolution of the mass accretion rate

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  14. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  15. 2500 years of changing shoreline accretion rates at the mouths of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Tamura, Toru; Anthony, Edward; Brunier, Guillaume; Saito, Yoshiki; Dussouillez, Philippe; Lap Nguyen, Van; Ta, Oahn

    2016-04-01

    The Mekong River delta prograded rapidly in a relatively sheltered bight in the South China Sea under the influence of high fluvial sediment supply 5300 to 3500 years ago, developing from an estuary into a delta. This >200 km seaward growth resulted in increasing exposure of the delta to ocean waves that led to a more wave-influenced mode of progradation characterized by the construction of numerous sets of beach ridges in the eastern sector of the delta, which shows a system of multiple distributary mouths. The growth pattern of this river-mouth sector over the last 2500 years has been determined from OSL dating of these beach-ridge deposits, while the most up-to-date trends (1950-2014) have been highlighted from the analysis of maps and satellite images. The OSL ages show that the area of the delta in the mouths sector remained nearly constant till about 500 yr BP, following which significant accretion occurred, possibly in response to changes in catchment land-use and monsoon rainfall and attendant river water and sediment discharge. A fine-tuned analysis of changes since 1950 shows dominant but fluctuating accretion, with two periods of erosion. The first (1965-1973) occurred in the course of the second Indochina war, and the second more recently from 2003 to 2011, followed by mild recovery between 2011 and 2014. These fluctuations most likely reflect changes in sediment supply caused by the vicissitudes of war and its effect on vegetation cover, as well as variations in monsoon rainfall and discharge, and, for the most recent period, massive sand mining in the river and deltaic channels. Accretion of the mouths sector has gone apace, over the same recent multi-decadal period, with large-scale erosion of the muddy shores of the delta in the western South China Sea and the Gulf of Thailand, thus suggesting that the mouths sector may be increasingly sequestering sediment to the detriment of the rest of the delta shoreline. The accretion in the mouths sector is

  16. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  17. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  18. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  19. Estimation of calcium and phosphorus content in growing and finishing pigs: whole empty body components and relative accretion rates.

    PubMed

    Pettey, L A; Cromwell, G L; Jang, Y D; Lindemann, M D

    2015-01-01

    Two comparative serial-slaughter experiments were conducted to determine whole empty body (WEB) composition and accretion rates of Ca and P in 18 to 109 kg BW pigs to provide information for modeling of these nutrients for growth. Both studies were conducted with 5 sets of 5 littermate barrows which were allotted to 5 slaughter groups in each study (Exp. 1: 18, 27, 36, 45, and 54 kg BW; Exp. 2: 36, 54, 73, 91, and 109 kg BW). Pigs were fed corn-soybean meal-based diets fortified with minerals and vitamins in 2 dietary phases in Exp. 1 (Phase 1: 18 to 36 kg BW; Phase 2: 36 to 54 kg BW) and 3 dietary phases in Exp. 2 (Phase 2: 36 to 54 kg BW; Phase 3: 54 to 78 kg BW; and Phase 4: 78 to 109 kg BW). At the predetermined BW, pigs were slaughtered and separated into body components of hair, hooves, blood, head, viscera, and carcass. The carcass was split along the dorsal midline and the left carcass side was ground for chemical analysis. Whole empty body weight averaged 93.6% and 94.0% of live BW in Exp. 1 and Exp. 2, respectively. As WEB weight increased in both experiments, the percentage carcass of the WEB linearly (P < 0.05) increased, the percentage viscera linearly (P < 0.05) decreased, and the mass (g) of N, ash, Ca, and P in the WEB increased linearly (R(2) = 0.98). The concentration (g/kg) of P in the WEB of 18 to 54 kg pigs increased from 4.30 to 4.57 (linear; P < 0.05) and for Ca increased from 5.13 to 5.66 (linear; P < 0.05). In Exp. 2, P concentration was not related to WEB weight and Ca concentration increased quadratically (P < 0.05). The relative accretion rate of N to P was 1.00 (R(2) = 0.99) in the pigs from 18 to 54 kg. In conclusion, these results indicate that compositional changes as BW increases are strongly related to P retention and that the quantification of WEB P and relationships of WEB P to other chemical components in the body may be useful for modeling purposes in growing and finishing pigs.

  20. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  1. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  2. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  3. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  4. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailab...

  5. Moxifloxacin Increases Heart Rate in Humans

    PubMed Central

    Mason, Jay W.; Moon, Thomas E.

    2017-01-01

    (1) Background: We assessed the effect of moxifloxacin on heart rate, and reviewed the heart rate effects of other antibiotics; (2) Methods: A total of 335 normal volunteers had 12-lead electrocardiograms recorded at multiple time points before and during treatment with moxifloxacin and with placebo in seven consecutive, thorough QT studies of crossover design; (3) Results: The average baseline heart rate across the seven studies was 61.5 bpm. The heart rate after moxifloxacin dosing was analyzed at five time points shared by all seven studies (hours 1, 2, 3, 12 and 24). The maximum mean heart rate (HR) increase for the seven studies combined was 2.4 bpm (95% CI 1.6, 3.3) at hour 2. The range of mean maximum increases among the seven studies was 2.1 to 4.3 bpm. For the seven studies combined, the increase was statistically significant at all but the 24 h time point. The maximum observed individual increase in HR was 36 bpm and the mean maximum increase was 30 ± 4.1 bpm by time point and 8 ± 6.9 bpm by subject. Many antibiotics increase HR, some several-fold more than moxifloxacin. However, clinicians and clinical investigators give little attention to this potential adverse effect in the medical literature; (4) Conclusions: The observed moxifloxacin-induced increase in HR is large enough to be clinically relevant, and it is a potentially important confounder in thorough QT studies using moxifloxacin as an active control. More attention to heart rate effects of antibiotics is warranted. PMID:28165431

  6. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  7. Macro- and micromineral composition of fetal pigs and their accretion rates during fetal development.

    PubMed

    Mahan, D C; Watts, M R; St-Pierre, N

    2009-09-01

    be an increasing sow mineral requirement particularly with high-producing sows having larger litter sizes. Regression equations developed on an individual fetus basis for each macro- and micromineral from 45 d postcoitum to parturition could be used to model mineral accretions.

  8. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Wang, Fang; Qiu, Jie; Li, Yan-Rong; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2014-02-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6^{+1.7}_{-2.9}, 6.4^{+0.8}_{-2.2} and 11.4^{+2.9}_{-1.9} days, respectively. The corresponding BH masses are (8.3_{-3.2}^{+2.6})\\times 10^6\\,M_{\\odot }, (3.4_{-1.2}^{+0.5})\\times 10^6\\,M_{\\odot }, and (7.5_{-4.1}^{+4.3})\\times 10^6\\,M_{\\odot }, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  9. Avoiding the money saving rate increase

    SciTech Connect

    Streiter, S.H.

    1982-06-24

    This is the last in a series of three articles discussing problems for utilities that arise in connection with inflation-swollen capital-investment costs. The first dealt with the problem of front-end loading of charges on capital projects and proposed a way of appreciating new plant at the rate of inflation and earning on the appreciated rate base in later years. The second examined methods of arranging the financing of new plant projects to avoid the incurrence of losses in their early years if the rate base is trended as recommended. This article addresses the question of how to avoid the necessity of a rate increase when placing into service new capital equipment whose purpose was to save ratepayers money. The outcome should be a new regulation on accounting. 2 tables.

  10. Crossing the Eddington Limit: Examining Disk Spectra at High Accretion Rates

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Swartz, Douglas A.; Roberts, Timothy P.; Middleton, Matthew J.; Soria, Roberto; Done, Chris

    2017-02-01

    The faintest ultraluminous X-ray sources (ULXs), those with 0.3–10 keV luminosities 1< {L}{{X}}/{10}39< 3 {erg} {{{s}}}-1, tend to have X-ray spectra that are disk-like but broader than expected for thin accretion disks. These “broadened disk (BD)” spectra are thought to indicate near- or mildly super-Eddington accretion onto stellar remnant black holes. Here we report that a sample of bright thermal-dominant black hole binaries, which have Eddington ratios constrained to moderate values, also show BD spectra in the 0.3–10 keV band at an order of magnitude lower luminosities. This broadening would be missed in studies that only look above ∼ 2 {keV}. While this may suggest that BD ULXs could be powered by accretion onto massive stellar remnant black holes with close to maximal spin, we argue in favor of a scenario where they are at close to the Eddington luminosity, such that radiation pressure would be expected to result in geometrically slim, advective accretion disks. However, this implies that an additional physical mechanism is required to produce the observed broad spectra at low Eddington ratios.

  11. Ocean Zircon - constraints on cooling histories, spreading rate, and modes of crustal accretion

    NASA Astrophysics Data System (ADS)

    John, B. E.; Cheadle, M. J.; Baines, G.; Grimes, C. B.; Wooden, J.

    2009-12-01

    Atlantis Bank (SWIR), Atlantis Massif and the Kane Megamullion (MAR) suggest that oceanic detachment faults form during periods of asymmetric spreading and consequent ridge migration (Atlantis Bank detachment fault accommodated roughly 80% of plate spreading). The average 206Pb/238U age is ~0.2 my older than the estimated magnetic age of ODP Hole 735B at Atlantis Bank, implying acquisition of magnetic remanence ~3 km off-axis, and crustal cooling rates of >1000°C/myr from 850-550°C. Dating of zircon from deep ODP/IODP vertical boreholes reveals the detailed chronology of emplacement of up to 1500 meters of gabbroic crust, illuminating not only crustal architecture, but a timescale of vertical crustal accretion of 100-200kyr for these holes. These data are consistent with the many sill model for the growth of slow spread ocean crust.

  12. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  13. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  14. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  15. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  16. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  17. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    SciTech Connect

    De Marchi, Guido; Beccari, Giacomo; Panagia, Nino E-mail: gbeccari@eso.org

    2013-09-20

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dot{sub acc}, as a function of the stellar parameters finding that log M-dot{sub acc}≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

  18. Global Change and Response of Coastal Dune Plants to the Combined Effects of Increased Sand Accretion (Burial) and Nutrient Availability

    PubMed Central

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  19. Global change and response of coastal dune plants to the combined effects of increased sand accretion (burial) and nutrient availability.

    PubMed

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  20. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    SciTech Connect

    Starrfield, Sumner

    2014-04-15

    Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10{sup 12} cm and the evolution is ended. In all cases where mass ejection occurs, the

  1. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von, Huene R.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  2. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  3. Using Multiwavelength Observations to Determine the Black Hole Mass and Accretion Rate in the Type 1 Seyfert Galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Chiang, James; Blaes, Omer

    2002-01-01

    We model the spectral energy distribution of the type 1 Seyfert galaxy NGC 5548, fitting data from simultaneous optical, UV, and X-ray monitoring observations. We assume a geometry consisting of a hot central Comptonizing region surrounded by a thin accretion disk. The properties of the disk and the hot central region are determined by the feedback occurring between the hot Comptonizing region and thermal reprocessing in the disk that, along with viscous dissipation, provides the seed photons for the Comptonization process. The constraints imposed upon this model by the multiwavelength data allow us to derive limits on the central black hole mass, Mu is approximately or less than 2x10(exp 7) solar mass, the accretion rate, Mu is approximately or less than 2.5x10(exp 5) sq solar mass per year/Mu, and the radius of the transition region between the thin outer disk and the geometrically thick, hot inner region, is approximately 2-5x10(exp 14) cm.

  4. Crop Yield Response to Increasing Biochar Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  5. Pulsed accretion in a variable protostar

    NASA Astrophysics Data System (ADS)

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-01

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 105 years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

  6. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

  7. Worldwide trends show oropharyngeal cancer rates increasing

    Cancer.gov

    NCI scientists report that the incidence of oropharyngeal cancer significantly increased during the period 1983-2002 among people in countries that are economically developed. Oropharyngeal cancer occurs primarily in the middle part of the throat behind t

  8. The Long-term Centimeter Variability of Active Galactic Nuclei: A New Relation between Variability Timescale and Accretion Rate

    NASA Astrophysics Data System (ADS)

    Park, Jongho; Trippe, Sascha

    2017-01-01

    We study the long-term (≈ 30 years) radio variability of 43 radio-bright active galactic nuclei (AGNs) by exploiting the database of the University of Michigan Radio Astronomy Observatory monitoring program. We model the periodograms (temporal power spectra) of the observed light curves as simple power-law noise (red noise, spectral power P(f)\\propto {f}-β ) using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index (β) from ≈1 to ≈3. We fit a Gaussian function to each flare in a given light curve to obtain the flare duration. We discover a correlation between β and the median duration of the flares. We use the derivative of a light curve to obtain a characteristic variability timescale, which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativistic Doppler boosting are corrected for, the variability timescales of our sources are proportional to the accretion rate to the power of 0.25 ± 0.03 over five orders of magnitude in accretion rate, regardless of source type. We further find that modeling the periodograms of four of our sources requires the assumption of broken power-law spectra. From simulating light curves as superpositions of exponential flares, we conclude that strong overlap of flares leads to featureless simple power-law periodograms of AGNs at radio wavelengths in most cases. Based on observations obtained by the University of Michigan Radio Astronomy Observatory (UMRAO).

  9. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  10. Increasing the Deposition Rate of Silicon

    NASA Technical Reports Server (NTRS)

    Lutwack, R.; Yamakawa, K. A.

    1986-01-01

    Modified Siemens reactor enables chemical vapor deposition (CVD) of silicon to occur simultaneously on inner and outer surfaces of hollow cylinder, resulting in increase in mass of silicon deposited per unit time. Outer reactor for silicon deposition made from quartz or stainless steel. Hollow cylinder either single resistance-heated hollow cylinder about 5 to 10 cm or greater in diameter or 1-cm-diameter rods aligned in circular channels at top and bottom, initial circles being 5 to 10 cm in diameter or greater.

  11. Increasing pandemic vaccination rates with effective communication.

    PubMed

    Henrich, Natalie J

    2011-06-01

    Communicating effectively with the public about the importance of vaccination during a pandemic poses a challenge to health communicators. The public's concerns about the safety, effectiveness and necessity of vaccines lead many people to refuse vaccination and the current communication strategies are often unsuccessful at overcoming the public's resistance to vaccinate. Convincing the public to receive a vaccination, especially during a pandemic when there can be so much uncertainty about the vaccine and the disease, requires a revised communication approach. This revised approach should integrate into messages information that the public identifies as important, as well as presenting messages in a way that is consistent with our evolved social learning biases. These biases will impact both the content of the message and who delivers the message to different target populations. Additionally, an improved understanding between media and health communicators about the role each plays during a crisis may increase the effectiveness of messages disseminated to the public. Lastly, given that the public is increasingly seeking health information from on-line and other electronic sources, health communication needs to continue to find ways to integrate new technologies into communication strategies.

  12. 39 CFR 3010.30 - De minimis rate increases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false De minimis rate increases. 3010.30 Section 3010.30... Rules for Determining the Maximum Rate Adjustment § 3010.30 De minimis rate increases. (a) The Postal Service may elect to file a Type 1-A notice of rate adjustment as a de minimis rate increase if: (1)...

  13. Relationships between Watershed Alterations and Sediment Accretion Rates in Willapa Bay Washington and Yaquina Bay, Oregon

    EPA Science Inventory

    The Pacific Northwest (PNW) is one of the leading regions of timber production in the United States. It also undergoes aperiodic episodes of catastrophic forest fires, and systematic slash burns following logging activities. Such conditions raise concerns regarding increased re...

  14. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. I. METHOD AND APPLICATION TO THE SN 1987A FIELD

    SciTech Connect

    De Marchi, Guido; Panagia, Nino; Romaniello, Martino E-mail: panagia@stsci.ed

    2010-05-20

    We have developed and successfully tested a new self-consistent method to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion in a resolved stellar population, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to (1) identify all stars with excess H{alpha} emission, (2) convert the excess H{alpha} magnitude into H{alpha} luminosity L(H{alpha}), (3) estimate the H{alpha} emission equivalent width, (4) derive the accretion luminosity L{sub acc} from L(H{alpha}), and finally (5) obtain the mass accretion rate M-dot{sub acc} from L{sub acc} and the stellar parameters (mass and radius). By selecting stars with an accuracy of 15% or better in the H{alpha} photometry, the statistical uncertainty on the derived M-dot{sub acc} is typically {approx_lt}17% and is dictated by the precision of the H{alpha} photometry. Systematic uncertainties, of up to a factor of 3 on the value of M-dot{sub acc}, are caused by our incomplete understanding of the physics of the accretion process and affect all determinations of the mass accretion rate, including those based on a spectroscopic H{alpha} line analysis. As an application of our method, we study the accretion process in a field of 9.16 arcmin{sup 2} around SN 1987A, using existing Hubble Space Telescope photometry. We identify as bona fide PMS stars a total of 133 objects with a H{alpha} excess above the 4{sigma} level and a median age of 13.5 Myr. Their median mass accretion rate of 2.6 x 10{sup -8} M{sub sun} yr{sup -1} is in excellent agreement with previous determinations based on the U-band excess of the stars in the same field, as well as with the value measured for G-type PMS stars in the Milky Way. The accretion luminosity of these PMS objects shows a strong dependence on their distance from a group of hot massive stars in the field and suggests that the ultraviolet radiation of the latter is rapidly

  15. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  16. Combining Hf-W Ages, Cooling Rates, and Thermal Models to Estimate the Accretion Time of Iron Meteorite Parent Bodies

    NASA Astrophysics Data System (ADS)

    Qin, L.; Dauphas, N.; Wadhwa, M.; Masarik, J.; Janney, P. E.

    2007-12-01

    The 182Hf-182W short-lived chronometer has been widely used to date metal-silicate differentiation processes in the early Solar System. However the presence of cosmogenic effects from exposure to GCR can potentially hamper the use of this system for chronology purposes (e.g. [1,2]). These effects must be corrected for in order to calculate metal-silicate differentiation ages. In this study, high-precision W isotope measurements are presented for 32 iron meteorites from 8 magmatic and 2 non-magmatic groups. Exposure ages and pre- atmospheric size estimates are available for most of these samples [3]. Our precision is better than or comparable to the currently most precise literature data and our results agree with previous work [4]. All magmatic irons have ɛ182W equal within error to or more negative than the Solar System initial derived from a CAI isochron [5]. Iron meteorites from the same magmatic groups show variations in ɛ182W. These are most easily explained by exposure to cosmic rays in space. A correction method was developed to estimate pre-exposure ɛ182W for individual iron meteorite groups. Metal-silicate differentiation in most iron meteorite parent bodies must have occurred within 2 Myr of formation of refractory inclusions. For the first time, we combine 182Hf-182W ages with parent body sizes inferred from metallographic cooling rates in a thermal model to constrain the accretion time of iron meteorite parent bodies. The estimated accretion ages are within 1.5 Myr for most magmatic groups, and could be as early as 0.2 Myr after CAI formation. This is consistent with the study of Bottke et al. [6] who argued that iron meteorite parent bodies could represent an early generation of planetesimals formed in the inner region of the Solar System. [1] Masarik J. (1997) EPSL 152, 181-185. [2] Markowski A. et al. (2006) EPSL 250,104-115. [3] Voshage H. (1984) EPSL 71, 181-194. [4] Markowski A. et al. (2006) EPSL 242, 1-15. [5] Kleine T. et al. (2005) GCA 69

  17. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  18. An in-depth study of a neutron star accreting at low Eddington rate: on the possibility of a truncated disc and an outflow

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Pinto, C.; Miller, J. M.; Wijnands, R.; Altamirano, D.; Paerels, F.; Fabian, A. C.; Chakrabarty, D.

    2017-01-01

    Due to observational challenges, our knowledge of low-level accretion flows around neutron stars is limited. We present NuSTAR, Swift and Chandra observations of the low-mass X-ray binary IGR J17062-6143, which has been persistently accreting at ≃0.1 per cent of the Eddington limit since 2006. Our simultaneous NuSTAR/Swift observations show that the 0.5-79 keV spectrum can be described by a combination of a power law with a photon index of Γ ≃ 2, a blackbody with a temperature of kTbb ≃ 0.5 keV (presumably arising from the neutron star surface) and disc reflection. Modelling the reflection spectrum suggests that the inner accretion disc was located at Rin ≳ 100 GM/c2 (≳225 km) from the neutron star. The apparent truncation may be due to evaporation of the inner disc into a radiatively-inefficient accretion flow, or due to the pressure of the neutron star magnetic field. Our Chandra gratings data reveal possible narrow emission lines near 1 keV that can be modelled as reflection or collisionally ionized gas, and possible low-energy absorption features that could point to the presence of an outflow. We consider a scenario in which this neutron star has been able to sustain its low accretion rate through magnetic inhibition of the accretion flow, which gives some constraints on its magnetic field strength and spin period. In this configuration, IGR J17062-6143 could exhibit a strong radio jet as well as a (propeller-driven) wind-like outflow.

  19. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. II. NGC 346 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    De Marchi, Guido; Sirianni, Marco; Panagia, Nino; Sabbi, Elena; Romaniello, Martino; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla E-mail: panagia@stsci.edu

    2011-10-10

    We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the Small Magellanic Cloud, using a novel self-consistent method that allows us to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to identify all stars with excess H{alpha} emission and derive the accretion luminosity L{sub acc} and mass accretion rate M-dot{sub acc} for all of them. The application of this method to existing Hubble Space Telescope (HST)/Advanced Camera for Surveys photometry of the NGC 346 field has allowed us to identify and study 680 bona fide PMS stars with masses from {approx}0.4 M{sub sun} to {approx}4 M{sub sun} and ages in the range from {approx}1 Myr to {approx}30 Myr. Previous investigations of this region, based on the same data, had identified young ({approx}3 Myr old) candidate PMS stars on the basis of their broadband colors. In this study, we show that there are at least two, almost equally numerous, young populations with distinct ages of, respectively, {approx}1 and {approx}20 Myr. We provide accurate physical parameters for all of them. We take advantage of the unprecedented size of our PMS sample and of its spread in mass and age to study the evolution of the mass accretion rate as a function of stellar parameters. We find that, regardless of stellar mass, the mass accretion rate decreases with roughly the square root of the age, or about three times slower than predicted by current models of viscous disk evolution, and that more massive stars systematically have a higher mass accretion rate in proportion to their mass. A multivariate linear regression fit reveals that log M-dot{sub acc}{approx_equal}-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a quantity that is higher at lower metallicity. This result is consistent with

  20. Magnetized accretion

    NASA Astrophysics Data System (ADS)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  1. Apparent rates of increase for two feral horse herds

    SciTech Connect

    Eberhardt, L.L.; Majorowicz, A.K.; Wilcox, J.A.

    1982-01-01

    Rates of increase for 2 Oregon feral horse (Equus caballus) herds were estimated from direct aerial counts to be about 20% per year. These rates can be achieved only if survival rates are high, and reproduction exceeds that normally expected from horses. A population dynamics model suggests adult survival to be the key parameter in determining rates of increase, and there is some direct evidence of high adult survival rates. Management implications are discussed.

  2. Magnetospheric accretion in EX Lupi

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  3. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  4. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  5. Giant planet formation via pebble accretion

    NASA Astrophysics Data System (ADS)

    Guilera, O. M.

    2016-08-01

    In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than ) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in the giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.

  6. The mitochondrial uniporter controls fight or flight heart rate increases.

    PubMed

    Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E

    2015-01-20

    Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.

  7. A mid-Holocene record of sediment dynamics and high resolution accretion rates in a coastal salt marsh from Northern California

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; Holmquist, J. R.; MacDonald, G. M.

    2013-12-01

    Sediment accretion rates in coastal salt marshes are the critical determining factor in terms of ecosystem stability in the face of accelerated sea level rise (SLR), projected to rise by up to 1.4 m by 2100 in Southern California (National Research Council, 2012). However, high resolution studies of accretion rates in coastal salt marshes over the past several millennia have not yet been conducted for most of the US west coast. We collected multiple sediment records from small salt marshes surrounding Humboldt Bay, California. Due to this unique tectonic setting, many suspect cores from these marshes have evidence of coastal subsidence due to earthquake activity or large tsunami deposits (Jacoby et al., 1995). These records therefore are one of the best proxy measures for how salt marshes in California may respond to accelerated SLR. We analyzed all cores for magnetic susceptibility, % organic matter, and select cores for particle size. High resolution, millennial and centennial scale, radiocarbon dating for these sediment records reveals a detailed history of marsh accretion rates.

  8. Tactics and Factors That Increase Response Rates to Mailed Questionnaires.

    ERIC Educational Resources Information Center

    Dillihunt, Vivian C.

    Research findings on identification of factors associated with increasing response rates to mailed questionnaires are presented. Several tactics which have been used to effect a greater response rate are presented and explained. Physical factors, such as typed correspondence, have been shown to yield higher response rates than duplicated…

  9. Plastic Deformation of Accreted Planetesimals

    NASA Astrophysics Data System (ADS)

    Kadish, J.

    2005-08-01

    The early stages of planetesimal growth follow an accretion model (Weidenschilling, Icarus 2000), which influences the intrinsic strength of a body and may control how its shape evolves after growth. In previous work we have determined the stress field of an accreted planetesimal accounting for possible variation in the object's spin as it accretes (Kadish et al., IJSS In Press) At the end of growth, these objects are subject to transport mechanisms that can distribute them throughout the solar system. As they are transported these objects can be spun-up by tidal forces (Scheeres et al, Icarus 2000), YORP (Bottke et al., Asteroids III 2002), and collisions (Binzel et al., Asteroids II 1989). Such an increase of spin will cause perturbations to the initial stress field and may lead to failure. We are able to show analytically that failure is initiated on the object's surface and a plastic zone propagates inward as the object's spin is increased. If we model an accreted body as a conglomeration of rocks similar to a gravel or sand, the deformation in the region of failure is characterized using a Mohr-Coulomb failure criterion with negligible cohesion and zero hardening(e.g. Holsapple, Icarus 2001). Such a response is highly non-linear and must be solved using finite elements and iterative methods (Simo and Hughes, Computational Inelasticity 1998). Using the commercial finite element code ABAQUS, we present the shape deformation resulting from an elasto-plastic analysis of a spinning, self-gravitating accreted sphere that is spun-up after growth is complete. The methodology can be extended to model plastic deformation due to local failure for more complex planetesimal shapes, such as for the asteroid Kleopatra. This work has implications for the evolution of planetesimal shapes, the creation of binary and contact binary asteroids, and for the maximum spin rate of small planetary bodies.

  10. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings....

  11. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings....

  12. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings....

  13. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings....

  14. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings....

  15. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Reevaluation of rate increases. 226.59 Section 226.59 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... Open-End Credit Offered to College Students § 226.59 Reevaluation of rate increases. (a) General...

  16. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Reevaluation of rate increases. 226.59 Section 226.59 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... Credit Offered to College Students § 226.59 Reevaluation of rate increases. (a) General...

  17. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Reevaluation of rate increases. 226.59 Section 226.59 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... Open-End Credit Offered to College Students § 226.59 Reevaluation of rate increases. (a) General...

  18. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Reevaluation of rate increases. 226.59 Section 226.59 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... Credit Offered to College Students § 226.59 Reevaluation of rate increases. (a) General...

  19. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    SciTech Connect

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Jian-Min; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C. E-mail: wangjm@ihep.ac.cn; Collaboration: SEAMBH Collaboration

    2016-03-20

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  20. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  1. Accretion rate of extraterrestrial particles determined from osmium isotope systematics of pacific pelagic clay and manganese nodules

    SciTech Connect

    Esser, B.K.; Turekian, K.K. )

    1988-06-01

    Pelagic clay and Mn nodules from DOMES sites in the North Pacific and a varved glacial lake deposit from Connecticut were analyzed for Os concentration and isotopic composition by isotope-dilution secondary ion mass spectrometry after treatment by NiS fusion of oxalic acid leaching. Bulk pelagic clay from DOMES site C has {sup 187}Os/{sup 186}Os = 6.5 and Os = 0.14 ng/g. Oxalic acid leaches of this same sediment and of Mn nodules for DOMES sites A and C have more radiogenic {sup 187}Os/{sup 186}Os ratios which average 8.3. Bulk glacial Lake Hitchcock sediment has {sup 187}Os/{sup 186}Os = 12.5 and Os = 0.06 ng/g. The total Os flux to North Pacific pelagic clay is 7 to 10 ng Os/cm{sup 2}/10{sup 6} y. Lake Hitchcock sediment provides an integrated value for the local crustal {sup 187}Os/{sup 186}Os ratio. The oxalic acid leaches are assumed to attack hydrogenous phases selectively. A simple model in which the only sources of Os to the ocean are continental crust with the isotopic composition of Lake Hitchcock and extraterrestrial particles with {sup 187}Os/{sup 186}Os = 1.1 results in a cosmic flux of osmium to the sediment of 4.9 ng Os/cm{sup 2}/10{sub 6} y of which 20% is hydrogenous. A model in which the sources of Os to the ocean are continental crust with an {sup 187}Os/{sup 186}Os ratio of 30, oceanic mantle or crust with {sup 187}Os/{sup 186}Os = 1.04 and extraterrestrial particles with {sup 187}Os/{sup 186}Os = 1.1 results in a cosmic flux of Os to the sediment of 5.7 ng Os/cm{sup 2}/10{sup 6} y of which none is hydrogenous. These extraterrestrial Os fluxes correspond to maximum C-1 chondrite accretion rates of between 4.9 {times} 10{sub 4} and 5.6 {times}10{sub 4} tonnes/y.

  2. The Burst Mode of Protostellar Accretion

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.; Basu, Shantanu

    2006-10-01

    We present new numerical simulations in the thin disk approximation that characterize the burst mode of protostellar accretion. The burst mode begins upon the formation of a centrifugally balanced disk around a newly formed protostar. It comprises prolonged quiescent periods of low accretion rate (typically <~10-7 Msolar yr-1) that are punctuated by intense bursts of accretion (typically >~10-4 Msolar yr-1, with duration <~100 yr) during which most of the protostellar mass is accumulated. The accretion bursts are associated with the formation of dense protostellar/protoplanetary embryos, which are later driven onto the protostar by the gravitational torques that develop in the disk. Gravitational instability in the disk, driven by continuing infall from the envelope, is shown to be an effective means of transporting angular momentum outward and mass inward to the protostar. We show that the disk mass always remains significantly less than the central protostar's mass throughout this process. The burst phenomenon is robust enough to occur for a variety of initial values of rotation rate and frozen-in (supercritical) magnetic field and a variety of density-temperature relations. Even in cases where the bursts are nearly entirely suppressed, a moderate increase in cloud size or rotation rate can lead to vigorous burst activity. We conclude that most (if not all) protostars undergo a burst mode of evolution during their early accretion history, as inferred empirically from observations of FU Orionis variables.

