Science.gov

Sample records for accretion rate increases

  1. On the stream-accretion disk interaction - Response to increased mass transfer rate

    NASA Technical Reports Server (NTRS)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  2. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxaccretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  3. Low Accretion Rate Expected From G2 Gas Cloud

    NASA Astrophysics Data System (ADS)

    Gracey, Brandon; Morsony, Brian; Workman, Jared

    2015-08-01

    We present high-resolution simulations of the encounter of the G2 gas cloud with Sag A*, focusing on the mass that can be accreted onto the supermassive black hole. Even assuming G2 is a gas cloud of a few time the mass of Earth, we find that very little material should be expected to be accreted. From 5 years before to 5 years after pericenter passage, at most 0.1% of the cloud mass is accreted. The total amount of material accreted by Sag A* increases by at most 20% over this period, and in many cases actually decreases due to the passage of G2. Even over very long timescales, out to 30 years after pericenter passage, only a few 10th's of a percent of the cloud will be accreted, with no significant increase in the overall mass accretion rate of Sag A*.We find that the size of the accretion radius in our simulations has a large effect on the accretion rate, with a smaller accretion radius having a smaller accretion rate. Changing the size of the accretion radius has a larger effect than changing the density profile of the cloud or changing the structure of the background material around Sag A*.

  4. Lifetimes and Accretion Rates of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Li, Min; Xiao, Lin

    2016-03-01

    Protoplanetary disks originate in the collapse of molecular cloud cores. The formation and evolution of disks are influenced by the properties of molecular cloud cores. In this paper we investigate the dependence of disk lifetimes and accretion rates on cloud core properties. We find that the lifetime increases as the angular velocities and the mass of cloud cores increase and that the lifetime decreases as the core temperature increases. We have calculated the distribution of disk lifetimes and disk fractions with stellar age. Our calculations show that the lifetime is in the range of 1-15 Myr and that the typical lifetime is 1-3 Myr. There are a few disks with lifetimes greater than 10 Myr and ˜ 30% of the disks have lifetimes less than 1 Myr. We also fit the disk fraction by an exponential decay curve with characteristic time ˜3.7 Myr. Our results explain the observations of disk lifetimes. We also find that the accretion rate does not change significantly with ω and generally decreases with {T}{{cd}}. At the early evolution of the disks, the \\dot{M}{--}{M}* relation is about \\dot{M}\\propto {M}*1.2-2. Since the effects of the photoevaporation are weak at this stage, this relation is the consequence of the cloud core properties. At the late evolution of the disks, the \\dot{M}{--}{M}* relation is about \\dot{M}\\propto {M}*1.2-1.7. For low accretion rates at this stage, the \\dot{M}{--}{M}* relation results from the effects of X-ray photoevaporation. The calculated \\dot{M}{--}{M}* relations are consistent with the observations.

  5. Binary accretion rates: dependence on temperature and mass ratio

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Clarke, C. J.

    2015-09-01

    We perform a series of 2D smoothed particle hydrodynamics simulations of gas accretion on to binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios (q). We show that increasing the gas temperature increases the accretion rate on to the primary for all values of the binary mass ratio: for example, for q = 0.1 and a fixed binary separation, an increase of normalized sound speed by a factor of 5 (from our `cold' to `hot' simulations) changes the fraction of the accreted gas that flows on to the primary from 10 to ˜40 per cent. We present a simple parametrization for the average accretion rate of each binary component accurate to within a few per cent and argue that this parametrization (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of q during circumbinary disc accretion and argue that the period distribution of stellar `twin' binaries is strong evidence for the importance of circumbinary accretion. We also show that our parametrization of binary accretion increases the minimum mass ratio needed for spin alignment of supermassive black holes to q ˜ 0.4, with potentially important implications for the magnitude of velocity kicks acquired during black hole mergers.

  6. Coastal erosion and accretion rates in Greece

    NASA Astrophysics Data System (ADS)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  7. Jets at lowest mass accretion rates

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar; Cantrell, Andrew; Markoff, Sera; Falcke, Heino; Miller, Jon; Bailyn, Charles

    2011-02-01

    We present results of recent observations and theoretical modeling of data from black holes accreting at very low luminosities (L/LEdd <~ 10-8). We discuss our newly developed time-dependent model for episodic ejection of relativistic plasma within a jet framework, and a successful application of this model to describe the origin of radio flares seen in Sgr A*, the Galactic center black hole. Both the observed time lags and size-frequency relationships are reproduced well by the model. We also discuss results from new Spitzer data of the stellar black hole X-ray binary system A0620-00. Complemented by long term SMARTS monitoring, these observations indicate that once the contribution from the accretion disk and the donor star are properly included, the residual mid-IR spectral energy distribution of A0620-00 is quite flat and consistent with a non-thermal origin. The results above suggest that a significant fraction of the observed spectral energy distribution originating near black holes accreting at low luminosities could result from a mildly relativistic outflow. The fact that these outflows are seen in both stellar-mass black holes as well as in supermassive black holes at the heart of AGNs strengthens our expectation that accretion and jet physics scales with mass.

  8. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  9. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  10. ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES

    SciTech Connect

    Trump, Jonathan R.; Impey, Christopher D.; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Kelly, Brandon C.; Civano, Francesca; Hao, Heng; Lanzuisi, Giorgio; Merloni, Andrea; Salvato, Mara; Urry, C. Megan; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Liu, Charles; Mainieri, Vincenzo; Scoville, Nick Z.

    2011-05-20

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L{sub int}) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L{sub int}/L{sub Edd} > 10{sup -2}), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L{sub int}/L{sub Edd} < 10{sup -2}) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L{sub int}/L{sub Edd} < 10{sup -2} narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L{sub int}/L{sub Edd} > 10{sup -2} broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L{sub int}/L{sub Edd} < 10{sup -2} AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical 'axis' of AGN unification, as described by a simple model.

  11. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-06-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions {sup 15}O(α, γ){sup 19}Ne and {sup 18}Ne(α, p){sup 21}Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the {sup 15}O(α, γ){sup 19}Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true {sup 15}O(α, γ){sup 19}Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  12. Does livestock grazing affect sediment deposition and accretion rates in salt marshes?

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Müller, Frauke; Schuerch, Mark; Wanner, Antonia; Esselink, Peter; Bakker, Jan P.; Jensen, Kai

    2013-12-01

    Accretion rates, defined as the vertical growth of salt marshes measured in mm per year, may be influenced by grazing livestock in two ways: directly, by increasing soil compaction through trampling, and indirectly, by reducing aboveground biomass and thus decreasing sediment deposition rates measured in g/m² per year. Although accretion rates and the resulting surface elevation change largely determine the resilience of salt marshes to sea-level rise (SLR), the effect of livestock grazing on accretion rates has been little studied. Therefore, this study aimed to investigate the effect of livestock grazing on salt-marsh accretion rates. We hypothesise that accretion will be lower in grazed compared to ungrazed salt marshes. In four study sites along the mainland coast of the Wadden Sea (in the south-eastern North Sea), accretion rates, sediment deposition rates, and soil compaction of grazed and ungrazed marshes were analysed using the 137Cs radionuclide dating method. Accretion rates were on average 11.6 mm yr-1 during recent decades and thus higher than current and projected rates of SLR. Neither accretion nor sediment deposition rates were significantly different between grazing treatments. Meanwhile, soil compaction was clearly affected by grazing with significantly higher dry bulk density on grazed compared to ungrazed parts. Based on these results, we conclude that other factors influence whether grazing has an effect on accretion and sediment deposition rates and that the effect of grazing on marsh growth does not follow a direct causal chain. It may have a great importance when interacting with other biotic and abiotic processes on the marsh.

  13. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  14. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  15. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ∼100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  16. The Mass Accretion Rate of Galaxy Clusters: A Measurable Quantity

    NASA Astrophysics Data System (ADS)

    De Boni, C.; Serra, A. L.; Diaferio, A.; Giocoli, C.; Baldi, M.

    2016-02-01

    We explore the possibility of measuring the mass accretion rate (MAR) of galaxy clusters from their mass profiles beyond the virial radius R200. We derive the accretion rate from the mass of a spherical shell whose inner radius is 2R200, whose thickness changes with redshift, and whose infall velocity is assumed to be equal to the mean infall velocity of the spherical shells of dark matter halos extracted from N-body simulations. This approximation is rather crude in hierarchical clustering scenarios where both smooth accretion and aggregation of smaller dark matter halos contribute to the mass accretion of clusters. Nevertheless, in the redshift range z = [0, 2], our prescription returns an average MAR within 20%-40% of the average rate derived from the merger trees of dark matter halos extracted from N-body simulations. The MAR of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real universe. Since the measurement of the mass profile of clusters beyond their virial radius can be performed with the caustic technique applied to dense redshift surveys of the cluster outer regions, our result suggests that measuring the mean MAR of a sample of galaxy clusters is actually feasible. We thus provide a new potential observational test of the cosmological and structure formation models.

  17. ACCRETION RATES OF MOONLETS EMBEDDED IN CIRCUMPLANETARY PARTICLE DISKS

    SciTech Connect

    Ohtsuki, Keiji; Yasui, Yuki; Daisaka, Hiroshi

    2013-08-01

    We examine the gravitational capture probability of colliding particles in circumplanetary particle disks and accretion rates of small particles onto an embedded moonlet, using analytic calculation, three-body orbital integrations, and N-body simulations. Expanding our previous work, we take into account the Rayleigh distribution of particles' orbital eccentricities and inclinations in our analytic calculation and orbital integration and confirm agreement between them when the particle velocity dispersion is comparable to or larger than their mutual escape velocity and the ratio of the sum of the physical radii of colliding particles to their mutual Hill radius (r-tilde{sub p}) is much smaller than unity. As shown by our previous work, the capture probability decreases significantly when the velocity dispersion is larger than the escape velocity and/or r-tilde{sub p}{approx}>0.7. Rough surfaces of particles can enhance the capture probability. We compare the results of three-body calculations with N-body simulations for accretion of small particles by an embedded moonlet and find agreement at the initial stage of accretion. However, when particles forming an aggregate on the moonlet surface nearly fill the Hill sphere, the aggregate reaches a quasi-steady state with a nearly constant number of particles covering the moonlet, and the accretion rate is significantly reduced compared to the three-body results.

  18. Accretion rate of extraterrestrial 41Ca in Antarctic snow samples

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, J. M.; Bishop, S.; Faestermann, T.; Famulok, N.; Fimiani, L.; Hain, K.; Jahn, S.; Korschinek, G.; Ludwig, P.; Rodrigues, D.

    2015-10-01

    Interplanetary Dust Particles (IDPs) are small grains, generally less than a few hundred micrometers in size. Their main source is the Asteroid Belt, located at 3 AU from the Sun, between Mars and Jupiter. During their flight from the Asteroid Belt to the Earth they are irradiated by galactic and solar cosmic rays (GCR and SCR), thus radionuclides are formed, like 41Ca and 53Mn. Therefore, 41Ca (T1/2 = 1.03 × 105 yr) can be used as a key tracer to determine the accretion rate of IDPs onto the Earth because there are no significant terrestrial sources for this radionuclide. The first step of this study consisted to calculate the production rate of 41Ca in IDPs accreted by the Earth during their travel from the Asteroid Belt. This production rate, used in accordance with the 41Ca/40Ca ratios that will be measured in snow samples from the Antarctica will be used to calculate the amount of extraterrestrial material accreted by the Earth per year. There challenges for this project are, at first, the much longer time for the flight needed by the IDPs to travel from the Asteroid Belt to the Earth in comparison with the 41Ca half-life yields an early saturation for the 41Ca/40Ca ratio, and second, the importance of selecting the correct sampling site to avoid a high influx of natural 40Ca, preventing dilution of the 41Ca/40Ca ratio, the quantity measured by AMS.

  19. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  20. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  1. Observe Z sources at High Mass Accretion Rates

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2008-09-01

    We propose to test a new interpretation that links mass accretion rate to observed spectral changes in Z-sources in a diffwrent way than previously though. Integral part of the test is to catch Z-source on the horizontal branch (HB). There are a few sources where RXTE and previous observatories established a fairly accurate record of how often they appear on a specific spectral branch. 4 observations for 8 ks each has a 50% chance to observe GX 5-1 on the HB.

  2. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  3. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-04-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von-Zeipel surfaces and projected the jet equations of motion onto the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≲ 0.06 in the general relativistic prescription, but is lower if massloss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock. The jet terminal speed increases with stronger shocks, quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6% of the mass accretion rate.

  4. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.

    PubMed

    Bhomia, R K; Inglett, P W; Reddy, K R

    2015-11-15

    Wetlands are known to serve as sinks for particulate matter and associated nutrients and contaminants. Consequently rate of soil accretion is critical for continued performance of wetlands to provide ecosystem services including water quality improvement and reduce excess contaminant loads into downstream waters. Here we demonstrate a new technique to determine rate of soil accretion in selected subtropical treatment wetlands located in southern USA. We also report changes in soil accretion rates and subsequent phosphorus (P) removal efficiency with increasing operational history of these treatment wetlands. Utilizing discernible signatures preserved within the soil depth profiles, 'change points' (CP) that corresponded to specific events in the life history of a wetland were determined. The CP was observed as an abrupt transition in the physico-chemical properties of soil as a manifestation of prevailing historical conditions (e.g. startup of treatment wetlands in this case). Vertical depth of CP from the soil surface was equivalent to the depth of recently accreted soil (RAS) and used for soil accretion rate calculations. Annual soil and P accretion rates determined using CP technique (CPT) in studied wetlands ranged from 1.0±0.3 to 1.7±0.8 cm yr(-1) and 1.3±0.6 to 3.3±2 g m(-2) yr(-1), respectively. There was no difference in RAS depth between emergent and submerged aquatic vegetation communities found at the study location. Our results showed that soil and P accretion rates leveled off after 10 yr of treatment wetlands' operation. On comparison, soil accretion rates and RAS depth determined by CPT were commensurate with that measured by other techniques. CPT can be easily used where a reliable record of wetland establishment date or some significant alteration/perturbation is available. This technique offers a relatively simple alternative to determine vertical accretion rates in free-water surface wetlands. PMID:26172597

  5. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  6. The distribution of Extremely High Accretion Rates and Metallicities of QSO's as a Function of Redshift over Cosmic Evolution

    NASA Astrophysics Data System (ADS)

    Abu Seif, Nasser; Kazanas, Demosthenes

    2016-07-01

    different ranges of redshift is (-0.1 to -0.5). This result indicates that the maximum distributions of L/LEdd exist at low redshifts, which means the accretion of QSOs is higher at lower redshift. We found that L/LEdd increase with decreasing SMBH mass. We may confirm that the lowest M BH has the fastest accretion. There have been several suggestions that very massive BHs grew faster at early epochs, while the growth of less massive BHs extends over longer periods. In the current study, we found a strong relation between the X-ray power-law photon-indexes with both SMBH mass (MBH) and the accretion rates. We found that both FWHM (Hβ) and (L/LEdd) are significantly correlated with the photon index; the FWHM (Hβ) increased with decreased X-ray photon index. We found the relationship is limited by the small number of sources. We found positive correlation and accretion rate increasing with increasing X-ray to optical UV luminosity ratio over cosmic time. Accretion rate depends strongly on the UV to X-ray ratio. We investigated the relation between metallicities and accretion rate over cosmic time. It is found that they are significantly correlated. In this current study, we find there is a strong correlation between metallicity and redshift. The relationship is limited by the small number of sources.

  7. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillations decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.

  8. Dependence of the outer density profiles of halos on their mass accretion rate

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2014-07-01

    We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.

  9. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  10. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    SciTech Connect

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.; Montesinos, B.; Najita, J. R.; Brittain, S. D.; Van den Ancker, M. E.

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  11. Stellar Parameters and Accretion Rate of the Transition Disk Star HD 142527 from X-Shooter

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Fairlamb, J.; Montesinos, B.; Oudmaijer, R. D.; Najita, J. R.; Brittain, S. D.; van den Ancker, M. E.

    2014-07-01

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T eff = 6550 ± 100 K, log g = 3.75 ± 0.10, L */L ⊙ = 16.3 ± 4.5, M */M ⊙ = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M ⊙. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10-7 M ⊙ yr-1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ~7 on a timescale of 2 to 5 yr.

  12. Rates of floodplain accretion in a tropical island river system impacted by cyclones and large floods

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Garimella, Sitaram; Kostaschuk, Ray A.

    2002-01-01

    Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 ( 137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year -1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m 3 s -1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200-500 g l -1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.