  3. Temporal and Spatial Variations in Volcanic Accretion Over the Past Few 100 Years on the EPR Axis at Superfast Spreading rates at 17 to 18 deg S

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Sinton, J. M.; Bergmanis, E. C.

    2008-12-01

    Ridges at fast to superfast spreading rates are excellent locations to study temporal and spatial variations in volcanic construction because magma supply and eruption rates are high, and because much of the volcanic accretion occurs within a narrow (≤1-2 km) zone at the rise axis. This presentation will summarize temporal and spatial variations in volcanic accretion over the past few hundred years at 17.5° to 18.5°S on the East Pacific Rise using geological observations made by submersible and other methods, as well shore-based petrological, geochemical and radiometric analyses of samples recovered from mapped lava flow fields along the ridge axis. Collectively they demonstrate that the styles and rates of volcanic accretion can vary substantially both within and between volcanic segments over relatively short timescales. Mapped lavas indicate that single eruptions can span small structural discontinuities (ridge axis offsets). Compositional shifts accompany these offsets, indicating segmentation or zonation of the magma chamber that fed them. Similar observations have been made in analogous eruption sequences at subaerial rift zone volcanoes. U-series disequilibria, radiogenic isotopes and major and trace element compositions within and between single mapped lava flows indicate that magma chambers are open and poorly mixed over the timescale of volcanic repose (decades to ~1 century). Within flow compositional variations along axis can be used to test for magma emplacement by lateral injection from a central reservoir near inflated segment centers versus near vertical emplacement from magma bodies distributed along the axis. The latter best describes observations of lava flows at both 17.5°S and 18.5°S. Volcanic accretion occurs along a volcanically robust, inflated ridge segment at 17.5°S, whereas at 18.5°S the most recent eruptions have formed small, discontinuous lava shields and pillow mounds on the floor of a deep, few hundred year old graben that

  4. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  5. Bondi-Hoyle Accretion in an Isothermal Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Lee, Aaron T.; Cunningham, Andrew J.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β <~ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to {\\cal M}\\approx 45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and {\\cal M} for the parallel and perpendicular orientations. Using typical molecular cloud values of {\\cal M}\\sim 5 and β ~ 0.04 from the literature, our fits suggest that a 0.4 M ⊙ star accretes ~4 × 10-9 M ⊙ yr-1, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  6. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  7. 45 CFR 154.200 - Rate increases subject to review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information provided by other interested parties. A State-specific threshold shall be based on factors impacting rate increases in a State to the extent that data relating to such State-specific factors...

  8. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  9. Rowing Crew Coordination Dynamics at Increasing Stroke Rates

    PubMed Central

    2015-01-01

    In rowing, perfect synchronisation is important for optimal performance of a crew. Remarkably, a recent study on ergometers demonstrated that antiphase crew coordination might be mechanically more efficient by reducing the power lost to within-cycle velocity fluctuations of the boat. However, coupled oscillator dynamics predict the stability of the coordination to decrease with increasing stroke rate, which in case of antiphase may eventually yield breakdowns to in-phase. Therefore, this study examined the effects of increasing stroke rate on in- and antiphase crew coordination in rowing dyads. Eleven experienced dyads rowed on two mechanically coupled ergometers on slides, which allowed the ergometer system to move back and forth as one ‘boat’. The dyads performed a ramp trial in both in- and antiphase pattern, in which stroke rates gradually increased from 30 strokes per minute (spm) to as fast as possible in steps of 2 spm. Kinematics of rowers, handles and ergometers were captured. Two dyads showed a breakdown of antiphase into in-phase coordination at the first stroke rate of the ramp trial. The other nine dyads reached between 34–42 spm in antiphase but achieved higher rates in in-phase. As expected, the coordinative accuracy in antiphase was worse than in in-phase crew coordination, while, somewhat surprisingly, the coordinative variability did not differ between the patterns. Whereas crew coordination did not substantially deteriorate with increasing stroke rate, stroke rate did affect the velocity fluctuations of the ergometers: fluctuations were clearly larger in the in-phase pattern than in the antiphase pattern, and this difference significantly increased with stroke rate. Together, these results suggest that although antiphase rowing is less stable (i.e., less resistant to perturbation), potential on-water benefits of antiphase over in-phase rowing may actually increase with stroke rate. PMID:26185987

  10. Increasing Vaccination Rates in a Pediatric Chronic Hemodialysis Unit.

    PubMed

    Geer, Jessica J

    2016-01-01

    Children with chronic kidney disease (CKD) are at an increased risk for serious complications from vaccine-preventable childhood diseases. Despite this risk, vaccination rates remain low. The barriers to vaccination in the pediatric population on dialysis are multifactorial. The advanced practice registered nurse (APRN) is well poised to serve as a wellness champion for this chronic population. This article chronicles an APRN-led quality improvement project to increase vaccination rates to 100% in an outpatient pediatric population on hemodialysis. A quality improvement system was created to systematically review immunizations upon admission to the hemodialysis unit and annually thereafter. Over a two-year period, immunization rates improved significantly.

  11. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    SciTech Connect

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  12. Modifying two-body relaxation in N-body systems by gas accretion

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan; Sills, Alison; Böker, Torsten

    2013-08-01

    We consider the effects that accretion from the interstellar medium on to the particles of an N-body system has on the rate of two-body relaxation. To this end, we derive an accretion-modified relaxation time by adapting Spitzer's two-component model to include the damping effects of accretion. We consider several different mass- dependences and efficiency factors for the accretion rate, as well as different mass ratios for the two components of the model. The net effect of accretion is to accelerate mass segregation by increasing the average mass bar{m}, since the relaxation time is inversely proportional to bar{m}. Under the assumption that the accretion rate increases with the accretor mass, there are two additional effects that accelerate mass segregation. First, accretion acts to increase the range of any initial mass spectrum, quickly driving the heaviest members to even higher masses. Secondly, accretion acts to reduce the velocities of the accretors due to conservation of momentum, and it is the heaviest members that are affected the most. Using our two-component model, we quantify these effects as a function of the accretion rate, the total cluster mass and the component masses. We conclude by discussing the implications of our results for the dynamical evolution of primordial globular clusters, primarily in the context of black holes formed from the most massive stellar progenitors.

  13. 77 FR 51684 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  14. 75 FR 22211 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  15. 78 FR 77327 - Walnuts Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 984 Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  16. 77 FR 33104 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 Olives Grown in California; Increased... increase the assessment rate established for the California Olive Committee (Committee) for the 2012 and subsequent fiscal years from $16.61 to $31.32 per assessable ton of olives handled. The Committee...

  17. 75 FR 9536 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 Olives Grown in California; Increased... increase the assessment rate established for the California Olive Committee (Committee) for the 2010 and subsequent fiscal years from $28.63 to $44.72 per assessable ton of olives handled. The Committee...

  18. 77 FR 21492 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 966 Tomatoes Grown in Florida; Increased... increase the assessment rate established for the Florida Tomato Committee (Committee) for the 2011-12 and subsequent fiscal periods from $0.0275 to $0.037 per 25-pound carton of tomatoes handled. The...

  19. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    NASA Astrophysics Data System (ADS)

    Robinson, C. E.; Owen, J. E.; Espaillat, C. C.; Adams, F. C.

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  20. Future increases in extreme precipitation exceed observed scaling rates

    NASA Astrophysics Data System (ADS)

    Bao, Jiawei; Sherwood, Steven C.; Alexander, Lisa V.; Evans, Jason P.

    2017-01-01

    Models and physical reasoning predict that extreme precipitation will increase in a warmer climate due to increased atmospheric humidity. Observational tests using regression analysis have reported a puzzling variety of apparent scaling rates including strong rates in midlatitude locations but weak or negative rates in the tropics. Here we analyse daily extreme precipitation events in several Australian cities to show that temporary local cooling associated with extreme events and associated synoptic conditions reduces these apparent scaling rates, especially in warmer climatic conditions. A regional climate projection ensemble for Australia, which implicitly includes these effects, accurately and robustly reproduces the observed apparent scaling throughout the continent for daily precipitation extremes. Projections from the same model show future daily extremes increasing at rates faster than those inferred from observed scaling. The strongest extremes (99.9th percentile events) scale significantly faster than near-surface water vapour, between 5.7-15% °C-1 depending on model details. This scaling rate is highly correlated with the change in water vapour, implying a trade-off between a more arid future climate or one with strong increases in extreme precipitation. These conclusions are likely to generalize to other regions.

  1. The increasing predictive validity of self-rated health.

    PubMed

    Schnittker, Jason; Bacak, Valerio

    2014-01-01

    Using the 1980 to 2002 General Social Survey, a repeated cross-sectional study that has been linked to the National Death Index through 2008, this study examines the changing relationship between self-rated health and mortality. Research has established that self-rated health has exceptional predictive validity with respect to mortality, but this validity may be deteriorating in light of the rapid medicalization of seemingly superficial conditions and increasingly high expectations for good health. Yet the current study shows the validity of self-rated health is increasing over time. Individuals are apparently better at assessing their health in 2002 than they were in 1980 and, for this reason, the relationship between self-rated health and mortality is considerably stronger across all levels of self-rated health. Several potential mechanisms for this increase are explored. More schooling and more cognitive ability increase the predictive validity of self-rated health, but neither of these influences explains the growing association between self-rated health and mortality. The association is also invariant to changing causes of death, including a decline in accidental deaths, which are, by definition, unanticipated by the individual. Using data from the final two waves of data, we find suggestive evidence that exposure to more health information is the driving force, but we also show that the source of information is very important. For example, the relationship between self-rated health and mortality is smaller among those who use the internet to find health information than among those who do not.

  2. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  3. Is the rate of global tsunami occurrence increasing?

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2010-12-01

    Statistical analysis of the global tsunami catalog reveals several transient periods of rate increases in tsunami occurrence. The tsunami catalog appears to be complete for tsunamis detected by tide-gauge stations with maximum amplitudes > 0.1 m, starting soon after the April 1, 1946 Aleutian tsunami when tsunami-reporting procedures became more systematic. The long-term rate of global tsunami occurrence is approximately 7.4 events/year over this period of the catalog. This rate fluctuates, however, with a prominent rate increase in the mid-1990s for a period of about 3 years, when as many as 18 tsunamis occurred in a one-year period. Another rate increase began in 2005 and is continuing to the present day at approximately 11 events/year averaged over the 6-year time period. These rate changes persist with different minimum threshold amplitudes and are unlikely to be associated with statistical fluctuations from a stationary Poisson process. Similar apparent rate changes are evident in the global earthquake catalog (without declustering) for minimum magnitude thresholds of 6.5-8.0. Secondary sources such as landslides are noted in the tsunami catalog, though earthquakes most often trigger these sources. Evidence of temporal clustering of tsunami source inter-event times has been established in a previous study [Geist and Parsons, 2008]. However, it is unclear whether static and dynamic triggering among tsunamigenic earthquakes accounts for a large proportion of the temporally clustered events. Results from Parsons and Velasco [in press] indicate that static and dynamic triggering among earthquakes of tsunamigenic magnitude occurs within a radius of approximately 1,000 km. Based on this distance criterion for triggered events, the periods of increased rates can be explained by regional triggering, even though tsunamis from classically defined aftershock sequences are not that apparent in the tsunami catalog. Although the current rate of tsunami occurrence is higher

  4. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  5. 12 CFR 1026.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 9 2014-01-01 2014-01-01 false Reevaluation of rate increases. 1026.59 Section... required pursuant to § 1026.9(c)(2) or (g), the card issuer must: (i) Evaluate the factors described in.... (c) Timing. A card issuer that is subject to paragraph (a) of this section must conduct the...

  6. 78 FR 77604 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... From the Federal Register Online via the Government Publishing Office #0; #0;Proposed Rules #0...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 966 Tomatoes Grown in Florida; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This...

  7. 76 FR 50703 - Walnuts Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... From the Federal Register Online via the Government Publishing Office #0; #0;Proposed Rules #0...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 984 Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY:...

  8. 77 FR 43709 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Service 7 CFR Part 966 Tomatoes Grown in Florida; Increased Assessment Rate AGENCY: Agricultural Marketing... Florida Tomato Committee (Committee) for the 2011-12 and subsequent fiscal periods from $0.0275 to $0.037 per 25-pound carton of tomatoes handled. The Committee locally administers the marketing order...

  9. Does Sex Speed Up Evolutionary Rate and Increase Biodiversity?

    PubMed Central

    Melián, Carlos J.; Alonso, David; Allesina, Stefano; Condit, Richard S.; Etienne, Rampal S.

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity. PMID:22412362

  10. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  11. Increases in cognitive and linguistic processing primarily account for increases in speaking rate with age.

    PubMed

    Nip, Ignatius S B; Green, Jordan R

    2013-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 (N = 7), 7 (N = 10), 10 (N = 9), 13 (N = 7), 16 (N = 9) years, and young adults (N = 11) in speaking tasks varying in task demands. Speaking rate increased with age, with decreases in pauses and articulator displacements but not increases in articulator movement speed. Movement speed did not appear to constrain the speaking. Rather, age-related increases in speaking rate are due to gains in cognitive and linguistic processing and speech motor control.

  12. Increases in Cognitive and Linguistic Processing Primarily Account for Increases in Speaking Rate with Age

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Green, Jordan R.

    2013-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 ("N" = 7), 7 ("N" = 10), 10…

  13. Modelling the cross-spectral variability of the black hole binary MAXI J1659-152 with propagating accretion rate fluctuations

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; Kalamkar, M.; van der Klis, M.

    2016-11-01

    The power spectrum of the X-ray fluctuations of accreting black holes often consists of two broad humps. We quantitatively investigate the hypothesis that the lower frequency hump originates from variability in a truncated thin accretion disc, propagating into a large scaleheight inner hot flow which, in turn, itself is the origin of the higher frequency hump. We extend the propagating mass accretion rate fluctuations model PROPFLUC to accommodate double-hump power spectra in this way. Furthermore, we extend the model to predict the cross-spectrum between two energy bands in addition to their power spectra, allowing us to constrain the model using the observed time lags, which in the model result from both propagation of fluctuations from the disc to the hot flow, and inside the hot flow. We jointly fit soft and hard power spectrum, and the cross-spectrum between the two bands using this model for five Swift X-ray Telescope observations of MAXI J1659-152. The new double-hump model provides a better fit to the data than the old single-hump model for most of our observations. The data show only a small phase lag associated with the low-frequency hump. We demonstrate quantitatively that this is consistent with the model. We compare the truncation radius measured from our fits with that measured purely by spectral fitting and find agreement within a factor of two. This analysis encompasses the first joint fits of stellar-mass black hole cross-spectra and power spectra with a single self-consistent physical model.

  14. Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander.

    PubMed

    Wack, Corina L; DuRant, Sarah E; Hopkins, William A; Lovern, Matthew B; Feldhoff, Richard C; Woodley, Sarah K

    2012-02-01

    Plasma glucocorticoid hormones (GCs) increase intermediary metabolism, which may be reflected in whole-animal metabolic rate. Studies in fish, birds, and reptiles have shown that GCs may alter whole-animal energy expenditure, but results are conflicting and often involve GC levels that are not physiologically relevant. A previous study in red-legged salamanders found that male courtship pheromone increased plasma corticosterone (CORT; the primary GC in amphibians) concentrations in males, which could elevate metabolic processes to sustain courtship behaviors. To understand the possible metabolic effect of elevated plasma CORT, we measured the effects of male courtship pheromone and exogenous application of CORT on oxygen consumption in male red-legged salamanders (Plethodon shermani). Exogenous application of CORT elevated plasma CORT to physiologically relevant levels. Compared to treatment with male courtship pheromone and vehicle, treatment with CORT increased oxygen consumption rates for several hours after treatment, resulting in 12% more oxygen consumed (equivalent to 0.33 J) during our first 2h sampling period. Contrary to our previous work, treatment with pheromone did not increase plasma CORT, perhaps because subjects used in this study were not in breeding condition. Pheromone application did not affect respiration rates. Our study is one of the few to evaluate the influence of physiologically relevant elevations in CORT on whole-animal metabolism in vertebrates, and the first to show that elevated plasma CORT increases metabolism in an amphibian.

  15. Higher vitamin D intake in preterm infants fed an isocaloric, protein- and mineral-enriched postdischarge formula is associated with increased bone accretion.

    PubMed

    van de Lagemaat, Monique; Rotteveel, Joost; Schaafsma, Anne; van Weissenbruch, Mirjam M; Lafeber, Harrie N

    2013-09-01

    During the first half of infancy, bone accretion in preterm infants fed an isocaloric, protein- and mineral-enriched postdischarge formula (PDF) is higher compared with those fed term formula (TF) or human milk (HM). This may be related to higher protein, calcium, phosphorus, and vitamin D intakes. This study investigated serum calcium, phosphate, and 25-hydroxyvitamin D [25(OH)D] in relation to bone mineral content (BMC) in PDF-, TF-, and HM-fed preterm infants between term age (40 wk postmenstrual age) and 6 mo corrected age (CA). Between term age and 6 mo CA, 52 preterm infants were fed PDF (per 100 mL: 67 kcal, 1.7 g protein, 65 mg calcium, 38 mg phosphorus, 56 IU vitamin D), 41 were fed TF (per 100 mL: 67 kcal, 1.47 g protein, 50 mg calcium, 30 mg phosphorus, 48 IU vitamin D), and 46 were fed HM. Serum calcium, phosphorus, and 25(OH)D were measured at term age and at 3 and 6 mo CA. BMC (g) was measured by whole-body dual-energy X-ray absorptiometry at term age and at 6 mo CA. Between term age and 6 mo CA, intakes of calcium, phosphorus, and vitamin D were significantly higher in PDF- compared with TF-fed infants, and PDF-fed infants reached significantly higher serum 25(OH)D concentrations at 6 mo CA (103 ± 24.3 vs. 92.8 ± 15.5 nmol/L, P = 0.003). Between term age and 6 mo CA, increases in serum 25(OH)D were associated with an increase in BMC (β = 0.001; 95% CI: 0.00, 0.003; P = 0.046). In conclusion, during the first 6 mo postterm, higher vitamin D intake and greater increase in serum 25(OH)D concentration in PDF-fed preterm infants were associated with increased bone accretion.

  16. Reducing video frame rate increases remote optimal focus time

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1993-01-01

    Twelve observers made best optical focus adjustments to a microscope whose high-resolution pattern was video monitored and displayed first on a National Television System Committee (NTSC) analog color monitor and second on a digitally compressed computer monitor screen at frame rates ranging (in six steps) from 1.5 to 30 frames per second (fps). This was done to determine whether reducing the frame rate affects the image focus. Reducing frame rate has been shown to be an effective and acceptable means of reducing transmission bandwidth of dynamic video imagery sent from Space Station Freedom (SSF) to ground scientists. Three responses were recorded per trial: time to complete the focus adjustment, number of changes of focus direction, and subjective rating of final image quality. It was found that: the average time to complete the focus setting increases from 4.5 sec at 30 fps to 7.9 sec at 1.5 fps (statistical probability = 1.2 x 10(exp -7)); there is no significant difference in the number of changes in the direction of focus adjustment across these frame rates; and there is no significant change in subjectively determined final image quality across these frame rates. These data can be used to help pre-plan future remote optical-focus operations on SSF.

  17. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  18. Male mealworm beetles increase resting metabolic rate under terminal investment.

    PubMed

    Krams, I A; Krama, T; Moore, F R; Kivleniece, I; Kuusik, A; Freeberg, T M; Mänd, R; Rantala, M J; Daukšte, J; Mänd, M

    2014-03-01

    Harmful parasite infestation can cause energetically costly behavioural and immunological responses, with the potential to reduce host fitness and survival. It has been hypothesized that the energetic costs of infection cause resting metabolic rate (RMR) to increase. Furthermore, under terminal investment theory, individuals exposed to pathogens should allocate resources to current reproduction when life expectancy is reduced, instead of concentrating resources on an immune defence. In this study, we activated the immune system of Tenebrio molitor males via insertion of nylon monofilament, conducted female preference tests to estimate attractiveness of male odours and assessed RMR and mortality. We found that attractiveness of males coincided with significant down-regulation of their encapsulation response against a parasite-like intruder. Activation of the immune system increased RMR only in males with heightened odour attractiveness and that later suffered higher mortality rates. The results suggest a link between high RMR and mortality and support terminal investment theory in T. molitor.

  19. The Standing Accretion Shock Instability: Enhanced Growth in Rotating Progenitors

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Gipson, Emily; Harris, Sawyer; Mezzacappa, Anthony

    2017-02-01

    We investigate the effect of progenitor rotation on the standing accretion shock instability (SASI) using two- and three-dimensional hydrodynamic simulations. We find that the growth rate of the SASI is a near-linearly increasing function of the specific angular momentum in the accreting gas. Both the growth rate and the angular frequency in the two-dimensional model with cylindrical geometry agree well with previous linear stability analyses. When excited by very small random perturbations, a one-armed spiral mode dominates the small rotation rates predicted by current stellar evolution models, while progressively higher-order modes are seen as the specific angular momentum increases.

  20. Increasing nurse certification rates using a multimodal approach.

    PubMed

    Ciurzynski, Susan M; Serwetnyk, Tara M

    2015-04-01

    The attainment of specialty nursing certification can be beneficial for nurses, patients, and the healthcare organization alike. Barriers may prevent nurses from seeking specialty certification, which may impede healthcare organizations from increasing certification rates among nursing staff. The purpose of this article is to share the process and outcomes of 1 medical center's multimodal plan designed to prepare and support nurses seeking specialty certification in pediatric nursing practice.

  1. Applying lessons from behavioral economics to increase flu vaccination rates.

    PubMed

    Chen, Frederick; Stevens, Ryan

    2016-05-06

    Seasonal influenza imposes an enormous burden on society every year, yet many people refuse to obtain flu shots due to misconceptions of the flu vaccine. We argue that recent research in psychology and behavioral economics may provide the answers to why people hold mistaken beliefs about flu shots, how we can correct these misconceptions, and what policy-makers can do to increase flu vaccination rates.

  2. Hypercapnia increases core temperature cooling rate during snow burial.

    PubMed

    Grissom, Colin K; Radwin, Martin I; Scholand, Mary Beth; Harmston, Chris H; Muetterties, Mark C; Bywater, Tim J

    2004-04-01

    Previous retrospective studies report a core body temperature cooling rate of 3 degrees C/h during avalanche burial. Hypercapnia occurs during avalanche burial secondary to rebreathing expired air, and the effect of hypercapnia on hypothermia during avalanche burial is unknown. The objective of this study was to determine the core temperature cooling rate during snow burial under normocapnic and hypercapnic conditions. We measured rectal core body temperature (T(re)) in 12 subjects buried in compacted snow dressed in a lightweight clothing insulation system during two different study burials. In one burial, subjects breathed with a device (AvaLung 2, Black Diamond Equipment) that resulted in hypercapnia over 30-60 min. In a control burial, subjects were buried under identical conditions with a modified breathing device that maintained normocapnia. Mean snow temperature was -2.5 +/- 2.0 degrees C. Burial time was 49 +/- 14 min in the hypercapnic study and 60 min in the normocapnic study (P = 0.02). Rate of decrease in T(re) was greater with hypercapnia (1.2 degrees C/h by multiple regression analysis, 95% confidence limits of 1.1-1.3 degrees C/h) than with normocapnia (0.7 degrees C/h, 95% confidence limit of 0.6-0.8 degrees C/h). In the hypercapnic study, the fraction of inspired carbon dioxide increased from 1.4 +/- 1.0 to 7.0 +/- 1.4%, minute ventilation increased from 15 +/- 7 to 40 +/- 12 l/min, and oxygen saturation decreased from 97 +/- 1 to 90 +/- 6% (P < 0.01). During the normocapnic study, these parameters remained unchanged. In this study, T(re) cooling rate during snow burial was less than previously reported and was increased by hypercapnia. This may have important implications for prehospital treatment of avalanche burial victims.

  3. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  4. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  5. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  6. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-06

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  7. PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR

    SciTech Connect

    Gezari, S.; Chornock, R.; Lawrence, A.; Rest, A.; Jones, D. O.; Berger, E.; Challis, P. M.; Narayan, G.

    2015-12-10

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t{sup −5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  8. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  9. Chaotic cold accretion on to black holes in rotating atmospheres

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat< 1. Extended multiphase filaments condense out of the hot phase via thermal instability (TI) and rain toward the black hole, boosting the accretion rate up to 100 times the Bondi rate (Ṁ• ~ Ṁcool). Initially, turbulence broadens the angular momentum distribution of the hot gas, allowing the cold phase to condense with prograde or retrograde motion. Subsequent chaotic collisions between the cold filaments, clouds, and a clumpy variable torus promote the cancellation of angular momentum, leading to high accretion rates. As turbulence weakens (Tat > 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images

  10. Music increases alcohol consumption rate in young females.

    PubMed

    Stafford, Lorenzo D; Dodd, Hannah

    2013-10-01

    Previous field research has shown that individuals consumed more alcohol and at a faster rate in environments paired with loud music. Theoretically, this effect has been linked to approach/avoidance accounts of how music influences arousal and mood, but no work has tested this experimentally. In the present study, female participants (n = 45) consumed an alcoholic (4% alcohol-by-volume) beverage in one of three contexts: slow tempo music, fast tempo music, or a no-music control. Results revealed that, compared with the control, the beverage was consumed fastest in the two music conditions. Interestingly, whereas arousal and negative mood declined in the control condition, this was not the case for either of the music conditions, suggesting a downregulation of alcohol effects. We additionally found evidence for music to disrupt sensory systems in that, counterintuitively, faster consumption was driven by increases in perceived alcohol strength, which, in turn, predicted lower breath alcohol level (BrAL). These findings suggest a unique interaction of music environment and psychoactive effects of alcohol itself on consumption rate. Because alcohol consumed at a faster rate induces greater intoxication, these findings have implications for applied and theoretical work.

  11. Salamander growth rates increase along an experimental stream phosphorus gradient.

    PubMed

    Bumpers, Phillip M; Maerz, John C; Rosemond, Amy D; Benstead, Jonathan P

    2015-11-01

    Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs.

  12. Relationship among body mass, metabolic rate and the intrinsic rate of natural increase in mammals.

    PubMed

    Hennemann, Willard W

    1983-01-01

    The intrinsic rate of natural increase, rm, was calculated for 44 mammalian species using the Cole (1954) equation and life history data from the literature. Values of r m so calculated were plotted as log10 r m versus log10 body mass revealing a linear relationship with a slope of-0.2622. The equation of the regression line fitting these data was then used to correct r m for body mass so that interspecific comparisons with respect to r m and basal metabolic rate could be made to determine if a positive relationship exists between these two parameters. Basal metabolic rate correlates positively with r m, and apparently is one of many factors operating in the evolution of r m. Implications of these conclusions with respect to food habits, resource limitations, and the possible existence of a trade-off between maintenance and reproduction in certain environments is discussed.If one assumes that all mammals face environmental limits on the amount of energy available for maintenance, growth, and reproduction, it follows that any reduction in maintenance costs should provide more energy for growth and/or reproduction. The proposed existence of such a trade-off between maintenance and reproduction was a major premise upon which MacArthur and Wilson (1967) based their concept of "r- and K-selection". Recently, however, McNab (1980) has suggested that for mammals that reproduce when food is not limiting, an increase in one maintenace cost, i.e. basal metabolic rate, may not detract from but may actually increase the intrinsic rate of natural increase, r m. Although this idea may seem counterintuitive, if one assumes an unlimited amount of energy, the factor limiting growth and reproduction will be the rate at which the energy can be used; a higher metabolic rate will mean a higher rate of biosynthesis, a faster growth rate, s shorter generation time, and hence a higher r m. Since some animal species appear not to be food-limited during their reproductive seasons (Armitage

  13. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  14. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    SciTech Connect

    Yang, Shulong; Fu, Yingyuan Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  15. Increasing hybridization rate and sensitivity of DNA microarrays using isotachophoresis.

    PubMed

    Han, Crystal M; Katilius, Evaldas; Santiago, Juan G

    2014-08-21

    We present an on-chip electrokinetic method to increase the reaction kinetics and sensitivity of DNA microarray hybridization. We use isotachophoresis (ITP) to preconcentrate target molecules in solution and transport them over the immobilized probe sites of a microarray, greatly increasing the binding reaction rate. We show theoretically and experimentally that ITP-enhanced microarrays can be hybridized much faster and with higher sensitivity than conventional methods. We demonstrate our assay using a microfluidic system consisting of a PDMS microchannel superstructure bonded onto a glass slide on which 60 spots of 20-27 nt ssDNA oligonucleotide probes are immobilized. Our 30 min assay results in an 8.2 fold higher signal than the conventional overnight hybridization at 100 fM target concentration. We show rapid and quantitative detection over 4 orders of magnitude dynamic range of target concentration with no increase in the nonspecific signal. Our technique can be further multiplexed for higher density microarrays and extended for other reactions of target-surface immobilized ligands.

  16. LMXB X-ray Transients: Revealing Basic Accretion Parameters in Non-stationary Regimes

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Yan, Zhen; Zhang, Hui; Zhang, Wenda

    2014-08-01

    X-ray observations of low mass X-ray binaries(LMXBs), especially those black hole transient systems, have been very important in shaping up our understanding of black hole accretion and testing accretion theory in a broad range of accretion regimes. We show strong evidence for non-stationary accretion regimes in the X-ray observations of spectral states and multi-wavelength observations of disk-jet coupling in more than 100 outbursts of 36 black hole and neutron star transients in the past decade or so. The occurrence of spectral state transitions and the peak episodic jet power during the rising phase of transient outbursts are found correlated with rate-of-increase of the X-ray luminosity, indicating the rate-of-change of the mass accretion rate, in addition to the mass accretion rate, must be considered when interpreting observations of spectral state transitions and disk-jet coupling in these X-ray transients. This is supported by observations since the increase of the mass accretion rate due to its rate-of-change on the observational time scale of interest is significant during outbursts.

  17. Clearance rates of Cerastoderma edule under increasing current velocity

    NASA Astrophysics Data System (ADS)

    Fernandes, S.; Sobral, P.; van Duren, L.