  13. ACCRETION RATES FOR T TAURI STARS USING NEARLY SIMULTANEOUS ULTRAVIOLET AND OPTICAL SPECTRA

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Blaty, Alex; Herczeg, Gregory; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander E-mail: ncalvet@umich.edu

    2013-04-20

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, {eta} Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (M-dot ) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of M-dot to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the M-dot estimates, to produce correlations between accretion indicators (H{beta}, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  14. MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS

    SciTech Connect

    Donehew, Brian; Brittain, Sean E-mail: sbritt@clemson.edu

    2011-02-15

    The accretion rate of young stars is a fundamental characteristic of these systems. While accretion onto T Tauri stars has been studied extensively, little work has been done on measuring the accretion rate of their intermediate-mass analogs, the Herbig Ae/Be stars. Measuring the stellar accretion rate of Herbig Ae/Bes is not straightforward both because of the dearth of metal absorption lines available for veiling measurements and the intrinsic brightness of Herbig Ae/Be stars at ultraviolet wavelengths where the brightness of the accretion shock peaks. Alternative approaches to measuring the accretion rate of young stars by measuring the luminosity of proxies such as the Br {gamma} emission line have not been calibrated. A promising approach is the measurement of the veiling of the Balmer discontinuity. We present measurements of this veiling as well as the luminosity of Br {gamma}. We show that the relationship between the luminosity of Br {gamma} and the stellar accretion rate for classical T Tauri stars is consistent with Herbig Ae stars but not Herbig Be stars. We discuss the implications of this finding for understanding the interaction of the star and disk for Herbig Ae/Be stars.

  15. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    PubMed

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  16. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs

    PubMed Central

    Vargas-Ángel, Bernardo; Richards, Cristi L.; Vroom, Peter S.; Price, Nichole N.; Schils, Tom; Young, Charles W.; Smith, Jennifer; Johnson, Maggie D.; Brainard, Russell E.

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  17. The Influence of Accretion Rate and Metallicity on Thermonuclear Bursts: Predictions from KEPLER Models

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Heger, Alexander; Galloway, Duncan K.

    2016-03-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated light curve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from η =1.1 to 1.24. We identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  18. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests

    USGS Publications Warehouse

    Krauss, K.W.; Allen, J.A.; Cahoon, D.R.

    2003-01-01

    Root systems in mangrove swamps have captured the attention of scientists for decades. Among the postulated roles of root structures include a contribution to the geomorphological stability of mangrove soils through sediment trapping and binding. In this study, we used feldspar marker horizons and sediment pins to investigate the influence of three different functional root types - prop roots in Rhizophora spp., root knees in Bruguiera gymnorrhiza, and pneumatophores in Sonneratia alba - on vertical accretion and elevation change in three mangrove forests in the Federated States of Micronesia. Prop roots facilitated vertical accretion (11.0 mm year-1) more than pneumatophores or bare soil controls (mean, 8.3 mm year-1). Sediment elevation, on the other hand, increased at an average rate of only 1.3 mm year-1 across all root types, with rate differences by root type, ranging from -0.2 to 3.4 mm year-1, being detected within river basins. This investigation demonstrates that prop roots can assist in the settling of suspended sediments from estuarine waters, yet prop root structures are not as successful as pneumatophores in maintaining sediment elevation over 2.5 years. As root densities increase over time, an increase in turbulence-induced erosion and in shallow subsidence as organic peat layers form is expected in Micronesian mangrove forests. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. The Accretion Rate Independence of Horizontal Branch Oscillation in XTE J1701-462

    NASA Astrophysics Data System (ADS)

    Li, Zhaosheng; Chen, Li; Qu, Jinlu; Bu, Qingcui; Wang, Dehua; Xu, Renxin

    2014-05-01

    We study the temporal and energy spectral properties of the unique neutron star low-mass X-ray binary XTE J1701-462. Assuming the horizontal branch/normal branch (HB/NB) vertex as a reference position of the accretion rate, the horizontal branch oscillation (HBO) of the HB/NB vertex is roughly 50 Hz. It indicates that the HBO is independent of the accretion rate or the source intensity. The spectral analysis shows R_{in}\\propto \\dot{M}_{Disk}^{2.9+/- 0.09} in the HB/NB vertex and R_{in}\\propto \\dot{M}_{Disk}^{1.7+/- 0.06} in the NB/flaring branch (FB) vertex, which implies that different accretion rates may be produced in the HB/NB and NB/FB vertex. The Comptonization component could be fitted by a constrained broken power law or nthComp. Unlike GX 17+2, the frequencies of HBO positively correlate with the inner disk radius, which contradict with the prediction of the Lense-Thirring precession model. XTE J1701-462, both in the Cyg-like phase and in the Sco-like phase, follows a positive correlation between the break frequency of broadband noise and the characteristic frequency of HBO, which is called the W-K relation. An anticorrelation between the frequency of HBO and photon energy is observed. Moreover, the rms of HBO increases with photon energy until ~10 keV. We discuss the possible origin of HBO from the corona in XTE J1701-462.

  20. GX 3+1: THE STABILITY OF SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE

    SciTech Connect

    Seifina, Elena; Titarchuk, Lev E-mail: titarchuk@fe.infn.it

    2012-03-10

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and Beppo SAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component. We argue that the electron temperature kT{sub e} of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index {Gamma} is almost constant ({Gamma} = 2.00 {+-} 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index {Gamma} and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli and Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low

  1. GX 3+1: The Stability of Spectral Index as a Function of Mass Accretion Rate

    NASA Technical Reports Server (NTRS)

    Seifana, Elena; Titarchuk, Lev

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram, We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites, We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and Gaussian component We argue that the electron temperature kTe of the Compton cloud monotonically increases from 2.3 keY to 4.5 keY, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by factor four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+ I was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries. This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at

  2. Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States

    USGS Publications Warehouse

    Preston, T.M.; Sojda, R.S.; Gleason, R.A.

    2013-01-01

    Increased sedimentation and nutrient cycle changes in Prairie Pothole Region wetlands associated with agriculture threaten the permanence and ecological functionality of these important resources. To determine the effects of land use on sedimentation and nutrient cycling, soil cores were analyzed for cesium-137 (137Cs), lead-210 (210Pb), and potassium-40 (40K) activities; textural composition; organic and inorganic carbon (C); and total nitrogen (N) from twelve wetlands surrounded by cropland, Conservation Reserve Program (CRP) lands, or native prairie uplands. Separate soil cores from nine of these wetlands were also analyzed for phosphorus (P), nitrate (NO3), and ammonium (NH4) concentrations. Wetlands surrounded by cropland had significantly greater linear sediment accretion rates than wetlands surrounded by CRP or native prairie. Linear sediment accretion rates from wetlands surrounded by cropland were 2.7 and 6 times greater than wetlands surrounded by native prairie when calculated from the initial and peak occurrence of 137Cs, respectively, and 0.15 cm y−1 (0.06 in yr−1) greater when calculated from 210Pb. Relative to wetlands surrounded by CRP, linear sediment accretion rates for wetlands surrounded by cropland were 4.4 times greater when calculated from the peak occurrence of 137Cs. No significant differences existed between the linear sediment accretion rates between wetlands surrounded by native prairie or CRP uplands. Wetlands surrounded by cropland had increased clay, P, NO3, and NH4, and decreased total C and N concentrations compared to wetlands surrounded by native prairie. Wetlands surrounded by CRP had the lowest P and NO3 concentrations and had clay, NH4, C, and N concentrations between those of cropland and native prairie wetlands. We documented increased linear sediment accretion rates and changes in the textural and chemical properties of sediments in wetlands with cultivated uplands relative to wetlands with native prairie uplands. These

  3. EVIDENCE FOR ACCRETION RATE CHANGE DURING TYPE I X-RAY BURSTS

    SciTech Connect

    Worpel, Hauke; Galloway, Duncan K.; Price, Daniel J.

    2013-08-01

    The standard approach for time-resolved X-ray spectral analysis of thermonuclear bursts involves subtraction of the pre-burst emission as background. This approach implicitly assumes that the persistent flux remains constant throughout the burst. We reanalyzed 332 photospheric radius expansion bursts observed from 40 sources by the Rossi X-Ray Timing Explorer, introducing a multiplicative factor f{sub a} to the persistent emission contribution in our spectral fits. We found that for the majority of spectra the best-fit value of f{sub a} is significantly greater than 1, suggesting that the persistent emission typically increases during a burst. Elevated f{sub a} values were not found solely during the radius expansion interval of the burst, but were also measured in the cooling tail. The modified model results in a lower average value of the {chi}{sup 2} fit statistic, indicating superior spectral fits, but not yet to the level of formal statistical consistency for all the spectra. We interpret the elevated f{sub a} values as an increase of the mass accretion rate onto the neutron star during the burst, likely arising from the effects of Poynting-Robertson drag on the disk material. We measured an inverse correlation of f{sub a} with the persistent flux, consistent with theoretical models of the disk response. We suggest that this modified approach may provide more accurate burst spectral parameters, as well as offering a probe of the accretion disk structure.

  4. The Accretion Rates and White Dwarf Components of Nova-Like Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Mizusawa, Trisha; Merritt, J.; Bonaro, M.; Foran, S.; Plumberg, C.; Stewart, H.; Wiley, T.; Ballouz, R.; Sion, E.

    2009-01-01

    We present the results of a multi-component synthetic spectral analysis of the archival far ultraviolet spectra of several key nova-like variables including members of the SW Sex, RW Tri, UX UMa and VY Scl subclasses: KR Aur, V795 Her, BP Lyn, V825 Her, HL Aqr, RW Tri and V425 Cas. Accretion rates as well as the flux contribution of the accreting white dwarf are included in our analysis. Except for RW Tri which has a reliable trigonometric parallax, we computed the distances to the nova-like systems using the method of Knigge(2006, MNRAS, 373, 484). For KR Aur, we find that the white dwarf has T_eff = 29,000 +/- 2000K, log g = 8.4 and contributes 18% of the FUV flux while an accretion disk with accretion rate Mdot = 3 x 10-10 Msun/yr at an inclination of 41 degrees, contributes the remainder. Our analysis of seven archival IUE spectra of RW Tri at its parallax distance consistently yields a low mass (0.4 Msun) white dwarf and an average accretion rate, Mdot = 6.3 x 10-9 Msun/yr. We find that an accreting white dwarf rather than accretion disk dominates the far UV spectrum of V425 Cas while HL Aqr's and V825 Her's FUV spectra are dominated by an accretion disk with Mdot = 1 x 10-9 Msun/yr and 3 x 10-9 Msun/yr, respectively. For BP Lyn we find Mdot = 1 x 10-8 Msun/yr and we explore the possiblity that V795 Her is an intermediate polar. We discuss the implications of our results for the evolutionary status of nova-like variables. This work is supported by NSF grant AST-0807892 to Villanova University and by the Delaware Space Grant Consortium

  5. On the relation between Seyfert 2 accretion rate and environment at z < 0.1

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Gurovich, Sebastián; Díaz Tello, Jorge; Söchting, Ilona K.; Lambas, Diego G.

    2014-01-01

    We analyse different properties of the small-scale environment of Seyfert 2 for two samples selected according to the accretion rate parameter , R, from the Sloan Digital Sky Survey, Data Release 7 survey. We compare the results with two control samples of non-active galaxies that cover the same redshift range, luminosity, colours, morphology, age and stellar mass content. Our study shows that both high and low accretion rate subsamples reside in bluer and lower density environments than the control samples. However, we find that this difference is at least two times stronger for the low accretion rate Seyferts. In the vicinity of Seyfert 2, red galaxies have systematically lower values of stellar mass as compared with corresponding control samples. The lower values of stellar mass for red neighbours is more significant at higher density environments and it is more evident for low accretion rate Seyfert. We also find that this effect is independent of the host's stellar mass. Our results are consistent with a scenario where active galactic nucleus occurrence is higher in lower/medium density environments with a higher merger rate and a lack of a dense intergalactic medium (that can strip gas from these systems) that provide suitable conditions for the central black hole feeding. We find this particularly evident for the low accretion rate Seyferts that could compensate through the intergalactic medium the lack of gas of their hosts.

  6. Estimating the long-term phosphorus accretion rate in the Everglades: A Bayesian approach with risk assessment

    NASA Astrophysics Data System (ADS)

    Qian, Song S.; Richardson, Curtis J.

    Using wetlands as a sink of nutrients, phosphorus in particular, is becoming an increasingly attractive alternative to conventional wastewater treatment technology. In this paper, we briefly review the mechanism of phosphorus retention in wetlands, as well as previous modeling efforts. A Bayesian method is then proposed for estimating the long-term phosphorus accretion rate in wetlands through a piecewise linear model of outflow phosphorus concentration and phosphorus mass loading rate. The Bayesian approach was used for its simplicity in computation and its ability to accurately represent uncertainty. Applied to an Everglades wetland, the Bayesian method not only produced the probability distribution of the long-term phosphorus accretion rate but also generated a relationship of acceptable level of ``risk'' and optimal phosphorus mass loading rate for the proposed constructed wetlands in south Florida. The latter is a useful representation of uncertainty which is of interest to decision makers.

  7. Chernobyl {sup 137}Cs used to determine sediment accretion rates at selected northern European coastal wetlands

    SciTech Connect

    Callaway, J.C.; DeLaune, R.D.; Patrick, W.H. Jr.

    1996-05-01

    Sediment cores were collected form five coastal wetlands along the North Sea (England and Netherlands) and Baltic Sea (Poland). {sup 137}Cs dating was used to assess sediment accretion rates, including rates based on the {sup 137}Cs peak from the 1986 accident at Chernobyl. Peaks form the Chernobyl fallout were found in cores from the Oder and Vistula Rivers in Poland, from the Eastern Scheldt in the Netherlands, and in one of the two cores from Stiffkey Marsh, UK. No evidence of Chernobyl fallout was found in cores from Dengie Marsh, UK. The Chernobyl {sup 137}Cs peak serves as an excellent marker for short-term accretion rates because of its high activity. Vertical accretion rates (cm yr{sup {minus}1}) based on 1963 and 1986 peaks were similar at most sites; differences may be due to large inputs of sediment from storms or recent accumulation of organic matter. Large differences in sediment characteristics and accretion rates were found between samples from Poland and western Europe. Vertical accretion rates over the period 1963-1986 ranged from 0.26 to 0.85 cm{sup {minus}1} and from 0.30 to 1.90 cm yr{sup {minus}1} over the 1986-1991 period. Vertical accretion rates for the period these sites are in imminent danger of excessive flooding. The Chernobyl {sup 137}Cs peak will be especially useful for studies of short-term (i.e. very recent) sedimentation in the near future and for comparisons of sediment processes over different time scales. 33 refs., 4 figs., 4 tabs.

  8. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  9. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  10. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2011-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  11. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2010-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  12. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2013-10-01

    The Sloan Digital Sky Survey has discovered a remarkable group of ~100 quasars with extremely weak emission lines in their rest-frame optical-UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of six quasars of this class with a total exposure time of 128 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the optical-UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  13. Suppression of the accretion rate in thin discs around binary black holes.

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-05-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  14. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  15. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  16. Monitoring the Mass Accretion Rate in Scorpius X-1 Using the Optical Johnson B Filter

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Norwood, J.; Harrison, T. E.; Holtzman, J.; Dukes, R.; Barker, T.

    2005-04-01

    The emission from low-mass X-ray binaries (LMXBs) arises from the accretion of mass onto a neutron star or black hole. A knowledge of the amount of mass being accreted as well as changes in this value are therefore essential inputs into models of these systems. Despite the need for this information, we currently lack an easily applied method that allows the accretion rate to be measured. X-ray color-color plots and UV observations can be used for this purpose, but these methods require access to oversubscribed satellites. Even if time is granted on these facilities, there is no guarantee that the source will be in a desired state when the observations take place. In this paper we show that an estimate of the ratio of the mass accretion rate to the Eddington rate can be obtained for Sco X-1 by using the Johnson B magnitude. Based on correlated X-ray and ground-based observations, we find that for Sco X-1, M˙/M˙E=-(0.123+/-0.007)B+2.543+/-0.085. This relation is valid when the system is on its normal and lower flaring branches. Based on theoretical models, we suggest that similar relations should also exist for other LMXBs.

  17. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  18. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  19. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  20. Growing black holes and galaxies: black hole accretion versus star formation rate

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-05-01

    We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully compare star formation rate (SFR) and BH accretion rate (BHAR) time-scales, temporal behaviour, and relative magnitude. We find that (i) BHAR and galaxy-wide SFR are typically temporally uncorrelated, and have different variability time-scales, except during the merger proper, lasting ˜0.2-0.3 Gyr. BHAR and nuclear (<100 pc) SFR are better correlated, and their variability are similar. Averaging over time, the merger phase leads typically to an increase by a factor of a few in the BHAR/SFR ratio. (ii) BHAR and nuclear SFR are intrinsically proportional, but the correlation lessens if the long-term SFR is measured. (iii) Galaxies in the remnant phase are the ones most likely to be selected as systems dominated by an active galactic nucleus, because of the long time spent in this phase. (iv) The time-scale over which a given diagnostic probes the SFR has a profound impact on the recovered correlations with BHAR, and on the interpretation of observational data.

  1. Mass accretion rates from multiband photometry in the Carina Nebula: the case of Trumpler 14

    NASA Astrophysics Data System (ADS)

    Beccari, G.; De Marchi, G.; Panagia, N.; Valenti, E.; Carraro, G.; Romaniello, M.; Zoccali, M.; Weidner, C.

    2015-01-01

    Context. We present a study of the mass accretion rates of pre-main sequence (PMS) stars in the cluster Trumpler 14 (Tr 14) in the Carina Nebula. Using optical multiband photometry we were able to identify 356 PMS stars showing Hα excess emission with equivalent width EW(Hα) > 20 Å. We interpret this observational feature as an indication that these objects are still actively accreting gas from their circumstellar medium. From a comparison of the HR diagram with PMS evolutionary models we derive ages and masses of the PMS stars. We find that most of the PMS objects are younger than 10 Myr with a median age of ~3 Myr. Surprisingly, we also find that ~20% of the mass accreting objects are older than 10 Myr. For each PMS star in Trumpler 14 we determine the mass accretion rate (Ṁacc) and discuss its dependence on mass and age. We finally combine the optical photometry with near-IR observations to build the spectral energy distribution (SED) for each PMS star in Tr 14. The analysis of the SEDs suggests the presence of transitional discs in which a large amount of gas is still present and sustains accretion onto the PMS object at ages older than 10 Myr. Our results, discussed in light of recent recent discoveries with Herschel of transitional discs containing a massive gas component around the relatively old PMS stars TW Hydrae, 49 Ceti, and HD 95086, support a new scenario n which old and evolved debris discs still host a significant amount of gas. Aims: Methods: Results:

  2. Is the Rape Rate Increasing?

    ERIC Educational Resources Information Center

    Cameron, Paul; And Others

    While it has been asserted that rape has increased in frequency over the past generation, part of this increase may be due to a greater willingness to report rape to the authorities. A study was conducted to examine the frequency of rape and to describe the characteristics of rape victims. A random questionnaire survey of 4,340 adults in five…

  3. NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

    SciTech Connect

    Schaefer, Bradley E.; Collazzi, Andrew C.

    2010-05-15

    We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500 Cyg, V1974 Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500 Cyg. V1500 Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500 Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

  4. Conditions for Circumstellar Disc Formation II: Effects of Initial Cloud Stability and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-09-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate onto the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brake the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with nonuniform densities.

  5. The Properties of Low-Luminosity AGN: Variability, Accretion Rate, Black Hole Mass and Color

    NASA Astrophysics Data System (ADS)

    Oleas, Juan; Podjed, Stephanie; Sarajedini, Vicki

    2016-01-01

    We present the results from a study of ~5000 Broad-Line selected AGN from the Sloan Digital Sky Survey DR7. Galaxy and AGN templates have been fit to the SDSS spectra to isolate the AGN component. The sources have absolute magnitudes in the range -23 < Mi < -18 and lie at redshifts less than z ~ 0.8. A variability analysis reveals that the anti-correlation between luminosity and variability amplitude continues to the faintest AGN in our sample (Gallastegui-Aizpun & Sarajedini 2014), though the underlying cause of the relation is still poorly understood. To address this, we further explore the connection between AGN luminosity and variability through measurement of the Hβ line width to determine black hole mass and accretion rate. We find that AGN with the highest variability amplitudes at a given luminosity appear to have lower accretion rates compared to low amplitude variables. We also investigate correlations with AGN color and accretion rate among these low-luminosity AGN.

  6. The radial dependence of pebble accretion rates: A source of diversity in planetary systems. I. Analytical formulation

    NASA Astrophysics Data System (ADS)

    Ida, S.; Guillot, T.; Morbidelli, A.

    2016-06-01

    Context. The classical planetesimal accretion scenario for the formation of planets has recently evolved with the idea that pebbles, centimeter- to meter-sized icy grains migrating in protoplanetary disks, can control planetesimal and/or planetary growth. Aims: We investigate how pebble accretion depends on disk properties and affects the formation of planetary systems. Methods: We construct analytical models of pebble accretion onto planetary embryos that consistently account for the mass and orbital evolution of the pebble flow and reflect disk structure. Results: We derive simple formulas for pebble accretion rates in the so-called settling regime for planetary embryos that are more than 100 km in size. For relatively smaller embryos or in outer disk regions, the accretion mode is three-dimensional (3D), meaning that the thickness of the pebble flow must be taken into account, and resulting in an accretion rate that is independent of the embryo mass. For larger embryos or in inner regions, the accretion is in a two-dimensional (2D) mode, i.e., the pebble disk may be considered infinitely thin. We show that the radial dependence of the pebble accretion rate is different (even the sign of the power-law exponent changes) for different disk conditions such as the disk heating source (viscous heating or stellar irradiation), drag law (Stokes or Epstein, and weak or strong coupling), and in the 2D or 3D accretion modes. We also discuss the effect of the sublimation and destruction of icy pebbles inside the snow line. Conclusions: Pebble accretion easily produces a large diversity of planetary systems. In other words, to infer the results of planet formation through pebble accretion correctly, detailed prescriptions of disk evolution and pebble growth, sublimation, destruction and migration are required.

  7. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J. M.; Williams, J. P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; Carpenter, J.; Guidi, G.; Mathews, G. S.; Oliveira, I.; Prusti, T.; van Dishoeck, E. F.

    2016-06-01

    A relation between the mass accretion rate onto the central young star and the mass of the surrounding protoplanetary disk has long been theoretically predicted and observationally sought. For the first time, we have accurately and homogeneously determined the photospheric parameters, mass accretion rate, and disk mass for an essentially complete sample of young stars with disks in the Lupus clouds. Our work combines the results of surveys conducted with VLT/X-Shooter and ALMA. With this dataset we are able to test a basic prediction of viscous accretion theory, the existence of a linear relation between the mass accretion rate onto the central star and the total disk mass. We find a correlation between the mass accretion rate and the disk dust mass, with a ratio that is roughly consistent with the expected viscous timescale when assuming an interstellar medium gas-to-dust ratio. This confirms that mass accretion rates are related to the properties of the outer disk. We find no correlation between mass accretion rates and the disk mass measured by CO isotopologues emission lines, possibly owing to the small number of measured disk gas masses. This suggests that the mm-sized dust mass better traces the total disk mass and that masses derived from CO may be underestimated, at least in some cases.

  8. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    NASA Astrophysics Data System (ADS)

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  9. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    PubMed

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate. PMID:20164924

  10. Pebble Accretion Rates for Planetesimals: Hydrodynamics Calculations with Direct Particle Integration

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron

    2015-12-01

    The formation and growth of planetesimals are fundamental to planet building. However, in our understanding of planet formation, there are a number of processes that limit the formation of planetesimals such as particle bouncing, fragmentation, and inward radial drift due to gas drag. Such processes seemingly make growth beyond mm to cm sizes difficult. In this case, the protoplanetary disk may become rich in pebble-sized solids as opposed to km-sized planetesimals. If a small number of large planetesimals do manage to form, then gas-drag effects can allow those seeds to efficiently accrete the abundant pebbles from the nebula and grow to planet sizes. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes and nebular conditions using wind tunnel numerical experiments.

  11. Mapping the average AGN accretion rate in the SFR-M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5

    NASA Astrophysics Data System (ADS)

    Delvecchio, I.; Lutz, D.; Berta, S.; Rosario, D. J.; Zamorani, G.; Pozzi, F.; Gruppioni, C.; Vignali, C.; Brusa, M.; Cimatti, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Lanzuisi, G.; Oliver, S.; Rodighiero, G.; Santini, P.; Symeonidis, M.

    2015-05-01

    We study the relation of AGN accretion, star formation rate (SFR) and stellar mass (M*) using a sample of ≈8600 star-forming galaxies up to z = 2.5 selected with Herschel imaging in the GOODS and COSMOS fields. For each of them we derive SFR and M*, both corrected, when necessary, for emission from an active galactic nucleus (AGN), through the decomposition of their spectral energy distributions (SEDs). About 10 per cent of the sample are detected individually in Chandra observations of the fields. For the rest of the sample, we stack the X-ray maps to get average X-ray properties. After subtracting the X-ray luminosity expected from star formation and correcting for nuclear obscuration, we derive the average AGN accretion rate for both detected sources and stacks, as a function of M*, SFR and redshift. The average accretion rate correlates with SFR and with M*. The dependence on SFR becomes progressively more significant at z > 0.8. This may suggest that SFR is the original driver of these correlations. We find that average AGN accretion and star formation increase in a similar fashion with offset from the star-forming `main-sequence'. Our interpretation is that accretion on to the central black hole and star formation broadly trace each other, irrespective of whether the galaxy is evolving steadily on the main-sequence or bursting.

  12. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  13. Is the Oort A-value a universal growth rate limit for accretion disk shear instabilities?

    NASA Technical Reports Server (NTRS)

    Balbus, Steven A.; Hawley, John F.

    1992-01-01

    A weak-field local MHD instability that is of importance to accretion disks is examined. The maximum growth rate of the instability is found to be not only independent of the magnetic field strength but independent of field geometry as well. In particular, all Keplerian disks are unstable in the presence of any weak poloidal field, with the ratio of the maximum growth rate to disk angular velocity given by 3/4. The maximum growth rate of any weak field configuration that is not purely toroidal is given by the local Oort A-value of the disk. The behavior is studied by using a form of the dynamical Hill equations. It is conjectured that the Oort A-value is an upper bound to the growth rate of any instability feeding upon the free energy of differential rotation.

  14. Locations of accretion shocks around galaxy clusters and the ICM properties: insights from self-similar spherical collapse with arbitrary mass accretion rates

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-09-01

    Accretion shocks around galaxy clusters mark the position where the infalling diffuse gas is significantly slowed down, heated up, and becomes a part of the intracluster medium (ICM). They play an important role in setting the ICM properties. Hydrodynamical simulations have found an intriguing result that the radial position of this accretion shock tracks closely the position of the `splashback radius' of the dark matter, despite the very different physical processes that gas and dark matter experience. Using the self-similar spherical collapse model for dark matter and gas, we find that an alignment between the two radii happens only for a gas with an adiabatic index of γ ≈ 5/3 and for clusters with moderate mass accretion rates. In addition, we find that some observed ICM properties, such as the entropy slope and the effective polytropic index lying around ˜1.1-1.2, are captured by the self-similar spherical collapse model, and are insensitive to the mass accretion history.

  15. POISSON project. III. Investigating the evolution of the mass accretion rate

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  16. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  17. A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK

    SciTech Connect

    Cannizzo, J. K. E-mail: gehrels@milkyway.gsfc.nasa.gov

    2009-08-01

    We present a new way of looking at the very long-term evolution of gamma-ray bursts (GRBs) in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep 'breaks' in the long-term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an 'external disk' whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power-law decay to the GRB light curves. In this model, the different canonical power-law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power-law segment.

  18. New Low Accretion Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Schmidt, Gary D.; Szkody, Paula; Vanlandingham, Karen M.; Anderson, Scott F.; Barentine, J. C.; Brewington, Howard J.; Hall, Patrick B.; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Long, Dan; Margon, Bruce; Neilsen, Eric H., Jr.; Newman, Peter R.; Nitta, Atsuko; Schneider, Donald P.; Snedden, Stephanie A.

    2005-09-01

    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray-faint, magnetic accretion binaries that accrete at rates M˙<~10-13 Msolar yr-1, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post-common-envelope systems whose orbits have not yet decayed to the point of Roche lobe contact. They are premagnetic cataclysmic variables, or pre-Polars. The systems exhibit spin-orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon.'' Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG. A portion of the results presented here was obtained with the MMT Observatory, a facility operated jointly by the University of Arizona and the Smithsonian Institution. Based in part on observations with the Apache Point Observatory 3.5 m telescope and the Sloan Digital Sky Survey, which are owned and operated by the Astrophysical Research Consortium (ARC).

  19. 2500 years of changing shoreline accretion rates at the mouths of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Tamura, Toru; Anthony, Edward; Brunier, Guillaume; Saito, Yoshiki; Dussouillez, Philippe; Lap Nguyen, Van; Ta, Oahn

    2016-04-01

    The Mekong River delta prograded rapidly in a relatively sheltered bight in the South China Sea under the influence of high fluvial sediment supply 5300 to 3500 years ago, developing from an estuary into a delta. This >200 km seaward growth resulted in increasing exposure of the delta to ocean waves that led to a more wave-influenced mode of progradation characterized by the construction of numerous sets of beach ridges in the eastern sector of the delta, which shows a system of multiple distributary mouths. The growth pattern of this river-mouth sector over the last 2500 years has been determined from OSL dating of these beach-ridge deposits, while the most up-to-date trends (1950-2014) have been highlighted from the analysis of maps and satellite images. The OSL ages show that the area of the delta in the mouths sector remained nearly constant till about 500 yr BP, following which significant accretion occurred, possibly in response to changes in catchment land-use and monsoon rainfall and attendant river water and sediment discharge. A fine-tuned analysis of changes since 1950 shows dominant but fluctuating accretion, with two periods of erosion. The first (1965-1973) occurred in the course of the second Indochina war, and the second more recently from 2003 to 2011, followed by mild recovery between 2011 and 2014. These fluctuations most likely reflect changes in sediment supply caused by the vicissitudes of war and its effect on vegetation cover, as well as variations in monsoon rainfall and discharge, and, for the most recent period, massive sand mining in the river and deltaic channels. Accretion of the mouths sector has gone apace, over the same recent multi-decadal period, with large-scale erosion of the muddy shores of the delta in the western South China Sea and the Gulf of Thailand, thus suggesting that the mouths sector may be increasingly sequestering sediment to the detriment of the rest of the delta shoreline. The accretion in the mouths sector is

  20. Sensitivity analysis of the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER)

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Drexler, J. Z.; Schoellhamer, D. H.; Thorne, K.; Spragens, K.; Takekawa, J.

    2010-12-01

    The San Francisco Estuary contains the largest extent of tidal marsh in the western United States. It is home to several state and federally listed species that are threatened or endangered. Climate change is a potential threat to these tidal marsh habitats through accelerated sea-level rise. The Wetland Accretion Rate Model for Ecosystem Resilience, or WARMER, is a 1-D vertical model of elevation at a point representative of target wetland habitat. WARMER incorporates both biological and physical components of vertical marsh accretion processes based on previous wetland models and is modified to incorporate mechanistic organic matter and inorganic deposition and the predicted SLR curve for San Francisco Estuary. Processes that are currently being modified include relative sea-level rise, inorganic sediment deposition, organic matter production, decomposition, and compaction. The model will be applied to marshes across the San Francisco Estuary and results will be used to evaluate the extent sea-level rise will reduce the functional habitat of the threatened black rail (Laterallus jamaicensis coturniculus), the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris). Here we present a sensitivity analysis of key model parameters. Previous studies have noted that inorganic sediment deposition, initial elevation and pore space are the most sensitive parameters. Consistent with these studies, sensitivity analysis shows that pore space is the most sensitive parameter in the current model and the modified inorganic sediment deposition subroutine is particularly sensitive to the parameterization of settling velocity. Perturbations to initial elevation, the rate of sea level rise, organic matter input rates and percent refractory organic matter had small impacts on the modeled final elevation. Proper characterization of marsh sediment pore space and temporally variable sediment

  1. MERIT RATING FOR SALARY INCREASES AND PROMOTIONS.

    ERIC Educational Resources Information Center

    BOLIN, JOHN G.; MUIR, JOHN W.

    DEMANDS FOR QUALITY EDUCATION HAVE EMPHASIZED THE NEED FOR OBJECTIVE MERIT RATING OF TEACHERS FOR PROMOTION AND SALARY INCREASES. THE STUDY REVIEWS MERIT-RATING LITERATURE, ANALYZES RATING SCALES AND PROCEDURES, AND MAKES RECOMMENDATIONS FOR DEVELOPING AND IMPLEMENTING MERIT PROGRAMS. THE WRITERS CONCLUDE THAT A COMBINATION OF SUPERORDINATE, PEER,…

  2. Testing propagating mass accretion rate fluctuations model PROPFLUC on black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2016-05-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of black hole X-ray binaries. However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and a quasi-periodic oscillation (QPO) on the precession frequency. We recently applied systematically for the first time PROPFLUC on a black hole candidate (MAXI J1543-564) in order to compare the results of phenomenological and physical modeling of the source power spectrum and to give a physical interpretation of the rising phase of the source outburst. Here we resume the results of our study on MAXI J1543-564 and we discuss future PROPFLUC implementations.

  3. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  4. Increasing PCB Radiolysis Rates in Transformer Oil

    SciTech Connect

    Mincher, Bruce Jay

    2002-11-01

    The kinetics of Aroclor 1242 radiolysis in transformer oil, using high-energy electrons, was found to be analogous to that previously measured for individual polychlorinated biphenyl (PCB) congeners irradiated with ó-rays. The plot of the pseudo-first-order rate constant for PCB decomposition versus initial PCB concentration is a power function, with high rate constants for low concentrations. The addition of alkaline isopropanol to transformer oil was found to increase the pseudo-first-order rate constant for PCB decomposition. The rate constant under these conditions is independent of concentration. This may be explained by the establishment of chain reaction dechlorination in the oil.

  5. Increasing PCB radiolysis rates in transformer oil

    NASA Astrophysics Data System (ADS)

    Mincher, Bruce J.; Brey, Richard R.; Rodriguez, René G.; Pristupa, Scott; Ruhter, Aaron

    2002-11-01

    The kinetics of Aroclor 1242 radiolysis in transformer oil, using high-energy electrons, was found to be analogous to that previously measured for individual polychlorinated biphenyl (PCB) congeners irradiated with γ-rays. The plot of the pseudo-first-order rate constant for PCB decomposition versus initial PCB concentration is a power function, with high rate constants for low concentrations. The addition of alkaline isopropanol to transformer oil was found to increase the pseudo-first-order rate constant for PCB decomposition. The rate constant under these conditions is independent of concentration. This may be explained by the establishment of chain reaction dechlorination in the oil.