    2007-05-01

    Estimates of clearance rates (CR) of Cerastoderma edule (300 ind. m -2) as a function of free-stream current velocity ( U) (from 5 to 40 cm s -1) were compared between a small annular (60 l) and a large racetrack (8850 l) flume with different hydrodynamic conditions. Results showed that the flumes differ considerably in their hydrodynamic characteristics. The relationship between CR and U is different in the two flume tanks, however there appears to be a straightforward unimodal trend between CR and shear velocity ( U*). It was found that the cockles themselves influence the benthic boundary layer (BBL) characteristics, by causing steeper velocity gradients and increasing the mixing over the cockle bed compared to bare sediment. This provides new evidence on how endobenthic organisms can affect the BBL. However, the influence of CR on U* could not be quantified because these parameters have interactive effects that cannot be dissociated.

  18. Lactation counseling increases exclusive breast-feeding rates in Ghana.

    PubMed

    Aidam, Bridget A; Pérez-Escamilla, Rafael; Lartey, Anna

    2005-07-01

    Exclusive breast-feeding (EBF) rates remain low despite numerous health benefits associated with this behavior. We conducted a randomized trial on the effect of lactation counseling on EBF, which controlled for the Hawthorne effect while also varying the timing of the intervention. Pregnant women attending prenatal clinics in Tema were randomly assigned to 1 of 2 intervention groups (IG) or to a control group (C), as follows: 1) EBF support given pre-, peri-, and postnatally (IG1; n = 43); 2) EBF support given only peri- and postnatally (IG2; n = 44); or 3) nonbreast-feeding health educational support (C; n = 49) that had an equal amount of contact with lactation counselors. Two educational sessions were provided prenatally, and 9 home follow-up visits were provided in the 6-mo postpartum period. Infant feeding data were collected monthly at the participant's home. The 3 groups did not differ in sociodemographic characteristics. At 6 mo postpartum, 90.0% in IG1 and 74.4% in IG2 had exclusively breast-fed during the previous month. By contrast, only 47.7% in C were doing so (P = 0.008). Similarly, the percentage of EBF during the 6 mo was significantly higher (P = 0.02) among IG1 and IG2 (39.5%) than among C (19.6%). The 100% increase in EBF rates can be attributed to the lactation counseling provided. Additional prenatal EBF support may not be needed within a context of strong routine prenatal EBF education.

  19. Endoscopic innovations to increase the adenoma detection rate during colonoscopy

    PubMed Central

    Dik, Vincent K; Moons, Leon MG; Siersema, Peter D

    2014-01-01

    Up to a quarter of polyps and adenomas are missed during colonoscopy due to poor visualization behind folds and the inner curves of flexures, and the presence of flat lesions that are difficult to detect. These numbers may however be conservative because they mainly come from back-to-back studies performed with standard colonoscopes, which are unable to visualize the entire mucosal surface. In the past several years, new endoscopic techniques have been introduced to improve the detection of polyps and adenomas. The introduction of high definition colonoscopes and visual image enhancement technologies have been suggested to lead to better recognition of flat and small lesions, but the absolute increase in diagnostic yield seems limited. Cap assisted colonoscopy and water-exchange colonoscopy are methods to facilitate cecal intubation and increase patients comfort, but show only a marginal or no benefit on polyp and adenoma detection. Retroflexion is routinely used in the rectum for the inspection of the dentate line, but withdrawal in retroflexion in the colon is in general not recommended due to the risk of perforation. In contrast, colonoscopy with the Third-Eye Retroscope® may result in considerable lower miss rates compared to standard colonoscopy, but this technique is not practical in case of polypectomy and is more time consuming. The recently introduced Full Spectrum Endoscopy™ colonoscopes maintains the technical capabilities of standard colonoscopes and provides a much wider view of 330 degrees compared to the 170 degrees with standard colonoscopes. Remarkable lower adenoma miss rates with this new technique were recently demonstrated in the first randomized study. Nonetheless, more studies are required to determine the exact additional diagnostic yield in clinical practice. Optimizing the efficacy of colorectal cancer screening and surveillance requires high definition colonoscopes with improved virtual chromoendoscopy technology that visualize the

  20. Increasing fMRI sampling rate improves Granger causality estimates.

    PubMed

    Lin, Fa-Hsuan; Ahveninen, Jyrki; Raij, Tommi; Witzel, Thomas; Chu, Ying-Hua; Jääskeläinen, Iiro P; Tsai, Kevin Wen-Kai; Kuo, Wen-Jui; Belliveau, John W

    2014-01-01

    Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI) is increased 20-fold. Specifically, healthy volunteers performed a simple visuomotor task during blood oxygenation level dependent (BOLD) contrast based whole-head inverse imaging (InI). Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of InI improves the Granger causality connectivity analysis of the human brain.

  1. Social marketing as a strategy to increase immunization rates.

    PubMed

    Opel, Douglas J; Diekema, Douglas S; Lee, Nancy R; Marcuse, Edgar K

    2009-05-01

    Today in the United States, outbreaks of vaccine-preventable disease are often traced to susceptible children whose parents have claimed an exemption from school or child care immunization regulations. The origins of this immunization hesitancy and resistance have roots in the decline of the threat of vaccine-preventable disease coupled with an increase in concerns about the adverse effects of vaccines, the emergence of mass media and the Internet, and the intrinsic limitations of modern medicine. Appeals to emotion have drowned out thoughtful discussion in public forums, and overall, public trust in immunizations has declined. We present an often overlooked behavior change strategy-social marketing-as a way to improve immunization rates by addressing the important roots of immunization hesitancy and effectively engaging emotions. As an example, we provide a synopsis of a social marketing campaign that is currently in development in Washington state and that is aimed at increasing timely immunizations in children from birth to age 24 months.

  2. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  3. Black hole growth and AGN feedback under clumpy accretion

    NASA Astrophysics Data System (ADS)

    DeGraf, C.; Dekel, A.; Gabor, J.; Bournaud, F.

    2017-04-01

    High-resolution simulations of supermassive black holes in isolated galaxies have suggested the importance of short (∼10 Myr) episodes of rapid accretion caused by interactions between the black hole and massive dense clouds within the host. Accretion of such clouds could potentially provide the dominant source for black hole growth in high-z galaxies, but it remains unresolved in cosmological simulations. Using a stochastic subgrid model calibrated by high-resolution isolated galaxy simulations, we investigate the impact that variability in black hole accretion rates has on black hole growth and the evolution of the host galaxy. We find this clumpy accretion to more efficiently fuel high-redshift black hole growth. This increased mass allows for more rapid accretion even in the absence of high-density clumps, compounding the effect and resulting in substantially faster overall black hole growth. This increased growth allows the black hole to efficiently evacuate gas from the central region of the galaxy, driving strong winds up to ∼2500 km s-1, producing outflows ∼10 × stronger than the smooth accretion case, suppressing the inflow of gas on to the host galaxy, and suppressing the star formation within the galaxy by as much as a factor of 2. This suggests that the proper incorporation of variability is a key factor in the co-evolution between black holes and their hosts.

  4. The Rate of Wound Healing is Increased in Psoriasis

    PubMed Central

    Morhenn, V.B.; Nelson, T.E.; Gruol, D.L.

    2013-01-01

    Background Psoriasis shares many features with wound healing, a process that involves switching keratinocytes from growth to differentiation. Ca2+ is known to regulate this process. The N-methyl-D-aspartate receptor (NMDAR), an ionotropic glutamate receptor found on keratinocytes, is expressed abnormally in psoriasis in vivo. Objectives The goals of this study are to determine whether the rate of healing in the skin of psoriatic individuals differs from that observed in normal skin and whether the keratinocyte hyperproliferation found in psoriasis correlates with expression of specific NMDAR subunits. Methods Three mm punch biopsies were performed on the skin of normal, as well as, involved and uninvolved skin of subjects with psoriasis. On day 0, as well as, on day 6 after the biopsy, photographs were taken and the size of the wounds determined using ImageJ. Using immunohistochemistry, the biopsy material was stained for NMDAR and its subunits. Results Involved and uninvolved skin of individuals with psoriasis shows significantly more rapid healing than normal. The NR2C subunit of NMDAR is down-regulated in the basal cell layer of involved and uninvolved epidermis of psoriatic subjects compared to controls. By contrast, cells in the basal cell layer of the uninvolved epidermis showed a significantly greater percent strong staining for NR2D compared to those cells in normal epidermis. Conclusions Wound healing is significantly accelerated in psoriasis compared to normal. Immunohistochemistry showed that the relative intensity of strong immunostaining for subunits of the NMDAR is altered in the basal cell layer in psoriatic skin compared to normal controls. We suggest that these alterations may contribute to the increased rate of wound healing in psoriasis. PMID:23819987

  5. What implementation interventions increase cancer screening rates? a systematic review

    PubMed Central

    2011-01-01

    Background Appropriate screening may reduce the mortality and morbidity of colorectal, breast, and cervical cancers. However, effective implementation strategies are warranted if the full benefits of screening are to be realized. As part of a larger agenda to create an implementation guideline, we conducted a systematic review to evaluate interventions designed to increase the rate of breast, cervical, and colorectal cancer (CRC) screening. The interventions considered were: client reminders, client incentives, mass media, small media, group education, one-on-one education, reduction in structural barriers, reduction in out-of-pocket costs, provider assessment and feedback interventions, and provider incentives. Our primary outcome, screening completion, was calculated as the overall median post-intervention absolute percentage point (PP) change in completed screening tests. Methods Our first step was to conduct an iterative scoping review in the research area. This yielded three relevant high-quality systematic reviews. Serving as our evidentiary foundation, we conducted a formal update. Randomized controlled trials and cluster randomized controlled trials, published between 2004 and 2010, were searched in MEDLINE, EMBASE and PSYCHinfo. Results The update yielded 66 studies new eligible studies with 74 comparisons. The new studies ranged considerably in quality. Client reminders, small media, and provider audit and feedback appear to be effective interventions to increase the uptake of screening for three cancers. One-on-one education and reduction of structural barriers also appears effective, but their roles with CRC and cervical screening, respectively, are less established. More study is required to assess client incentives, mass media, group education, reduction of out-of-pocket costs, and provider incentive interventions. Conclusion The new evidence generally aligns with the evidence and conclusions from the original systematic reviews. This review served as

  6. TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS

    SciTech Connect

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  7. Zymomonas mobilis mutants with an increased rate of alcohol production

    SciTech Connect

    Osman, Y.A.; Ingram, L.O.

    1987-07-01

    Two new derivatives of Zymomonas mobilis CP4 were isolated from enrichment cultures after 18 months of serial transfer. These new strains were selected for the ability to grow and produce ethanol rapidly on transfer into fresh broth containing ethanol and allyl alcohol. Ethanol production by these strains was examined in batch fermentations under three sets of conditions. Both new derivatives were found to be superior to the parent strain CP4 with respect to the speed and completeness of glucose conversion to ethanol. The best of these, strain YO2, produced 9.5% ethanol (by weight; 11.9% by volume) after 17.4 h compared with 31.8 h for the parent strain CP4. The addition of 1 mM magnesium sulfate improved ethanol production in all three strains. Two factors contributed to the decrease in fermentation time required by the mutants: more rapid growth with minimal lag on subculturing and the retention of higher rates of ethanol production as fermentation proceeded. Alcohol dehydrogenase isozymes were altered in both new strains and no longer catalyzed the oxidation of allyl alcohol into the toxic product acrolein. This loss of allyl alcohol-oxidizing capacity is proposed as a primary factor contributing to increased allyl alcohol resistance, although it is likely that other mutations affecting glycolysis also contribute to the improvement in ethanol production.

  8. Increased diversification rates follow shifts to bisexuality in liverworts.

    PubMed

    Laenen, Benjamin; Machac, Antonin; Gradstein, S Robbert; Shaw, Blanka; Patiño, Jairo; Désamoré, Aurélie; Goffinet, Bernard; Cox, Cymon J; Shaw, A Jonathan; Vanderpoorten, Alain

    2016-05-01

    Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism.

  9. Constrains on Crustal Accretion Obtained from Cooling Rate Calculations with a Thermo-Mechanical Model of Fast-Spreading Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2012-12-01

    We have used a thermo-mechanical model designed to find steady-state solutions of motion and temperature with variable viscosity, heat diffusion, heat advection, hydrothermal cooling and latent heat release. Cases analogous to the "gabbro glacier" (G accretion structure), "sheeted sills" (S structure) and "mixed shallow and MTZ lenses" (M structure) were computed with and without sheeted dyke level modeling. The results show that thermal patterns near the ridge mainly depend on hydrothermal cooling. Several hydrothermal cooling cracking temperature have been used in order to illustrate the present scientific debate on the penetration depth and efficiency of hydrothermal flows. Second, higher cooling rates are obtained for the G structures. Third, whereas the subsolidus cooling rates, SCR, decrease monotonically with depth, the igneous cooling rates, ICR, display local minima at the merging levels of the upper and lower lenses. It appears that ICR reveal the near-ridge thermal and mechanical structures, whereas the lower value of the initial-to-closure temperature ranges used for SCR cause shifts farther from the ridge that reduces the ability of SCR to discriminate the ridge thermo-mechanical configuration. It also indicates that the common assumption that ICR and SCR should be similar is probably over-simplified. Finally, the cooling rates obtained bears the clear signature of the three intrusion hypothesis. The results show that numerical modeling of the lower crust's thermo-mechanical properties may provide new insights to discriminate among hypotheses related to G, M and S structures for fast-spreading ridges.; Thermal history obtained for the Gabro Glacier (top panels), Mixed shallow and MTZ zone (middle panels) and Sheeted Sills hypothesis (bottom panels)for the magma intrusion at ridge. Columns corresponds to various hydrothermal cooling and viscosity hypothesis.

  10. Study: California Ethnic Groups Seeing Increased Cancer Rates

    ERIC Educational Resources Information Center

    Black Issues in Higher Education, 2005

    2005-01-01

    A statewide study on cancer and ethnicity hints that cancer rates among immigrant groups may be tied to their degree of assimilation into American culture. The study, released by the University of Southern California's Norris Comprehensive Cancer Center, marks the first statewide look at cancer rates among Vietnamese and South Asians and provides…

  11. Evolution of accretion disks in tidal disruption events

    SciTech Connect

    Shen, Rong-Feng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  12. Evolution of Accretion Disks in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  13. Short-term ingestion of a high protein diet increases liver and kidney mass and protein accretion but not cellularity in young pigs.

    PubMed

    Schoknecht, P A; Pond, W G

    1993-06-01

    Increased visceral organ mass raises the energy cost of maintenance in animals. To determine the nutritional factors that affect organ size during growth and development, we studied 12 genetically obese 4-week-old pigs for 14 days. The piglets had free access to either a control (17% protein) or a high protein (34%) diet. They were sacrificed after 14 days and their empty gastrointestinal tracts, livers, and kidneys were weighed and samples were analyzed for protein and DNA concentrations. The absolute and relative (percentage of body weight) weights of liver and kidneys were greater in high protein than control piglets: liver (313 vs 246 g, SD = 24, P < 0.09; 3.61% vs 3.18%, SD = 0.04, P < 0.01); kidneys (57 vs 41 g, SD = 4, P < 0.04; 0.66% vs 0.55%, SD = 0.02, P < 0.01). Protein content was greater in high protein than control pigs in both liver (48.2 vs 34.0 g, SD = 3.4, P < 0.03) and kidneys (6.0 vs 4.6 g, SD = 0.5, P < 0.06). Liver and kidney total DNA were unaffected by diet in both groups. The protein to DNA ratio was greater in high protein than control pigs in both liver (45.4 vs 39.0, SD = 0.6, P < 0.01) and kidneys (26.6 vs 24.9, SD = 0.4, P < 0.02). We conclude that when weaned pigs have free access to a high protein diet (2 x requirement) for 2 weeks, liver and kidney protein accretion increases, suggesting cell hypertrophy, with no clear evidence of cell hyperplasia.

  14. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  15. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10-20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  16. Increasing Response Rates to Web-Based Surveys

    ERIC Educational Resources Information Center

    Monroe, Martha C.; Adams, Damian C.

    2012-01-01

    We review a popular method for collecing data--Web-based surveys. Although Web surveys are popular, one major concern is their typically low response rates. Using the Dillman et al. (2009) approach, we designed, pre-tested, and implemented a survey on climate change with Extension professionals in the Southeast. The Dillman approach worked well,…

  17. 76 FR 29963 - Rate Increase Disclosure and Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... threshold be based on a broader range of factors including medical cost inflation, adverse selection... above medical trend would not pressure issuers into taking steps to moderate growth in medical costs. In... be subject to review based on the analysis of the trend in health care costs and rate...

  18. Synthetic aperture design for increased SAR image rate

    SciTech Connect

    Bielek, Timothy P.; Thompson, Douglas G.; Walker, Bruce C.

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  19. Drill-in fluid reduces formation damage, increases production rates

    SciTech Connect

    Hands, N.; Kowbel, K.; Nouris, R.

    1998-07-13

    A sodium formate drill-in fluid system reduced formation damage, resulting in better-than-expected production rates for an off-shore Dutch development well. Programmed to optimize production capacity and reservoir drainage from a Rotliegend sandstone gas discovery, the 5-7/8-in. subhorizontal production interval was drilled and completed barefoot with a unique, rheologically engineered sodium formate drill-in fluid system. The new system, consisting of a sodium formate (NaCOOH) brine as the base fluid and properly sized calcium carbonate as the formation-bridging agent, was selected on the basis of its well-documented record in reducing solids impairment and formation damage in similar sandstone structures in Germany. The system was engineered around the low-shear-rate viscosity (LSRV) concept, designed to provide exceptional rheological properties. After describing the drilling program, the paper gives results on the drilling and completion.

  20. Leftward lighting in advertisements increases advertisement ratings and purchase intention.

    PubMed

    Hutchison, Jennifer; Thomas, Nicole A; Elias, Lorin

    2011-07-01

    It has been reliably shown that light is assumed to come from above. There is also some suggestion that light from the left might be preferred. Leftward lighting biases have been observed across various mediums such as paintings, portraits, photographs, and advertisements. As advertisements are used to persuade the public to purchase products, it was of interest to better understand whether leftward lighting would influence future intention to purchase. Participants gave preference ratings for pairs of advertisements with opposing lighting directions. Attitude towards the advertisement and the brand as well as future purchase intention was then rated. Overall, participants indicated that they preferred advertisements with leftward lighting and were more likely to purchase these products in the future than when the same products were lit from the right. Findings are consistent with previously observed leftward lighting biases and suggest that advertisements with a leftward lighting bias might be more effective.

  1. Assessing Metabolic Syndrome Through Increased Heart Rate During Exercise.

    PubMed

    Sadeghi, Masoumeh; Gharipour, Mojgan; Nezafati, Pouya; Shafie, Davood; Aghababaei, Esmaeil; Sarrafzadegan, Nizal

    2016-11-01

    The present study aimed to assess changes in resting and maximum heart rates as primary indicators of cardiac autonomic function in metabolic syndrome (MetS) patients and to determine their value for discriminating MetS from non-MetS. 468 participants were enrolled in this cross-sectional study and assessed according to the updated adult treatment panel III (ATP-III) definition of MetS. Resting and maximum heart rates were recorded following the Bruce protocol during an exercise. A receiver operating characteristic (ROC) curve was used to identify the best cutoff point for discriminating MetS from the non-MetS state. 194 participants (41.5%) were diagnosed as MetS. The mean resting heart rate (RHR) was not statistically different between the two groups (P=0.078). However, the mean maximum heart (MHR) rate was considerably higher in participants with MetS (142.37±14.84 beats per min) compared to the non-MetS group (134.62±21.63 beats per min) (P<0.001). In the MetS group, the MHR was positively correlated with the serum triglyceride level (β=0.185, P=0.033) and was inversely associated with age (β=-0.469, P<0.001). The MHR had a moderate value for discriminating MetS from the non-MetS state (c=0.580, P=0.004) with the optimal cutoff point of 140 beats per min. In MetS patients, the MHR was significantly greater compared to non-MetS subjects and was directly correlated with serum triglyceride levels and inversely with advanced age. Moreover, MHR can be used as a suspicious indicator for identifying MetS.

  2. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  3. Accretion Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge

    2014-03-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  4. The PISA Pre-Main Sequence accreting models

    NASA Astrophysics Data System (ADS)

    Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla

    2013-07-01

    The poster investigates the effect of accretion processes on the evolution of stellar models computed by means of the well tested and updated PROSECCO evolutionary code, under the hypothesis of thin-disk accretion. We analysed the effect on the evolution of the adoption of different parameters as the accretion rate, accretion history, seed mass, and the fraction of the infalling matter energy (alpha_acc) deposed in to the star (accretion energy). We confirm that the most critical parameter is the accretion energy. We show that, depending on alpha_acc the evolution of accreting and non-accreting objects can be completely different, confirming that the adoption of small alpha_acc value (i.e. small accretion energy, cold accretion) produces fainter and more compact models with respect to the ones predicted from non-accreting structures at the same mass and age, models that can not be reconciled with the data available for young objects (i.e. position in the HR diagram, lithium abundances). On the contrary, if a large part of the accretion luminosity is deposed into the star (alpha_acc = 1, hot accretion), at least during the fisrt stages of the accretion phase or during bursts episodes, large radii and luminosities are achievable, with resulting structures much more similar to the non-accreting ones.

  5. Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate

    PubMed Central

    Wone, Bernard W. M.; Donovan, Edward R.; Cushman, John C.; Hayes, Jack P.

    2014-01-01

    Aerobic metabolism of vertebrates is linked to membrane fatty acid (FA) composition. Although the membrane pacemaker hypothesis posits that desaturation of FAs accounts for variation in resting or basal metabolic rate (BMR), little is known about the FA profiles that underpin variation in maximal metabolic rate (MMR). We examined membrane FA composition of liver and skeletal muscle in mice after seven generations of selection for increased MMR. In both liver and skeletal muscle, unsaturation index did not differ between control and high-MMR mice. We also examined membrane FA composition at the individual-level of variation. In liver, 18:0, 20:3 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In gastrocnemius muscle, 18:2 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In addition, muscle 16:1 n-7, 18:1 n-9, and 22:5 n-3 FAs were significant predictors of BMR, whereas no liver FAs were significant predictors of BMR. Our findings indicate that (i) individual variation in MMR and BMR appear to be linked to membrane FA composition in the skeletal muscle and liver, and (ii) FAs that differ between selected and control lines are involved in pathways that can affect MMR or BMR. PMID:23422919

  6. Migration of accreting planets in radiative discs from dynamical torques

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to

  7. Increasing Rate of Comprehension Among Community College Students.

    ERIC Educational Resources Information Center

    Fields, Johanna H.

    The extent to which increases in reading efficiency are attributable to a reading laboratory program was investigated. The experimental group consisted of all students enrolled in developmental reading and study skills laboratory programs at the Community College of Allegheny County, Boyce Campus. The two control groups were students enrolled in…

  8. Can Applying to More Colleges Increase Enrollment Rates? Research Brief

    ERIC Educational Resources Information Center

    Smith, Jonathan

    2011-01-01

    The goal of this research brief is to highlight new causal evidence on how the number of colleges to which students apply affects their college enrollment decisions. Using a 2004 sample of students who applied to at least one four-year college, this research brief finds that applying to more colleges causally increases students' probabilities of…

  9. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  10. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  11. Giant planet formation with pebble accretion

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2014-05-01

    In the core accretion model for giant planet formation, a solid core forms by coagulation of dust grains in a protoplanetary disk and then accretes gas from the disk when the core reaches a critical mass. Both stages must be completed in a few million years before the disk gas disperses. The slowest stage of this process may be oligarchic growth in which a giant-planet core grows by sweeping up smaller, asteroid-size planetesimals. Here, we describe new numerical simulations of oligarchic growth using a particle-in-a-box model. The simulations include several processes that can effect oligarchic growth: (i) planetesimal fragmentation due to mutual collisions, (ii) the modified capture rate of planetesimals due to a core’s atmosphere, (iii) drag with the disk gas during encounters with the core (so-called “pebble accretion”), (iv) modification of particle velocities by turbulence and drift caused by gas drag, (v) the presence of a population of mm-to-m size “pebbles” that represent the transition point between disruptive collisions between larger particles, and mergers between dust grains, and (vi) radial drift of small objects due to gas drag. Collisions between planetesimals rapidly generate a population of pebbles. The rate at which a core sweeps up pebbles is controlled by pebble accretion dynamics. Metre-size pebbles lose energy during an encounter with a core due to drag, and settle towards the core, greatly increasing the capture probability during a single encounter. Millimetre-size pebbles are tightly coupled to the gas and most are swept past the core during an encounter rather than being captured. Accretion efficiency per encounter increases with pebble size in this size range. However, radial drift rates also increase with size, so metre-size objects encounter a core on many fewer occasions than mm-size pebbles before they drift out of a region. The net result is that core growth rates vary weakly with pebble size, with the optimal diameter

  12. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  13. Cytokinin activity increases stomatal density and transpiration rate in tomato

    PubMed Central

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-01-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions. PMID:27811005

  14. Cytokinin activity increases stomatal density and transpiration rate in tomato.

    PubMed

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-12-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions.

  15. Increasing response rates to postal questionnaires: systematic review

    PubMed Central

    Edwards, Phil; Roberts, Ian; Clarke, Mike; DiGuiseppi, Carolyn; Pratap, Sarah; Wentz, Reinhard; Kwan, Irene

    2002-01-01

    Objective To identify methods to increase response to postal questionnaires. Design Systematic review of randomised controlled trials of any method to influence response to postal questionnaires. Studies reviewed 292 randomised controlled trials including 258 315 participants Intervention reviewed 75 strategies for influencing response to postal questionnaires. Main outcome measure The proportion of completed or partially completed questionnaires returned. Results The odds of response were more than doubled when a monetary incentive was used (odds ratio 2.02; 95% confidence interval 1.79 to 2.27) and almost doubled when incentives were not conditional on response (1.71; 1.29 to 2.26). Response was more likely when short questionnaires were used (1.86; 1.55 to 2.24). Personalised questionnaires and letters increased response (1.16; 1.06 to 1.28), as did the use of coloured ink (1.39; 1.16 to 1.67). The odds of response were more than doubled when the questionnaires were sent by recorded delivery (2.21; 1.51 to 3.25) and increased when stamped return envelopes were used (1.26; 1.13 to 1.41) and questionnaires were sent by first class post (1.12; 1.02 to 1.23). Contacting participants before sending questionnaires increased response (1.54; 1.24 to 1.92), as did follow up contact (1.44; 1.22 to 1.70) and providing non-respondents with a second copy of the questionnaire (1.41; 1.02 to 1.94). Questionnaires designed to be of more interest to participants were more likely to be returned (2.44; 1.99 to 3.01), but questionnaires containing questions of a sensitive nature were less likely to be returned (0.92; 0.87 to 0.98). Questionnaires originating from universities were more likely to be returned than were questionnaires from other sources, such as commercial organisations (1.31; 1.11 to 1.54). Conclusions Health researchers using postal questionnaires can improve the quality of their research by using the strategies shown to be effective in this systematic review

  16. Oolong tea increases metabolic rate and fat oxidation in men.

    PubMed

    Rumpler, W; Seale, J; Clevidence, B; Judd, J; Wiley, E; Yamamoto, S; Komatsu, T; Sawaki, T; Ishikura, Y; Hosoda, K

    2001-11-01

    According to traditional Chinese belief, oolong tea is effective in the control of body weight. Few controlled studies, however, have been conducted to measure the impact of tea on energy expenditure (EE) of humans. A randomized cross-over design was used to compare 24-h EE of 12 men consuming each of four treatments: 1) water, 2) full-strength tea (daily allotment brewed from 15 g of tea), 3) half-strength tea (brewed from 7.5 g tea) and 4) water containing 270 mg caffeine, equivalent to the concentration in the full-strength tea treatment. Subjects refrained from consuming caffeine or flavonoids for 4 d prior to the study. Tea was brewed each morning; beverages were consumed at room temperature as five 300 mL servings. Subjects received each treatment for 3 d; on the third day, EE was measured by indirect calorimetry in a room calorimeter. For the 3 d, subjects consumed a typical American diet. Energy content of the diet was tailored to each subject's needs as determined from a preliminary measure of 24-h EE by calorimetry. Relative to the water treatment, EE was significantly increased 2.9 and 3.4% for the full-strength tea and caffeinated water treatments, respectively. This increase over water alone represented an additional expenditure of 281 and 331 kJ/d for subjects treated with full-strength tea and caffeinated water, respectively. In addition, fat oxidation was significantly higher (12%) when subjects consumed the full-strength tea rather than water.

  17. Eclipse Mapping of Accretion Discs

    NASA Astrophysics Data System (ADS)

    Baptista, R.

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc throughout its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  18. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  19. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  20. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  1. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas

    NASA Technical Reports Server (NTRS)

    Hubickyj, Olenka

    1997-01-01

    Models were developed to simulate planet formation. Three major phases are characterized in the simulations: (1) planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted; (2) occurs when both solid and gas accretion rates are small and nearly independent of time; and (3) starts when the solid and gas masses are about equal and is marked by runaway gas accretion. The models applicability to planets in our Solar System are judged using two basic "yardsticks". The results suggest that the solar nebula dissipated while Uranus and Neptune were in the second phase, during which, for a relatively long time, the masses of their gaseous envelopes were small but not negligible compared to the total masses. Background information, results and a published article are included in the report.

  2. Hard apex transition in quasi-periodic oscillators - Closing of the accretion gap

    NASA Technical Reports Server (NTRS)

    Biehle, Garrett T.; Blandford, Roger D.

    1993-01-01

    We propose that the 'hard apex' transition in the X-ray two-color diagrams for low-mass X-ray binaries exhibiting quasi-periodic oscillation is associated with closure of a gap between the accretion disk and the star. At low accretion rates, gas crosses this gap intermittently. However, when the mass accretion rate increases, the disk thickens and its inner edge touches the star, thus forming a boundary layer through which the gas flows steadily. This explanation is viable provided that the equation of state of nuclear matter is not significantly harder than the Bethe-Johnson I prescription. Accretion gap scenarios are possibly distinguishable from models which invoke a small magnetosphere around the neutron star, in that they preclude large stellar magnetic fields and associate the high-frequency (horizontal-branch) oscillations with different sites.

  3. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  4. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  5. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  6. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  7. Partial accretion regime of accreting millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Eksi, Kazim

    2016-07-01

    The inner parts of the disks around neutron stars in low mass X-ray binaries may become geometrically thick due to inhibition of accretion at the disk mid-plane when the central object is rotating rapidly. In such a case matter inflowing through the disk may keep accreting onto the poles of the neutron star from the parts of the disk away from the disk mid-plane while the matter is propelled at the disk mid-plane. An important ingredient of the evolution of millisecond pulsars is then the fraction of the inflowing matter that can accrete onto the poles in the fast rotation regime depending on the fastness parameter. This ``soft'' propeller regime may be associated with the rapid decay stage observed in the light curves of several accreting millisecond pulsars. To date only a few studies considered the partial accretion regime. By using geometrical arguments we improve the existing studies and test the model by reproducing the lightcurves of millisecond X-ray pulsars via time dependent simulations of disk evolution. We also present analytical solutions that represent disks with partial accretion.

  8. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  9. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  10. Accretion and ejection in black-hole X-ray transients

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Belloni, T. M.

    2015-02-01

    accretion rate increases and the source moves to the hard state, the poloidal magnetic field in the ADAF forces the flow to remain ADAF and the source to move upwards in the HLD rather than to turn left. Thus, the history of the system determines the counterclockwise traversal of the HLD. As a result, no BHT is expected to ever traverse the entire HLD curve in the clockwise direction. Conclusions: We offer a physical interpretation of accretion and ejection in BHTs with only one parameter, the mass transfer rate, plus the history of the system.

  11. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  12. JET LUMINOSITY FROM NEUTRINO-DOMINATED ACCRETION FLOWS IN GAMMA-RAY BURSTS

    SciTech Connect

    Kawanaka, Norita; Piran, Tsvi; Krolik, Julian H. E-mail: tsvi.piran@mail.huji.ac.il

    2013-03-20

    A hyperaccretion disk formed around a stellar-mass black hole is a plausible model for the central engine that powers gamma-ray bursts (GRBs). If the central black hole rotates and a poloidal magnetic field threads its horizon, a powerful relativistic jet may be driven by a process resembling the Blandford-Znajek (BZ) mechanism. We estimate the luminosity of such a jet as a function of mass accretion rate and other accretion parameters assuming that the poloidal magnetic field strength is comparable to the inner accretion disk pressure. We show that the jet efficiency attains its maximal value when the accretion flow is cooled via optically thin neutrino emission. The jet luminosity is much larger than the energy deposition through neutrino-antineutrino annihilation ({nu} {nu}-bar {yields}e{sup +}e{sup -}) provided that the black hole is spinning rapidly enough. When the accretion rate onto a rapidly spinning black hole is larger than 0.003-0.01 M{sub Sun} s{sup -1}, the disk becomes optically thin to neutrinos, its pressure increases and the jet luminosity is sufficient to drive a GRB. The transition of the accretion rate above and below this limiting value may cause the large variability observed in GRB.

  13. 45 CFR 154.215 - Submission of disclosure to CMS for rate increases subject to review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Submission of disclosure to CMS for rate increases... REQUIREMENTS Disclosure and Review Provisions § 154.215 Submission of disclosure to CMS for rate increases... justifying the rate increase (Part II), as described by paragraph (f) of this section; and (3) When CMS...

  14. 45 CFR 154.215 - Submission of disclosure to CMS for rate increases subject to review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Submission of disclosure to CMS for rate increases... REQUIREMENTS Disclosure and Review Provisions § 154.215 Submission of disclosure to CMS for rate increases... justifying the rate increase (Part II), as described by paragraph (f) of this section; and (3) When CMS...

  15. 39 CFR 3010.11 - Limit on size of rate increases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) § 3010.11 Limit on size of rate increases. (a) Rate increases for each class of market dominant products... 39 Postal Service 1 2013-07-01 2013-07-01 false Limit on size of rate increases. 3010.11 Section... authority is measured separately for each class of mail. (d) In any 12-month period the...

  16. 39 CFR 3010.11 - Limit on size of rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) § 3010.11 Limit on size of rate increases. (a) Rate increases for each class of market dominant products... 39 Postal Service 1 2012-07-01 2012-07-01 false Limit on size of rate increases. 3010.11 Section... authority is measured separately for each class of mail. (d) In any 12-month period the...

  17. Assessing Magnetospheric Accretion in Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia; Monnier, John D.

    2017-01-01

    Recent large spectropolarimetric surveys have found low magnetic field detection rates in Herbig Ae/Be stars. Efforts to measure and map young stars' magnetic fields have also noted that field structure and strength dramatically change with increasing stellar mass. These results are highly suggestive that the mechanisms for accretion and outflow in Herbig Ae/Be star+disk systems may differ from the magnetospheric accretion paradigm as envisaged for T Tauri star+disk systems. We have performed a high resolution optical spectroscopic campaign of ~60 Herbig AeBe stars including some multi-epoch observations; the timescales sampled range from high cadence (~minutes) to observations taken years spart, covering a wide range of kinematic processes. We find that the strength of variability increases with the cadence of the observations, and over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines. We see no inverse P-Cygni signatures as are often seen in lower mass T Tauri stars and generally thought to be diagnostic of infall in accretion streams along the line of sight. We discuss the implications of these results in context of recent spectropolarimetric surveys for our understanding of how accretion is occurring in these objects, as well as ongoing radiative transfer modeling.

  18. Accreting pre-main-sequence models and abundance anomalies in globular clusters

    NASA Astrophysics Data System (ADS)

    Tognelli, E.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2015-12-01

    We investigated the possibility of producing helium-enhanced stars in globular clusters by accreting polluted matter during the pre-main-sequence phase. We followed the evolution of two different classes of pre-main-sequence accreting models, one which neglects and the other that takes into account the protostellar evolution. We analysed the dependence of the final central helium abundance, of the tracks position in the HR diagram and of the surface lithium abundance evolution on the age at which the accretion of polluted material begins and on the main physical parameters that govern the protostellar evolution. The later is the beginning of the late accretion and the lower are both the central helium and the surface lithium abundances at the end of the accretion phase and in Zero Age Main Sequence (ZAMS). In order to produce a relevant increase of the central helium content the accretion of polluted matter should start at ages lower than 1 Myr. The inclusion of the protostellar evolution has a strong impact on the ZAMS models too. The adoption of a very low seed mass (i.e. 0.001 M⊙) results in models with the lowest central helium and surface lithium abundances. The higher is the accretion rate and the lower is the final helium content in the core and the residual surface lithium. In the worst case - i.e. seed mass 0.001 M⊙ and accretion rate ≥10-5 M⊙ yr-1 - the central helium is not increased at all and the surface lithium is fully depleted in the first few million years.

  19. Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat.

    PubMed

    Valenzuela B, Rodrigo; Barrera R, Cynthia; González-Astorga, Marcela; Sanhueza C, Julio; Valenzuela B, Alfonso

    2014-07-25

    Alpha-linolenic acid (ALA) is an essential n-3 PUFA; its n-3 LCPUFA derivatives EPA and DHA, which have diverse beneficial effects, are scarce in the human diet. In recent years nontraditional vegetable oils rich in ALA (up to 45%) have been developed as new alternatives to increase ALA consumption. This work evaluated the accretion of ALA, EPA and DHA into the phospholipids extracted from erythrocytes, liver, kidney, small intestine, heart, quadriceps and the brain in rats fed sunflower (SFO), canola (CO), Rosa canina (RCO), sacha inchi (Plukenetia volubilis, SIO) and chia (Salvia hispánica, ChO) oils. Five experimental groups (n = 12 per group) were fed for 21 days with SFO (1% ALA), CO (10% ALA), RCO (33% ALA), SIO (49% ALA), and ChO (64% ALA). SIO and ChO allowed higher ALA accretion in all tissues, except the brain, and a reduction in the content of arachidonic acid in all tissues except the brain. EPA was increased in erythrocytes, liver, kidney, small intestine, heart and quadriceps, but not in the brain. DHA was increased in the liver, small intestine and brain tissues. Our results demonstrate that ALA, when provided in significant amounts, can be converted into n-3 LCPUFA, mostly DHA in the liver and brain. It is suggested that oils rich in ALA, such as SIO and ChO, are good sources for obtaining higher tissue levels of ALA, also allowing its selective conversion into n-3 LCPUFA in some tissues of the rat.

  20. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    USGS Publications Warehouse

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.

  1. 45 CFR 154.225 - Determination by CMS or a State of an unreasonable rate increase.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Determination by CMS or a State of an unreasonable... REQUIREMENTS Disclosure and Review Provisions § 154.225 Determination by CMS or a State of an unreasonable rate increase. (a) When CMS receives a Rate Filing Justification for a rate increase subject to review and...

  2. 45 CFR 154.225 - Determination by CMS or a State of an unreasonable rate increase.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Determination by CMS or a State of an unreasonable... REQUIREMENTS Disclosure and Review Provisions § 154.225 Determination by CMS or a State of an unreasonable rate increase. (a) When CMS receives a Rate Filing Justification for a rate increase subject to review and...

  3. The Origin of Episodic Accretion Bursts in the Early Stages of Star Formation

    NASA Astrophysics Data System (ADS)

    Basu, S.; Vorobyov, E. I.

    2005-12-01

    We present the first model of cloud core collapse which self-consistently generates episodic mass accretion and luminosity bursts. Our numerical models follow the collapse of a rotating molecular cloud core that leads self-consistently to the formation of a protostar and protostellar disk. The disk quickly becomes unstable to the development of a spiral structure similar to that observed recently in AB Aurigae. The instability is driven by the continuous infall of matter from the protostellar envelope onto the disk. The gravitational instability leads to the formation of dense protostellar/protoplanetary clumps within the spiral arms. The growing strength of spiral arms and ensuing redistribution of mass and angular momentum creates a strong centrifugal disbalance in the disk and triggers bursts of mass accretion during which the dense protostellar/protoplanetary clumps fall onto the central protostar. These episodes of clump infall may manifest themselves as episodes of vigorous accretion rate ( ≥ 10-4 M⊙ yr-1) which lead to luminosity increases of up to a factor ˜ 1000. Between these accretion bursts, the protostar is characterized by a low accretion rate ( < 10-6 M⊙ yr-1). During the phase of episodic accretion, the mass of the protostellar disk remains less than the mass of the protostar. This work was supported by a grant from NSERC. EIV acknowledges support from a CITA National Fellowship.

  4. 5 CFR 9701.323 - Eligibility for pay increase associated with a rate range adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... with a rate range adjustment. 9701.323 Section 9701.323 Administrative Personnel DEPARTMENT OF HOMELAND... Adjusting Rate Ranges § 9701.323 Eligibility for pay increase associated with a rate range adjustment. (a) When a band rate range is adjusted under § 9701.322, employees covered by that band are eligible for...

  5. 5 CFR 9701.323 - Eligibility for pay increase associated with a rate range adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... with a rate range adjustment. 9701.323 Section 9701.323 Administrative Personnel DEPARTMENT OF HOMELAND... Adjusting Rate Ranges § 9701.323 Eligibility for pay increase associated with a rate range adjustment. (a) When a band rate range is adjusted under § 9701.322, employees covered by that band are eligible for...

  6. 5 CFR 9701.323 - Eligibility for pay increase associated with a rate range adjustment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with a rate range adjustment. 9701.323 Section 9701.323 Administrative Personnel DEPARTMENT OF HOMELAND... Adjusting Rate Ranges § 9701.323 Eligibility for pay increase associated with a rate range adjustment. (a) When a band rate range is adjusted under § 9701.322, employees covered by that band are eligible for...

  7. Impact of increased collection rates and the use of commingled collection systems on the quality of recovered paper. Part 1: increased collection rates.

    PubMed

    Miranda, Ruben; Monte, M; Blanco, Angeles

    2011-11-01

    The recovery and utilization of recovered paper have increased over past decades all over the world due to economic, environmental, and social issues. However, it is well known that an extended recovered paper collection is detrimental to its quality, either by the exploitation of lower quality sources such as households, or the spreading of commingled systems instead of selective collection systems. The influence of these two factors was assessed by analyzing the quality of different recovered paper grades used as raw material in a mill located in Madrid (Spain) producing newsprint and light weight coated paper from recovered paper. Part 1 of the paper deals with the impact of increased collection rates on the quality of recovered paper and Part 2 with the use of commingled collection systems. Results of Part 1 show that increased collection rates have a large impact on the quality of the recovered paper. The quality, measured as total unusable material and moisture contents, had deteriorated very rapidly in only 4 years (2005-2008) as a consequence of increased collection rates. Collection rates increased in Spain from 58.5% to 68.6% during this period, resulting in more than 50% increase of total unusable material and 25% of moisture content. The downgrading of the quality of recovered paper is one of the major threats for extending the current limits of paper recycling. Therefore, future challenge is to increase its availability but maintaining its quality.

  8. Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase

    SciTech Connect

    Stouffer, R.J.

    1999-08-01

    The influence of differing rates of increase of the atmospheric CO{sub 2} concentration on the climatic response is investigated using a coupled ocean-atmosphere model. Five transient integrations are performed each using a different constant exponential rate of CO{sub 2} increase ranging from 4% yr{sup {minus}1} to 0.25% yr{sup {minus}1}. By the time of CO{sub 2} doubling, the surface air temperature response in all the transient integrations is locally more than 50% and globally more than 35% of the equilibrium response. The land-sea contrast in the warming, which is evident in the equilibrium results, is larger in all the transient experiments. The land-sea difference in the response increases with the rate of increase in atmospheric CO{sub 2} concentration. The thermohaline circulation (THC) weakens in response to increasing atmospheric CO{sub 2} concentration in all the transient integrations, confirming earlier work. The results also indicate that the slower the rate of increase, the larger the weakening of the THC by the time of doubling. Two of the transient experiments are continued beyond the time of CO{sub 2} doubling with the CO{sub 2} concentration maintained at that level. The amount of weakening of the THC after the CO{sub 2} stops increasing is smaller in the experiment with the slower rate of CO{sub 2} increase, indicating that the coupled system has more time to adjust to the forcing when the rate of CO{sub 2} increase is slower. After a period of slow overturning, the THC gradually recovers and eventually regains the intensity found in the control integration, so that the equilibrium THC is very similar in the control and doubled CO{sub 2} integrations. Considering only the sea level changes due to the thermal expansion of seawater, the integration with the slowest rate of increase in CO{sub 2} concentration has the largest globally averaged sea level rise by the time of CO{sub 2} doubling. However, only a relatively small fraction of the

  9. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  10. ASYMMETRIC ACCRETION FLOWS WITHIN A COMMON ENVELOPE

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-10

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  11. The Eddington limit and supercritical accretion. I - Time-independent calculations. [on neutron star

    NASA Technical Reports Server (NTRS)

    Burger, H. L.; Katz, J. I.

    1980-01-01

    Spherically symmetric, steady state accretion of an ionized hydrogen plasma onto a neutron star is considered for accretion rates which exceed a critical rate at which the Eddington limiting luminosity is produced. The coupled hydrodynamic and frequency integrated, radiative transfer equations are solved for accretion rates up to 10 times the nominal limit. Steady state solutions are presented that imply a multiplicity of different luminosity solutions for a single accretion rate in this 'supercritical' regime.

  12. LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates?

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2004-05-01

    Accumulation rates of terrestrial sediment have increased in the past few million years both on and adjacent to continents, although not everywhere. Apparently, erosion has increased in elevated terrain regardless of when last tectonically active or what the present-day climate. In many regions, sediment coarsened abruptly in late Pliocene time. Sparser data suggest increased sedimentation rates at 15 Ma, approximately when oxygen isotopes in benthic foraminifera imply high-latitude cooling. If climate change effected accelerated erosion, understanding how it did so remains the challenge. Some obvious candidates, such as lowered sea level leading to erosion of continental shelves or increased glaciation, account for increased sedimentation in some, but not all, areas. Perhaps stable climates that varied slowly allowed geomorphic processes to maintain a state of equilibrium with little erosion until 34 Ma, when large oscillations in climate with periods of 20,00040,000 years developed and denied the landscape the chance to reach equilibrium.

  13. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  14. Widespread increase of tree mortality rates in the western United States.

    PubMed

    van Mantgem, Phillip J; Stephenson, Nathan L; Byrne, John C; Daniels, Lori D; Franklin, Jerry F; Fulé, Peter Z; Harmon, Mark E; Larson, Andrew J; Smith, Jeremy M; Taylor, Alan H; Veblen, Thomas T

    2009-01-23

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.

  15. Widespread increase of tree mortality rates in the Western United States

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, Joseph M.; Taylor, A.H.; Veblen, T.T.

    2009-01-01

    Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.

  16. Rising Tide II: Do Black Students Benefit as Grad Rates Increase?

    ERIC Educational Resources Information Center

    Nichols, Andrew Howard; Eberle-Sudré, Kimberlee; Welch, Meredith

    2016-01-01

    "Rising Tide II: Do Black Students Benefit as Grad Rates Increase?" looks at a decade of graduation rates for African American students at four-year, public institutions that improved student success during the past decade. It shows that while a majority (almost 70 percent) of institutions we examined improved graduation rates for black…

  17. Heart rates increase after hatching in two species of Natricine snakes.

    PubMed

    Aubret, Fabien

    2013-11-29

    Experimental studies have shown heart rates to decrease from embryo to hatchling stage in turtles, remain steady in skinks, and increase in birds. However, no snake species has been studied in this regard. I recorded heart rate evolution trajectories from embryo to juvenile stage in 78 eggs from two species of European Natricine snakes. Unexpectedly, snakes behaved more like birds than turtles or lizards: heart rates increased after hatching in both N. maura and N. natrix, respectively by 43.92 ± 22.84% and 35.92 ± 24.52%. Heart rate shift was not related to an abrupt elevation of metabolism per se (snakes that increased their heart rates the most sharply grew the least after birth), but rather due to a number of smaller eggs that experienced lower than normal heart rates throughout the incubation and recovered a normal heart rate post-birth. This finding is discussed in the light of hatching synchrony benefits.

  18. Heart rates increase after hatching in two species of natricine snakes

    PubMed Central

    Aubret, Fabien

    2013-01-01

    Experimental studies have shown heart rates to decrease from embryo to hatchling stage in turtles, remain steady in skinks, and increase in birds. However, no snake species has been studied in this regard. I recorded heart rate evolution trajectories from embryo to juvenile stage in 78 eggs from two species of European Natricine snakes. Unexpectedly, snakes behaved more like birds than turtles or lizards: heart rates increased after hatching in both N. maura and N. natrix, respectively by 43.92 ± 22.84% and 35.92 ± 24.52%. Heart rate shift was not related to an abrupt elevation of metabolism per se (snakes that increased their heart rates the most sharply grew the least after birth), but rather due to a number of smaller eggs that experienced lower than normal heart rates throughout the incubation and recovered a normal heart rate post-birth. This finding is discussed in the light of hatching synchrony benefits. PMID:24287712

  19. ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS

    SciTech Connect

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L. E-mail: zhouyifan1012@gmail.com

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214–00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10{sup –9}-10{sup –11} M {sub ☉} yr{sup –1} for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  20. Accretion onto Planetary Mass Companions of Low-mass Young Stars

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L.

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10-9-10-11 M ⊙ yr-1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  1. 45 CFR 154.225 - Determination by CMS or a State of an unreasonable rate increase.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Determination by CMS or a State of an unreasonable... REQUIREMENTS Disclosure and Review Provisions § 154.225 Determination by CMS or a State of an unreasonable rate increase. (a) When CMS receives a Preliminary Justification for a rate increase subject to review and...

  2. 45 CFR 154.225 - Determination by CMS or a State of an unreasonable rate increase.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Determination by CMS or a State of an unreasonable... REQUIREMENTS Disclosure and Review Provisions § 154.225 Determination by CMS or a State of an unreasonable rate increase. (a) When CMS receives a Preliminary Justification for a rate increase subject to review and...

  3. 76 FR 61074 - USDA Increases the Fiscal Year 2011 Tariff-Rate Quota for Refined Sugar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Office of the Secretary USDA Increases the Fiscal Year 2011 Tariff-Rate Quota for Refined Sugar AGENCY... increase in the fiscal year (FY) 2011 refined sugar tariff-rate quota (TRQ) of 136,078 metric tons raw... MTRV for sugars, syrups, and molasses (collectively referred to as refined sugar) described...

  4. GENERAL RELATIVISTIC SIMULATIONS OF ACCRETION INDUCED COLLAPSE OF NEUTRON STARS TO BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba

    2012-10-10

    Neutron stars (NSs) in the astrophysical universe are often surrounded by accretion disks. Accretion of matter onto an NS may increase its mass above the maximum value allowed by its equation of state, inducing its collapse to a black hole (BH). Here we study this process for the first time, in three-dimensions, and in full general relativity. By considering three initial NS configurations, each with and without a surrounding disk (of mass {approx}7% M{sub NS}), we investigate the effect of the accretion disk on the dynamics of the collapse and its imprint on both the gravitational wave (GW) and electromagnetic (EM) signals that can be emitted by these sources. We show in particular that, even if the GW signal is similar for the accretion induced collapse (AIC) and the collapse of an NS in vacuum (and detectable only for Galactic sources), the EM counterpart could allow us to discriminate between these two types of events. In fact, our simulations show that, while the collapse of an NS in vacuum leaves no appreciable baryonic matter outside the event horizon, an AIC is followed by a phase of rapid accretion of the surviving disk onto the newly formed BH. The post-collapse accretion rates, on the order of {approx}10{sup -2} M{sub Sun} s{sup -1}, make these events tantalizing candidates as engines of short gamma-ray bursts.

  5. A Celestial Show of the Century: Gas Cloud Accretion onto the SMBH SgrA*

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud, which is rapidly approaching the Galactic supermassive black hole (SMBH) Sgr A*, was discovered recently. In mid-2013, the cloud will be ~ 3,100 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit, and is predicted to interact with the accretion flow around the SMBH. Although it is very uncertain what will happen at the time of the cloud's pericentric passage, this event may presents a unique opportunity, that may never come again, to study the dynamics and properties of hot gas in the vicinity of the SMBH, and gas accretion onto it. From simulations, sudden increase of accretion rate onto the SMBH, and subsequent strong surge of emission from Sgr A* are expected. So we will carry out daily monitoring observations of Sgr A* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru, just after the beginning of the accretion event. Spectroscopic and imaging observations from 1.6 - 11 mu m will be conducted to understand processes responsible for near to mid-infrared emission during the accretion event. Using HiCIAO, polarimetric observations will be carried out to investigate the existence of jets/outflow which may be produced by the sudden mass accretion onto the SMBH.

  6. The hard X-ray emission spectra from accretion columns in intermediate polars

    NASA Technical Reports Server (NTRS)

    Yi, Insu; Vishniac, Ethan T.

    1994-01-01

    We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass

  7. Fueling galaxy growth through gas accretion in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan Rubaloff

    Despite significant advances in the numerical modeling of galaxy formation and evolution, it is clear that a satisfactory theoretical picture of how galaxies acquire their baryons across cosmic time remains elusive. In this thesis we present a computational study which seeks to address the question of how galaxies get their gas. We make use of new, more robust simulation techniques and describe the first investigations of cosmological gas accretion using a moving-mesh approach for solving the equations of continuum hydrodynamics. We focus first on a re-examination of past theoretical conclusions as to the relative importance of different accretion modes for galaxy growth. We study the rates and nature of gas accretion at z=2, comparing our new simulations run with the Arepo code to otherwise identical realizations run with the smoothed particle hydrodynamics code Gadget. We find significant physical differences in the thermodynamic history of accreted gas, explained in terms of numerical inaccuracies in SPH. In contrast to previous results, we conclude that hot mode accretion generally dominates galaxy growth, while cold gas filaments experience increased heating and disruption. Next, we consider the impact of feedback on our results, including models for galactic-scale outflows driven by stars as well as the energy released from supermassive black holes. We find that feedback strongly suppresses the inflow of "smooth" mode gas at all redshifts, regardless of its temperature history. Although the geometry of accretion at the virial radius is largely unmodified, strong galactic-fountain recycling motions dominate the inner halo. We measure a shift in the characteristic timescale of accretion, and discuss implications for semi-analytical models of hot halo gas cooling. To overcome the resolution limitations of cosmological volumes, we simulate a suite of eight individual 1012 solar mass halos down to z=2. We quantify the thermal and dynamical structure of the gas in

  8. Jet production in super-Eddington accretion disks

    NASA Technical Reports Server (NTRS)

    Eggum, G. E.; Coroniti, F. V.; Katz, J. I.

    1985-01-01

    A two-dimensional, radiation-coupled, Newtonian hydrodynamic simulation is reported for a super-Eddington, mass accretion rate, M = 4 M(E) disk accretion flow onto a 3-solar mass pseudoblack hole. Near the disk midplane, convection cells effectively block the accretion flow, even though viscous heating maximizes there. Accretion predominantly occurs in a supersonic inflow which follows streamlines of approximately constant angular momentum. The optically thick inflow traps radiation so that 80 percent of the luminosity is absorbed by the black hole; the emergent power is sub-Eddington. An axial jet self consistently forms just outside a conical photosphere which bounds the accretion zone; radiation pressure accelerates the jet to about 10 to the 10th cm/s. The jet's mass efflux is only 0.4 percent of the total mass accretion rate.

  9. Apparent climatically induced increase of tree mortality rates in a temperate forest.

    PubMed

    van Mantgem, Phillip J; Stephenson, Nathan L

    2007-10-01

    We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21,338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation.

  10. An increase in minimum metabolic rate and not activity explains field metabolic rate changes in a breeding seabird.

    PubMed

    Green, J A; Aitken-Simpson, E J; White, C R; Bunce, A; Butler, P J; Frappell, P B

    2013-05-01

    The field metabolic rate (FMR) of a free-ranging animal can be considered as the sum of its maintenance costs (minimum metabolic rate, MMR) and additional costs associated with thermoregulation, digestion, production and activity. However, the relationships between FMR and BMR and how they relate to behaviour and extrinsic influences is not clear. In seabirds, FMR has been shown to increase during the breeding season. This is presumed to be the result of an increase in foraging activity, stimulated by increased food demands from growing chicks, but few studies have investigated in detail the factors that underlie these increases. We studied free-ranging Australasian gannets (Morus serrator) throughout their 5 month breeding season, and evaluated FMR, MMR and activity-related metabolic costs on a daily basis using the heart rate method. In addition, we simultaneously recorded behaviour (flying and diving) in the same individuals. FMR increased steadily throughout the breeding season, increasing by 11% from the incubation period to the long chick-brooding period. However, this was not accompanied by either an increase in flying or diving behaviour, or an increase in the energetic costs of activity. Instead, the changes in FMR could be explained exclusively by a progressive increase in MMR. Seasonal changes in MMR could be due to a change in body composition or a decrease in body condition associated with changing the allocation of resources between provisioning adults and growing chicks. Our study highlights the importance of measuring physiological parameters continuously in free-ranging animals in order to understand fully the mechanisms underpinning seasonal changes in physiology and behaviour.

  11. Accretion onto the first stellar mass black holes

    SciTech Connect

    Alvarez, Marcelo A.; Wise, John H.; Abel, Tom

    2009-08-05

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M{sub {circle_dot}} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the two hundred million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation - stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx} 10{sup 4} K, facilitating intermediate mass black hole formation at their centers.

  12. Time lag in transient cosmic accreting sources

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Giovannelli, F.

    2017-02-01

    Context. We develop models for time lag between the maxima of the source brightness in different wavelengths during a transient flash of luminosity that is connected with a short-period increase of the mass flux onto the central compact object. Aims: We derive a simple formula for finding the time delay among events in different wavelengths which is valid in general for all disk-accreting cosmic sources. We quantitatively also discuss a model for time-lag formation in active galactic nuclei (AGNs). Methods: In close binaries with accretion disks, the time lag is connected with effects of viscosity that define a radial motion of matter in the accretion disk. In AGN flashes, the infalling matter has a low angular momentum, and the time lag is defined by the free-fall time to the gravitating center. Results: We show the validity of these models by means of several examples of galactic and extragalactic accreting sources.

  13. 20 Years of sea-levels, accretion, and vegetation on two Long ...

    EPA Pesticide Factsheets

    The long-term 1939-2013 rate of RSLR (Relative Sea-Level Rise) at the New London, CT tide gauge is ~2.6 mm/yr, near the maximum rate of salt marsh accretion reported in eastern Long Island Sound salt marshes. Consistent with recent literature RSLR at New London has accelerated since the 1980s; inter-annual variability can be high, but over the last three decades rates have averaged ~4.5 mm/yr, more than double the first 40 years of the New London record. Marsh surface elevation has been followed for 10 years with a SET array at the Barn Island system on Little Narragansett Bay and 20 years using an accretion pin array at Mamacoke Marsh on the Thames River. From 2003 – 2013 accretion averaged 2.3 mm/yr on the Barn Island marshes while RSLR increased 5.4 mm/yr. The increased hydroperiod is driving vegetation change at Barn Island, particularly in areas that started with lower “elevation capital”. Over two decades Mamacoke accretion closely matched RSLR: 4.7 vs 4.9 mm/yr, with no significant shifts in vegetation. For the 1st 12 years at Mamacoke, accretion was slower than RSLR: 3.2 vs 8.1 mm/yr. From 2006 to 2014, however elevation increase averaged 7.0 mm/yr while sea level rose just 7 mm. By 2014 accretion rates across the marsh ranged from 1.3 to 16.1 mm /yr. Preliminary core analysis confirms highly organic peat, but reveals sand concentrations at 2–4 cm in some areas, suggesting that Hurricanes Irene (2011) and Sandy (2012) may have contributed to Mama

  14. Promises and Problems of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2013-10-01

    Despite the large number of exoplanets indicating that giant planets are a common outcome of the star formation process, theoretical models still struggle to explain how ~10 Earth mass rocky/icy embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of ``pebbles,'' particles ranging from millimeters to decimeters in size, has been suggested as a potential solution to this long-standing problem. Local simulations, simulations which look at the detailed behavior of these pebbles in the vicinity of a planetary embryo, have shown that the potential planetary growth rates can be surprisingly fast. If one assumes that most of the mass in a protoplanetary disk resides in these pebble-sized particles, a Mars mass core could grow to 10 Earth masses in only a few thousand years. However, these local studies cannot investigate how this accretion process behaves in the more complicated, multi-planet environment. We have incorporated the local accretion physics into LIPAD, a Lagrangian code which can follow the collisional / accretional / dynamical evolution of a planetary system, to investigate the how this pebble accretion will manifest itself in the larger planet formation picture. We present how these more comprehensive models raise challenges to using pebble accretion to form observed planetary systems.