  6. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  7. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  8. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  9. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  10. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  11. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  12. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailab...

  13. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    SciTech Connect

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  14. Proposed rate increase -- Jim Woodruff Project

    SciTech Connect

    Not Available

    1990-12-01

    The Jim Woodruff Project consists of three 10,000 kw hydroelectric power units located on the Apalachicola River 0.2 miles below the confluence of the Chattahoochee and Flint rivers where the reservoir crosses the Georgia-Florida state line. Overload capability allows the Government to sell 36,000 kw of capacity and associated energy to six Preference Customers in the Florida Power Corporation service area. A Preference Customer is defined as an electric cooperative or a public body having its own distribution system and marketing power at retail to its constituents. Any surplus energy in excess of Preference Customer commitments is marketed to Florida Power Corporation. In accordance with the Flood Control Act of 1944, the Southeastern Power Administration (Southeastern) is required to charge rates sufficient to recover costs expended by the US Treasury in the construction, maintenance and operation of hydroelectric power projects, together with applicable interest charges. Rate studies indicate that the current rates charged for electricity produced at the Jim Woodruff Project and sold to the Preference Customers and/or the Florida Power Corporation is not meeting this requirement. The proposed rate increase would increase the cost of electricity to the Preference Customers and Ultimate Consumers. However, the increase would still be significantly less expensive than electricity purchased from alternate sources and, therefore, there is no economic inducement for purchasers to seek other sources of power that could result in environmental impacts. Finally, in implementing the proposed rate increase, no generation or transmission facility changes at the Jim Woodruff Project are required which could affect the environment.

  15. Enhanced Accretion Rates of Stars on Supermassive Black Holes by Star-Disk Interactions in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-01

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  16. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  17. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Woosley, S. E.; Hartmann, Dieter H.

    1999-11-01

    The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ~100 day-1 (2) neutron star-black hole mergers: ~450 day-1 (3) collapsars: ~104 day-1 (4) helium star black hole mergers: ~1000 day-1 and (5) white dwarf-black hole mergers: ~20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (fΩ<1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host galaxy, one-half of

  18. Charge Accretion Rate and Injection Radius of Ionized-Induced Injections in Laser Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Chen, Min; Sheng, Zheng-Ming

    2016-03-01

    Ionization-induced injection has recently been proved to be a stable injection method with several advantages in laser wakefield accelerators. However, the controlling of this injection process aiming at producing high quality electron beams is still challenging. In this paper, we examine the ionization injection processes and estimate the injection rate with two-dimensional particle-in-cell simulations. The injection rate is shown to increase linearly with the high-Z gas density as long as its ratio is smaller than some threshold in the mix gases. It is also shown that by changing the transverse mode of the driving lasers one can control the injection rate.

  19. Classical T Tauri stars with VPHAS+ - I. H α and u-band accretion rates in the Lagoon Nebula M8

    NASA Astrophysics Data System (ADS)

    Kalari, V. M.; Vink, J. S.; Drew, J. E.; Barentsen, G.; Drake, J. J.; Eislöffel, J.; Martín, E. L.; Parker, Q. A.; Unruh, Y. C.; Walton, N. A.; Wright, N. J.

    2015-10-01

    We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using ugri H α photometry from the VST Photometric H α survey+. Our sample consists of stars displaying H α excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the u-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using H α and u-band intensities to be ˜0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star-forming processes suggested in the literature.

  20. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  1. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  2. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  3. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  4. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  5. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  6. Coronal geometry at low mass-accretion rates from XMM and NuSTAR spectra

    NASA Astrophysics Data System (ADS)

    Fuerst, F.; NuSTAR Binaries Team; NuSTAR AGN Team

    2016-06-01

    At very low Eddington luminosities the structure and physics of the accretion flow around a black hole are still debated, in particular in the inner most regions. By making sensitive measurements of the relativistic blurring of the X-ray reflection spectrum we investigate these physics, a task for which XMM-Newton, in combination with hard X-ray coverage provided by NuSTAR or Hitomi, is ideally suited and will continue to be unique for years to come. I will present results from XMM and NuSTAR observations of the radio-galaxy Cen A and of the X-ray binary GRS 1739-278 during the decline of its outburst. While Cen A shows a prominent iron line, the broad-band spectrum shows no evidence of reflection. This lack of reflection can best be explained by a jet origin of the hard X-rays or a significantly truncated accretion disk. The iron line can be self-consistently explained when assuming an optically thick torus surrounding the super-massive black-hole. The broad-band X-ray spectrum of GRS 1739-278 can be well described by a simple power-law or Comptonization continuum. A weak relativistic reflection model results in a small but significant improvement of the statistical quality of the fit. This relativistic model indicates a strongly truncated disk.

  7. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    SciTech Connect

    De Marchi, Guido; Beccari, Giacomo; Panagia, Nino E-mail: gbeccari@eso.org

    2013-09-20

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dot{sub acc}, as a function of the stellar parameters finding that log M-dot{sub acc}≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

  8. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    SciTech Connect

    Starrfield, Sumner

    2014-04-15

    Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10{sup 12} cm and the evolution is ended. In all cases where mass ejection occurs, the

  9. Worldwide trends show oropharyngeal cancer rates increasing

    Cancer.gov

    NCI scientists report that the incidence of oropharyngeal cancer significantly increased during the period 1983-2002 among people in countries that are economically developed. Oropharyngeal cancer occurs primarily in the middle part of the throat behind t

  10. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von, Huene R.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  11. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  12. Backsurging perforations can increase production rates

    SciTech Connect

    Brieger, E.F.

    1991-07-01

    Subjecting formations to a large pressure differential or underbalance is a common means of surging perforations to remove damage and increase flow from oil and gas wells. Underbalanced perforating, a standard industry completion technique, is normally used to obtain the pressure differentials intended to dislodge debris from perforations and flush the surrounding compacted zone. Gradually applied pressure underbalance can be achieved by swabbing or jetting to reduce hydrostatic head. Suddenly applied underbalance is achieved by evacuating the tubing in conjunction with a rupture disc, tubing-conveyed perforating systems or by using a new wireline-set, through-tubing backsurge tool. These techniques, except for the through-tubing method, are often utilized only during later workovers due to the expense and difficulty of achieving an adequate underbalance. Many operators prefer to perforate in balanced or overbalanced pressures conditions. This typically leaves perforations completely or partially plugged with gun debris, mud solids and shattered formation material that has been recompacted. Production logging shows that wells often produce from only 10 to 20% of the total interval apparently because of ineffective, plugged perforations.

  13. Pulsed accretion in a variable protostar.

    PubMed

    Muzerolle, James; Furlan, Elise; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-17

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 10(5) years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied. PMID:23283175

  14. Evolution of Nova TrA 2008 into a High Mass-Accretion Rate Post-Nova

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.

    2015-06-01

    NR TrA (Nova TrA 2008) was a normal slow Fe II novae for its first year of evolution. During its third year eclipses appeared, and optical spectra revealed the presence of hot permitted lines of C IV, N V, and O VI in addition to the usual nebular lines. The light curve and spectra resemble those of the V Sge stars. The orbital period is 5.25 hours. The time-resolved spectra show a prominent S-wave in the hot lines with an amplitude of about 100 km/s. We conclude that the system is a CV with a high mass accretion rate that has persisted for some 6 years after the explosion.

  15. Episodic Accretion in Young Stars

    NASA Astrophysics Data System (ADS)

    Audard, M.; Ábrahám, P.; Dunham, M. M.; Green, J. D.; Grosso, N.; Hamaguchi, K.; Kastner, J. H.; Kóspál, Á.; Lodato, G.; Romanova, M. M.; Skinner, S. L.; Vorobyov, E. I.; Zhu, Z.

    In the last 20 years, the topic of episodic accretion has gained significant interest in the star-formation community. It is now viewed as a common, although still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FU Orionis objects are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically 10-7 to a few 10-4 M⊙ yr-1, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main-sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main-sequence evolutionary sequence, is an open question: Do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve, each individual outburst is studied in increasing detail. We summarize key observations of pre-main-sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources — all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.

  16. On the Disappearance of Kilohertz Quasi-periodic Oscillations at a High Mass Accretion Rate in Low-Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Cui, Wei

    2000-05-01

    For all sources in which the phenomenon of kilohertz quasi-periodic oscillation (kHz QPO) is observed, the QPOs disappear abruptly when the inferred mass accretion rate exceeds a certain threshold. Although the threshold cannot at present be accurately determined (or even quantified) observationally, it is clearly higher for bright Z sources than for faint atoll sources. Here we propose that the observational manifestation of kHz QPOs requires direct interaction between the neutron star magnetosphere and the Keplerian accretion disk and that the cessation of kHz QPOs at a high accretion rate is due to the lack of such an interaction when the Keplerian disk terminates at the last stable orbit and yet the magnetosphere is pushed farther inward. The threshold is therefore dependent on the magnetic field strength-the stronger the magnetic field, the higher the threshold. This is certainly in agreement with the atoll/Z paradigm, but we argue that it is also generally true, even for individual sources within each (atoll or Z) category. For atoll sources, the kHz QPOs also seem to vanish at a low accretion rate. Perhaps the ``disengagement'' between the magnetosphere and the Keplerian disk also takes place under such circumstances because of, for instance, the presence of quasi-spherical advection-dominated accretion flow (ADAF) close to the neutron star. Unfortunately, in this case, the estimation of the accretion rate threshold would require a knowledge of the physical mechanisms that cause the disengagement. If the ADAF is responsible, the threshold is likely dependent on the magnetic field of the neutron star.

  17. The Infrared Signature of Accretion Luminosity in Protostars

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Villarama, Ethan G.; Flores-Rivera, Lizxandra

    2016-06-01

    Mass accretion from the disk onto the star is an important mechanism by which a star increases in mass during the formation phase. If the mass accretion rate is time variable then the brightness of the star should also change with time. We use the HOCHUNK3D radiative transfer code to investigate how disk accretion rate (Mdot) affects the protostar spectral energy distribution (SED). The biggest changes in brightness occur at infrared wavelengths ranging from approximately 5 to 100 microns. The results show that the protostar luminosity doubles from 1 to 2 L⊙ when the disk accretion rate is increased to Mdot=3.0e-7 M⊙/year. We conclude that the models are a useful tool to study mass accretion rates and time variability in protostars.

  18. 5 CFR 530.304 - Establishing or increasing special rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... special rate schedule that covers only law enforcement officers, OPM may compute the special rate... REGULATIONS PAY RATES AND SYSTEMS (GENERAL) Special Rate Schedules for Recruitment and Retention General.... When OPM establishes a minimum special rate under this authority, corresponding increases also may...

  19. 12 CFR 1026.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Reevaluation of rate increases. 1026.59 Section... credit plan. (2) Rate increases imposed between January 1, 2009 and February 21, 2010. For rate increases imposed between January 1, 2009 and February 21, 2010, an issuer must consider the factors described...

  20. Apparent rates of increase for two feral horse herds

    SciTech Connect

    Eberhardt, L.L.; Majorowicz, A.K.; Wilcox, J.A.

    1982-01-01

    Rates of increase for 2 Oregon feral horse (Equus caballus) herds were estimated from direct aerial counts to be about 20% per year. These rates can be achieved only if survival rates are high, and reproduction exceeds that normally expected from horses. A population dynamics model suggests adult survival to be the key parameter in determining rates of increase, and there is some direct evidence of high adult survival rates. Management implications are discussed.

  1. Relationships between Watershed Alterations and Sediment Accretion Rates in Willapa Bay Washington and Yaquina Bay, Oregon

    EPA Science Inventory

    The Pacific Northwest (PNW) is one of the leading regions of timber production in the United States. It also undergoes aperiodic episodes of catastrophic forest fires, and systematic slash burns following logging activities. Such conditions raise concerns regarding increased re...

  2. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. I. METHOD AND APPLICATION TO THE SN 1987A FIELD

    SciTech Connect

    De Marchi, Guido; Panagia, Nino; Romaniello, Martino E-mail: panagia@stsci.ed

    2010-05-20

    We have developed and successfully tested a new self-consistent method to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion in a resolved stellar population, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to (1) identify all stars with excess H{alpha} emission, (2) convert the excess H{alpha} magnitude into H{alpha} luminosity L(H{alpha}), (3) estimate the H{alpha} emission equivalent width, (4) derive the accretion luminosity L{sub acc} from L(H{alpha}), and finally (5) obtain the mass accretion rate M-dot{sub acc} from L{sub acc} and the stellar parameters (mass and radius). By selecting stars with an accuracy of 15% or better in the H{alpha} photometry, the statistical uncertainty on the derived M-dot{sub acc} is typically {approx_lt}17% and is dictated by the precision of the H{alpha} photometry. Systematic uncertainties, of up to a factor of 3 on the value of M-dot{sub acc}, are caused by our incomplete understanding of the physics of the accretion process and affect all determinations of the mass accretion rate, including those based on a spectroscopic H{alpha} line analysis. As an application of our method, we study the accretion process in a field of 9.16 arcmin{sup 2} around SN 1987A, using existing Hubble Space Telescope photometry. We identify as bona fide PMS stars a total of 133 objects with a H{alpha} excess above the 4{sigma} level and a median age of 13.5 Myr. Their median mass accretion rate of 2.6 x 10{sup -8} M{sub sun} yr{sup -1} is in excellent agreement with previous determinations based on the U-band excess of the stars in the same field, as well as with the value measured for G-type PMS stars in the Milky Way. The accretion luminosity of these PMS objects shows a strong dependence on their distance from a group of hot massive stars in the field and suggests that the ultraviolet radiation of the latter is rapidly

  3. Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2012-09-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with \\dot{M}_*\\sim 0.1{--}1 \\,M_\\odot \\,yr^{-1} during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper, we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 103 M ⊙. To this end, we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 10-2 M ⊙ yr-1, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates, the star always has a radius exceeding 100 R ⊙, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~100 M ⊙ follows the same track with R *vpropM 1/2 * in all cases with accretion rates >~ 10-2 M ⊙ yr-1 at a stellar mass of 103 M ⊙, the radius is ~= 7000 R ⊙ (sime 30 AU). With higher accretion rates, the onset of hydrogen burning is shifted toward higher stellar masses. In particular, for accretion rates exceeding \\dot{M}_*\\gtrsim 0.1 \\,M_\\odot \\,yr^{-1}, there is no significant hydrogen burning even after 103 M ⊙ have accreted onto the protostar. Such "supergiant" protostars have effective temperatures as low as T eff ~= 5000 K throughout their evolution and because they hardly emit ionizing photons, they do not create an H II region or significantly heat their immediate surroundings. Thus, radiative feedback is unable to hinder the growth of rapidly accreting stars to masses in excess of 103 M ⊙ as long as material is accreted at rates \\dot{M}_*\\gtrsim 10^{-2} \\,M_\\odot \\,yr^{-1}.

  4. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  5. The mitochondrial uniporter controls fight or flight heart rate increases

    PubMed Central

    Wu, Yuejin; Rasmussen, Tyler P.; Koval, Olha M.; Joiner, Mei-ling A.; Hall, Duane D.; Chen, Biyi; Luczak, Elizabeth D.; Wang, Qiongling; Rokita, Adam G.; Wehrens, Xander H. T.; Song, Longsheng; Anderson, Mark E.

    2015-01-01

    Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant negative (DN) MCU. Here we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment prior to each heartbeat. Our findings show the MCU is necessary for complete physiological heart rate acceleration and suggest MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate. PMID:25603276

  6. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  7. Combining Hf-W Ages, Cooling Rates, and Thermal Models to Estimate the Accretion Time of Iron Meteorite Parent Bodies

    NASA Astrophysics Data System (ADS)

    Qin, L.; Dauphas, N.; Wadhwa, M.; Masarik, J.; Janney, P. E.

    2007-12-01

    The 182Hf-182W short-lived chronometer has been widely used to date metal-silicate differentiation processes in the early Solar System. However the presence of cosmogenic effects from exposure to GCR can potentially hamper the use of this system for chronology purposes (e.g. [1,2]). These effects must be corrected for in order to calculate metal-silicate differentiation ages. In this study, high-precision W isotope measurements are presented for 32 iron meteorites from 8 magmatic and 2 non-magmatic groups. Exposure ages and pre- atmospheric size estimates are available for most of these samples [3]. Our precision is better than or comparable to the currently most precise literature data and our results agree with previous work [4]. All magmatic irons have ɛ182W equal within error to or more negative than the Solar System initial derived from a CAI isochron [5]. Iron meteorites from the same magmatic groups show variations in ɛ182W. These are most easily explained by exposure to cosmic rays in space. A correction method was developed to estimate pre-exposure ɛ182W for individual iron meteorite groups. Metal-silicate differentiation in most iron meteorite parent bodies must have occurred within 2 Myr of formation of refractory inclusions. For the first time, we combine 182Hf-182W ages with parent body sizes inferred from metallographic cooling rates in a thermal model to constrain the accretion time of iron meteorite parent bodies. The estimated accretion ages are within 1.5 Myr for most magmatic groups, and could be as early as 0.2 Myr after CAI formation. This is consistent with the study of Bottke et al. [6] who argued that iron meteorite parent bodies could represent an early generation of planetesimals formed in the inner region of the Solar System. [1] Masarik J. (1997) EPSL 152, 181-185. [2] Markowski A. et al. (2006) EPSL 250,104-115. [3] Voshage H. (1984) EPSL 71, 181-194. [4] Markowski A. et al. (2006) EPSL 242, 1-15. [5] Kleine T. et al. (2005) GCA 69

  8. BONDI-HOYLE-LYTTLETON ACCRETION ONTO A PROTOPLANETARY DISK

    SciTech Connect

    Moeckel, Nickolas; Throop, Henry B.