  15. Problems and Promises of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2013-05-01

    Abstract (2,250 Maximum Characters): Despite the large number of exoplanets indicating that planets are a common outcome of the star formation process, theoretical models still struggle to explain how ~10 Earth mass rocky/icy embryos can form within the lifetimes of gaseous circumstellar disks. Recently, aerodynamic-aided accretion of ``pebbles,'' particles ranging from millimeters to decimeters in size, has been suggested as a potential solution to this long-standing problem. Local simulations, simulations which look at the detailed behavior of these pebbles in the vicinity of a planetary embryo, have shown that the potential planetary growth rates can be surprisingly fast. If one assumes that most of the mass in a protoplanetary disk resides in these pebble-sized particles, a Mars mass core could grow to 10 Earth masses in only a few thousand years. However, these local studies cannot investigate how this accretion process behaves in the more complicated, multi-planet environment. We have incorporated a prescription of this pebble accretion into LIPAD, a Lagrangian code which can follow the collisional/accretional/dynamical evolution of a planetary system, to investigate the how this pebble accretion will manifest itself in the larger planet formation picture. We discuss how these more comprehensive models present challenges for using pebble accretion to form observed planetary systems.

  16. Accretion onto Fast X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Rappaport, S. A.; Fregeau, J. M.; Spruit, H.

    2004-01-01

    The recent emergence of a new class of accretion-powered, transient, millisecond X-ray pulsars presents some difficulties for the conventional picture of accretion onto rapidly rotating magnetized neutron stars and their spin behavior during outbursts. In particular, it is not clear that the standard paradigm can accommodate the wide range in M(i.e., approx. greater than a factor of 50) over which these systems manage to accrete and the high rate of spindown that the neutron stars exhibit in at least a number of cases. When the accretion rate drops sufficiently, the X-ray pulsar is said to become a "fast rotator," and in the conventional view, this is accompanied by a transition from accretion to "propellering," in which accretion ceases and the matter is ejected from the system. On the theoretical side, we note that this scenario for the onset of propellering cannot be entirely correct because it is not energetically self-consistent. We show that, instead, the transition is likely to take place through disks that combine accretion with spindown and terminate at the corotation radius. We demonstrate the existence of such disk solutions by modifying the Shakura-Sunyaev equations with a simple magnetic torque prescription. The solutions are completely analytic and have the same dependence on M and a (the viscosity parameter) as the original Shakura-Sunyaev solutions, but the radial profiles can be considerably modified, depending on the degree of fastness. We apply these results to compute the torques expected during the outbursts of the transient millisecond pulsars and find that we can explain the large spin-down rates that are observed for quite plausible surface magnetic fields of approx. 10(exp 90 G.

  17. Variable accretion processes in the young binary-star system UY Aur

    SciTech Connect

    Stone, Jordan M.; Eisner, J. A.; Kulesa, Craig; McCarthy, Don; Salyk, Colette E-mail: jeisner@as.arizona.edu E-mail: dmccarthy@as.arizona.edu

    2014-09-01

    We present new K-band spectroscopy of the UY Aur binary star system. Our data are the first to show H{sub 2} emission in the spectrum of UY Aur A and the first to spectrally resolve the Brγ line in the spectrum of UY Aur B. We see an increase in the strength of the Brγ line in UY Aur A and a decrease in Brγ and H{sub 2} line luminosity for UY Aur B compared to previous studies. Converting Brγ line luminosity to accretion rate, we infer that the accretion rate onto UY Aur A has increased by 2 × 10{sup –9} M {sub ☉} yr{sup –1} per year since a rate of zero was observed in 1994. The Brγ line strength for UY Aur B has decreased by a factor of 0.54 since 1994, but the K-band flux has increased by 0.9 mag since 1998. The veiling of UY Aur B has also increased significantly. These data evince a much more luminous disk around UY Aur B. If the lower Brγ luminosity observed in the spectrum of UY Aur B indicates an intrinsically smaller accretion rate onto the star, then UY Aur A now accretes at a higher rate than UY Aur B. However, extinction at small radii or mass pile-up in the circumstellar disk could explain decreased Brγ emission around UY Aur B even when the disk luminosity implies an increased accretion rate. In addition to our scientific results for the UY Aur system, we discuss a dedicated pipeline we have developed for the reduction of echelle-mode data from the ARIES spectrograph.

  18. Active states and structure transformations in accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  19. The Eddington limit and supercritical accretion. II - Time-dependent calculations

    NASA Technical Reports Server (NTRS)

    Burger, H. L.; Katz, J. I.

    1983-01-01

    Spherically symmetric, time-dependent accretion of an ionized hydrogen plasma onto a neutron star is calculated for accretion rates in excess of the Eddington limit. The coupled hydrodynamic and frequency integrated radiative transfer equations are solved on an Eulerian grid for these supercritical accretion flows. Our results indicate that steady state flows are limited to rates at or below the critical rate, with emergent luminosities equal to or less than the Eddington luminosity. Initially supercritical accretion rates generate a large pulse of radiation which reduces the accretion rate to the critical value and produces an extended quasi-static envelope.

  20. On the increase in rate of heat production caused by stretch in frog's skeletal muscle

    PubMed Central

    Clinch, N. F.

    1968-01-01

    1. The increase in rate of heat production caused by stretch in the unstimulated frog's sartorius (stretch response) has been measured using a conventional thermopile technique. 2. The rate of heat production was found constant between l0 (the distance in vivo between the tendons when the legs were in a straight line) and 1·2 l0, and rose rapidly above this length to reach 3-5 times the basal rate at 1·3 l0. Stretching to greater lengths appeared to damage the muscles. 3. The stretch response is increased by several substances which increase the duration of the active state. 4. Unlike the rate of heat production at l0, the stretch response is increased by procaine; while the presence of CO2 greatly reduces it. 5. Evidence is presented supporting the hypothesis that the stretch response is associated with the appearance of tension in the sarcolemma. ImagesFig. 2 PMID:5652883

  1. 78 FR 59775 - Blueberry Promotion, Research and Information Order; Assessment Rate Increase

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Marketing Service 7 CFR Part 1218 Blueberry Promotion, Research and Information Order; Assessment Rate... Blueberry Promotion, Research and Information Order (Order) to increase the assessment rate from $12 to $18..., assessments are collected from domestic producers and importers and used for research and promotion...

  2. 78 FR 8047 - Onions Grown in South Texas; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Agricultural Marketing Service 7 CFR Part 959 Onions Grown in South Texas; Increased Assessment Rate AGENCY... rate established for the South Texas Onion Committee (Committee) for the 2012-13 and subsequent fiscal periods from $0.025 to $0.03 per 50-pound equivalent of onions handled. The Committee locally...

  3. 76 FR 7095 - Avocados Grown in South Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Service 7 CFR Part 915 Avocados Grown in South Florida; Increased Assessment Rate AGENCY: Agricultural... rate established for the Avocado Administrative Committee (Committee), for the 2010-11 and subsequent fiscal periods from $0.27 to $0.37 per 55-pound bushel container of Florida avocados handled....

  4. The Effects of Increased Accountability Standards on Graduation Rates for Students with Disabilities

    ERIC Educational Resources Information Center

    Moore, Mitzi Lee

    2012-01-01

    This research sought to determine if unintended effects of increased accountability standards on graduation rates for students with disabilities existed. Data from one southeastern state were utilized in order to determine if graduation rates were impacted as a result of higher accountability standards. In addition, administrator attitudes on…

  5. Two-dimensional numerical simulations of supercritical accretion flows revisited

    SciTech Connect

    Yang, Xiao-Hong; Yuan, Feng; Bu, De-Fu; Ohsuga, Ken E-mail: fyuan@shao.ac.cn

    2014-01-01

    We study the dynamics of super-Eddington accretion flows by performing two-dimensional radiation-hydrodynamic simulations. Compared with previous works, in this paper we include the T {sub θφ} component of the viscous stress and consider various values of the viscous parameter α. We find that when T {sub θφ} is included, the rotational speed of the high-latitude flow decreases, while the density increases and decreases at the high and low latitudes, respectively. We calculate the radial profiles of inflow and outflow rates. We find that the inflow rate decreases inward, following a power law form of M-dot {sub in}∝r{sup s}. The value of s depends on the magnitude of α and is within the range of ∼0.4-1.0. Correspondingly, the radial profile of density becomes flatter compared with the case of a constant M-dot (r). We find that the density profile can be described by ρ(r)∝r {sup –p} and the value of p is almost same for a wide range of α ranging from α = 0.1 to 0.005. The inward decrease of inflow accretion rate is very similar to hot accretion flows, which is attributed to the mass loss in outflows. To study the origin of outflow, we analyze the convective stability of the slim disk. We find that depending on the value of α, the flow is marginally stable (when α is small) or unstable (when α is large). This is different from the case of hydrodynamical hot accretion flow, where radiation is dynamically unimportant and the flow is always convectively unstable. We speculate that the reason for the difference is because radiation can stabilize convection. The origin of outflow is thus likely because of the joint function of convection and radiation, but further investigation is required.

  6. Accretion, Early Thermal State and Differentiation of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Tobie, G.; Choblet, G.; Le Feuvre, M.

    2011-10-01

    For a better understanding of the thermal evolution of a growing icy satellite and of the conditions under which melting may occur, we developed a three-dimensional numerical model based on the Oedipus code, initially developed to solve the equations of thermal convection in a spherical geometry [11]. This numerical model characterizes the thermal evolution of an icy satellite during its accretion from a variety of plausible impactor population. For each impact, we consider the thermal effects due to the dissipation of the impactor's kinetic energy: After an impact, temperature locally increases deep in the impacted growing object and within the shallow ejecta blanket. As the icy moon grows, gravitational forces increase and impacts become more and more energetic. As the temperature increases below the impact site is proportional to the impact velocity, melting events areexpected tooccur at the end of the accretion once the icy moon reaches a critical size. In order to constrain this critical size, we simulate the growth and thermal evolution of icy bodies from a kilometer-size initial undifferentiated body to a size of order 2500 km from various populations of undifferentiated icy impactors and by assuming different orbital configurations for the growing body and different accretion rates. Preliminary results will be presented.

  7. Stretching increases heart rate variability in healthy athletes complaining about limited muscular flexibility.

    PubMed

    Mueck-Weymann, Michael; Janshoff, G; Mueck, H

    2004-02-01

    An increase in muscular flexibility, as well as a significant beneficial effect on heart rate and heart rate variability (HRV), was observed in healthy male athletes after performing a standardized 15-minute stretching-program over a period of 28 days. We believe the HRV increase to be due, at least in part, to the improved vagal and/or diminished sympathetic control. Therefore, we recommend stretching as an effective and gentle technique for health protection.

  8. The antiretrovirus drug 3'-azido-3'-deoxythymidine increases the retrovirus mutation rate.

    PubMed Central

    Julias, J G; Kim, T; Arnold, G; Pathak, V K

    1997-01-01

    It was previously observed that the nucleoside analog 5-azacytidine increased the spleen necrosis virus (SNV) mutation rate 13-fold in one cycle of retrovirus replication (V. K. Pathak and H. M. Temin, J. Virol. 66:3093-3100, 1992). Based on this observation, we hypothesized that nucleoside analogs used as antiviral drugs may also increase retrovirus mutation rates. We sought to determine if 3'-azido-3'-deoxythymidine (AZT), the primary treatment for human immunodeficiency virus type 1 (HIV-1) infection, increases the retrovirus mutation rate. Two assays were used to determine the effects of AZT on retrovirus mutation rates. The strategy of the first assay involved measuring the in vivo rate of inactivation of the lacZ gene in one replication cycle of SNV- and murine leukemia virus-based retroviral vectors. We observed 7- and 10-fold increases in the SNV mutant frequency following treatment of target cells with 0.1 and 0.5 microM AZT, respectively. The murine leukemia virus mutant frequency increased two- and threefold following treatment of target cells with 0.5 and 1.0 microM AZT, respectively. The second assay used an SNV-based shuttle vector containing the lacZ alpha gene. Proviruses were recovered as plasmids in Escherichia coli, and the rate of inactivation of lacZ alpha was measured. The results indicated that treatment of target cells increased the overall mutation rate two- to threefold. DNA sequence analysis of mutant proviruses indicated that AZT increased both the deletion and substitution rates. These results suggest that AZT treatment of HIV-1 infection may increase the degree of viral variation and alter virus evolution or pathogenesis. PMID:9151812

  9. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  10. Magnetized Accretion and Dead Zones in Protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Dzyurkevich, Natalia; Turner, Neal J.; Henning, Thomas; Kley, Wilhelm

    2013-07-01

    The edges of magnetically-dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically-active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically-active regions in a protostellar disk around a solar-type star, varying the parameters like dust-to-gas ratio. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish-tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freeze-out line. Here, we provide the fitting formula for the metal line and consider the cojoint impact of metal ans snow lines on the shape of the dead zone.

  11. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  12. TRUNCATION OF THE INNER ACCRETION DISK AROUND A BLACK HOLE AT LOW LUMINOSITY

    SciTech Connect

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-12-10

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R {sub in}) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R {sub in} is very close to the black hole at high and moderate luminosities (approx>1% of the Eddington luminosity, L {sub Edd}). Here, we report on X-ray observations of the black hole GX 339 - 4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L {sub Edd} and show that R {sub in} increases by a factor of >27 over the value found when GX 339 - 4 was bright. The exact value of R {sub in} depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R {sub in} > 35R{sub g} at i = 0{sup 0} and R {sub in} > 175R{sub g} at i = 30{sup 0}. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  13. Strong Role of Non-stationary Accretion in Spectral Transitions of X-ray Binaries and Implications for Revealing the Accretion Geometry and Broadband Radiation Mechanisms

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Yan, Zhen; Tang, Jing; Wu, Yuxiang

    Observations of spectral transitions from the hard state to the soft state in bright X-ray binaries show strong evidence that the rate-of-change of the mass accretion rate plays a dominant role in determining the luminosity at which the spectral transition occurs. This indicates that in many cases, especially accretion in transients during outbursts, the rate-of-change of the mass accretion rate is the primary parameter driving high energy phenomena. Although this goes beyond the scope of current stationary model of disk and jet, it tells us that it is the rate-of-change of the mass accretion rate that we need to trace observationally. Since state transition is a broadband phenomenon, multi-wavelength observations of spectral transitions of different rate-of-changes of mass accretion rate are expect to reveal the accretion geometry and broadband radiation mechanisms.

  14. Leptin Administration Favors Muscle Mass Accretion by Decreasing FoxO3a and Increasing PGC-1α in ob/ob Mice

    PubMed Central

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2009-01-01

    Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation. PMID:19730740

  15. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  16. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  17. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  18. 42 CFR 413.40 - Ceiling on the rate of increase in hospital inpatient costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... each cost reporting period, the ceiling is determined by multiplying the updated target amount, as... the ceiling. Rate-of-increase percentage is the percentage by which each hospital's target amount from the preceding Federal fiscal year is increased. Target amount is the per discharge (case)...

  19. 42 CFR 413.40 - Ceiling on the rate of increase in hospital inpatient costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... each cost reporting period, the ceiling is determined by multiplying the updated target amount, as... the ceiling. Rate-of-increase percentage is the percentage by which each hospital's target amount from the preceding Federal fiscal year is increased. Target amount is the per discharge (case)...

  20. Can early breastfeeding support increase the 6-8 week breastfeeding prevalence rate?

    PubMed

    Price, Linda

    2014-05-01

    Breastfeeding has significant health benefits for mothers and babies and is an important strategy to reduce health inequalities (UNICEF, 2010). The Baby Friendly Initiative, a strategy to increase breastfeeding rates, has been adopted by the trust. In line with the trust's priorities, the health visiting team initiated a project to increase the 6-8 breastfeeding prevalence rates. Breastfeeding mothers in a defined project area were offered breastfeeding support in their homes within the first postnatal week. Although the results after six months did demonstrate an overall increase in the 6-8 week prevalence rate of 5%, the monthly figures where disappointingly inconsistent and it was difficult to attribute the rise to the increased support offered. Nevertheless, the feedback from mothers who received support demonstrated that it was valued and had a positive impact on their confidence to continue to breastfeed.

  1. [Effect of temperature and salinity on intrinsic increasing rate of Moina mongolica Daddy (Cladocera: Moinidae) population].

    PubMed

    Wang, Y; He, Z

    2001-02-01

    The intrinsic increasing rate of Moina mongolica Daddy, a euryhaline cladocera species isolated from inland brackish lakes of northwestern China, was studied at 20 degrees C-33 degrees C and 5-40 ppt, respectively. The results showed that its intrinsic increasing rate (rm) increased with increasing temperature from 20 degrees C-30 degrees C, and sharply dropped with further increasing temperature up to 33 degrees C. The rm of M. mongolica was relatively high at low salinity, the highest at 10 ppt, but no significant difference at 20-40 ppt. Therefore, 25 degrees C-30 degrees C and 10 ppt could be optimal for the development of M. mongolica population, and its increasing potential would not be affected significantly by rearing this cladocera species in seawater for a long period.

  2. Terrestrial Planets Accreted Dry

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  3. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction

    PubMed Central

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish. PMID:27766150

  4. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction.

    PubMed

    Claësson, Débora; Wang, Tobias; Malte, Hans

    2016-01-01

    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish.

  5. Short-term variability of X-rays from accreting neutron star Vela X-1. II. Monte Carlo modeling

    SciTech Connect

    Odaka, Hirokazu; Khangulyan, Dmitry; Watanabe, Shin; Takahashi, Tadayuki; Tanaka, Yasuyuki T.; Makishima, Kazuo

    2014-01-01

    We develop a Monte Carlo Comptonization model for the X-ray spectrum of accretion-powered pulsars. Simple, spherical, thermal Comptonization models give harder spectra for higher optical depth, while the observational data from Vela X-1 show that the spectra are harder at higher luminosity. This suggests a physical interpretation where the optical depth of the accreting plasma increases with the mass accretion rate. We develop a detailed Monte Carlo model of the accretion flow, including the effects of the strong magnetic field (∼10{sup 12} G), both in geometrically constraining the flow into an accretion column and in reducing the cross section. We treat bulk-motion Comptonization of the infalling material as well as thermal Comptonization. These model spectra can match the observed broadband Suzaku data from Vela X-1 over a wide range of mass accretion rates. The model can also explain the so-called 'low state' in which the luminosity decreases by an order of magnitude. Here, thermal Comptonization should be negligible, so the spectrum is instead dominated by bulk-motion Comptonization.

  6. Accretion onto Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Herczeg, Gregory; Calvet, Nuria

    2016-09-01

    Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2-3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ˜3 Myr is modest in terms of stellar evolution, but is comparable to total disk reservoirs as estimated from millimeter-wave dust emission (˜10-2 M⊙). Pre-main-sequence accretion is not steady, encompassing timescales ranging from approximately hours to a century, with longer-timescale variations tending to be the largest. Accretion during the protostellar phase—while the protostellar envelope is still falling onto the disk—is much less well understood, mostly because the properties of the central obscured protostar are difficult to estimate. Kinematic measurements of protostellar masses with new interfometric facilities should improve estimates of accretion rates during the earliest phases of star formation.

  7. Increased Fall-Related Mortality Rates in New Mexico, 1999–2005

    PubMed Central

    Wendelboe, Aaron M.; Landen, Michael G.

    2011-01-01

    Objective In 2000, fall injuries affected 30% of U.S. residents aged ≥65 years and cost $19 billion. In 2005, New Mexico (NM) had the highest fall-related mortality rate in the United States. We described factors associated with these elevated fall-related mortality rates. Methods To better understand the epidemiology of fatal falls in NM, we used state and national (Web-based Injury Statistics Query and Reporting System) vital records data for 1999–2005 to identify unintentional falls that were the underlying cause of death. We calculated age-adjusted mortality rates, rate ratios (RRs), and 95% confidence intervals (CIs) by sex, ethnicity, race, and year. Results For 1999–2005 combined, NM's fall-related mortality rate (11.7 per 100,000 population) was 2.1 times higher than the U.S. rate (5.6 per 100,000 population). Elevated RRs persisted when stratified by sex (male RR=2.0, female RR=2.2), ethnicity (Hispanic RR=2.5, non-Hispanic RR=2.1), race (white RR=2.0, black RR=1.7, American Indian RR=2.3, and Asian American/Pacific Islander RR=3.1), and age (≥50 years RR=2.0, <50 years RR=1.2). Fall-related mortality rates began to increase exponentially at age 50 years, which was 15 years younger than the national trend. NM non-Hispanic individuals had the highest demographic-specific fall-related mortality rate (11.8 per 100,000 population, 95% CI 11.0, 12.5). NM's 69.5% increase in fall-related mortality rate was approximately twice the U.S. increase (31.9%); the increase among non-Hispanic people (86.2%) was twice that among Hispanic people (43.5%). Conclusions NM's fall-related mortality rate was twice the U.S. rate; exhibited a greater increase than the U.S. rate; and persisted across sex, ethnicity, and race. Fall-related mortality disproportionately affects a relatively younger population in NM. Characterizing fall etiology will assist in the development of effective prevention measures. PMID:22043102

  8. Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta

    2015-08-01

    Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion

  9. [Deprivation versus importation: a model explaining the increase of suicide rates in custody].

    PubMed

    Frottier, P; Frühwald, S; Ritter, K; König, F

    2001-02-01

    High suicide rates in jail, lock-up or prison settings have given rise to a debate about whether suicides result chiefly from the type of people confined, or from the types of places they are confined in, the types of confinement. This is summarily framed by the terms of an associated debate in criminology, between importation and deprivation theory. This paper describes the importation versus deprivation theory, concerning the circumstances in Austrian prisons and jails. The article reports on all completed suicides over the period from 1947 to 1999 (n = 410). The increase of suicide rates in Austrian jails and prisons is significant over the last fifty years. While the rate was stable between 1947 and 1975, we have a significantly increasing rate since 1975. In 1975 there was an important legislational reform of the criminal law in Austria. The implications of this reform are discussed in the light of the importation/deprivation theory.

  10. Increased Substitution Rates Surrounding Low-Complexity Regions within Primate Proteins

    PubMed Central

    Lenz, Carolyn; Haerty, Wilfried; Golding, G. Brian

    2014-01-01

    Previous studies have found that DNA-flanking low-complexity regions (LCRs) have an increased substitution rate. Here, the substitution rate was confirmed to increase in the vicinity of LCRs in several primate species, including humans. This effect was also found among human sequences from the 1000 Genomes Project. A strong correlation was found between average substitution rate per site and distance from the LCR, as well as the proportion of genes with gaps in the alignment at each site and distance from the LCR. Along with substitution rates, dN/dS ratios were also determined for each site, and the proportion of sites undergoing negative selection was found to have a negative relationship with distance from the LCR. PMID:24572016

  11. Increasing exclusive breastfeeding rates in the well-baby population: an evidence-based change project.

    PubMed

    Davis, Susan Kinney; Stichler, Jaynelle F; Poeltler, Debra M

    2012-12-01

    This article describes an evidence-based project that increased the rate of exclusive breastfeeding in a well-baby population by providing breastfeeding basics to nursing staff on the Mother Infant Services (MIS) units. The clinical implications are that nurses' attitudes and care significantly influence exclusive breastfeeding rates. We contend that resources should be allocated to provide nurses with current evidence-based breastfeeding education.

  12. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.

  13. Apparent climatically induced increase of tree mortality rates in a temperate forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2007-01-01

    We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21 338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation. ?? 2007 Blackwell Publishing Ltd/CNRS.

  14. Variability of Phyllochron, Plastochron and Rate of Increase in Height in Photoperiod-sensitive Sorghum Varieties

    PubMed Central

    Clerget, B.; Dingkuhn, M.; Gozé, E.; Rattunde, H. F. W.; Ney, B.

    2008-01-01

    Background and Aims West African sorghum (Sorghum bicolor) varieties are generally highly photoperiod-sensitive, which is a necessary adaptation to the variable onset date of the rainy season and the variable dates of sowing in the savannah zone. Depending on sowing date, plants can produce from 12 to >40 leaves on the main culm, with height varying from 1 m to more than 5 m. The present study aimed to better understand the complex phenology of these variables. Methods A 2-year series of monthly sowings of three West African sorghum varieties was conducted near Bamako, Mali. Drought stress was avoided by supplemental irrigation. Rate of initiation of primordia at the stem apex was recorded, together with rate of leaf emergence and increase in plant height. Key Results Leaf initiation and appearance rates (plastochron−1 and phyllochron−1) were constant for a given sowing date in cases where less than 20 leaves were produced (generally observed with late sowing dates). In contrast, rates were bilinear for early sowing dates, for which plants produced more than 20 leaves. The secondary rates, which occurred from the 20th leaf onwards, were only half of the initial rate. Plastochron and phyllochron showed large variations among sowing dates, and were correlated with the rate of plant height increase. The initial plastochron and phyllochron were positively correlated with soil temperature and negatively correlated with both day length and day-to-day change of day length prevailing at plant emergence, but these factors explained only half of the variation observed. Conclusions Although they belong to different genetic groups and have different height and photoperiod sensitivity, the three varieties studied exhibited similar response patterns of development rates among phenological phases and seasons, with the local landrace showing the greatest variation due to its longer vegetative phase and longer stem internodes. The possible adaptive advantages in African

  15. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  16. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    PubMed

    Barenholz, Uri; Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  17. The influence of fatigue-induced increase in relative work rate on temperature regulation during exercise.

    PubMed

    Kacin, Alan; Golja, Petra; Tipton, Michael J; Eiken, Ola; Mekjavic, Igor B

    2008-05-01

    Heat-loss responses during steady-load exercise are affected by an increase in relative work rate induced by muscle ischaemia or hypoxaemia. The present study investigated whether progressive increases in perception of exertion and relative oxygen uptake %VO2peak which occur during prolonged steady-load exercise as a result of progressively increased peripheral fatigue, might also affect the regulation of heat loss responses and hence the exercise-induced increase in mean body temperature. Ten male subjects first performed a ramp-test to exhaustion on a cycle ergometer to evaluate their initial peak oxygen uptake (Control VO2peak). On a separate day, 120 min of cycling at constant power output corresponding to 60% of Control VO2peak was performed in thermoneutral environment (Ta = 23 degrees C, RH = 50%, wind speed = 5 m s(-1)). This was immediately followed by another maximal performance test (Fatigue VO2peak). During prolonged exercise, median (range) rating of perceived exertion for whole-body (RPEwb) increased (P < 0.01) from initial 3.5 (1-5) to 5.5 (5-9) at the end of exercise. Fatigue VO2peak and peak power output were 9 (5) and 10 (5)% lower (P < 0.01) when compared to control values. At the onset of exercise, heat production, mechanical efficiency, heat loss and mean body temperature increased towards asymptotic values, thereafter remained constant throughout the 120 min exercise, despite the concomitant progressive increase in relative work rate, as reflected in increased RPEwb and relative oxygen uptake. It is thus concluded that the increase in relative work rate induced predominantly by peripheral muscle fatigue affects neither the level of increase in mean body temperature nor the regulation of heat loss responses during prolonged steady-load exercise.

  18. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  19. Bright hot impacts by erupted fragments falling back on the Sun: a template for stellar accretion.

    PubMed

    Reale, Fabio; Orlando, Salvatore; Testa, Paola; Peres, Giovanni; Landi, Enrico; Schrijver, Carolus J

    2013-07-19

    Impacts of falling fragments observed after the eruption of a filament in a solar flare on 7 June 2011 are similar to those inferred for accretion flows on young stellar objects. As imaged in the ultraviolet (UV)-extreme UV range by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, many impacts of dark, dense matter display uncommonly intense, compact brightenings. High-resolution hydrodynamic simulations show that such bright spots, with plasma temperatures increasing from ~10(4) to ~10(6) kelvin, occur when high-density plasma (>10(10) particles per cubic centimeter) hits the solar surface at several hundred kilometers per second, producing high-energy emission as in stellar accretion. The high-energy emission comes from the original fragment material and is heavily absorbed by optically thick plasma, possibly explaining the lower mass accretion rates inferred from x-rays relative to UV-optical-near infrared observations of young stars.

  20. The Final Fates of Accreting Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Umeda, Hideyuki; Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki

    2016-10-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have a less concentrated structure than a fully convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit ≳105 M ⊙ derived for the fully convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with \\dot{M}≲ 0.1 {M}⊙ {{{yr}}}-1. With \\dot{M}≃ 0.3{--}1 {M}⊙ {{{yr}}}-1, the star becomes GR unstable during the helium-burning stage at M ≃ 2-3.5 × 105 M ⊙. In an extreme case with 10 {M}⊙ {{{yr}}}-1, the star does not collapse until the mass reaches ≃8.0 × 105 M ⊙, where it is still in the hydrogen-burning stage. We expect that BHs with roughly the same mass will be left behind after the collapse in all the cases.

  1. Increased Earthquake Rates in the Central and Eastern US Portend Higher Earthquake Hazards

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Rubinstein, J. L.; Ellsworth, W. L.; Mueller, C. S.; Michael, A. J.; McGarr, A.; Petersen, M. D.; Weingarten, M.; Holland, A. A.