    2009-12-10

    Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star's birth and the dispersal of the cluster's gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this 'tail-end' accretion for planet formation was recently highlighted by Throop and Bally. While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttleton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper, we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such that outer disk migrates inward, increasing the inner disk surface density and reducing the outer radius. The accretion flow also triggers the development of spiral density features, and changes to the disk inclination. The mean accretion rate onto the star remains roughly the same with and without the presence of a disk. We discuss the potential impact of this process on planet formation, including the possibility of triggered gravitational instability, inclination differences between the disk and the star, and the appearance of spiral structure in a gravitationally stable system.

  9. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. II. NGC 346 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    De Marchi, Guido; Sirianni, Marco; Panagia, Nino; Sabbi, Elena; Romaniello, Martino; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla E-mail: panagia@stsci.edu

    2011-10-10

    We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the Small Magellanic Cloud, using a novel self-consistent method that allows us to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to identify all stars with excess H{alpha} emission and derive the accretion luminosity L{sub acc} and mass accretion rate M-dot{sub acc} for all of them. The application of this method to existing Hubble Space Telescope (HST)/Advanced Camera for Surveys photometry of the NGC 346 field has allowed us to identify and study 680 bona fide PMS stars with masses from {approx}0.4 M{sub sun} to {approx}4 M{sub sun} and ages in the range from {approx}1 Myr to {approx}30 Myr. Previous investigations of this region, based on the same data, had identified young ({approx}3 Myr old) candidate PMS stars on the basis of their broadband colors. In this study, we show that there are at least two, almost equally numerous, young populations with distinct ages of, respectively, {approx}1 and {approx}20 Myr. We provide accurate physical parameters for all of them. We take advantage of the unprecedented size of our PMS sample and of its spread in mass and age to study the evolution of the mass accretion rate as a function of stellar parameters. We find that, regardless of stellar mass, the mass accretion rate decreases with roughly the square root of the age, or about three times slower than predicted by current models of viscous disk evolution, and that more massive stars systematically have a higher mass accretion rate in proportion to their mass. A multivariate linear regression fit reveals that log M-dot{sub acc}{approx_equal}-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a quantity that is higher at lower metallicity. This result is consistent with

  10. Seismic structure and crustal accretion along an intermediate-rate mid-ocean ridge segment

    NASA Astrophysics Data System (ADS)

    Weekly, Robert Todd

    pervasive tectonic fracturing and persist off-axis, recording the history of ridge propagation. Near the segment center, velocities within the upper 1 km show ridge-parallel bands with low velocities on the outer flanks of topographic highs. These features are attributed to localized thickening of the volcanic extrusive layer from eruptions extending outside of the axial valley that flow down the fault-tilted blocks that form the abyssal hill topography. On-axis velocities are relatively high beneath the hydrothermal vent fields due to the infilling of porosity by mineral precipitation. Lower velocities are observed beneath the most vigorous vent fields in a seismically active region above the axial magma chamber and may reflect increased fracturing and higher temperatures. Seismic anisotropy is high on-axis but decreases substantially off-axis over ~8 km (0.3 Ma). This decrease coincides with an increase in seismic velocities at depths greater than 1 km and is attributed to the infilling of cracks in the sheeted dike layer by mineral precipitation associated with near-axis hydrothermal circulation. The orientation of the fast-axis of anisotropy is ridge-parallel near the segment center but curves near the segment ends reflecting the tectonic fabric within the OSCs.

  11. Evolution and precession of accretion disk in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Shen, R.-F.; Matzner, C. D.

    2012-12-01

    In a supermassive black hole (BH) tidal disruption event (TDE), the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t-5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t-5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t-8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH's frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  12. 75 FR 9536 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This rule would increase the assessment rate established for the California Olive Committee (Committee) for the 2010 and... fiscal year began January 1 and ends December 31. The assessment rate would remain in effect...

  13. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SYSTEM TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...) Evaluation of increased rate. If a card issuer increases an annual percentage rate that applies to a credit card account under an open-end (not home-secured) consumer credit plan, based on the credit risk of...

  14. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings....

  15. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SYSTEM TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...) Evaluation of increased rate. If a card issuer increases an annual percentage rate that applies to a credit card account under an open-end (not home-secured) consumer credit plan, based on the credit risk of...

  16. Theory of wind accretion

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2014-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  17. Magnetospheric accretion in EX Lupi

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  18. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  19. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-08-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7% confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  20. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  1. Accretion of radiation and rotating primordial black holes

    NASA Astrophysics Data System (ADS)

    Mahapatra, S.; Nayak, B.

    2016-02-01

    We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.

  2. The Phase Space of z=1.2 Clusters: Probing Dust Temperature and Star Formation Rate as a Function of Environment and Accretion History

    NASA Astrophysics Data System (ADS)

    Noble, Allison; SpARCS Collaboration

    2016-01-01

    Understanding the influence of environment is a fundamental goal in studies of galaxy formation and evolution, and galaxy clusters offer ideal laboratories with which to examine environmental effects on their constituent members. Clusters continually evolve and build up mass through the accumulation of galaxies and groups, resulting in distinct galaxy populations based on their accretion history. In Noble et al. 2013, we presented a novel definition for environment using the phase space of line-of-sight velocity and clustercentric radius, which probes the time-averaged density to which a galaxy has been exposed and traces out accretion histories. Using this dynamical definition of environment reveals a decline in specific star formation towards the cluster core in the earliest accreted galaxies, and was further shown to isolate post-starburst galaxies within clusters (Muzzin et al. 2014). We have now extended this work to higher-redshift clusters at z=1.2 using deep Herschel-PACS and -SPIRE data. With a sample of 120 spectroscopically-confirmed cluster members, we investigate various galaxy properties as a function of phase-space environment. Specifically, we use 5-band Herschel photometry to estimate the dust temperature and star formation rate for dynamically distinct galaxy populations, namely recent infalls and those that were accreted into the cluster at an earlier epoch (Noble et al. submitted). These properties are then compared to a field sample of star-forming galaxies at 1.1 < z < 1.2 to shed light on cluster-specific processes in galaxy evolution. In this talk I will discuss the various implications of a phase-space definition for environment, and present our most recent results, focusing on how this accretion-based definition aids our understanding of quenching mechanisms within z=1.2 galaxies.

  3. Sensitivity studies of the effect of increased aerosol concentrations and snow crystal shape on the snowfall rate in the Arctic

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-06-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content, and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. [2000] proposed that anthropogenically induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud owing to its higher cloud droplet number concentration. Instead, the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shutdown of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a tenfold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates.

  4. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  5. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size–Luminosity Scaling Relation for the Broad-line Region

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Zhang, Zhi-Xiang; Huang, Ying-Ke; Wang, Kai; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Fan, Xu-Liang; Fang, Xiang-Er; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2016-07-01

    This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014 and 2015. Ten new targets were selected from the quasar sample of the Sloan Digital Sky Survey (SDSS), which have generally been more luminous than the SEAMBH candidates in the last two years. Hβ lags ({τ }{{H}β }) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known R H β–L 5100 relation. The five quasars have dimensionless accretion rates of \\dot{{M}\\quad }=10–103. Combining these with measurements of the previous SEAMBHs, we find that the reduction of Hβ lags depends tightly on accretion rates, {τ }{{H}β }/{τ }R-L\\propto {\\dot{{M}}}-0.42, where {τ }R-L is the Hβ lag from the normal R H β–L 5100 relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: {R}{{H}β }={α }1{{\\ell }}44{β 1} {min} [1,{(\\dot{{M}}/{\\dot{{M}}}c)}-{γ 1}], where {{\\ell }}44={L}5100/{10}44 {erg} {{{s}}}-1 is the 5100 Å continuum luminosity, and the coefficients are {α }1={29.6}-2.8+2.7 lt-day, {β }1={0.56}-0.03+0.03, {γ }1={0.52}-0.16+0.33, and {\\dot{{M}}}c={11.19}-6.22+2.29. This relation is applicable to AGNs over a wide range of accretion rates, from 10‑3 to 103. Implications of this new relation are briefly discussed.

  6. 76 FR 29963 - Rate Increase Disclosure and Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... above medical trend would not pressure issuers into taking steps to moderate growth in medical costs. In... 23, 2011 Part IV Department of Health and Human Services 45 CFR Part 154 Rate Increase Disclosure and... Regulations#0;#0; ] DEPARTMENT OF HEALTH AND HUMAN SERVICES 45 CFR Part 154 RIN 0938-AQ68 Rate...

  7. Increased Breastfeeding Rates in Black Women After a Treatment Intervention

    PubMed Central

    Endicott, Jean; Goetz, Raymond R.

    2013-01-01

    Abstract There has been a considerable increase in rates of breastfeeding in the United States. Despite these trends, black women continue to fall below medical recommendations. Impoverished and poorly educated women also have a comparatively lower rate of breastfeeding. Provider encouragement and supportive interventions increase breastfeeding initiation among women of all backgrounds. The data presented come from a three-site randomized controlled bilingual depression treatment trial from 2005 to 2011 that examined the comparative effectiveness of interpersonal psychotherapy and a parenting education program. Breastfeeding education and support were provided for the majority of participants in each intervention. Breastfeeding status was queried at postpartum week 4. We found higher rates of breastfeeding in black women compared with those reported in national surveys. The black breastfeeding rate did not significantly differ from that of white or Hispanic women. American-born black women were just as likely to breastfeed as American-born white women, both at significantly greater rates than American-born Hispanic women. We also found no differences in breastfeeding rate in poorly educated and impoverished women. These data must be seen against the backdrop of a significant intervention to treat depression. Because breastfeeding interventions have been shown to increase breastfeeding rates, the support provided in our study likely increased rates in groups that lag behind. PMID:23971683

  8. Increased breastfeeding rates in black women after a treatment intervention.

    PubMed

    Spinelli, Margaret G; Endicott, Jean; Goetz, Raymond R

    2013-12-01

    There has been a considerable increase in rates of breastfeeding in the United States. Despite these trends, black women continue to fall below medical recommendations. Impoverished and poorly educated women also have a comparatively lower rate of breastfeeding. Provider encouragement and supportive interventions increase breastfeeding initiation among women of all backgrounds. The data presented come from a three-site randomized controlled bilingual depression treatment trial from 2005 to 2011 that examined the comparative effectiveness of interpersonal psychotherapy and a parenting education program. Breastfeeding education and support were provided for the majority of participants in each intervention. Breastfeeding status was queried at postpartum week 4. We found higher rates of breastfeeding in black women compared with those reported in national surveys. The black breastfeeding rate did not significantly differ from that of white or Hispanic women. American-born black women were just as likely to breastfeed as American-born white women, both at significantly greater rates than American-born Hispanic women. We also found no differences in breastfeeding rate in poorly educated and impoverished women. These data must be seen against the backdrop of a significant intervention to treat depression. Because breastfeeding interventions have been shown to increase breastfeeding rates, the support provided in our study likely increased rates in groups that lag behind. PMID:23971683

  9. Increasing response rates in physicians' mail surveys: an experimental study.

    PubMed

    Maheux, B; Legault, C; Lambert, J

    1989-05-01

    It is becoming increasingly difficult to obtain high response rates in physicians' mail surveys. In 1983-84, we tested the effectiveness of two techniques among 604 Quebec physicians who had not responded to an initial letter. A handwritten thank you note at the bottom of the letter accompanying the questionnaire and a more personalized mailout package increased response rates by 40.7 per cent and 53.1 per cent, respectively, compared to control groups. PMID:2705601

  10. Rowing Crew Coordination Dynamics at Increasing Stroke Rates

    PubMed Central

    2015-01-01

    In rowing, perfect synchronisation is important for optimal performance of a crew. Remarkably, a recent study on ergometers demonstrated that antiphase crew coordination might be mechanically more efficient by reducing the power lost to within-cycle velocity fluctuations of the boat. However, coupled oscillator dynamics predict the stability of the coordination to decrease with increasing stroke rate, which in case of antiphase may eventually yield breakdowns to in-phase. Therefore, this study examined the effects of increasing stroke rate on in- and antiphase crew coordination in rowing dyads. Eleven experienced dyads rowed on two mechanically coupled ergometers on slides, which allowed the ergometer system to move back and forth as one ‘boat’. The dyads performed a ramp trial in both in- and antiphase pattern, in which stroke rates gradually increased from 30 strokes per minute (spm) to as fast as possible in steps of 2 spm. Kinematics of rowers, handles and ergometers were captured. Two dyads showed a breakdown of antiphase into in-phase coordination at the first stroke rate of the ramp trial. The other nine dyads reached between 34–42 spm in antiphase but achieved higher rates in in-phase. As expected, the coordinative accuracy in antiphase was worse than in in-phase crew coordination, while, somewhat surprisingly, the coordinative variability did not differ between the patterns. Whereas crew coordination did not substantially deteriorate with increasing stroke rate, stroke rate did affect the velocity fluctuations of the ergometers: fluctuations were clearly larger in the in-phase pattern than in the antiphase pattern, and this difference significantly increased with stroke rate. Together, these results suggest that although antiphase rowing is less stable (i.e., less resistant to perturbation), potential on-water benefits of antiphase over in-phase rowing may actually increase with stroke rate. PMID:26185987

  11. Increasing Vaccination Rates in a Pediatric Chronic Hemodialysis Unit.

    PubMed

    Geer, Jessica J

    2016-01-01

    Children with chronic kidney disease (CKD) are at an increased risk for serious complications from vaccine-preventable childhood diseases. Despite this risk, vaccination rates remain low. The barriers to vaccination in the pediatric population on dialysis are multifactorial. The advanced practice registered nurse (APRN) is well poised to serve as a wellness champion for this chronic population. This article chronicles an APRN-led quality improvement project to increase vaccination rates to 100% in an outpatient pediatric population on hemodialysis. A quality improvement system was created to systematically review immunizations upon admission to the hemodialysis unit and annually thereafter. Over a two-year period, immunization rates improved significantly. PMID:27025147

  12. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  13. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  14. 77 FR 51684 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... June 5, 2012 (77 FR 33104). Copies of the proposed rule were also mailed or sent via facsimile to all... Agricultural Marketing Service 7 CFR Part 932 Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  15. 78 FR 77327 - Walnuts Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Register on September 17, 2013 (78 FR 57101). Copies of the proposed rule were also made available to all... Agricultural Marketing Service 7 CFR Part 984 Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  16. 75 FR 22211 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... concerning this action was published in the Federal Register on March 3, 2010 (75 FR 9536). Copies of the... Agricultural Marketing Service 7 CFR Part 932 Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  17. 76 FR 67320 - Walnuts Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Federal Register on August 16, 2011 (75 FR 50703). Copies of the proposed rule were also mailed or sent... Agricultural Marketing Service 7 CFR Part 984 Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment...

  18. Training for Increasing Braille Reading Rates. Final Report.

    ERIC Educational Resources Information Center

    Kederis, Cleves J.; And Others

    Two studies used controlled exposure devices in attempts to improve braille reading. The three null hypotheses tested were that reading practice under controlled exposure does not increase reading rates, any increase will not be maintained, and no differences in comprehension occur because of practice. Subjects were selected by the Gates Basic…

  19. Increase Effect of Available Transfer Capability by Dynamic Rating Application

    NASA Astrophysics Data System (ADS)

    Miura, Masaki; Satoh, Takuya; Iwamoto, Shinichi; Kurihara, Ikuo

    As the deregulated environment of power systems has been spread in the world, it is essential to operate power systems efficiently and economy. Under the environments, with the advance of communication technologies and sensors, the so-called dynamic rating is now to be realized. The dynamic rating is a method which determines accurate ratings by utilizing real-time information such as conductor temperatures, ambient temperatures and wind speeds. The dynamic rating is considered to increase the thermal capacities of overhead transmission lines and therefore take on importance in the deregulated electric power industry. The importance of the dynamic rating lies mainly in the area of Available Transfer Capability (ATC) improvement. In this paper, the validity of the proposed dynamic rating application is shown from the viewpoint of ATC, especially, ATC with thermal constraints. In addition, the possibilities of ATC estimations using sensitivities are verified on the purpose of reducing calculating time, considering the importance of real time simulation of ATC.