    2014-12-01

    Since 2009 the central and eastern United States has experienced an unprecedented increase in the rate of M≥3 earthquakes that is unlikely to be due to natural variation. Where the rates have increased so has the seismic hazard, making it important to understand these changes. Areas with significant seismicity increases are limited to areas where oil and gas production take place. By far the largest contributor to the seismicity increase is Oklahoma, where recent studies suggest that these rate changes may be due to fluid injection (e.g., Keranen et al., Geology, 2013; Science, 2014). Moreover, the area of increased seismicity in northern Oklahoma that began in 2013 coincides with the Mississippi Lime play, where well completions greatly increased the year before the seismicity increase. This suggests a link to oil and gas production either directly or from the disposal of significant amounts of produced water within the play. For the purpose of assessing the hazard due to these earthquakes, should they be treated differently from natural earthquakes? Previous studies suggest that induced seismicity may differ from natural seismicity in clustering characteristics or frequency-magnitude distributions (e.g., Bachmann et al., GJI, 2011; Llenos and Michael, BSSA, 2013). These differences could affect time-independent hazard computations, which typically assume that clustering and size distribution remain constant. In Oklahoma, as well as other areas of suspected induced seismicity, we find that earthquakes since 2009 tend to be considerably more clustered in space and time than before 2009. However differences between various regional and national catalogs leave unclear whether there are significant changes in magnitude distribution. Whether they are due to natural or industrial causes, the increased earthquake rates in these areas could increase the hazard in ways that are not accounted for in current hazard assessment practice. Clearly the possibility of induced

  2. Increased cesarean section rate in Central Saudi Arabia: a change in practice or different maternal characteristics

    PubMed Central

    Al-Kadri, Hanan M; Al-Anazi, Sultana A; Tamim, Hani M

    2015-01-01

    Background Cesarean section (CS) rate has shown an alarming increase. We aimed in this work to identify factors contributing to the increasing rate of CS in central Saudi Arabia. Methods A retrospective cohort study was conducted at King Abdulaziz Medical City. Two groups of women were included (G1 and G2). G1 had delivered by CS during the year 2002 (CS rate 12%), and G2 had delivered by CS during the year 2009 (CS rate 20%). We compared the included women’s characteristics, neonates, CS indications, and complications. Data were analyzed using SPSS version 15 program. Odds ratios and confidence intervals were calculated to report precision of categorical data results. A P-value of ≤0.05 was considered significant. Results A total of 198 women were included in G1 and 200 in G2. Both groups had comparable maternal and fetal characteristics; however, absence of antenatal care has resulted in 70% increase in CS deliveries for G2, P=0.008, OR =0.30, CI 0.12–0.76. Previous vaginal surgeries have contributed to tenfold increase in CS deliveries for G2, P=0.006, OR =10.37, CI 1.32–81.78. G2 had eight times increased CS deliveries than G1 due to intrauterine growth restriction, P=0.02, OR =8.21, CI 1.02–66.25, and 80% increased risk of CS was based on maternal demand, P=0.02, OR =0.20, CI 0.02–1.71. Decision taken by less-experienced staff was associated with 2.5-fold increase in CS deliveries for G2, P=0.002, OR =2.62, CI 1.39–4.93. There was a significant increase in CS deliveries under regional analgesia and shorter duration of hospital stay for G2, P=0.0001 and P=0.001, respectively. G2 women had 2.75-fold increase in neonatal intensive care unit admission, P=0.03, OR =2.75, CI 1.06–7.15. Conclusion CS delivery rate significantly increased within the studied population. The increased rate of CS may be related to a change in physician’s practice rather than a change in maternal characteristics, and it appears to be reducible. PMID:26203285

  3. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana

    SciTech Connect

    Hatton, R.S.; DeLaune, R.D.; Patrick, W.H. Jr.

    1983-05-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in cores collected from fresh water, intermediate, brackish, and salt marshes in the Barataria Basin, Louisiana. Vertical accretion rates vary from about 1.3 cm.yr/sup -1/ in levee areas to 0.7 in backmarshes. Mineral sediment content of the marsh soil profile decreased with distance from the coast. Except in natural levee areas, marsh accretion rates are less than subsidence measured by water level data, however this alone cannot account for observed land-loss patterns in the basin area.

  4. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-07-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. An extended form of the Kaya identity relates the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) to the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse. To achieve an annual reduction rate in total emissions of -2% y-1 (which would halve emissions in 35 years) in the presence of a per-capita income growth rate of 2% y-1 and a population growth rate of 1% y-1, it is necessary to achieve a decline in total carbon intensity of the economy at a rate of around -5% y-1, three times the 1959 2006 average.

  5. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-11-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. To assess the combined roles of the biophysical and anthropogenic drivers of atmospheric CO2 growth, the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) is expressed as the sum of the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). The first three of these factors, the anthropogenic drivers, have therefore dominated the last, biophysical driver as contributors to accelerating CO2 growth. Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant further acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse.

  6. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  7. Increases in leach rate due to possible cracking in silicate glasses

    SciTech Connect

    Sang, J.C.; Barkatt, A.; Talmy, I.G.; Norr, M.K.

    1993-12-31

    Comparative studies of two multi-component silicate glasses have confirmed the observation that glasses with a relatively low SiO{sub 2} + AlO{sub 3/2} content may exhibit temporary increases in leach rate during the initial stages of their exposure to water. SEM studies of the leached glass surfaces strongly support the assumption that this phenomenon is due to cracking of the leached glass and a consequent increase of the exposed surface area.

  8. Increase in the embedding dimension in the heart rate variability associated with left ventricular abnormalities

    NASA Astrophysics Data System (ADS)

    Andrés, D. S.; Irurzun, I. M.; Mitelman, J.; Mola, E. E.

    2006-10-01

    In the present study, the authors report evidence that the existence of premature ventricular contractions increases the embedding dimension of the cardiac dynamics. They also analyze patients with congestive heart failure, a severe clinical condition associated with abnormal left ventricular function. Results also show an increase in the embedding dimension of the heart rate variability. They used electrocardiograms collected by themselves with quality standards that make them comparable with other databases.

  9. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  10. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    PubMed

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells.

  11. Patient-derived xenograft (PDX) tumors increase growth rate with time.

    PubMed

    Pearson, Alexander T; Finkel, Kelsey A; Warner, Kristy A; Nör, Felipe; Tice, David; Martins, Manoela D; Jackson, Trachette L; Nör, Jacques E

    2016-02-16

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer.

  12. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  13. Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

    PubMed Central

    Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik BW

    2015-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (p<10-6), glutamate increased by 4.7% (p<10-4) and creatine and phosphocreatine decreased by 15.2% (p<10-3). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  14. Recommendation for use of immunization information systems to increase vaccination rates.

    PubMed

    2015-01-01

    Based on findings of a systematic review, the Community Preventive Services Task Force recommends immunization information systems on the basis of strong evidence of effectiveness in increasing vaccination rates. Evidence is considered strong, based on the findings from 108 published articles and 132 conference abstracts showing that immunization information systems are effective in increasing vaccination rates and reducing vaccine-preventable disease through their capabilities to (1) create or support effective interventions such as client reminder and recall systems, provider assessment and feedback, and provider reminders; (2) generate and evaluate public health responses to outbreaks of vaccine-preventable disease; (3) facilitate vaccine management and accountability; (4) determine client vaccination status for decisions made by clinicians, health departments, and schools; and (5) aid surveillance and investigations on vaccination rates, missed vaccination opportunities, invalid dose administration, and disparities in vaccination coverage.

  15. 12 CFR 227.24 - Unfair acts or practices regarding increases in annual percentage rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Unfair acts or practices regarding increases in annual percentage rates. 227.24 Section 227.24 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM UNFAIR OR DECEPTIVE ACTS OR PRACTICES (REGULATION...

  16. Increasing Adult Learner Persistence and Completion Rates: A Guide for Student Affairs Leaders and Practitioners

    ERIC Educational Resources Information Center

    Culp, Marguerite McGann, Ed.; Dungy, Gwendolyn Jordan, Ed.

    2014-01-01

    More than a third of all undergraduate students are 25 or older, and their presence on college and university campuses is growing. However, institutions of higher learning are struggling to meet the needs of, and improve persistence and completion rates for, this significant student population. "Increasing Adult Learner Persistence and…

  17. Increasing Completion Rates in Norwegian Doctoral Training: Multiple Causes for Efficiency Improvements

    ERIC Educational Resources Information Center

    Kyvik, Svein; Olsen, Terje Bruen

    2014-01-01

    This article examines changes in completion rates and time-to-degree in Norwegian doctoral training over the last 30 years. A steadily increasing share of doctoral candidates holding a fellowship have been awarded their doctoral degree within five years; from 30% of those admitted in 1980 to 60% of those admitted 25 years later. Furthermore, the…

  18. 78 FR 23671 - Onions Grown in South Texas; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... From the Federal Register Online via the Government Publishing Office #0; #0;Rules and Regulations... / Monday, April 22, 2013 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing... Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment rate...

  19. Effect of Increased Academic Momentum on Transfer Rates: An Application of the Generalized Propensity Score

    ERIC Educational Resources Information Center

    Doyle, William R.

    2011-01-01

    Several studies have reported a positive impact of increased academic momentum on transfer from community colleges to four-year institutions. This result may be due to selection bias. Using data from the Beginning Postsecondary Students dataset, I test whether taking more credits in the first year has an impact on transfer rates among bachelor's…

  20. 78 FR 63128 - Dried Prunes Produced in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 993 Dried Prunes Produced in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This... the Agricultural Marketing Agreement Act of 1937, as amended (7 U.S.C. 601-674), hereinafter...

  1. The Effect of Increased Travel Reimbursement Rates on Health Care Utilization in the VA

    ERIC Educational Resources Information Center

    Nelson, Richard E.; Hicken, Bret; West, Alan; Rupper, Randall

    2012-01-01

    Purpose: The reimbursement rate that eligible veterans receive for travel to Department of Veterans Affairs (VA) facilities increased from 11 to 28.5 cents per mile on February 1, 2008. We examined the effect of this policy change on utilization of outpatient, inpatient, and pharmacy services, stratifying veterans based on distance from a VA…

  2. 78 FR 1715 - Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Agricultural Marketing Service 7 CFR Part 925 Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This... handled. The Committee locally administers the marketing order, which regulates the handling of...

  3. Using Norm-Based Appeals to Increase Response Rates in Evaluation Research: A Field Experiment

    ERIC Educational Resources Information Center

    Misra, Shalini; Stokols, Daniel; Marino, Anne Heberger

    2012-01-01

    A field experiment was conducted to test the effectiveness of norm-based persuasive messages for increasing response rates in online survey research. Participants in an interdisciplinary conference were asked to complete two successive postconference surveys and randomly assigned to one of two groups at each time point. The experimental group…

  4. 45 CFR 154.230 - Submission and posting of Final Justifications for unreasonable rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information available to the public on its Web site for at least three years. (d) CMS will post all Final Justifications on the CMS Web site. This information will remain available to the public on the CMS Web site for... submitted in the Preliminary Justification supporting the rate increase; and (2) Prominently post on its...

  5. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    PubMed

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P < 0.001), rHRIsig (2.25 ± 1.0 to 1.14 ± 0.7 beats · min(-1) · s(-1), P < 0.001) and rHRIexp (3.79 ± 2.07 to 1.98 ± 1.05 beats · min(-1) · s(-1), P = 0.001), and increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P < 0.001). Pre-post run difference in time-trial performance was related to difference in rHRIsig (r = 0.58, P = 0.04 and r = 0.75, P = 0.003) but not rHRIexp (r = -0.04, P = 0.9 and r = 0.27, P = 0.4) when controlling for differences in pre-exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  6. Strong Artificial Selection in Domestic Mammals Did Not Result in an Increased Recombination Rate

    PubMed Central

    Muñoz-Fuentes, Violeta; Marcet-Ortega, Marina; Alkorta-Aranburu, Gorka; Linde Forsberg, Catharina; Morrell, Jane M.; Manzano-Piedras, Esperanza; Söderberg, Arne; Daniel, Katrin; Villalba, Adrian; Toth, Attila; Di Rienzo, Anna; Roig, Ignasi; Vilà, Carles

    2015-01-01

    Recombination rates vary in intensity and location at the species, individual, sex and chromosome levels. Despite the fundamental biological importance of this process, the selective forces that operate to shape recombination rate and patterns are unclear. Domestication offers a unique opportunity to study the interplay between recombination and selection. In domesticates, intense selection for particular traits is imposed on small populations over many generations, resulting in organisms that differ, sometimes dramatically, in morphology and physiology from their wild ancestor. Although earlier studies suggested increased recombination rate in domesticates, a formal comparison of recombination rates between domestic mammals and their wild congeners was missing. In order to determine broad-scale recombination rate, we used immunolabeling detection of MLH1 foci as crossover markers in spermatocytes in three pairs of closely related wild and domestic species (dog and wolf, goat and ibex, and sheep and mouflon). In the three pairs, and contrary to previous suggestions, our data show that contemporary recombination rate is higher in the wild species. Subsequently, we inferred recombination breakpoints in sequence data for 16 genomic regions in dogs and wolves, each containing a locus associated with a dog phenotype potentially under selection during domestication. No difference in the number and distribution of recombination breakpoints was found between dogs and wolves. We conclude that our data indicate that strong directional selection did not result in changes in recombination in domestic mammals, and that both upper and lower bounds for crossover rates may be tightly regulated. PMID:25414125

  7. Insight into the Physical and Dynamical Processes that Control Rapid Increases in Total Flash Rate

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2015-01-01

    Rapid increases in total lightning (also termed "lightning jumps") have been observed for many decades. Lightning jumps have been well correlated to severe and hazardous weather occurrence. The main focus of lightning jump work has been on the development of lightning algorithms to be used in real-time assessment of storm intensity. However, in these studies it is typically assumed that the updraft "increases" without direct measurements of the vertical motion, or specification of which updraft characteristic actually increases (e.g., average speed, maximum speed, or convective updraft volume). Therefore, an end-to-end physical and dynamical basis for coupling rapid increases in total flash rate to increases in updraft speed and volume must be understood in order to ultimately relate lightning occurrence to severe storm metrics. Herein, we use polarimetric, multi-Doppler, and lightning mapping array measurements to provide physical context as to why rapid increases in total lightning are closely tied to severe and hazardous weather.

  8. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  9. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk; Bookhagen, Bodo; Wulf, Hendrik; Preusser, Frank; Strecker, Manfred R.

    2015-10-01

    The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and 10Be-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of ∼2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates.

  10. MODELING THE STAR-FORMING UNIVERSE AT z = 2: IMPACT OF COLD ACCRETION FLOWS

    SciTech Connect

    Khochfar, Sadegh; Silk, Joseph

    2009-07-20

    We present results of a semianalytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low V/{sigma} seen in various massive disk or disk-like galaxies, if we allow 18% of the accretion energy from cold flows to drive turbulence in gaseous disks at z = 2. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the number density of M-dot{sub *}>120 M{sub odot} yr{sup -1} galaxies in our model. In addition, it is necessary to increase the star formation efficiency. This can be achieved naturally in the porosity model, where star formation efficiency scales {proportional_to}{sigma}, which scales as cloud velocity dispersion. As cold accretion is the main driver for gas velocity dispersion in our model, star formation efficiency parallels cold accretion rates and allows fast conversion into stars. At z {approx} 2, we find a space density 10{sup -4} Mpc{sup -3} in star-forming galaxies with M-dot{sub *}>120 M{sub odot} yr{sup -1}, in better agreement than earlier estimates from SAMs. However, the fundamental relation between M-dot{sub *} and M {sub *} is still offset from the observed relation, indicating the need for possibly more efficient star formation at high-z perhaps associated with a role for active galactic nucleus (AGN) triggering.

  11. Cost-Sharing Rates Increase During Deep Recession: Preliminary Data From Greece

    PubMed Central

    Gouvalas, Athanasios; Igoumenidis, Michael; Theodorou, Mamas; Athanasakis, Kostas

    2016-01-01

    Background: Measures taken over the past four years in Greece to reduce pharmaceutical expenditure have led to significant price reductions for medicines, but have also changed patient cost-sharing rates for prescription drugs. This study attempts to capture the resulting increase in patients’ out-of-pocket (OOP) expenses for prescription drugs during the 2011-2014 period. Methods: The authors conducted a retrospective review of financial data derived from 39 883 prescriptions, dispensed at three randomly chosen pharmacies located in Lamia, central Greece. Results: The study recorded an average contribution rate per prescription as follows: 11.28% for 2011 (95% CI: 10.76-11.80), 14.10% for 2012, 19.97% for 2013, and 29.08% for 2014. Correspondingly, the mean patient charge per prescription for 2011 was €6.58 (95% CI: 6.22-6.94), €8.28 for 2012, €8.35 for 2013, and €10.87 for 2014. During the 2011-2014 period, mean percentage rate of patient contribution increased by 157.75%, while average patient charge per prescription in current prices increased by 65.22%. The use of a newly introduced internal reference price (IRP) system increased the level of prescription charge at a rate of 2.41% for 2012 (100% surcharge on patients), 26.24% for 2013 (49.95% on patients and 50.04% on the appropriate health insurance funds), and 47.72% for 2014 (85.06% on patients and 14.94% on funds). Conclusion: Increased cost-sharing rates for prescription drugs can reduce public pharmaceutical expenditure, but international experience shows that rising OOP expenses can compromise patients’ ability to pay, particularly when it comes to chronic diseases and vulnerable populations. Various suggestions could be effective in refining the cost-sharing approach by giving greater consideration to chronic patients, and to the poor and elderly. PMID:28005548

  12. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp.

    PubMed

    Casas, Jérôme; Body, Mélanie; Gutzwiller, Florence; Giron, David; Lazzari, Claudio R; Pincebourde, Sylvain; Richard, Romain; Llandres, Ana L

    2015-08-01

    Metabolic rate is a positive function of body weight, a rule valid for most organisms and the basis of several theories of metabolic ecology. For adult insects, however, the diversity of relationships between body mass and respiration remains unexplained. The aim of this study is to relate the respiratory metabolism of a parasitoid with body weight and foraging activity. We compared the metabolic rate of groups of starving and host-fed females of the parasitoid Eupelmus vuilleti recorded with respirometry for 7days, corresponding to the mean lifetime of starving females and over half of the lifetime of foraging females. The dynamics of carbohydrate, lipid and protein in the body of foraging females were quantified with biochemical techniques. Body mass and all body nutrients declined sharply from the first day onwards. By contrast, the CO2 produced and the O2 consumed increased steadily. Starving females showed the opposite trend, identifying foraging as the reason for the respiration increase of feeding females. Two complementary physiological processes explain the unexpected relationship between increasing metabolic rate and declining body weight. First, host hemolymph is a highly unbalanced food, and the excess nutrients (protein and carbohydrate) need to be voided, partially through excretion and partially through respiration. Second, a foraging young female produces eggs at an increasing rate during the first half of its lifetime, a process that also increases respiration. We posit that the time-varying metabolic rate contributions of the feeding and reproductive processes supplements the contribution of the structural mass and lead to the observed trend. We extend our explanations to other insect groups and discuss the potential for unification using Dynamic Energy Budget theory.

  13. Clump Accretion in Supergiant Fast X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Chase, Eve; Raymer, E.; Blondin, J. M.

    2014-01-01

    Supergiant Fast X-Ray Transients (SFXTs) are a subclass of High-Mass X-Ray Binaries that consist of a neutron star and OB supergiant donor star. These systems display short, bright x-ray flares lasting a few minutes to a few hours with luminosities reaching 1036 erg/s, several orders of magnitude larger than the quiescent luminosities of 1032 erg/s. The clumpy wind hypothesis has been proposed as a possible mechanism for these transient flares; in this model, a portion of the stellar wind from the donor star forms into clumps and is accreted onto the neutron star, inducing flares. We use high-resolution 3D hydrodynamic simulations to test the clumpy wind hypothesis, tracking the mass and angular momentum accretion rates to infer properties of the resulting x-ray flare and secular evolution of the neutron star rotation. Our results are significantly different from the predictions of Hoyle-Lyttleton Accretion (HLA) theory, which assume steady, laminar, axisymmetric flow. For example, an off-axis clump initiated with an impact parameter greater than the clump radius (for which HLA predicts no effect) produces a small spike in mass accretion and induces a long period of disk-like flow that dramatically reduces the accretion rate below the steady HLA value. The result is a brief, weak flare with a net decrease in total accreted mass compared with steady wind accretion accompanied by a substantial accretion of angular momentum.

  14. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  15. Increases in seismicity rate in the Tokyo Metropolitan area after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Ishibe, T.; Satake, K.; Sakai, S.; Shimazaki, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2013-12-01

    Abrupt increases in seismicity rate have been observed in the Kanto region, where the Tokyo Metropolitan area is located, after the 2011 off the Pacific coast of Tohoku earthquake (M9.0) on March 11, 2011. They are well explained by the static increases in the Coulomb Failure Function (ΔCFF) imparted by the gigantic thrusting while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration, post-seismic slip) may also contribute the rate changes. Because of various types of earthquakes with different focal mechanisms occur in the Kanto region, the receiver faults for the calculation of ΔCFF were assumed to be two nodal planes of small earthquakes before and after the Tohoku earthquake. The regions where seismicity rate increased after the Tohoku earthquake well correlate with concentration on positive ΔCFF (i.e., southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in the shallow crust of western Kanagawa, eastern Shizuoka, and southeastern Yamanashi including the Izu and Hakone regions). The seismicity rate has increased since March 11, 2011 with respect to the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988), suggesting that the rate increase was due to the stress increase by the Tohoku earthquake. Furthermore, the z-values immediately after the Tohoku earthquake show the minimum values during the recent 10 years, indicating significant increases in seismicity rate. At intermediate depth, abrupt increases in thrust faulting earthquakes are well consistent with the Coulomb stress increase. At shallow depth, the earthquakes with the T-axes of roughly NE-SW were activated probably due to the E-W extension of the overriding continental plate, and this is also well explained by the Coulomb stress increase. However, the activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern

  16. Pebble Accretion and the Diversity of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2016-07-01

    This paper examines the standard model of planet formation, including pebble accretion, using numerical simulations. Planetary embryos that are large enough to become giant planets do not form beyond the ice line within a typical disk lifetime unless icy pebbles stick at higher speeds than in experiments using rocky pebbles. Systems like the solar system (small inner planets and giant outer planets) can form if icy pebbles are stickier than rocky pebbles, and if the planetesimal formation efficiency increases with pebble size, which prevents the formation of massive terrestrial planets. Growth beyond the ice line is dominated by pebble accretion. Most growth occurs early, when the surface density of the pebbles is high due to inward drift of the pebbles from the outer disk. Growth is much slower after the outer disk is depleted. The outcome is sensitive to the disk radius and turbulence level, which control the lifetime and maximum size of pebbles. The outcome is sensitive to the size of the largest planetesimals because there is a threshold mass for the onset of pebble accretion. The planetesimal formation rate is unimportant, provided that some large planetesimals form while the pebbles remain abundant. Two outcomes are seen, depending on whether pebble accretion begins while the pebbles are still abundant. Either multiple gas-giant planets form beyond the ice line, small planets form close to the star, and a Kuiper-belt-like disk of bodies is scattered outward by the giant planets; or no giants form and the bodies remain an Earth-mass or smaller.

  17. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  18. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  19. Adiabatic decohesion in a thermoplastic craze thickening at constant or increasing rate

    NASA Astrophysics Data System (ADS)

    Leevers, Patrick S.; Godart, Marie-Aude

    When a crack in a thermally non-diffusive material is impact loaded—or propagates at high speed—a cohesive process which resists slow crack extension may itself cause decohesion by adiabatic heating. By assuming that decohesion ultimately occurs by low-energy disentanglement within a melt layer of critical thickness, the fracture resistance of craze-forming crystalline polymers can be estimated quantitatively. Previous estimates used a simple, thermomechanically linear representation of craze fibril drawing. This paper presents a more physically realistic, numerical formulation, and demonstrates it for constant craze thickening rate (as imposed by an ideal full-notch tension test) and for linearly increasing thickening rate (as at the tip of an impact-loaded or rapidly propagating crack). For a linear material, the numerical formulation gives results which asymptotically approach those from analytical solutions, as craze density approaches zero. In more realistic model polymers, the enthalpy of fusion increasingly delays decohesion as impact speed increases, although the temperature distribution of an endotherm appears to have little effect. Increasing molecular weight, heuristically associated with decreasing craze density and increasing structural dimension, increases the predicted impact fracture resistance. In every case, fracture resistance passes through a minimum as impact speed increases. The conclusions encourage the use of impact fracture tests, and discourage the use of the full-notch tension test, to assess the dynamic fracture resistance of a craze-forming polymer.

  20. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.

    PubMed

    Roshan-Ghias, Alireza; Lambers, Floor M; Gholam-Rezaee, Mehdi; Müller, Ralph; Pioletti, Dominique P

    2011-12-01

    A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.

  1. Rate increase disclosure and review: definitions of "individual market" and "small group market." Final rule.

    PubMed

    2011-09-06

    This final rule amends a May 23, 2011, final rule entitled "Rate Increase Disclosure and Review". The final rule provided that, for purposes of rate review only, definitions of "individual market" and "small group market" under State rate filing laws would govern even if those definitions departed from the definitions that otherwise apply under title XXVII of the Public Health Service Act (PHS Act). The preamble to the final rule requested comments on whether this policy should apply in cases in which State rate filing law definitions of "individual market" and "small group market" exclude association insurance policies that would be included in these definitions for other purposes under the PHS Act. In response to comments, this final rule amends the definitions of "individual market" and "small group market" that apply for rate review purposes to include coverage sold to individuals and small groups through associations even if the State does not include such coverage in its definitions of individual and small group market. This final rule also updates standards for health insurance issuers regarding disclosure and review of unreasonable premium increases under section 2794 of the Public Health Service Act.

  2. Effect of increasing mining rate on longwall coal mining - Western donbass case study

    NASA Astrophysics Data System (ADS)

    Sdvyzhkova, Olena; Patyńska, Renata

    2016-03-01

    This paper presents the problems associated with the rapid change of the rock stress-strain state in terms of increasing the rate of coal mining. Parameters of the roof collapse are determined depending on the rate of a longwall advancing under conditions of poor rocks. Statistical data are processed to obtain a general trend concerning the mining rate impact on the roof collapse. The statistical strength theory is applied to explain the increase in mined-out space and the size of hanging roof behind a coal face. Numerical simulation is carried out to determine a critical size of mined-out space that provokes a roof collapse. The area of yielded rocks is outlined using the criterion developed taking into account the rate of longwall advancing. A general regularity is obtained to determine the roof collapse parameters. The developed technics gives a possibility to predict the moment of general roof collapse at the initial stage of longwalling to prevent the negative effect of the rapid stress redistribution provoking joints propagation and intensive gas release. The estimation of the rock stress-strain state considering the rate of mining operations can be useful for tasks related to a new technology implementation. The statistical strength theory and failure criterion applied together provides adequate planning of mining activities and the assessment of natural hazards.

  3. Increase in Suicide Rates by Hanging in the Population of Tabasco, Mexico between 2003 and 2012

    PubMed Central

    Hernández-Alvarado, Mervyn Manuel; González-Castro, Thelma Beatriz; Tovilla-Zárate, Carlos Alfonso; Fresán, Ana; Juárez-Rojop, Isela E.; López-Narváez, María Lilia; Villar-Soto, Mario; Genis-Mendoza, Alma

    2016-01-01

    Background: Worldwide, the suicide rate is decreasing. To examine changes in the rates of completed suicide in the Mexican population from 2003 to 2012, we analyzed these changes according to: (i) the method of suicide; (ii) age group and (iii) gender. Methods: The data analyzed were obtained from governmental organizations from the State of Tabasco, Mexico. The data provided 1836 cases of subjects born and residing in Tabasco, who completed suicide in this state. Results: Suicide by hanging was a common choice of suicide method for Mexicans. The rate of suicide by hanging increased from 5.80 to 6.49 per 100,000 persons between 2003 and 2012, a rate percentage increase of 11.89%. Conclusions: Hanging was found to be the most common choice of suicide in the Mexican population, probably because the materials required are easily available and the method does not require complicated techniques, especially in the 55–64 age group. Strategies for prevention and intervention should be developed for the Mexican population considering suicide rates by age group and gender. PMID:27258292

  4. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  5. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications.

    PubMed

    Tank, David C; Eastman, Jonathan M; Pennell, Matthew W; Soltis, Pamela S; Soltis, Douglas E; Hinchliff, Cody E; Brown, Joseph W; Sessa, Emily B; Harmon, Luke J

    2015-07-01

    Our growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events. Diversification rates have been incredibly heterogeneous throughout the evolutionary history of angiosperms and reveal a pattern of 'nested radiations' - increases in net diversification nested within other radiations. This pattern in turn generates a negative relationship between clade age and diversity across both families and orders. We suggest that stochastically changing diversification rates across the phylogeny explain these patterns. Finally, we demonstrate significant statistical support for the WGD radiation lag-time model. Across angiosperms, nested shifts in diversification led to an overall increasing rate of net diversification and declining relative extinction rates through time. These diversification shifts are only rarely perfectly associated with WGD events, but commonly follow them after a lag period.

  6. Gamete cytogenetic study in couples with implantation failure: aneuploidy rate is increased in both couple members

    PubMed Central

    Hammoud, I.; Molina-Gomes, D.; Wainer, R.; Bergere, M.; Albert, M.; Bailly, M.; de Mazancourt, P.; Selva, J.

    2008-01-01

    Purpose Implantation failure is known to be associated with an increased risk of aneuploidy in embryos, a situation leading to a pre-implantation genetic screening, not allowed in different countries like France. Our aim was to evaluate the gamete aneuploidy incidence in this context, using first polar body and spermatozoa aneuploidy screening. Methods Three groups were considered: 11 couples with pregnancy obtained after IVF for female infertility (group 1); 20 couples with pregnancy obtained after IVF for male infertility (group 2); and 35 couples with implantation failure (group 3). In group 3, 28 couples treated by ICSI volunteered for first polar body analysis (PB1). Results Spermatozoa aneuploidy rate was increased in groups 2 (1.6%) and 3 (2.1%) in comparison to group 1 (0.6%). PB1 aneuploidy rate was 35.4% in group 3. Finally, eight couples (32%) had no particular chromosomal risk in gametes, 15/25 (60%) presented an increased spermatic (>2%) or oocyte (>1/3) aneuploidy rate, and 2/25 (8%) had both. Conclusion Those results confirm that implantation failure has a heterogeneous origin, that gamete chromosome abnormality rate is one of the major contributing factors, and that 1st Polar body and spermatozoa aneuploidy screening or pre-implantation genetics screening may be indicated for these couples. PMID:18972203

  7. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates

    PubMed Central

    Neidell, Matthew; Chillrud, Steven; Yan, Beizhan; Stute, Martin; Howarth, Marilyn; Saberi, Pouné; Fausti, Nicholas; Penning, Trevor M.; Roy, Jason; Propert, Kathleen J.; Panettieri, Reynold A.

    2015-01-01

    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses. PMID:26176544

  8. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates.

    PubMed

    Jemielita, Thomas; Gerton, George L; Neidell, Matthew; Chillrud, Steven; Yan, Beizhan; Stute, Martin; Howarth, Marilyn; Saberi, Pouné; Fausti, Nicholas; Penning, Trevor M; Roy, Jason; Propert, Kathleen J; Panettieri, Reynold A

    2015-01-01

    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses.