  20. The increasing predictive validity of self-rated health.

    PubMed

    Schnittker, Jason; Bacak, Valerio

    2014-01-01

    Using the 1980 to 2002 General Social Survey, a repeated cross-sectional study that has been linked to the National Death Index through 2008, this study examines the changing relationship between self-rated health and mortality. Research has established that self-rated health has exceptional predictive validity with respect to mortality, but this validity may be deteriorating in light of the rapid medicalization of seemingly superficial conditions and increasingly high expectations for good health. Yet the current study shows the validity of self-rated health is increasing over time. Individuals are apparently better at assessing their health in 2002 than they were in 1980 and, for this reason, the relationship between self-rated health and mortality is considerably stronger across all levels of self-rated health. Several potential mechanisms for this increase are explored. More schooling and more cognitive ability increase the predictive validity of self-rated health, but neither of these influences explains the growing association between self-rated health and mortality. The association is also invariant to changing causes of death, including a decline in accidental deaths, which are, by definition, unanticipated by the individual. Using data from the final two waves of data, we find suggestive evidence that exposure to more health information is the driving force, but we also show that the source of information is very important. For example, the relationship between self-rated health and mortality is smaller among those who use the internet to find health information than among those who do not. PMID:24465452

  1. The Increasing Predictive Validity of Self-Rated Health

    PubMed Central

    Schnittker, Jason; Bacak, Valerio

    2014-01-01

    Using the 1980 to 2002 General Social Survey, a repeated cross-sectional study that has been linked to the National Death Index through 2008, this study examines the changing relationship between self-rated health and mortality. Research has established that self-rated health has exceptional predictive validity with respect to mortality, but this validity may be deteriorating in light of the rapid medicalization of seemingly superficial conditions and increasingly high expectations for good health. Yet the current study shows the validity of self-rated health is increasing over time. Individuals are apparently better at assessing their health in 2002 than they were in 1980 and, for this reason, the relationship between self-rated health and mortality is considerably stronger across all levels of self-rated health. Several potential mechanisms for this increase are explored. More schooling and more cognitive ability increase the predictive validity of self-rated health, but neither of these influences explains the growing association between self-rated health and mortality. The association is also invariant to changing causes of death, including a decline in accidental deaths, which are, by definition, unanticipated by the individual. Using data from the final two waves of data, we find suggestive evidence that exposure to more health information is the driving force, but we also show that the source of information is very important. For example, the relationship between self-rated health and mortality is smaller among those who use the internet to find health information than among those who do not. PMID:24465452

  2. Increased collagen synthesis rate during wound healing in muscle.

    PubMed

    Zhou, Shaobo; Salisbury, Jonathan; Preedy, Victor R; Emery, Peter W

    2013-01-01

    Wound healing in muscle involves the deposition of collagen, but it is not known whether this is achieved by changes in the synthesis or the degradation of collagen. We have used a reliable flooding dose method to measure collagen synthesis rate in vivo in rat abdominal muscle following a surgical incision. Collagen synthesis rate was increased by 480% and 860% on days 2 and 7 respectively after surgery in the wounded muscle compared with an undamaged area of the same muscle. Collagen content was increased by approximately 100% at both day 2 and day 7. These results demonstrate that collagen deposition during wound healing in muscle is achieved entirely by an increase in the rate of collagen synthesis. PMID:23526975

  3. Bondi-Hoyle accretion in an isothermal magnetized plasma

    SciTech Connect

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.; Cunningham, Andrew J.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  4. Accreting X-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    This presentation describes the behavior of matter in environments with extreme magnetic and gravitational fields, explains the instability/stability of accretion disks in certain systems, and discusses how emergent radiation affects accretion flow. Magnetic field measurements are obtained by measuring the lowest cyclotron absorption line energy, observing the cutoff of accretion due to centrifugal inhibition and measuring the spin-up rate at high luminosity.

  5. Is the rate of global tsunami occurrence increasing?

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2010-12-01

    Statistical analysis of the global tsunami catalog reveals several transient periods of rate increases in tsunami occurrence. The tsunami catalog appears to be complete for tsunamis detected by tide-gauge stations with maximum amplitudes > 0.1 m, starting soon after the April 1, 1946 Aleutian tsunami when tsunami-reporting procedures became more systematic. The long-term rate of global tsunami occurrence is approximately 7.4 events/year over this period of the catalog. This rate fluctuates, however, with a prominent rate increase in the mid-1990s for a period of about 3 years, when as many as 18 tsunamis occurred in a one-year period. Another rate increase began in 2005 and is continuing to the present day at approximately 11 events/year averaged over the 6-year time period. These rate changes persist with different minimum threshold amplitudes and are unlikely to be associated with statistical fluctuations from a stationary Poisson process. Similar apparent rate changes are evident in the global earthquake catalog (without declustering) for minimum magnitude thresholds of 6.5-8.0. Secondary sources such as landslides are noted in the tsunami catalog, though earthquakes most often trigger these sources. Evidence of temporal clustering of tsunami source inter-event times has been established in a previous study [Geist and Parsons, 2008]. However, it is unclear whether static and dynamic triggering among tsunamigenic earthquakes accounts for a large proportion of the temporally clustered events. Results from Parsons and Velasco [in press] indicate that static and dynamic triggering among earthquakes of tsunamigenic magnitude occurs within a radius of approximately 1,000 km. Based on this distance criterion for triggered events, the periods of increased rates can be explained by regional triggering, even though tsunamis from classically defined aftershock sequences are not that apparent in the tsunami catalog. Although the current rate of tsunami occurrence is higher

  6. Increases in cognitive and linguistic processing primarily account for increases in speaking rate with age.

    PubMed

    Nip, Ignatius S B; Green, Jordan R

    2013-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 (N = 7), 7 (N = 10), 10 (N = 9), 13 (N = 7), 16 (N = 9) years, and young adults (N = 11) in speaking tasks varying in task demands. Speaking rate increased with age, with decreases in pauses and articulator displacements but not increases in articulator movement speed. Movement speed did not appear to constrain the speaking. Rather, age-related increases in speaking rate are due to gains in cognitive and linguistic processing and speech motor control. PMID:23331100

  7. Increases in Cognitive and Linguistic Processing Primarily Account for Increases in Speaking Rate with Age

    PubMed Central

    Nip, Ignatius S. B.; Green, Jordan R.

    2012-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 (N = 7), 7 (N = 10), 10 (N = 9), 13 (N = 7), 16 (N = 9) years and young adults (N = 11) in speaking tasks varying in task demands. Speaking rate increased with age, with decreases in pauses and articulator displacements but not increases in articulator movement speed. Movement speed did not appear to constrain the speaking. Rather, age-related increases in speaking rate are due to gains in cognitive and linguistic processing and speech motor control. PMID:23331100

  8. 76 FR 50703 - Walnuts Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 984 Walnuts Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This... Agricultural Marketing Agreement Act of 1937, as amended (7 U.S.C. 601-674), hereinafter referred to as...

  9. 78 FR 57101 - Walnuts Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ...This proposed rule would increase the assessment rate established for the California Walnut Board (Board) for the 2013-14 and subsequent marketing years from $0.0175 to $0.0189 per kernelweight pound of merchantable walnuts. The Board locally administers the marketing order which regulates the handling of walnuts grown in California. Assessments upon walnut handlers are used by the Board to......

  10. 18 CFR 2.18 - Phased electric rate increase filings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  11. 77 FR 33104 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ...This rule would increase the assessment rate established for the California Olive Committee (Committee) for the 2012 and subsequent fiscal years from $16.61 to $31.32 per assessable ton of olives handled. The Committee locally administers the marketing order which regulates the handling of olives grown in California. Assessments upon olive handlers are used by the Committee to fund reasonable......

  12. Increases in Cognitive and Linguistic Processing Primarily Account for Increases in Speaking Rate with Age

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Green, Jordan R.

    2013-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 ("N" = 7), 7 ("N" = 10), 10…

  13. Evolution of Massive Protostars Via Disk Accretion

    NASA Astrophysics Data System (ADS)

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-09-01

    Mass accretion onto (proto-)stars at high accretion rates \\dot{M}_* > 10^{-4} M_{⊙} yr^{-1} is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10-3 M sun yr-1, the radius of a protostar is initially small, R *sime a few R sun. After several solar masses have accreted, the protostar begins to bloat up and for M * ~= 10 M sun the stellar radius attains its maximum of 30-400 R sun. The large radius ~100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ~= 30 M sun, independent of the accretion geometry. For accretion rates exceeding several 10-3 M sun yr-1, the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  14. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    SciTech Connect

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  15. Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander.

    PubMed

    Wack, Corina L; DuRant, Sarah E; Hopkins, William A; Lovern, Matthew B; Feldhoff, Richard C; Woodley, Sarah K

    2012-02-01

    Plasma glucocorticoid hormones (GCs) increase intermediary metabolism, which may be reflected in whole-animal metabolic rate. Studies in fish, birds, and reptiles have shown that GCs may alter whole-animal energy expenditure, but results are conflicting and often involve GC levels that are not physiologically relevant. A previous study in red-legged salamanders found that male courtship pheromone increased plasma corticosterone (CORT; the primary GC in amphibians) concentrations in males, which could elevate metabolic processes to sustain courtship behaviors. To understand the possible metabolic effect of elevated plasma CORT, we measured the effects of male courtship pheromone and exogenous application of CORT on oxygen consumption in male red-legged salamanders (Plethodon shermani). Exogenous application of CORT elevated plasma CORT to physiologically relevant levels. Compared to treatment with male courtship pheromone and vehicle, treatment with CORT increased oxygen consumption rates for several hours after treatment, resulting in 12% more oxygen consumed (equivalent to 0.33 J) during our first 2h sampling period. Contrary to our previous work, treatment with pheromone did not increase plasma CORT, perhaps because subjects used in this study were not in breeding condition. Pheromone application did not affect respiration rates. Our study is one of the few to evaluate the influence of physiologically relevant elevations in CORT on whole-animal metabolism in vertebrates, and the first to show that elevated plasma CORT increases metabolism in an amphibian. PMID:22047668

  16. Structure of the Upper Crust Exposed at Endeavor Deep: Implications for Crustal Accretion at Ultra-Fast Spreading Rates

    NASA Astrophysics Data System (ADS)

    Popham, C. T.; Pockalny, R. A.; Larson, R. L.

    2004-12-01

    Endeavor Deep lies at the tip of the propagating spreading center defining the Juan Fernandez/Nazca plate boundary. This 3 km-deep, amagmatic basin,which rifted into ultra-fast spread 3Myr old Nazca Plate crust, was recently surveyed and sampled with Simrad EM300, DSL-120 and ROV Jason II. Over 140 structural orientations measured from Jason II video of the south rift wall show that flows in extrusive layer 2a strike north-south and dip shallowly to the west, while dikes in intrusive layer 2b strike east-west and dip steeply to the south. Using a general model for crustal accretion in which dikes are emplaced vertically and extrusives horizontally, a rotational history is determined for the 3 Myr old crust exposed in the walls of the deep. Multiple rotations are necessary with two-fold intent, first to return structure to the original off-axis orientation prior to tectonic reorganization; second to account for rotations involved in the process of accretion. Tectonic events are first addressed with a 10-25 degree rotation about a horizontal rift parallel axis to account for flexural uplift. Next a 65-degree rotation applied about a vertical axis to return magnetic lineation 2a to its proposed paleo-off axis orientation. After rotation, intrusive and extrusive populations are strike parallel (N5E). In this orientation, dikes average 65-degree dip away from and extrusives 25-degree dip towards the ridge axis. This generally conforms to observations at Hess deep, Blanco FZ, and ODP hole 801C. The second goal of rotation is to account for off axis adjustments during crustal accretion; a 25-degree rotation about a ridge parallel, horizontal axis returns the average dike inclination to vertical and the extrusive dip to horizontal.

  17. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  18. Reducing video frame rate increases remote optimal focus time

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1993-01-01

    Twelve observers made best optical focus adjustments to a microscope whose high-resolution pattern was video monitored and displayed first on a National Television System Committee (NTSC) analog color monitor and second on a digitally compressed computer monitor screen at frame rates ranging (in six steps) from 1.5 to 30 frames per second (fps). This was done to determine whether reducing the frame rate affects the image focus. Reducing frame rate has been shown to be an effective and acceptable means of reducing transmission bandwidth of dynamic video imagery sent from Space Station Freedom (SSF) to ground scientists. Three responses were recorded per trial: time to complete the focus adjustment, number of changes of focus direction, and subjective rating of final image quality. It was found that: the average time to complete the focus setting increases from 4.5 sec at 30 fps to 7.9 sec at 1.5 fps (statistical probability = 1.2 x 10(exp -7)); there is no significant difference in the number of changes in the direction of focus adjustment across these frame rates; and there is no significant change in subjectively determined final image quality across these frame rates. These data can be used to help pre-plan future remote optical-focus operations on SSF.

  19. Pepperweed invasion increases nitrogen cycling rates in irrigated grassland

    NASA Astrophysics Data System (ADS)

    Portier, E. F.; Yang, W. H.; Silver, W. L.

    2011-12-01

    Pepperweed (Lepidium latifolium) is a perennial exotic species that has spread throughout the western United States, invading natural and agricultural systems. Pepperweed has been documented to increase soil microbial enzyme activity associated with nitrogen (N) mineralization, but the effect of pepperweed on soil N cycling has not been determined. The objectives of this study were to determine if (1) pepperweed elevates gross mineralization rates in bulk soil, (2) pepperweed impacts rates of other gross N cycling processes, and (3) N cycling patterns change with soil depth. We used 15N pool dilution and tracer techniques to measure rates of gross N mineralization, gross nitrification, dissimilatory nitrate (NO3-) reduction to ammonium (NH4+) (DNRA), and net N2O fluxes from replicate plots (n = 6 per cover type) dominated by pepperweed versus dominated by an invasive annual grass (Hordenum murinem) with no pepperweed present. Because pepperweed has extensive root systems, we measured gross N cycling rates at three depths (0-20, 20-40, 40-60 cm) to determine pepperweed effects through the soil profile. Soil NH4+ and NO3- concentrations, microbial biomass N (MBN), and gravimetric soil moisture content were also measured at each soil depth. Soil oxygen (O2) concentrations were measured from soil equilibration chambers buried at 10, 30, and 50 cm depth. Pepperweed plots exhibited significantly higher soil NH4+ concentrations, gross mineralization rates, and soil O2 concentrations across all depths (p < 0.05, ANOVAs). Gross nitrification rates, MBN, soil NO3- concentrations, and soil moisture did not differ significantly between pepperweed-dominated and grass-dominated plots. Between the cover types, soil concentrations of NH4+ and O2 as well as rates of mineralization and DNRA were higher in surface soils (0-20 cm) than deeper soils (20-40 and 40-60 cm) (p < 0.05, ANOVAs). Gross mineralization rates in surface soils (0-20 cm) averaged 30.1 ± 4.3 μg g-1 d-1 in grass

  20. Intrinsic Absorption in Quasars (AAL & BAL) and its Relation to Outflows, BH Mass, Accretion Rate, Spin, Orientation, and Radio Properties

    NASA Astrophysics Data System (ADS)

    Stone, Robert Bernard; Richards, Gordon T.

    2016-01-01

    Despite the fact that quasars are fueled by matter falling into supermassive black holes, this process spews out considerable mass and energy. We investigate the nature of these outflows in the form of both broad and narrow absorption lines using data taken as part of the Sloan Digital Sky Survey (SDSS). Although these outflows are seen to have ejection speeds of up to 60,000 km/s, it is still unclear how they affect the quasar's host-galaxy and its evolution. We look for correlations of these outflows with the radio properties of the quasars, which can potentially reveal a physical connection between the quasar's accretion physics and its outflows. We also investigate how relaxing the traditional criteria for defining both radio loud and broad absorption line quasars impacts our understanding of these classes and quasars in general. Our ultimate goal is to understand how outflows from quasars change as a function of line-of-sight orientation, mass, accretion, and spin of the black holes that fuel them.

  1. Every second counts: innovations to increase timely defibrillation rates.

    PubMed

    Borak, Meredith; Francisco, Mary Ann; Stokas, Mary Ann; Maroney, Mary; Bednar, Valerie; Miller, Megan E; Pakieser-Reed, Katherine

    2014-01-01

    Early defibrillation is an essential step in the "chain of survival" for patients with in-hospital cardiac arrest. To increase the rate of early defibrillation by nurse first responders in noncritical care areas, our institution employed a quality resuscitation consultant, implemented nursing education programs, and standardized equipment and practices. Automated external defibrillator application by nurse first responders prior to advanced cardiac life support team arrival has improved from 15% in 2011 to 76% in 2013 (P < .001). PMID:24810907

  2. Increased Heart Rate Variability but Normal Resting Metabolic Rate in Hypocretin/Orexin-Deficient Human Narcolepsy

    PubMed Central

    Fronczek, Rolf; Overeem, Sebastiaan; Reijntjes, Robert; Lammers, Gert Jan; van Dijk, J. Gert; Pijl, Hanno

    2008-01-01

    Study Objectives: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. Methods: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were determined in the fasted resting state. Subjects included 15 untreated, hypocretin-deficient male narcoleptics and 15 male controls matched for age and body mass index. Results: Spectral power analysis revealed greater heart rate and blood pressure variability in hypocretin-deficient male narcoleptic patients (heart rate: p = 0.01; systolic blood pressure: p = 0.02; diastolic: p < 0.01). The low to high frequency ratio of heart rate power did not differ between groups (p = 0.48), nor did resting metabolic rate (controls: 1767 ± 226 kcal/24 h; patients: 1766 ± 227 kcal/24h; p = 0.99). Conclusions: Resting metabolic rate was not reduced in hypocretin-deficient narcoleptic men and therefore does not explain obesity in this group. Whether the increased heart rate and blood pressure variability—suggesting reduced sympathetic tone—is involved in this regard remains to be elucidated. Citation: Fronczek R; Overeem S; Reijntjes R; Lammers GJ; van Dijk JG; Pijl H. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J Clin Sleep Med 2008;4(3):248–254. PMID:18595438

  3. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  4. Polymer etching in the oxygen afterglow - Increased etch rates with increased reactor loading

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Wydeven, T.

    1989-01-01

    Reactor loading has an effect on the etch rate (rate of decrease of film thickness) of films of polyvinylfluoride (Tedlar) and polyethylene exposed in the afterglow of an RF discharge in oxygen. The etch rate is found to increase with the total surface area of the polymer exposed in the reactor. The etch rates of polypyromellitimide (Kapton H) and polystyrene under these conditions are very low. However, the etch rate of these polymers is greatly enhanced by adding either Tedlar or polyethylene to the reactor. A kinetic model is proposed based on the premise that the oxygen atoms produced by the RF discharge react with Tedlar or polyethylene to produce a much more reactive species, which dominates the etching of the polymers studied.

  5. Hypercapnia increases core temperature cooling rate during snow burial.

    PubMed

    Grissom, Colin K; Radwin, Martin I; Scholand, Mary Beth; Harmston, Chris H; Muetterties, Mark C; Bywater, Tim J

    2004-04-01

    Previous retrospective studies report a core body temperature cooling rate of 3 degrees C/h during avalanche burial. Hypercapnia occurs during avalanche burial secondary to rebreathing expired air, and the effect of hypercapnia on hypothermia during avalanche burial is unknown. The objective of this study was to determine the core temperature cooling rate during snow burial under normocapnic and hypercapnic conditions. We measured rectal core body temperature (T(re)) in 12 subjects buried in compacted snow dressed in a lightweight clothing insulation system during two different study burials. In one burial, subjects breathed with a device (AvaLung 2, Black Diamond Equipment) that resulted in hypercapnia over 30-60 min. In a control burial, subjects were buried under identical conditions with a modified breathing device that maintained normocapnia. Mean snow temperature was -2.5 +/- 2.0 degrees C. Burial time was 49 +/- 14 min in the hypercapnic study and 60 min in the normocapnic study (P = 0.02). Rate of decrease in T(re) was greater with hypercapnia (1.2 degrees C/h by multiple regression analysis, 95% confidence limits of 1.1-1.3 degrees C/h) than with normocapnia (0.7 degrees C/h, 95% confidence limit of 0.6-0.8 degrees C/h). In the hypercapnic study, the fraction of inspired carbon dioxide increased from 1.4 +/- 1.0 to 7.0 +/- 1.4%, minute ventilation increased from 15 +/- 7 to 40 +/- 12 l/min, and oxygen saturation decreased from 97 +/- 1 to 90 +/- 6% (P < 0.01). During the normocapnic study, these parameters remained unchanged. In this study, T(re) cooling rate during snow burial was less than previously reported and was increased by hypercapnia. This may have important implications for prehospital treatment of avalanche burial victims. PMID:14660514

  6. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence. PMID:24429523

  7. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  8. Rate of tree carbon accumulation increases continuously with tree size

    NASA Astrophysics Data System (ADS)

    Stephenson, N. L.; Das, A. J.; Condit, R.; Russo, S. E.; Baker, P. J.; Beckman, N. G.; Coomes, D. A.; Lines, E. R.; Morris, W. K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S. J.; Duque, Á.; Ewango, C. N.; Flores, O.; Franklin, J. F.; Grau, H. R.; Hao, Z.; Harmon, M. E.; Hubbell, S. P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L. R.; Pabst, R. J.; Pongpattananurak, N.; Su, S.-H.; Sun, I.-F.; Tan, S.; Thomas, D.; van Mantgem, P. J.; Wang, X.; Wiser, S. K.; Zavala, M. A.

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  9. Episodic Accretion among the Orion Protostars

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily; Megeath, S. Thomas

    2016-06-01

    Episodic accretion, where a young stellar object undergoes stochastic spikes in its disk-to-star accretion rate one or more times over its formation period, may be a crucial process in the formation of low-mass stars. These spikes result in a factor of 10 to 100 increase in the source luminosity over the course of several months that may persist for years. Six years after the Spitzer survey of the Orion molecular clouds, the WISE telescope mapped Orion with similar wavelength coverage. Thus, the two surveys can be used to explore the mid-infrared variability of young stars on this timescale, which is suitable for discovering episodic accretion events. Out of 319 Orion protostars that were targets of the Herschel Orion Protostar Survey, we identified two examples of episodic accretion with this method. One of them, HOPS 223, was previously known. The other, HOPS 383, is the first known example of episodic accretion in a Class 0 protostar (age < 0.2 Myr). With these and one other outburst that began early in the Spitzer mission, we estimate that the most likely interval between protostellar outbursts is 740 years, with a 90% confidence interval of 470 to 6200 years. These outbursts are weaker than the optically revealed FU Ori events. We will update the mid-infrared light curves of HOPS 223 and HOPS 383 with recent data from FORCAST aboard SOFIA; HOPS 223 shows signs of fading.

  10. Supersonic Jet Noise Reductions Predicted With Increased Jet Spreading Rate

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1998-01-01

    In this paper, predictions are made of noise radiation from single, supersonic, axisymmetric jets. We examine the effects of changes in operating conditions and the effects of simulated enhanced mixing that would increase the spreading rate of jet shear layer on radiated noise levels. The radiated noise in the downstream direction is dominated by mixing noise and, at higher speeds, it is well described by the instability wave noise radiation model. Further analysis with the model shows a relationship between changes in spreading rate due to enhanced mixing and changes in the far field radiated peak noise levels. The calculations predict that enhanced jet spreading results in a reduction of the radiated peak noise level.

  11. Salamander growth rates increase along an experimental stream phosphorus gradient.

    PubMed

    Bumpers, Phillip M; Maerz, John C; Rosemond, Amy D; Benstead, Jonathan P

    2015-11-01

    Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs. PMID:27070018

  12. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  13. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    SciTech Connect

    Yang, Shulong; Fu, Yingyuan Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  14. Researchers’ Individual Publication Rate Has Not Increased in a Century

    PubMed Central

    Fanelli, Daniele; Larivière, Vincent

    2016-01-01

    Debates over the pros and cons of a “publish or perish” philosophy have inflamed academia for at least half a century. Growing concerns, in particular, are expressed for policies that reward “quantity” at the expense of “quality,” because these might prompt scientists to unduly multiply their publications by fractioning (“salami slicing”), duplicating, rushing, simplifying, or even fabricating their results. To assess the reasonableness of these concerns, we analyzed publication patterns of over 40,000 researchers that, between the years 1900 and 2013, have published two or more papers within 15 years, in any of the disciplines covered by the Web of Science. The total number of papers published by researchers during their early career period (first fifteen years) has increased in recent decades, but so has their average number of co-authors. If we take the latter factor into account, by measuring productivity fractionally or by only counting papers published as first author, we observe no increase in productivity throughout the century. Even after the 1980s, adjusted productivity has not increased for most disciplines and countries. These results are robust to methodological choices and are actually conservative with respect to the hypothesis that publication rates are growing. Therefore, the widespread belief that pressures to publish are causing the scientific literature to be flooded with salami-sliced, trivial, incomplete, duplicated, plagiarized and false results is likely to be incorrect or at least exaggerated. PMID:26960191

  15. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  16. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  17. Chloride-Mass-Balance: Cautions in Predicting Increased Recharge Rates

    SciTech Connect

    Gee, Glendon W.; Zhang, Z. F.; Tyler , S. W.; Albright , W. H.; Singleton , M. J.

    2005-02-01

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6 m deep lysimeter at a simulated waste-burial ground, located on the Department of Energy’s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20% of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  18. Clearance rates of Cerastoderma edule under increasing current velocity

    NASA Astrophysics Data System (ADS)

    Fernandes, S.; Sobral, P.; van Duren, L.

    2007-05-01

    Estimates of clearance rates (CR) of Cerastoderma edule (300 ind. m -2) as a function of free-stream current velocity ( U) (from 5 to 40 cm s -1) were compared between a small annular (60 l) and a large racetrack (8850 l) flume with different hydrodynamic conditions. Results showed that the flumes differ considerably in their hydrodynamic characteristics. The relationship between CR and U is different in the two flume tanks, however there appears to be a straightforward unimodal trend between CR and shear velocity ( U*). It was found that the cockles themselves influence the benthic boundary layer (BBL) characteristics, by causing steeper velocity gradients and increasing the mixing over the cockle bed compared to bare sediment. This provides new evidence on how endobenthic organisms can affect the BBL. However, the influence of CR on U* could not be quantified because these parameters have interactive effects that cannot be dissociated.

  19. Decrease in the etch rate of polymers in the oxygen afterglow with increasing gas flow rate

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Wydeven, T.

    1988-01-01

    This paper reports the variation of the etch rate of polymers in the afterglow of a radio frequency discharge in oxygen as a function of total flow rate in the range 2-10 cu cm (STP)/min. The measurements were made at ambient temperature with the O(P-3) concentration held essentially constant. Results are reported on three polymers: cis-polybutadiene, a polybutadiene with 33 percent 1,2 double bonds, and a polybutadiene with 40 percent 1,2 double bonds. It has been observed that the etch rate of these polymers decreases significantly with increasing flow rate, strongly suggesting that the vapor-phase products of polymer degradation contribute to the degradation process.

  20. Controls on the Geometry of Accretion Reflectors

    NASA Astrophysics Data System (ADS)

    Wolovick, M.; Bell, R. E.; Buck, W. R.; Creyts, T. T.

    2012-12-01

    Basal accretion occurs when meltwater refreezes onto the base of an ice sheet. Thick packages (900-1100m) of accretion ice are identified in radio-echo sounding data as plume-shaped reflectors above the basal reflector and below isochronous layers of meteoric ice. Accretion reflectors have been imaged in both Antarctica and Greenland rising to a height of 1/3-1/2 of the ice sheet thickness and extending in the flow direction as far as 100 km. Here we use a two-dimensional thermomechanical higher order flowline model coupled to a basal hydrology model to investigate the freezing rates and energy budgets of basal accretion processes. Simple order-of-magnitude estimates for the freezing rate based on the observed height of the reflectors and the assumption that all ice under the observed reflector consists of accretion ice indicate very large freezing rates, on the order of 10-100 cm/yr. We test two end-member possibilities for the formation of the basal accretion bodies: high accretion rates and complex basal deformation. The first possibility is that the freezing rates are very large. The second possibility is that the ice under the observed reflector is a mixture of accreted and meteoric ice. If the ice below the accretion reflector is a mixture, the freezing rates can be much smaller than the simple estimates. If the freezing rates are small, then complex basal deformation must be invoked to cause accretion ice to override meteoric ice to a height of 1/3-1/2 the ice thickness. In the basal deformation case, low freezing rates predict a maximum thickness of 100-200m of accretion ice. The remaining ice beneath the reflector will be deformed meteoric ice. Both cases make testable predictions. If the accretion rates are very high and supercooling is the dominant process, accretion cannot use up all of the subglacial water. In this high rate scenario there will be water at the melting point exiting the accretion site. Alternatively if the accretion is part of a complex

  1. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates.

    PubMed

    Williams, Caroline M; Szejner-Sigal, Andre; Morgan, Theodore J; Edison, Arthur S; Allison, David B; Hahn, Daniel A

    2016-07-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving "Beyond the Mean". PMID:27103615

  2. Social marketing as a strategy to increase immunization rates.

    PubMed

    Opel, Douglas J; Diekema, Douglas S; Lee, Nancy R; Marcuse, Edgar K

    2009-05-01

    Today in the United States, outbreaks of vaccine-preventable disease are often traced to susceptible children whose parents have claimed an exemption from school or child care immunization regulations. The origins of this immunization hesitancy and resistance have roots in the decline of the threat of vaccine-preventable disease coupled with an increase in concerns about the adverse effects of vaccines, the emergence of mass media and the Internet, and the intrinsic limitations of modern medicine. Appeals to emotion have drowned out thoughtful discussion in public forums, and overall, public trust in immunizations has declined. We present an often overlooked behavior change strategy-social marketing-as a way to improve immunization rates by addressing the important roots of immunization hesitancy and effectively engaging emotions. As an example, we provide a synopsis of a social marketing campaign that is currently in development in Washington state and that is aimed at increasing timely immunizations in children from birth to age 24 months. PMID:19414689

  3. PS1-10jh Continues to Follow the Fallback Accretion Rate of a Tidally Disrupted Star

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Chornock, R.; Lawrence, A.; Rest, A.; Jones, D. O.; Berger, E.; Challis, P. M.; Narayan, G.

    2015-12-01

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t‑5/3 power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  4. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  5. Relationship between Star Formation Rate and Black Hole Accretion At Z = 2: the Different Contributions in Quiescent, Normal, and Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Brusa, M.; Daddi, E.; Negrello, M.; Mullaney, J. R.; Delvecchio, I.; Lutz, D.; Renzini, A.; Franceschini, A.; Baronchelli, I.; Pozzi, F.; Gruppioni, C.; Strazzullo, V.; Cimatti, A.; Silverman, J.

    2015-02-01

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5\\lt z\\lt 2.5 galaxies displaying a greater diversity of star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, LX) and stellar mass (M*) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M*0.43+/- 0.09, implying faster BH growth in more massive galaxies at z∼ 2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of LX/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼ 2 is associated with normal star-forming systems, with only ∼ 6(+/- 1)% and ∼ 11(+/- 1)% associated with starburst and quiescent galaxies, respectively.

  6. Higher vitamin D intake in preterm infants fed an isocaloric, protein- and mineral-enriched postdischarge formula is associated with increased bone accretion.

    PubMed

    van de Lagemaat, Monique; Rotteveel, Joost; Schaafsma, Anne; van Weissenbruch, Mirjam M; Lafeber, Harrie N

    2013-09-01

    During the first half of infancy, bone accretion in preterm infants fed an isocaloric, protein- and mineral-enriched postdischarge formula (PDF) is higher compared with those fed term formula (TF) or human milk (HM). This may be related to higher protein, calcium, phosphorus, and vitamin D intakes. This study investigated serum calcium, phosphate, and 25-hydroxyvitamin D [25(OH)D] in relation to bone mineral content (BMC) in PDF-, TF-, and HM-fed preterm infants between term age (40 wk postmenstrual age) and 6 mo corrected age (CA). Between term age and 6 mo CA, 52 preterm infants were fed PDF (per 100 mL: 67 kcal, 1.7 g protein, 65 mg calcium, 38 mg phosphorus, 56 IU vitamin D), 41 were fed TF (per 100 mL: 67 kcal, 1.47 g protein, 50 mg calcium, 30 mg phosphorus, 48 IU vitamin D), and 46 were fed HM. Serum calcium, phosphorus, and 25(OH)D were measured at term age and at 3 and 6 mo CA. BMC (g) was measured by whole-body dual-energy X-ray absorptiometry at term age and at 6 mo CA. Between term age and 6 mo CA, intakes of calcium, phosphorus, and vitamin D were significantly higher in PDF- compared with TF-fed infants, and PDF-fed infants reached significantly higher serum 25(OH)D concentrations at 6 mo CA (103 ± 24.3 vs. 92.8 ± 15.5 nmol/L, P = 0.003). Between term age and 6 mo CA, increases in serum 25(OH)D were associated with an increase in BMC (β = 0.001; 95% CI: 0.00, 0.003; P = 0.046). In conclusion, during the first 6 mo postterm, higher vitamin D intake and greater increase in serum 25(OH)D concentration in PDF-fed preterm infants were associated with increased bone accretion. PMID:23902955

  7. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth.