  9. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    PubMed

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  10. Face-on accretion onto a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2016-10-01

    ) accretion of material with no azimuthal angular momentum. Our study, as well as previous work, suggests that the former, dominant process is mainly caused by numerical, rather than physical effects, while the latter is not. The latter process, as expected theoretically, causes the disc to become more compact and increases the surface density profile considerably at smaller radii. Conclusions: The disc size is determined in the first place by the ram pressure exerted by the flow when it first hits the disc. Further evolution is governed by the decrease in the specific angular momentum of the disc as it accretes material with no azimuthal angular momentum. Even taking into account the uncertainties in our simulations and the result that the loading rate is within a factor two of a simple geometric estimate, the size and lifetime of the disc are probably not sufficient to accrete the amount of mass required in the early disc accretion scenario. An animation of the simulation is available at http://www.aanda.org

  11. Desensitization of functional µ-opioid receptors increases agonist off-rate.

    PubMed

    Williams, John T

    2014-07-01

    Desensitization of µ-opioid receptors (MORs) develops over 5-15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein-coupled K(+) channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu(5)]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity.

  12. Favorable Trends for a Decade: Increasing Pass Rates on The American Board of Anesthesiology Examinations

    PubMed Central

    Falcone, John L.

    2015-01-01

    Background There have been some apparent increasing pass rates on the American Board of Anesthesiology Part 1 (written) and Part 2 (oral) examinations in the setting of a transition in examination format. The aim of the study is to evaluate the nature of these trends, hypothesizing that these increasing pass rate trends are significant. Methods In this retrospective study from 2003-2012, the first-attempt examinee pass rates on the Part 1 and Part 2 examinations were obtained from the American Board of Anesthesiology website. To evaluate the cohort of examinees, the mean United States Medical Licensing Examination scores of residents matched to anesthesia programs were also obtained. To evaluate trends over time, simple linear regression was performed with the academic year as the independent variable and examination outcome as the dependent variable, using an α = 0.05. Results The median annual pass rate on the Part 1 examination was 85.5% (Interquartile range [82.75% - 87.75%]). Regression analysis showed that the slope of the least-squares regression line was greater than zero (p = 0.008). The median annual pass rate on the Part 2 examination was 81.5% (Interquartile range [77.25% - 84.75]). Regression analysis showed that the slope of the least-squares regression line was greater than zero (p < 0.001). Regression analysis also showed increasing United States Medical Licensing Examination scores for the incoming anesthesia residents (p = 0.01). Conclusions There have been significant increasing trends on the American Board of Anesthesiology Part 1 and Part 2 examinations over the last ten years. PMID:27175408

  13. Hoyle-Lyttleton Accretion from a Planar Wind

    NASA Astrophysics Data System (ADS)

    Raymer, Eric

    2014-01-01

    Two-dimensional hydrodynamic simulations of Hoyle-Lyttleton accretion have informed predictions about the evolution of wind-driven accretion systems for over two decades. These simulations frequently exhibit dramatic nonlinear behavior such as the flip-flop instability and the formation of transient accretion disks. During disk accretion, the mass accretion rate is suppressed and angular momentum accretion occurs at quasi-Keplerian rates. These results have been used to interpret neutron star accretion from the equatorially enhanced wind of a Be star in Be/X-ray Binaries. We employ large-scale hydrodynamic simulations to investigate whether the flip-flop instability is possible in three dimensions or is simply a consequence of the restrictions on a 2D flow. We do not observe the flip-flop instability in 3D for any values of the wind scale height or density. Moreover, the angular momentum vector of the accreting gas is typically found to be in the plane of the disk wind rather than perpendicular to it as one might expect based on the results of 2D planar simulations. We measure large-scale asymmetries about the plane of the disk wind that arise due to rotational flow near the accretor. Gas is driven above and below the plane, where it interacts with the bow shock and results in a time-varying shock structure. Winds with scale heights of 0.25 Ra enter locked rotation modes that remain stable for the duration of our computational runs. During this phase, the mass accretion rate is suppressed by up to two orders of magnitude below the analytical prediction and angular momentum accretion occurs at sub-Keplerian values.

  14. Roche Potential with Luminous Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Hanamoto, Keishi

    2002-12-01

    The radiative environments of an interacting binary, which contains a luminous accretion disk, are investigated. The disk radiation field has no effect in the direction of the orbital plane, while it significantly affects in the polar direction. As the disk luminosity increases, the Roche potential around the compact star becomes hollow in the polar direction. It further crashes toward the pole, and a cone of avoidance appears at the normalized luminosity Γd ≡ Ld/LE = 0.5, where Ld is the disk luminosity and LE the Eddington luminosity of the compact star. The disk corona, the wind-fed accretion flow, and the common envelope suffer a remarkable influence by the luminous disk in active binaries. Of these, the wind-fed accretion is briefly discussed.

  15. Fingering Convection and its Consequences for Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vauclair, Sylvie; Vauclair, Gérard; Deal, Morgan; Wachlin, F. C.

    2015-06-01

    A number of white dwarf stars show absoption lines of heavy elements in their spectra. Many of them also exhibit infra-red excess in their spectral energy distribution. These observations prove that these white dwarfs are surrounded by an orbiting debris disk resulting from the disruption of rocky planetesimals, remnants of the primordial planetary system. Part of the material from the debris disk is accreted onto the white dwarfs, explaining the presence of heavy elements in their outer layers. Previous attempts to estimate the accretion rates have overlooked the importance of the fingering convection. The fingering convection is an instability triggered by the accumulation in the white dwarf outer layers of material heavier than the underlying H-rich (for the DA) or the He-rich (for the DB) composition. The fingering convection induces a deep mixing of the accreted material. Our preliminary simulations of the fingering convection show that the effect may be important in DA white dwarfs. The accretion rates needed in order to reproduce the observed heavy element abundances exceed by order of magnitudes the accretion rates estimated when this extra-mixing is ignored. By contrast, in the cases of the DB white dwarfs that we have considered in our simulations the fingering convection either does not occur or has very little effects on the derived accretion rates. We have undertaken a systematic exploration of the consequences of the fingering convection in accreting white dwarfs.

  16. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  17. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits

    PubMed Central

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-01

    Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins

  18. The rate of muscle temperature increase during acute whole-body vibration exercise.

    PubMed

    Cochrane, D J; Stannard, S R; Sargeant, A J; Rittweger, J

    2008-07-01

    This study compared the rate of muscle temperature (Tm) increase during acute whole-body vibration (WBV), to that of stationary cycling and passive warm-up. Additionally we wanted to determine if the purported increase in counter-movement jump and peak power cycling from acute WBV could be explained by changes in muscle temperature. Eight active participants volunteered for the study, which involved a rest period of 30 min to collect baseline measures of muscle, core, skin temperature, heart rate (HR), and thermal leg sensation (TLS), which was followed by three vertical jumps and 5 s maximal cycle performance test. A second rest period of 40 min was enforced followed by the intervention and performance tests. The change in Tm elicited during cycling was matched in the hot bath and WBV interventions. Therefore cycling was performed first, proceeded by, in a random order of hot bath and acute WBV. The rate of Tm was significantly greater (P < 0.001) during acute WBV (0.30 degree C min(-1)) compared to cycle (0.15 degree C min(-1)) and hot bath (0.09 degree C min(-1)) however there was no difference between the cycle and hot bath, and the metabolic rate was the same in cycling and WBV (19 mL kg(-1) min(-1)). All three interventions showed a significant (P < 0.001) increase in countermovement jump peak power and height. For the 5 s maximal cycle test (MIC) there were no significant differences in peak power between the three interventions. In conclusion, acute WBV elevates Tm more quickly than traditional forms of cycling and passive warm-up. Given that all three warm-up methods yielded the same increase in peak power output, we propose that the main effect is caused by the increase in Tm.

  19. Unstable mass-outflows in geometrically thick accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Okuda, Toru; Das, Santabrata

    2015-10-01

    Accretion flows around black holes generally result in mass-outflows that exhibit irregular behaviour quite often. Using 2D time-dependent hydrodynamical calculations, we show that the mass-outflow is unstable in the cases of thick accretion flows such as the low angular momentum accretion flow and the advection-dominated accretion flow. For the low angular momentum flow, the inward accreting matter on the equatorial plane interacts with the outflowing gas along the rotational axis and the centrifugally supported oblique shock is formed at the interface of both the flows, when the viscosity parameter α is as small as α ≤ 10-3. The hot and rarefied blobs, which result in the eruptive mass-outflow, are generated in the inner shocked region and grow up towards the outer boundary. The advection-dominated accretion flow attains finally in the form of a torus disc with the inner edge of the disc at 3Rg ≤ r ≤ 6Rg and the centre at 6Rg ≤ r ≤ 10Rg, and a series of hot blobs is intermittently formed near the inner edge of the torus and grows up along the outer surface of the torus. As a result, the luminosity and the mass-outflow rate are modulated irregularly where the luminosity is enhanced by 10-40 per cent and the mass-outflow rate is increased by a factor of few up to 10. We interpret the unstable nature of the outflow to be due to the Kelvin-Helmholtz instability, examining the Richardson number for the Kelvin-Helmholtz criterion in the inner region of the flow. We propose that the flare phenomena of Sgr A* may be induced by the unstable mass-outflow as is found in this work.

  20. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates

    SciTech Connect

    Kroener, A. ); Eyal, M.; Eyal, Y. )

    1990-06-01

    The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodes elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.

  1. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  2. High-Intensity Inspiratory Protocol Increases Heart Rate Variability in Myocardial Revascularization Patients

    PubMed Central

    Caruso, Flavia Cristina Rossi; Simões, Rodrigo Polaquini; Reis, Michel Silva; Guizilini, Solange; Alves, Vera Lucia dos Santos; Papa, Valeria; Arena, Ross; Borghi-Silva, Audrey

    2016-01-01

    Objective: To evaluate heart rate variability during an inspiratory muscle endurance protocol at three different load levels [30%, 60% and 80% of maximal inspiratory pressure], in patients who had previously undergone coronary artery bypass grafting. Methods: Nineteen late postoperative myocardial revascularization patients participating in a cardiovascular rehabilitation program were studied. Maximal inspiratory pressure maneuvers were performed. An inspiratory muscle endurance protocol at 30%, 60% and 80% of maximal inspiratory pressure was applied for four minutes each, in random order. Heart rate and RR intervals were recorded and heart rate variability was analyzed by time (RMSSD-the mean of the standard deviations for all R-R intervals, and RMSM-root-mean square differences of successive R-R intervals) and frequency domains indices (high and low frequency) in normalized units. ANOVA for repeated measurements was used to compare heart rate variability indices and Student t-test was used to compare the maximal inspiratory pressure and maximal expiratory pressure values. Results: Heart rate increased during performance of maximal respiratory pressures maneuvers, and the maximal inspiratory pressure and maximal expiratory pressure mean values were significantly lower than predicted values (P<0.05). RMSSD increased significantly at 80% in relation to rest and 30% of maximal inspiratory pressure and RMSM decreased at 30% and 60% of maximal inspiratory pressure in relation to rest (P<0.05). Additionally, there was significant and progressive decrease in low frequency and increase in high frequency at 30%, 60% and 80% of maximal inspiratory pressure in relation to the resting condition. Conclusion: These results suggest that respiratory muscle training at high intensities can promote greater parasympathetic activity and it may confer important benefits during a rehabilitation program in post-coronary artery bypass grafting. PMID:27074273

  3. Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites

    PubMed Central

    Kouznetsova, Maria; Huang, Xiaoyu; Ma, Jing; Lessner, Lawrence; Carpenter, David O.

    2007-01-01

    Background Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes. Objective The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes. Methods We determined the number of hospitalized patients 25–74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993–2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs (“POP” sites); ZIP codes containing hazardous waste sites but with wastes other than POPs (“other” sites); and ZIP codes without any identified hazardous waste sites (“clean” sites). Results Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and “other” sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15–1.32] and 1.25 (95% CI, 1.16–1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26–1.47) compared to clean sites. Conclusions After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites. PMID:17366823

  4. Inception of ice accretion by ice crystal impact

    NASA Astrophysics Data System (ADS)

    Löwe, Jens; Kintea, Daniel; Baumert, Arne; Bansmer, Stephan; Roisman, Ilia V.; Tropea, Cameron

    2016-09-01

    In this experimental and theoretical study the ice accretion phenomena on a heated cylinder in Braunschweig Icing Wind Tunnel are investigated. The ice crystal size, velocity, the liquid-to-total mass ratio are accurately controlled. The evolution of the cylinder temperature, the time required for the inception of the ice accretion, and the ice accretion rate are measured for various operating conditions. The surface temperature of the solid target is determined by balancing the heating power in the wall and the cooling effect of the stream of ice particles. We have discovered that the inception of the ice crystal accretion is determined by the instant when the surface temperature of the heated target reduces to the freezing temperature. This result will help to model the phenomena of ice crystal accretion.

  5. Techniques for increasing the update rate of real-time dynamic computer graphic displays

    NASA Technical Reports Server (NTRS)

    Kahlbaum, W. M., Jr.

    1986-01-01

    This paper describes several techniques which may be used to increase the animation update rate of real-time computer raster graphic displays. The techniques were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. The first technique involves pre-processing of the next animation frame while the previous one is being erased from the screen memory. The second technique involves the use of a parallel processor, the AGG4, for high speed character generation. The description of the AGG4 includes the Barrel Shifter which is a part of the hardware and is the key to the high speed character rendition. The final result of this total effort was a four fold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  6. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park

    USGS Publications Warehouse

    Smoak, Joseph M.; Breithaupt, Joshua L.; Smith, Thomas J.; Sanders, Christian J.

    2013-01-01

    The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr−1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr−1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m−2 yr−1 within the storm deposit compared to 151 and 168 g m−2 yr−1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

  7. Particle In-Flight Velocity and Dispersion Measurements at Increasing Particle Feed Rates in Cold Spray

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Yin, S.; Lupoi, R.

    2017-01-01

    Cold spray (CS) is attracting interest of research and industry due to its rapid, solid-state particle deposition process and respective advantages over conventional deposition technologies. The acceleration of the particles is critical to the efficiency of CS, and previous investigations rarely consider the particle feed rate. However, because higher particle loadings are typically used in the process, the effect of this cannot be assumed negligible. This study therefore investigates the particle velocities in the supersonic jet of an advanced CS system at low- and high pressure levels and varying particle feed rates using particle image velocimetry. The particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that the average particle velocity noticeably decreases with increasing particulate loading in all cases. The velocity distribution and particle dispersion were also observed to be influenced by the feed rate. Effects are driven by both mass loading and volume fraction, depending on the feedstock's particle velocity parameter. Increased particle feed rates hence affect the magnitude and distribution of impact velocity and consequently the efficiency of CS. In particular, numerical models neglecting this interconnection are required to be further improved, based on these experimental studies.

  8. Applying compressive sensing to TEM video: A substantial frame rate increase on any camera

    SciTech Connect

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-13

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.

  9. Applying compressive sensing to TEM video: A substantial frame rate increase on any camera

    DOE PAGES

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; ...

    2015-08-13

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integratedmore » into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.« less

  10. Latitudinal difference in biodiversity caused by higher tropical rate of increase.

    PubMed

    Buzas, Martin A; Collins, Laurel S; Culver, Stephen J

    2002-06-11

    Tropical diversity has generally exceeded temperate diversity in the present and at points in the past, but whether measured differences have remained relatively constant through time has been unknown. Here we examine tropical vs. temperate diversities from the Neogene to Recent using the within-habitat diversity measure Fisher's alpha of Cenozoic benthic foraminifera from the temperate Central Atlantic Coastal Plain and the tropical Central American Isthmus. During the Neogene, the mean value of alpha at temperate latitudes increased 1.4 times or 40%, whereas in the tropics it increased 2.1 times or 106%. Thus, while both areas exhibit an increase of diversity with time, past differences in the rate of increase have generated a more pronounced gradient today (164%) than existed in the Miocene (80%). These data disagree with the suggestion that the world reached an equilibrium number of species during the Paleozoic and demonstrate the need to consider both temperate and tropical components in global diversity assessments.

  11. Hematopoietic cell transplantation activity of Turkey in 2014: Ongoing increase in HCT rates.

    PubMed

    Tekgündüz, Emre; Şencan, İrfan; Kapuağası, Arif; Ünal, Doğan; Öztürk, Murat; Gümüş, Eyüp; Göker, Hakan; Tavil, Emine Betül; Ertem, Mehmet; Çetin, Mustafa; Arat, Mutlu; Soysal, Teoman; Karakaşlı, Osman; Sur, Halil Yılmaz; Yeşilipek, Akif; Ferhanoğlu, Burhan; Uçkan, Duygu; İlhan, Osman; Altuntaş, Fevzi

    2016-02-01

    Hematopoietic cell transplantation is an established treatment option with curative potential for a variety of clinical conditions. The last decade especially witnessed a remarkable increase in HCT activity in Turkey. In 2014, 696 pediatric and 2631 adult (total 3327) HCT were performed in Turkey. Corresponding transplant rates per 10 million inhabitants for autologous-HCT and allogeneic-HCT were 226 and 202, respectively. Total HCT procedures in Turkey increased 177% in the last 5 years and 791% in the last 14 years. This report focuses mainly on HCT activity of Turkey in 2014 based on the national HCT registry and presents a general picture of national HCT activity.

  12. Lamivudine/Adefovir Treatment Increases the Rate of Spontaneous Mutation of Hepatitis B Virus in Patients

    PubMed Central

    Pereira-Gómez, Marianoel; Bou, Juan-Vicente; Andreu, Iván; Sanjuán, Rafael

    2016-01-01

    The high levels of genetic diversity shown by hepatitis B virus (HBV) are commonly attributed to the low fidelity of its polymerase. However, the rate of spontaneous mutation of human HBV in vivo is currently unknown. Here, based on the evolutionary principle that the population frequency of lethal mutations equals the rate at which they are produced, we have estimated the mutation rate of HBV in vivo by scoring premature stop codons in 621 publicly available, full-length, molecular clone sequences derived from patients. This yielded an estimate of 8.7 × 10−5 spontaneous mutations per nucleotide per cell infection in untreated patients, which should be taken as an upper limit estimate because PCR errors and/or lack of effective lethality may inflate observed mutation frequencies. We found that, in patients undergoing lamivudine/adefovir treatment, the HBV mutation rate was elevated by more than sixfold, revealing a mutagenic effect of this treatment. Genome-wide analysis of single-nucleotide polymorphisms indicated that lamivudine/adefovir treatment increases the fraction of A/T-to-G/C base substitutions, consistent with recent work showing similar effects of lamivudine in cellular DNA. Based on these data, the rate at which HBV produces new genetic variants in treated patients is similar to or even higher than in RNA viruses. PMID:27649318

  13. Increased mortality rate and suicide in Swedish former elite male athletes in power sports.

    PubMed

    Lindqvist, A-S; Moberg, T; Ehrnborg, C; Eriksson, B O; Fahlke, C; Rosén, T

    2014-12-01

    Physical training has been shown to reduce mortality in normal subjects, and athletes have a healthier lifestyle after their active career as compared with normal subjects. Since the 1950s, the use of anabolic androgenic steroids (AAS) has been frequent, especially in power sports. The aim of the present study was to investigate mortality, including causes of death, in former Swedish male elite athletes, active 1960-1979, in wrestling, powerlifting, Olympic lifting, and the throwing events in track and field when the suspicion of former AAS use was high. Results indicate that, during the age period of 20-50 years, there was an excess mortality of around 45%. However, when analyzing the total study period, the mortality was not increased. Mortality from suicide was increased 2-4 times among the former athletes during the period of 30-50 years of age compared with the general population of men. Mortality rate from malignancy was lower among the athletes. As the use of AAS was marked between 1960 and 1979 and was not doping-listed until 1975, it seems probable that the effect of AAS use might play a part in the observed increased mortality and suicide rate. The otherwise healthy lifestyle among the athletes might explain the low malignancy rates.

  14. Heat Shock Factor Increases the Reinitiation Rate from Potentiated Chromatin Templates†

    PubMed Central

    Sandaltzopoulos, Raphael; Becker, Peter B.

    1998-01-01

    Transcription by RNA polymerase II is highly regulated at the level of initiation and elongation. Well-documented transcription activation mechanisms, such as the recruitment of TFIID and TFIIB, control the early phases of preinitiation complex formation. The heat shock genes provide an example for transcriptional regulation at a later step: in nuclei TFIID can be detected at the TATA box prior to heat induction. Using cell-free systems for chromatin reconstitution and transcription, we have analyzed the mechanisms by which heat shock factor (HSF) increases transcription of heat shock genes in chromatin. HSF affected transcription of naked DNA templates in multiple ways: (i) by speeding up the rate of preinitiation complex formation, (ii) by increasing the number of productive templates, and (iii) by increasing the reinitiation rate. Under the more physiological conditions of potentiated chromatin templates, HSF affected only the reinitiation rate. Activator-dependent reinitiation of transcription, obviating the slow assembly of the TFIID-TFIIA complex on a promoter, may be especially crucial for genes requiring a fast response to inducers. PMID:9418883

  15. Short-term grazing of lucerne and chicory increases ovulation rate in synchronised Merino ewes.

    PubMed

    King, B J; Robertson, S M; Wilkins, J F; Friend, M A

    2010-09-01

    This study evaluated the ability of short-term grazing of live=green pasture to increase ovulation rate during late summer when annual pasture is generally dead and of low quality. Ovulation rates, measured by the number of corpora lutea, were compared between 4 nutritional treatments: senesced phalaris (Phalaris aquatica), phalaris plus 500g lupin grain per day, lucerne (Medicago sativa) or chicory (Chicorum intybus) pastures. The study used 100 Merino ewes per treatment, divided between 2 replicates. The experiment was repeated in 3 years; February 2006, and January 2007 and 2008. Oestrus was synchronised and the ewes grazed the pastures for 9 days prior to ovulation at times corresponding to days 8-17 of the cycle in 2006, and days 6-14 in 2007 and 2008. The proportion of ewes producing multiple ovulations was higher (P<0.05) in the lucerne and chicory (0.36, 0.38) than the phalaris (0.27), and intermediate in the lupin (0.33) treatment. Regression analysis showed that the proportion of ewes with multiple ovulations increased with the quantity of live herbage (P<0.04). Responses were achieved even at low levels of live herbage with 90% of the maximum proportion of multiples occurring at 350kg DM/ha. It is concluded that providing short-term grazing of live chicory or lucerne to ewes can increase ovulation rates relative to ewes grazing senesced phalaris and to levels similar to those achieved by lupin grain supplementation.

  16. Spiral-driven accretion in protoplanetary discs . III. Tridimensional simulations

    NASA Astrophysics Data System (ADS)

    Hennebelle, Patrick; Lesur, Geoffroy; Fromang, Sébastien

    2017-03-01

    Context. Understanding how accretion proceeds in proto-planetary discs, and more generally, understanding their dynamics, is a crucial questions that needs to be answered to explain the conditions in which planets form. Aims: The role that accretion of gas from the surrounding molecular cloud onto the disc may have on its structure needs to be quantified. Methods: We performed tridimensional simulations using the Cartesian AMR code RAMSES of an accretion disc that is subject to infalling material. Results: For the aspect ratio of H/R ≃ 0.15 and disc mass Md ≃ 10-2M⊙ used in our study, we find that for typical accretion rates of the order of a few 10-7M⊙ yr-1, values of the α parameter as high as a few 10-3 are inferred. The mass that is accreted in the inner part of the disc is typically at least 50% of the total mass that has been accreted onto the disc. Conclusions: Our results suggest that external accretion of gas at moderate values onto circumstellar discs may trigger prominent spiral arms that are reminiscent of recent observations made with various instruments, and may lead to significant transport through the disc. If confirmed from observational studies, such accretion may therefore influence disc evolution.

  17. Recession contributes to slowest annual rate of increase in health spending in five decades.

    PubMed

    Martin, Anne; Lassman, David; Whittle, Lekha; Catlin, Aaron

    2011-01-01

    In 2009, US health care spending grew 4.0 percent--a historically low rate of annual increase--to $2.5 trillion, or $8,086 per person. Despite the slower growth, the share of the gross domestic product devoted to health spending increased to 17.6 percent in 2009 from 16.6 percent in 2008. The growth rate of health spending continued to outpace the growth of the overall economy, which experienced its largest drop since 1938. The recession contributed to slower growth in private health insurance spending and out-of-pocket spending by consumers, as well as a reduction in capital investments by health care providers. The recession also placed increased burdens on households, businesses, and governments, which meant that fewer financial resources were available to pay for health care. Declining federal revenues and strong growth in federal health spending increased the health spending share of total federal revenue from 37.6 percent in 2008 to 54.2 percent in 2009.

  18. Formation of Jupiter's Core and Early Stages of Envelope Accretion

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Weidenschilling, S.; Lissauer, J. J.; Bodenheimer, P.; Hubickyj, O.

    2012-12-01

    We are performing calculations of the formation of Jupiter via core nucleated accretion and gas capture. The core starts as a seed body of a few hundred kilometers in radius and orbits within a swarm of planetesimals whose initial size distribution ranges from ~10 m to ~100 km. The planetesimals are immersed in a gaseous disk, representative of an early solar nebula. The evolution of the swarm of planetesimals accounts for collisions and gravitational stirring due to mutual interactions among bodies, and for migration and velocity damping due to interactions with the nebula gas. Collisions among planetesimals lead to growth and/or fragmentation, altering the size distribution of the swarm over time. Collisions of planetesimals with the seed body lead to its growth, resulting in the formation of a planetary core. Gas capture by the core leads to the accumulation of a tenuous atmosphere, which later becomes a massive envelope, increasing the size-dependent effective cross-section of the planet for planetesimals' accretion. Planetesimals that travel through the core's envelope release energy, affecting the thermal budget of the envelope, and deliver mass, affecting the opacity of the envelope. The calculation of dust opacity, which is especially important for envelope contraction, is performed self-consistently, accounting for coagulation and sedimentation of dust and small particles that are released in the envelope as passing planetesimals are ablated. We find that, in a disk of planetesimals with a surface density of about 10 g/cm2 at 5.2 AU, a one Earth mass core accumulates in less than 1e5 years, and that it takes over 1.5e6 years to accumulate a core of 3 Earth masses, when the core's geometrical cross-section is used for the accretion of planetesimals. Gas drag in the core's envelope increases the ability of the planet to accrete planetesimals. Smaller planetesimals are affected to a greater extent than are larger planetesimals. We find that the effective

  19. Erythrocyte storage increases rates of NO and nitrite scavenging: implications for transfusion-related toxicity.

    PubMed

    Stapley, Ryan; Owusu, Benjamin Y; Brandon, Angela; Cusick, Marianne; Rodriguez, Cilina; Marques, Marisa B; Kerby, Jeffrey D; Barnum, Scott R; Weinberg, Jordan A; Lancaster, Jack R; Patel, Rakesh P

    2012-09-15

    Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25 days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk.

  20. Erythrocyte storage increases rates of NO- and Nitrite scavenging: Implications for transfusion related toxicity

    PubMed Central

    Stapley, Ryan; Owusu, Benjamin Y.; Brandon, Angela; Cusick, Marianne; Rodriguez, Cilina; Marques, Marisa B.; Kerby, Jeffrey D.; Barnum, Scott R.; Weinberg, Jordan A.; Lancaster, Jack R.; Patel, Rakesh P.

    2013-01-01

    Synopsis Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to the RBC. It has been suggested that these changes have a potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion related toxicities. However, mechanisms linking RBC storage and toxicity remain unclear. In this study we tested the hypothesis that storage of leukodepleted RBC result in cells that inhibit nitric oxide (NO)-signaling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from hemolysis or microparticles, our data indicate that NO-consumption rates increased ~40-fold and NO-dependent vasodilation was inhibited 2-4 fold with 42d old vs. 0d RBC. These results are likely due to the formation of smaller RBC with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBC to affect NO-formation via deoxygenated RBC mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBC did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBC stored for >25d, but not with younger RBC. Collectively, these data suggest that increased rates of reactions between intact RBC and NO and nitrite may contribute to mechanisms that lead to storage lesion-related transfusion risk PMID:22720637

  1. Human actuarial aging increases faster when background death rates are lower: a consequence of differential heterogeneity?

    PubMed

    Hawkes, Kristen; Smith, Ken R; Blevins, James K

    2012-01-01

    Many analyses of human populations have found that age-specific mortality rates increase faster across most of adulthood when overall mortality levels decline. This contradicts the relationship often expected from Williams' classic hypothesis about the effects of natural selection on the evolution of senescence. More likely, much of the within-species difference in actuarial aging is not due to variation in senescence, but to the strength of filters on the heterogeneity of frailty in older survivors. A challenge to this differential frailty hypothesis was recently posed by an analysis of life tables from historical European populations and traditional societies that reported variation in actuarial aging consistent with Williams' hypothesis after all. To investigate the challenge, we reconsidered those cases and aging measures. Here we show that the discrepancy depends on Ricklefs' aging rate measure, ω, which decreases as mortality levels drop because it is an index of mortality level itself, not the rate of increase in mortality with age. We also show unappreciated correspondence among the parameters of Gompertz-Makeham and Weibull survival models. Finally, we compare the relationships among mortality parameters of the traditional societies and the historical series, providing further suggestive evidence that differential heterogeneity has strong effects on actuarial aging.

  2. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells

    PubMed Central

    Hull, Court; Chu, YunXiang; Thanawala, Monica; Regehr, Wade G.

    2013-01-01

    Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, while GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can be modulated in a long-term manner. Here we describe a form of long-term plasticity that regulates the spontaneous firing rate of GoCs in the rat cerebellar cortex. We find that membrane hyperpolarization, either by mGluR2 activation of potassium channels, or by somatic current injection, induces a long-lasting increase in GoC spontaneous firing. This spike rate plasticity appears to result from a strong reduction in the spike afterhyperpolarization (AHP). Pharmacological manipulations suggest the involvement of calcium-calmodulin dependent kinase II (CaMKII) and calcium-activated potassium channels in mediating these firing rate increases. As a consequence of this plasticity, GoC spontaneous spiking is selectively enhanced, but the gain of evoked spiking is unaffected. Hence this plasticity is well-suited for selectively regulating the tonic output of GoCs rather than their sensory-evoked responses. PMID:23554471

  3. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France

    USGS Publications Warehouse

    Vittecoq, Marion; Elguero, Eric; Lafferty, Kevin D.; Roche, Benjamin; Brodeur, Jacques; Gauthier-Clerc, Michel; Missé, Dorothée; Thomas, Frédéric

    2012-01-01

    The incidence of adult brain cancer was previously shown to be higher in countries where the parasite Toxoplasma gondii is common, suggesting that this brain protozoan could potentially increase the risk of tumor formation. Using countries as replicates has, however, several potential confounding factors, particularly because detection rates vary with country wealth. Using an independent dataset entirely within France, we further establish the significance of the association between T. gondii and brain cancer and find additional demographic resolution. In adult age classes 55 years and older, regional mortality rates due to brain cancer correlated positively with the local seroprevalence of T. gondii. This effect was particularly strong for men. While this novel evidence of a significant statistical association between T. gondii infection and brain cancer does not demonstrate causation, these results suggest that investigations at the scale of the individual are merited.

  4. Increase in the rate and uniformity of coastline erosion in Arctic Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, Kenneth M.; Schmutz, J.A.; Flint, P.L.

    2009-01-01

    Analysis of a 60 km segment of the Alaskan Beaufort Sea coast using a time-series of aerial photography revealed that mean annual erosion rates increased from 6.8 m a-1 (1955 to 1979), to 8.7 m a-1 (1979 to 2002), to 13.6 m a-1 (2002 to 2007). We also observed that spatial patterns of erosion have become more uniform across shoreline types with different degrees of ice-richness. Further, during the remainder of the 2007 ice-free season 25 m of erosion occurred locally, in the absence of a westerly storm event. Concurrent arctic changes potentially responsible for this shift in the rate and pattern of land loss include declining sea ice extent, increasing summertime sea surface temperature, rising sea-level, and increases in storm power and corresponding wave action. Taken together, these factors may be leading to a new regime of ocean-land interactions that are repositioning and reshaping the Arctic coastline. Copyright 2009 by the American Geophysical Union.

  5. Genetic modulation of RNA metabolism in Drosophilia. I. Increased rate of ribosomal RNA synthesis.

    PubMed

    Clark, S H; Strausbaugh, L D; Kiefer, B I

    1977-08-01

    It has been suggested that a particular Y chromosome which is rDNA-deficient (YbbSuVar-5) may be associated with an increased utilization of rDNA template in adult testes (Shermoen and Kiefer 1975). To extend the observations on this chromosome, experiments were designed to determine if the chromosome has an effect on rRNA synthesis in bobbed adults and on classic bobbed phenotypes (shortened and thinner scutellar bristles and delayed development). Specific activity measurements were made on rRNA extracted from adult males of the genotypes car bb/YbbSuVar-5, which are rDNA-deficient to the same extent, and from Samarkand+ isogenic (Sam+ iso), which is a wild-type stock. The resulting data demonstrated that the presence of the YbbSuVar-5 chromosome increases the rate of ribosomal RNA synthesis in adult flies. In addition, it was found that the presence of this particular Y chromosome restores wild-type bristle phenotype and development time. Appropriate genetic crosses indicate that the observed effects (increased rRNA synthesis, restoration of wild-type phenotype) are a function of this particular Y chromosome, and are not due to autosomal factors. The results of these experiments suggest that the rate of rRNA accumulation is under genetic control.

  6. Increasing rates in Clostridium difficile infection (CDI) among hospitalised patients, Spain 1999-2007.

    PubMed

    Asensio, A; Vaque-Rafart, J; Calbo-Torrecillas, F; Gestal-Otero, J J; López-Fernández, F; Trilla-Garcia, A; Canton, R

    2008-07-31

    Limited information is available on the burden and epidemiology of Clostridium difficile infection (CDI) in Spain. The present report communicates the secular trends in prevalence of CDI among hospitalised patients in Spain from 1999 through 2007. Data were obtained through the EPINE study (Estudio de prevalencia de las infecciones nosocomiales en los hospitales españoles), a point prevalence study series of nosocomial infections among patients admitted to hospital in Spain. A total of 378 cases with CDI were identified. Median age was 74 years. Prevalence rates of CDI increased from 3.9 to 12.2 cases per 10,000 hospitalised patients and showed a significantly increasing secular trend from 1999 through 2007 (prevalence rate ratio per each year increment 1.09; 95% CI 1.05 - 1.14). Percentage of hospitalised patients receiving antimicrobials increased linearly from 36.0% in 1999 to 40.7% in 2007 (p <0.001) and was strongly correlated to CDI prevalence (R square = 0.73; regression coefficient =1.194, 95% CI= 1.192 - 1.196).

  7. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  8. Accretion and star formation in RQQs

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Häußler, Boris; Maddox, Natasha; Kalfountzou, Eleni; Hardcastle, Martin

    2016-06-01

    Active Galactic Nuclei (AGN) and star-forming galaxies are well-traced in the radio part of the electromagnetic spectrum, due to emission at these wavelengths being unaffected by dust obscuration. The key processes involved in producing the radio emission are black-hole accretion and star formation, both of which are thought to be crucial in determining how galaxies evolve. Disentangling the two contributions requires multi-wavelength data, and this is the approach we use for our work on radio-quiet quasars (RQQs). In contrast to previous studies, we find that accretion-connected radio emission dominates over that due to star formation, even at very low radio flux-densities. The first sample we describe is selected from the VISTA Deep Extragalactic Observations (VIDEO) survey, whose depth allows the study of very low accretion rates and/or lower-mass black holes. A second sample is obtained from the Spitzer-Herschel Active Galaxy Survey, spanning a factor of ~100 in optical luminosity over a narrow redshift range at z ~ 1. This enables evolutionary effects to be decoupled when comparisons are made with the VIDEO sample. Using radio data from the Karl G. Jansky Very Large Array (JVLA), we find further support that the AGN makes a significant contribution to the radio emission in RQQs. In addition, the levels of accretion and star formation appear to be weakly correlated with each other, and with optical luminosity.

  9. Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession.

    PubMed

    Yurkewycz, Raymond P; Bishop, John G; Crisafulli, Charles M; Harrison, John A; Gill, Richard A

    2014-12-01

    Fossorial mammals may affect nutrient dynamics and vegetation in recently initiated primary successional ecosystems differently than in more developed systems because of strong C and N limitation to primary productivity and microbial communities. We investigated northern pocket gopher (Thomomys talpoides) effects on soil nutrient dynamics, soil physical properties, and plant communities on surfaces created by Mount St. Helens' 1980 eruption. For comparison to later successional systems, we summarized published studies on gopher effects on soil C and N and plant communities. In 2010, 18 years after gopher colonization, we found that gophers were active in ~2.5% of the study area and formed ~328 mounds ha(-1). Mounds exhibited decreased species density compared to undisturbed areas, while plant abundance on mound margins increased 77%. Plant burial increased total soil carbon (TC) by 13% and nitrogen (TN) by 11%, compared to undisturbed soils. Mound crusts decreased water infiltration, likely explaining the lack of detectable increases in rates of NO3-N, NH4-N or PO4-P leaching out of the rooting zone or in CO2 flux rates. We concluded that plant burial and reduced infiltration on gopher mounds may accelerate soil carbon accumulation, facilitate vegetation development at mound edges through resource concentration and competitive release, and increase small-scale heterogeneity of soils and communities across substantial sections of the primary successional landscape. Our review indicated that increases in TC, TN and plant density at mound margins contrasted with later successional systems, likely due to differences in physical effects and microbial resources between primary successional and older systems.

  10. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  11. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  12. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury.

    PubMed

    Syring, Rebecca S; Otto, Cynthia M; Spivack, Rebecca E; Markstaller, Klaus; Baumgardner, James E

    2007-01-01

    Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.

  13. The environmental dependence of gas accretion on to galaxies: quenching satellites through starvation

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Bahé, Yannick M.; Bower, Richard G.; Correa, Camila A.; Crain, Robert A.; Schaye, Joop; Theuns, Tom

    2017-04-01

    Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings: a process referred to as 'starvation' or 'strangulation' of satellites. We study the environmental dependence of gas accretion on to galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, of many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in the halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and satellites show similar behaviour to their gas accretion rates. The relatively small differences between gas accretion and star formation rates demonstrate that galaxies generally exhaust their gas reservoir somewhat faster at higher stellar mass, lower redshift, and in denser environments. We conclude that the environmental suppression of gas accretion could directly result in the quenching of star formation.

  14. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  15. Is high-rate injection causing the increase in U.S. mid-continent seismicity?

    NASA Astrophysics Data System (ADS)

    Weingarten, M.; Ge, S.

    2014-12-01

    An unprecedented increase in earthquakes in the central and eastern US (CEUS) began in 2009. Many of these earthquakes have been documented as likely induced by wastewater injection. To better understand the likelihood of an induced seismic event from a given injection well, we compare the location and timing of earthquakes and injection operational parameters across the CEUS. We compiled a database of more than 187,000 injection wells in the CEUS, both active and inactive. In combination with the Advanced National Seismic System's (ANSS) comprehensive earthquake catalog from 1973 to mid-2014, we use spatial and temporal filtering methods to discriminate injection wells that may be associated with earthquakes from those that are not. Our goal was to understand whether or not well operational parameters such as injection rate, cumulative injected volume, injection pressure and injection depth affect the likelihood that a well is spatiotemporally associated with an earthquake. We found more than 14,000 injection wells (~8% of all wells) that may be associated with earthquakes in the CEUS. Our spatiotemporal filter succeeded in capturing every suspected case of induced seismicity that we are aware of. We also found that the likelihood of an injection well being associated with an earthquake increased with increasing injection rate and cumulative injected volume. This phenomenon was observed over a wide range of geologic and hydrogeologic provinces in states such as Oklahoma, Colorado, New Mexico and Arkansas. Operational parameters such as injection pressure and injection depth do not show a clear trend towards an increased likelihood of spatiotemporal association with an earthquake. In all, the cumulative number of CEUS earthquakes potentially associated with injection has risen sharply from 112 out of 545 in year 2000 (~19%) to more than 732 out of 1325 by May 2014 (~55%). This increase in earthquakes spatiotemporally associated with wells accounts for the vast

  16. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests.

    PubMed

    Bothwell, Lori D; Selmants, Paul C; Giardina, Christian P; Litton, Creighton M

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q 10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5-2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  17. Helicobacter pylori Infection Is Associated With an Increased Rate of Diabetes

    PubMed Central

    Jeon, Christie Y.; Haan, Mary N.; Cheng, Caroline; Clayton, Erin R.; Mayeda, Elizabeth R.; Miller, Joshua W.; Aiello, Allison E.

    2012-01-01

    OBJECTIVE Chronic infections could be contributing to the socioeconomic gradient in chronic diseases. Although chronic infections have been associated with increased levels of inflammatory cytokines and cardiovascular disease, there is limited evidence on how infections affect risk of diabetes. RESEARCH DESIGN AND METHODS We examined the association between serological evidence of chronic viral and bacterial infections and incident diabetes in a prospective cohort of Latino elderly. We analyzed data on 782 individuals aged >60 years and diabetes-free in 1998–1999, whose blood was tested for antibodies to herpes simplex virus 1, varicella virus, cytomegalovirus, Helicobacter pylori, and Toxoplasma gondii and who were followed until June 2008. We used Cox proportional hazards regression to estimate the relative incidence rate of diabetes by serostatus, with adjustment for age, sex, education, cardiovascular disease, smoking, and cholesterol levels. RESULTS Individuals seropositive for herpes simplex virus 1, varicella virus, cytomegalovirus, and T. gondii did not show an increased rate of diabetes, whereas those who were seropositive for H. pylori at enrollment were 2.7 times more likely at any given time to develop diabetes than seronegative individuals (hazard ratio 2.69 [95% CI 1.10–6.60]). Controlling for insulin resistance, C-reactive protein and interleukin-6 did not attenuate the effect of H. pylori infection. CONCLUSIONS We demonstrated for the first time that H. pylori infection leads to an increased rate of incident diabetes in a prospective cohort study. Our findings implicate a potential role for antibiotic and gastrointestinal treatment in preventing diabetes. PMID:22279028

  18. Mergers of accreting stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Tagawa, H.; Umemura, M.; Gouda, N.

    2016-11-01

    We present post-Newtonian N-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericentre shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of 10 BHs with initial mass of 30 M⊙. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three-body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is ˜10 Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate (dot{m}_c), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce dot{m}_c especially in gas number density higher than 108 cm-3, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a ˜30 M⊙ BH binary has been detected. Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few M⊙ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.

  19. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumrates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ-value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were

  20. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  1. Increase in rate of force development with skin cooling during isometric knee extension.

    PubMed

    Shimose, Ryota; Ushigome, Nobuyuki; Tadano, Chigaya; Sugawara, Hitoshi; Yona, Masae; Matsunaga, Atsuhiko; Muro, Masuo

    2014-12-01

    Rate of force development (RFD) plays an important role when performing rapid and forceful movements. Cold-induced afferent input with transient skin cooling (SC) can modulate neural drive. However, the relationship between RFD and SC is unknown. The purpose of this study was to investigate whether SC increases RFD during isometric knee extension. Fifteen young healthy men (25 ± 8 yrs old) contracted their quadriceps muscle as fast and forcefully as possible with or without SC. Skin cooling was administered to the front of the thigh. Torque and electromyographic activity were measured simultaneously. Peak torque was not affected by SC. Skin cooling induced a significant increase in RFD at the phase 0-30 and 0-50 ms. The root mean square of the electromyography of vastus medialis, rectus femoris and vastus lateralis at the phases 0-30-50-100 ms increased significantly or tended to increase with SC. These results suggest that SC may increase neural drive and improve RFD in the very early phases of contraction.

  2. Intraventricular filling under increasing left ventricular wall stiffness and heart rates

    NASA Astrophysics Data System (ADS)

    Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif

    2015-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  3. Efficacy of trap modifications for increasing capture rates of aquatic snakes in floating aquatic funnel traps

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2013-01-01

    Increasing detection and capture probabilities of rare or elusive herpetofauna of conservation concern is important to inform the scientific basis for their management and recovery. The Giant Gartersnake (Thamnophis gigas) is an example of a secretive, wary, and generally difficult-to-sample species about which little is known regarding its patterns of occurrence and demography. We therefore evaluated modifications to existing traps to increase the detection and capture probabilities of the Giant Gartersnake to improve the precision with which occurrence, abundance, survival, and other demographic parameters are estimated. We found that adding a one-way valve constructed of cable ties to the small funnel opening of traps and adding hardware cloth extensions to the wide end of funnels increased capture rates of the Giant Gartersnake by 5.55 times (95% credible interval = 2.45–10.51) relative to unmodified traps. The effectiveness of these modifications was insensitive to the aquatic habitat type in which they were deployed. The snout-vent length of the smallest and largest captured snakes did not vary among trap modifications. These trap modifications are expected to increase detection and capture probabilities of the Giant Gartersnake, and show promise for increasing the precision with which demographic parameters can be estimated for this species. We anticipate that the trap modifications found effective in this study will be applicable to a variety of aquatic and semi-aquatic reptiles and amphibians and improve conservation efforts for these species.

  4. Compound prioritization methods increase rates of chemical probe discovery in model organisms

    PubMed Central

    Wallace, Iain M; Urbanus, Malene L; Luciani, Genna M; Burns, Andrew R; Han, Mitchell KL; Wang, Hao; Arora, Kriti; Heisler, Lawrence E; Proctor, Michael; St. Onge, Robert P; Roemer, Terry; Roy, Peter J; Cummins, Carolyn L; Bader, Gary D; Nislow, Corey; Giaever, Guri

    2011-01-01

    SUMMARY Pre-selection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in S. cerevisiae and identified ~7,500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. This data was used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7,500 growth-inhibitory molecules has been made commercially available and the computational model and filter used are provided. PMID:22035796

  5. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses.

    PubMed

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F X; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A; Roffler, Stefan

    2016-09-07

    DNA (class 2) transposons are mobile genetic elements which move within their 'host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind.

  6. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses

    PubMed Central

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  7. [Light pollution increases morbidity and mortality rate from different causes in male rats].

    PubMed

    Bukalev, A V; Vinogradova, I A; Zabezhinskiĭ, M A; Semenchenko, A V; Anisimov, V N

    2012-01-01

    The influence of different light regimes (constant light--LL; constant darkness--DD; standard light regime--LD, 12 hours light 12 hours darkness; natural lightening of the North-West of Russia--NL) on the dynamics of life's morbidity rate, spontaneous tumorigenesis and frequency of some kinds of non-tumor pathology revealed at the post-mortem examination of male rats was studied. It was found out that the maintenance of animals at LL and NL conditions led to the increase of the number of infectious diseases, substantially faster development of spontaneous tumors and the increase of non-tumor diseases in comparison with the animals kept at LD (standard light) regime. Light deprivation (DD) led to substantial reduction of development of new growth, of non-tumor and infectious diseases in comparison with the similar parameters in standard light regime.

  8. Hemodynamic Response to Hemodialysis With Ultrafiltration Rate Profiles Either Gradually Decreasing or Gradually Increasing.

    PubMed

    Morales-Alvarez, Ricardo; Martínez-Memije, Raúl; Becerra-Luna, Brayans; García-Paz, Paola; Infante, Oscar; Palma-Ramírez, Alfredo; Caviedes-Aramburu, Amaya; Vargas-Barrón, Jesús; Lerma, Claudia; Pérez-Grovas, Héctor

    2016-07-01

    Hemodialysis (HD) is usually performed with the gradually decreasing ultrafiltration rate (UFR) profile (dUFR). The aim of the present study was to compare the hemodynamic response to HD with the dUFR to that of HD with the gradually increasing UFR profile (iUFR). The study population included 10 patients (three women, mean age: 28 ± 8 years) undergoing maintenance HD who had reached dry weight without taking antihypertensive medications. Each patient received (in random order) one HD session with the dUFR and another with the iUFR (both with 3 h total UFR = 2200 mL). Hemodynamic response was evaluated with a brachial blood pressure (BP) monitor, echocardiogram and Portapres to measure digital BP, heart rate, cardiac output, stroke volume, and peripheral resistance. Mean values were compared at each HD hour during the first 3 h of a 4-h HD session. The HD characteristics, including Kt/V, were similar for both UFR profiles. Relative blood volume decreased more gradually and linearly with the iUFR. Hemodynamic variables were not significantly different between the two profiles, but brachial BP was more stable with the iUFR. Digital diastolic BP increased with both profiles. Peripheral resistance increased with both profiles, and tended to increase more with the iUFR. Echocardiographic variables changed similarly during the HD session with both profiles. In conclusion, these two UFR profiles are similar in most hemodynamic variables. The statistical equivalence of both profiles suggests that either could be prescribed based on the clinical characteristics of the patient.

  9. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart.

  10. Spin Rate of Asteroid (54509) YORP Increasing due to the YORP Effect

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Margot, J. L.; Vokrouhlicky, D.; Scheeres, D. J.; Pravec, P.; Lowry, S. C.; Fitzsimmons, A.; Nolan, M. C.; Ostro, S. J.; Benner, L. A.; Giorgini, J. D.; Magri, C.

    2007-10-01

    Arecibo S-band (2380 MHz, 13 cm) and Goldstone X-band (8560 MHz, 3.5 cm) radar observations from 2001, 2004, and 2005 [1] along with precise optical observations [2] reveal that the observed change in spin rate of near-Earth asteroid (54509) YORP, formerly 2000 PH5, is due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, a torque due to sunlight. The increase in sidereal spin rate of (2.0 ± 0.2) x 10-4 deg/day2 [2], equivalently a shortening of the sidereal spin period by just over one millisecond per year, is in reasonable agreement with theoretical predictions for the YORP acceleration of a body with the radar-determined size, shape, and spin state of asteroid (54509) YORP. The detection of asteroid spin-up supports the YORP effect as an explanation for the anomalous distribution of spin rates for asteroids under 10 km in diameter and as a binary formation mechanism. [1] P. A. Taylor et al., Science, 316, 2007. [2] S. C. Lowry et al., Science, 316, 2007.

  11. Effectiveness of counseling provided by primary care doctors and nurses in increasing glaucoma screening rates.

    PubMed

    Rezner, Witold; Rezner, Anna; Dutkiewicz, Sławomir

    2014-01-01

    Introduction. An effective screening that can prevent glaucoma-related blindness largely depends on successful recruitment. This study was to assess the effectiveness of one-on-one counseling carried out by primary care doctors and nurses to increase glaucoma screening rates. Material and Methods. The study, carried out in an urban primary care center, involved 308 persons aged 35-87 years who were assigned to a doctor's, nurse's, or control group (N = 109, 110, and 89, resp.). Interventions by doctors and nurses included a brief one-on-one counseling session, while only a screening history was taken from controls. The number of people in each group with a positive screening status was assessed by telephone interview three months after the visit. Results. The percentage of persons in the nurse's counseling group who claimed being subjected to screening was more than four times higher than in the control group (20.9% versus 4.5%, P = 0.002). The doctor's interventions resulted in almost a tripled screening rate as compared to the control group (12.8% versus 4.5%, P = 0.052). There was no significant difference between screening rates in doctor's and nurse's groups (P = 0.212). Conclusions. In the studied population, counseling provided by nurses proved to be an efficacious method to encourage patients to undergo glaucoma screening.

  12. Effectiveness of Counseling Provided by Primary Care Doctors and Nurses in Increasing Glaucoma Screening Rates

    PubMed Central

    Rezner, Anna; Dutkiewicz, Sławomir

    2014-01-01

    Introduction. An effective screening that can prevent glaucoma-related blindness largely depends on successful recruitment. This study was to assess the effectiveness of one-on-one counseling carried out by primary care doctors and nurses to increase glaucoma screening rates. Material and Methods. The study, carried out in an urban primary care center, involved 308 persons aged 35–87 years who were assigned to a doctor's, nurse's, or control group (N = 109, 110, and 89, resp.). Interventions by doctors and nurses included a brief one-on-one counseling session, while only a screening history was taken from controls. The number of people in each group with a positive screening status was assessed by telephone interview three months after the visit. Results. The percentage of persons in the nurse's counseling group who claimed being subjected to screening was more than four times higher than in the control group (20.9% versus 4.5%, P = 0.002). The doctor's interventions resulted in almost a tripled screening rate as compared to the control group (12.8% versus 4.5%, P = 0.052). There was no significant difference between screening rates in doctor's and nurse's groups (P = 0.212). Conclusions. In the studied population, counseling provided by nurses proved to be an efficacious method to encourage patients to undergo glaucoma screening. PMID:25386358

  13. ACCRETION DISK TEMPERATURES OF QSOs: CONSTRAINTS FROM THE EMISSION LINES

    SciTech Connect

    Bonning, E. W.; Shields, G. A.; Stevens, A. C.; Salviander, S. E-mail: shields@astro.as.utexas.edu E-mail: triples@astro.as.utexas.edu

    2013-06-10

    We compare QSO emission-line spectra to predictions based on theoretical ionizing continua of accretion disks. The observed line intensities do not show the expected trend of higher ionization with theoretical accretion disk temperature as predicted from the black hole mass and accretion rate. Consistent with earlier studies, this suggests that the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. The emission lines of radio-detected and radio-undetected sources show different trends as a function of the theoretically predicted disk temperature.

  14. LAMBDA BOO ABUNDANCE PATTERNS: ACCRETION FROM ORBITING SOURCES

    SciTech Connect

    Jura, M.

    2015-12-15

    The abundance anomalies in λ Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically inferred bounds for interstellar accretion. Therefore, a λ Boo star’s thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some λ Boo stars accrete from the winds of hot Jupiters.

  15. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  16. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  17. Formation Of the Giant Planets By Concurrent Accretion Of Solids And Gas

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.; Podolak, Morris; Greenzweig, Yuval; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    New numerical simulations of the formation of the giant planets are presented, in which for the first time both the gas and planetesimal accretion rates are calculated in a self-consistent, interactive fashion. The simulations combine three elements: 1) three-body accretion cross-sections of solids onto an isolated planetary embryo, 2) a stellar evolution code for the planet's gaseous envelope, and 3) a planetesimal dissolution code within the envelope, used to evaluate the planet's effective capture radius and the energy deposition profile of accreted material. Major assumptions include: The planet is embedded in a disk of gas and small planetesimals with locally uniform initial surface mass density, and planetesimals are not allowed to migrate into or out of the planet's feeding zone. All simulations are characterized by three major phases. During the first phase, the planet's mass consists primarily of solid material. The planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted. During the second phase, both solid and gas accretion rates are small and nearly independent of time. The third phase, marked by runaway gas accretion, starts when the solid and gas masses are about equal. It is engendered by a strong positive feedback on the gas accretion rates, driven by the rapid contraction of the gaseous envelope and the rapid expansion of the outer boundary, which depends on the planet's total mass. The overall evolutionary time scale is generally determined by the length of the second phase. The actual rates at which the giant planets accreted small planetesimals is probably intermediate between the constant rates assumed in most previous studies and the highly variable rates that we have used. Within the context, of the adopted model of planetesimal accretion, the joint constraints of the time scale for dissipation of the solar nebula and the current high

  18. Accretion Disk Emission Around Kerr Black Holes

    NASA Astrophysics Data System (ADS)

    Campitiello, Samuele; Sbarrato, T.; Ghisellini, G.

    2016-10-01

    Measuring the spin of supermassive Black holes in Active Galactic Nuclei is a further step towards a better understanding of the evolution of their physics. We proposed a new method to estimate the Black hole spin, based on data-fitting. We consider a numerical model called KERRBB, including all relativistic effects (i.e. light-bending, gravitational redshift and Doppler beaming). We found that the same spectrum can be produced by different masses, accretion rates and spins, but that these three quantities are related. In other words, having a robust indipendent estimate on one of these three quantities fixes the other two. By using the Black hole mass, estimated by the virial method, we can pinpoint a narrow range of possible spins and accretion rates for the 32 blazars we have studied. For these objects, we found a lower limit of the spin, that must be a/M > 0.6-0.7

  19. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    USGS Publications Warehouse

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  20. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  1. A New Method for Pseudo-increasing Frame Rates of Echocardiography Images Using Manifold Learning.

    PubMed

    Gifani, Parisa; Behnam, Hamid; Sani, Zahra Alizadeh

    2011-05-01

    Increasing frame rate is a challenging issue for better interpretation of medical images and diagnosis based on tracking the small transient motions of myocardium and valves in real time visualization. In this paper, manifold learning algorithm is applied to extract the nonlinear embedded information about echocardiography images from the consecutive images in two dimensional manifold spaces. In this method, we presume that the dimensionality of echocardiography images obtained from a patient is artificially high and the images can be described as functions of only a few underlying parameters such as periodic motion due to heartbeat. By this approach, each image is projected as a point on the reconstructed manifold; hence, the relationship between images in the new domain can be obtained according to periodicity of the heart cycle. To have a better tracking of the echocardiography, images during the fast motions of heart we have rearranged the similar frames of consecutive heart cycles in a sequence. This provides a full view slow motion of heart movement through increasing the frame rate to three times the traditional ultrasound systems.

  2. Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum.

    PubMed

    Ha, Eun-Mi

    2016-05-28

    Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium.

  3. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand.

  4. Optical spectroscopy of EX Lupi during quiescence and outburst. Infall, wind, and dynamics in the accretion flow

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, A.; Kóspál, Á.; Setiawan, J.; Ábrahám, P.; Dullemond, C.; Eiroa, C.; Goto, M.; Henning, Th.; Juhász, A.

    2012-08-01

    Context. EX Lupi is the prototype of EXor variables. After 50 years of mild variability and smaller outbursts, the object again experienced a large outburst in 2008. Aims: We explore the accretion mechanisms in EX Lupi during its pre-outburst, outburst, and post-outburst phases. Methods: We analyze 10 high-resolution optical spectra of EX Lupi, taken before, during, and after the 2008 outburst. In both quiescence and outburst, the star presents many permitted emission lines. These include lines typical of accreting T Tauri stars, plus a large number of neutral and ionized metallic lines (mostly Fe I and Fe II). During the outburst, the number of emission lines increases to about a thousand, and their structure shows a narrow and a broad component (NC and BC). We study the structure of the BC, which is highly variable on short timescales (24-72 h). Results: An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest that these profiles originate in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, which is consistent with the location of the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced assuming a temperature of T ~ 6500 K for electron densities of a few times 1012 cm-3 in the line-emitting region. The line profiles also indicate that there is an accretion-related inner disk wind. Conclusions: The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner

  5. Diabetic foot reconstruction using free flaps increases 5-year-survival rate.

    PubMed

    Oh, Tae Suk; Lee, Ho Seung; Hong, Joon Pio

    2013-02-01

    The purpose of this study was to evaluate the outcome of the diabetic foot reconstructed with free flaps and analyse the preoperative risk factors. This study reviews 121 cases of reconstructed diabetic foot in 113 patients over 9 years (average follow-up of 53.2 months). Patients' age ranged from 26 to 78 years (average, 54.6 years). Free flaps used were anterolateral thigh (ALT, 90), superficial circumflex iliac artery perforator (SCIP, 20), anteromedial thigh (AMT, 5), upper medial thigh (UMT, 3), and other perforator free flaps (3). Correlation between the surgical outcome and preoperative risk factors were analysed using logistic regression model. Total loss was seen in 10 cases and 111 free-tissue transfers were successful (flap survival rate of 91.7%). During follow-up, limb was eventually lost in 17 patients and overall limb salvage rate was 84.9% and the 5-year survival was 86.8%. Correlation between flap loss and 14 preoperative risk factors (computed tomography (CT) angiogram showing intact numbers of major vessels, history of previous angioplasty, peripheral arterial disease (PAD), heart problem, chronic renal failure (CRF), American Society of Anaesthesiologists (ASA) physical status classification system, smoking, body mass index (BMI), HBA1c, lymphocyte count, ankle-brachial index (ABI), osteomyelitis, C-reactive protein (CRP) level and whether taking immunosuppressive agents) were analysed. Significant odds ratio were seen in patients who underwent lower extremity angioplasties (odds ratio: 17.590, p<0.001), with PAD (odds ratio: 10.212, p=0.032) and taking immunosuppressive agents after kidney transplantation (odds ratio: 4.857, p<0.041). Diabetic foot reconstruction using free flaps has a high chance for success and significantly increases the 5-year survival rate. Risk factors such as PAD, history of angioplasties in the extremity and using immunosuppressive agents after transplant may increase the chance for flap loss.

  6. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  7. Ethical analyses of institutional measures to increase health care worker influenza vaccination rates.