    PubMed

    Messerli, M A; Créton, R; Jaffe, L F; Robinson, K R

    2000-06-01

    Pollen tubes grown in vitro require an intracellular tip-high gradient of Ca2+ in order to elongate. Moreover, after about 2 h in vitro both the tip Ca2+ and the elongation rate of lily tubes begin to oscillate regularly with large amplitudes. This raises the question of the phase relation between these two oscillations. Previous studies lacked the temporal resolution to accurately establish this relationship. We have studied these oscillations with a newly developed, high temporal resolution system and the complementary use of both luminescent and fluorescent calcium reporters. We hereby show that the periodic increases in elongation rate during oscillatory growth of Lilium longiflorum pollen tubes clearly precede those in subtip calcium and do so by 4.1 +/- 0.2 s out of average periods of 38.7 +/- 1.8 s. Also, by collecting images of the light output of aequorin, we find that the magnitude of the [Ca2+] at the tip oscillates between 3 and 10 microM, which is considerably greater than that reported by fluorescent indicators. We propose an explanatory model that features cyclic growth and secretion in which growth oscillations give rise to secretion that is essential for the subsequent growth oscillation. We also critically compile data on L. longiflorum stylar growth rates, which show little variation from in vitro rates of pollen tubes grown in optimal medium. PMID:10885748

  8. What implementation interventions increase cancer screening rates? a systematic review

    PubMed Central

    2011-01-01

    Background Appropriate screening may reduce the mortality and morbidity of colorectal, breast, and cervical cancers. However, effective implementation strategies are warranted if the full benefits of screening are to be realized. As part of a larger agenda to create an implementation guideline, we conducted a systematic review to evaluate interventions designed to increase the rate of breast, cervical, and colorectal cancer (CRC) screening. The interventions considered were: client reminders, client incentives, mass media, small media, group education, one-on-one education, reduction in structural barriers, reduction in out-of-pocket costs, provider assessment and feedback interventions, and provider incentives. Our primary outcome, screening completion, was calculated as the overall median post-intervention absolute percentage point (PP) change in completed screening tests. Methods Our first step was to conduct an iterative scoping review in the research area. This yielded three relevant high-quality systematic reviews. Serving as our evidentiary foundation, we conducted a formal update. Randomized controlled trials and cluster randomized controlled trials, published between 2004 and 2010, were searched in MEDLINE, EMBASE and PSYCHinfo. Results The update yielded 66 studies new eligible studies with 74 comparisons. The new studies ranged considerably in quality. Client reminders, small media, and provider audit and feedback appear to be effective interventions to increase the uptake of screening for three cancers. One-on-one education and reduction of structural barriers also appears effective, but their roles with CRC and cervical screening, respectively, are less established. More study is required to assess client incentives, mass media, group education, reduction of out-of-pocket costs, and provider incentive interventions. Conclusion The new evidence generally aligns with the evidence and conclusions from the original systematic reviews. This review served as

  9. Increased diversification rates follow shifts to bisexuality in liverworts.

    PubMed

    Laenen, Benjamin; Machac, Antonin; Gradstein, S Robbert; Shaw, Blanka; Patiño, Jairo; Désamoré, Aurélie; Goffinet, Bernard; Cox, Cymon J; Shaw, A Jonathan; Vanderpoorten, Alain

    2016-05-01

    Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism. PMID:27074401

  10. Do Cervical Cancer Screening Rates Increase in Association with an Intervention Designed to Increase Mammography Usage?

    PubMed Central

    KATZ, MIRA L.; TATUM, CATHY M.; DEGRAFFINREID, CECILIA R.; DICKINSON, STEPHANIE; PASKETT, ELECTRA D.

    2015-01-01

    Objectives To assess cervical cancer screening behaviors among underserved women participating in an intervention designed to increase mammography use. Methods This was a randomized trial of 897 women from three racial groups (white, African American, Native American) living in a rural county in North Carolina. Baseline and follow-up surveys were completed by 815 women; 775 women provided data to be included in these analyses. The intervention group received an educational program focused on mammography delivered by a lay health advisor, and the control group received a physician letter/brochure focusing on Pap tests. Results Women in both the intervention (OR 1.70; 1.31, 2.21, p < 0.001) and control groups (OR 1.38; 1.04, 1.82, p = 0.025) significantly increased cervical cancer screening rates within risk appropriate guidelines. No differences by racial group were documented. Women categorized in the high-risk group for developing cervical cancer (>2 sexual partners, age <18 years at first sexual intercourse, smoker; treated for sexually transmitted disease [STD] or partner with treated STD) significantly (OR 1.88; 1.54, 2.28, p < 0.001) increased Pap test completion. However, a nonsignificant increase (OR 1.25; 0.87, 1.79, p = 0.221) in Pap test completion was demonstrated in women categorized as low risk for cervical cancer. Conclusions This study suggests that women in an intensive behavioral intervention designed to increase mammography use may also increase Pap test completion, similar to a minimal intervention focused only on increasing Pap test completion. These results have implications for the design and evaluation of behavioral intervention studies. PMID:17324094

  11. Planetary migration, accretion, and atmospheres

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian M.

    This dissertation explores three distinct projects in the field of planetary formation and evolution: type I migration, cessation of mass accretion, and the atmospheric dynamics of hot Jupiters. All three of these projects touch on outstanding or unresolved issues in the field. Each attempts to unify analytic and numerical approaches in order to physically motivate solutions while simultaneously probing areas currently inaccessible to purely analytic approaches. The first section, type I migration, explores the outstanding problem of the rapid inward migration of low mass planets embedded in protoplanetary disks. Analytic estimates of migration predict characteristic timescales that are much shorter then either observed disk lifetimes or theoretical core-accretion formation timescales. If migration is actually as efficient as these analytic estimates predict, planet formation across the observed range of masses and semimajor axis' is difficult. Here I introduce several new formalisms to both allow the disk to adiabatically adjust to the presence of a planet and include the effect of axisymmetric disk self-gravity. I find that these modifications increase migration timescales by approximately 4 times. In addition to these numerical improvements, I present simulations of migration in lower sound-speed regions of the disk on the grounds that self shadowing within the disk could yield substantially cooler gas temperatures then those derived by most irradiated disk models. In such regions the planetary perturbation excites a secondary instability, leading to the formation of vortices. These vortices cause a substantial reduction in the net torque, increasing migration timescales by up to approximately 200 times the analytically predicted rate. The second section addresses the mechanism for shutting off accretion onto giant planets. According to the conventional sequential accretion scenario, giant planets acquire a majority of their gas in a runaway phase. Conventional

  12. Evolution of Accreting White Dwarfs: Some of Them Continue to Grow

    NASA Astrophysics Data System (ADS)

    Newsham, G.; Starrfield, S.; Timmes, F. X.

    2014-12-01

    Novae are cataclysmic variable binary systems in which a white dwarf (WD) primary is accreting material from a low mass companion. The importance of this accretion takes on added significance if the WD can increase its mass to reach the Chandrasekhar limit thus exploding as a Type Ia supernova. In this study we accrete material of Solar composition onto carbon/oxygen (CO) WDs of 0.70, 1.00 and 1.35 M⊙ with accretion rates from 1.6×10-10 to 1.6×10-6 M⊙ yr-1. We have utilized the MESA stellar evolution code for our modeling and evolve them for many nova cycles or, in some cases, evolution to a red giant stage. Differing behaviors occur as a function of both the WD mass and the accretion rate. For the lower WD masses, the models undergo recurrent hydrogen flashes at low accretion rates; for higher accretion rates, steady-burning of hydrogen occurs and eventually gives way to recurrent hydrogen flashes. At the highest accretion rates, these models go through a steady-burning phase but eventually transition into red giants. For the highest WD mass recurrent hydrogen flashes occur at lower accretion rates but for higher rates the models exhibit steady-burning interspersed with helium flashes. We find that for all our models that undergo recurrent hydrogen flashes, as well as the steady-burning models that exhibit helium flashes, the mass of the WD continues to grow toward the Chandrasekhar limit. These results suggest that the accretion of Solar abundance material onto CO WDs in cataclysmic variable systems, the single degenerate scenario, is a viable channel for progenitors of Type Ia supernova explosions.

  13. CONSTRAINT ON THE GIANT PLANET PRODUCTION BY CORE ACCRETION

    SciTech Connect

    Rafikov, Roman R.

    2011-02-01

    The issue of giant planet formation by core accretion (CA) far from the central star is rather controversial because the growth of a massive solid core necessary for triggering the gas runaway can take longer than the lifetime of the protoplanetary disk. In this work, we assess the range of separations at which CA may operate by (1) allowing for an arbitrary (physically meaningful) rate of planetesimal accretion by the core and (2) properly taking into account the dependence of the critical mass for the gas runaway on the planetesimal accretion luminosity. This self-consistent approach distinguishes our work from similar studies in which only a specific planetesimal accretion regime was explored and/or the critical core mass was fixed at some arbitrary level. We demonstrate that the largest separation at which the gas runaway can occur within 3 Myr corresponds to the surface density of solids in the disk {approx}>0.1 g cm{sup -2} and is 40-50 AU in the minimum mass solar nebula. This limiting separation is achieved when the planetesimal accretion proceeds at the fastest possible rate, even though the high associated accretion luminosity increases the critical core mass, delaying the onset of gas runaway. Our constraints are independent of the mass of the central star and vary only weakly with the core density and its atmospheric opacity. We also discuss various factors that can strengthen or weaken our limits on the operation of CA.

  14. 12 CFR 1026.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Special Rules Applicable to Credit Card Accounts and Open-End Credit Offered to College Students § 1026.59... an annual percentage rate that applies to a credit card account under an open-end (not home-secured... percentage rates applicable to similar new credit card accounts under an open-end (not home-secured)...

  15. 12 CFR 1026.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Special Rules Applicable to Credit Card Accounts and Open-End Credit Offered to College Students § 1026.59... an annual percentage rate that applies to a credit card account under an open-end (not home-secured... percentage rates applicable to similar new credit card accounts under an open-end (not home-secured)...

  16. Study: California Ethnic Groups Seeing Increased Cancer Rates

    ERIC Educational Resources Information Center

    Black Issues in Higher Education, 2005

    2005-01-01

    A statewide study on cancer and ethnicity hints that cancer rates among immigrant groups may be tied to their degree of assimilation into American culture. The study, released by the University of Southern California's Norris Comprehensive Cancer Center, marks the first statewide look at cancer rates among Vietnamese and South Asians and provides…

  17. Wind accretion: Theory and observations

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  18. Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Weidenschilling, S. J.; McSween, H. Y., Jr.

    2003-05-01

    Widespread evidence exists for heating that caused melting, thermal metamorphism, and aqueous alteration in meteorite parent bodies. Previous simulations of asteroid heat transfer have assumed that accretion was instantaneous. For the first time, we present a thermal model that assumes a realistic (incremental) accretion scenario and takes into account the heat budget produced by decay of 26Al during the accretion process. By modeling 6 Hebe (assumed to be the H chondrite parent body), we show that, in contrast to results from instantaneous accretion models, an asteroid may reach its peak temperature during accretion, the time at which different depth zones within the asteroid attain peak metamorphic temperatures may increase from the center to the surface, and the volume of high-grade material in the interior may be significantly less than that of unmetamorphosed material surrounding the metamorphic core. We show that different times of initiation and duration of accretion produce a spectrum of evolutionary possibilities, and thereby, highlight the importance of the accretion process in shaping an asteroid's thermal history. Incremental accretion models provide a means of linking theoretical models of accretion to measurable quantities (peak temperatures, cooling rates, radioisotope closure times) in meteorites that were determined by their thermal histories.

  19. He-accreting white dwarfs: accretion regimes and final outcomes

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Tornambé, A.; Yungelson, L. R.

    2014-12-01

    The behaviour of carbon-oxygen (CO) white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyse the thermal response of an accreting WD to mass deposition at different timescales. The analysis has been performed for initial WD masses and accretion rates in the range 0.60-1.02 M⊙ and 10-9-10-5 M⊙ yr-1, respectively. Thermal regimes in the parameter space MWD-dot{M}_He leading to formation of red-giant-like structures, steady burning of He, and mild, strong and dynamical flashes have been identified and the transition between these regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building up of a He-rich layer via H burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomial fits to the obtained results are provided for use in binary population synthesis computations. Several applications for close binary systems with He-rich donors and CO WD accretors are considered and the relevance of the results for interpreting He novae is discussed.

  20. TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS

    SciTech Connect

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  1. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E.; Bessell, M. S.; Bonanos, A.; Crause, L. A.; Lawson, W. A.; Mallik, S. V.; Schuler, S. C.

    2012-05-01

    The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over ~17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the Hα flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The Hα emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the Hα and Hβ lines is followed by He I (λ5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of ~2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows ~2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

  2. Increasing HPV vaccination series completion rates via text message reminders.

    PubMed

    Matheson, Elaine C; Derouin, Anne; Gagliano, Martha; Thompson, Julie A; Blood-Siegfried, Jane

    2014-01-01

    Human papillomavirus (HPV) is the most frequently diagnosed sexually transmitted infection in the United States. It is associated with the development of cervical, anal-genital, and oral-pharyngeal cancers. The rate of HPV infection among adolescents and young adults in the United States remains high, and completion rates of an HPV vaccine series remain low. At an urban pediatric clinic, adolescent and young adult participants aged 11 to 22 years (n = 37) received text message reminders for their second and third dose of HPV vaccine over an 8-month study period. Of the participants receiving text message reminders, 14% completed the vaccine series at the optimal time, whereas 0% of an interested group (n = 43) and only 3% of a standard care group (n = 232) completed the vaccine series at the optimal time. Findings support the use of text message reminders to improve HPV vaccine series completion rates in a pediatric practice. PMID:24200295

  3. Synthetic aperture design for increased SAR image rate

    DOEpatents

    Bielek, Timothy P.; Thompson, Douglas G.; Walker, Bruce C.

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  4. Exit Exams: Decreases or Increases the Dropout Rate

    ERIC Educational Resources Information Center

    Barnes, Teresa A.

    2009-01-01

    The purpose of this paper was to examine the impact of exit exams on the dropout rate. Data was gathered from several research articles. The most impressionable research revealed exit exams have a negative effect on minorities, especially black males. Results indicate by 2012, that exit exams in 25 states will affect 81 percent of minority high…

  5. Increasing Response Rates to Web-Based Surveys

    ERIC Educational Resources Information Center

    Monroe, Martha C.; Adams, Damian C.

    2012-01-01

    We review a popular method for collecing data--Web-based surveys. Although Web surveys are popular, one major concern is their typically low response rates. Using the Dillman et al. (2009) approach, we designed, pre-tested, and implemented a survey on climate change with Extension professionals in the Southeast. The Dillman approach worked well,…

  6. Strategies to Increase Enrollment, Retention, and Graduation Rates

    ERIC Educational Resources Information Center

    Talbert, Patricia Y.

    2012-01-01

    Student retention in postsecondary institutions continues to be a vexing problem, as graduation rates have continued to decline over the last decade. To be a competitive force in the global economy, it is crucial to keep students in school. This research uses a conceptual data model to introduce academic leaders' (N = 104) perspectives to…

  7. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and... to a credit card account under an open-end (not home-secured) consumer credit plan, based on the... new credit card accounts under an open-end (not home-secured) consumer credit plan. (2) Rate...

  8. 12 CFR 226.59 - Reevaluation of rate increases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and... to a credit card account under an open-end (not home-secured) consumer credit plan, based on the... new credit card accounts under an open-end (not home-secured) consumer credit plan. (2) Rate...

  9. Galactic Fountains and Gas Accretion

    NASA Astrophysics Data System (ADS)

    Marinacci, F.; Binney, J.; Fraternali, F.; Nipoti, C.; Ciotti, L.; Londrillo, P.

    2010-06-01

    Star-forming disc galaxies such as the Milky Way need to accrete >~1 Msolar of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from these clouds and the stripped gas causes coronal gas to condense in the cloud's wake. For likely parameters of the Galactic corona and of typical fountain clouds we obtain a global accretion rate of the order of that required to feed the star formation.

  10. Leftward lighting in advertisements increases advertisement ratings and purchase intention.

    PubMed

    Hutchison, Jennifer; Thomas, Nicole A; Elias, Lorin

    2011-07-01

    It has been reliably shown that light is assumed to come from above. There is also some suggestion that light from the left might be preferred. Leftward lighting biases have been observed across various mediums such as paintings, portraits, photographs, and advertisements. As advertisements are used to persuade the public to purchase products, it was of interest to better understand whether leftward lighting would influence future intention to purchase. Participants gave preference ratings for pairs of advertisements with opposing lighting directions. Attitude towards the advertisement and the brand as well as future purchase intention was then rated. Overall, participants indicated that they preferred advertisements with leftward lighting and were more likely to purchase these products in the future than when the same products were lit from the right. Findings are consistent with previously observed leftward lighting biases and suggest that advertisements with a leftward lighting bias might be more effective. PMID:21038169

  11. Evolution of Accretion Disks in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Matzner, Christopher D.

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  12. Evolution of accretion disks in tidal disruption events

    SciTech Connect

    Shen, Rong-Feng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  13. The LINER Nucleus of M87: A Shock-excited Dissipative Accretion Disk

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Koratkar, Anuradha P.; Allen, Mark G.; Tsvetanov, Zlatan I.; Ford, Holland C.; Bicknell, Geoffrey V.; Sutherland, Ralph S.

    1997-11-01

    We present long-baseline Faint Object Spectrograph (FOS) spectra of the nuclear accretion disk in M87 (NGC 4486), offset from the nucleus by 0.6" (42.7 pc) in order to avoid the nuclear continuum. Even so close to the nucleus, the optical spectrum has the appearance of a normal LINER galaxy. We show that the presence of strong UV emission lines provides a definitive test of the excitation mechanism; the disk is shock excited, not photoionized by a UV continuum from the central source. The shock velocity inferred (265 km s-1) is about one-half of the Keplerian rotation velocity found earlier by Ford et al. Since shock dissipation appears to be the principal means of increasing the binding energy of the accreting gas, we can use the FOS data and the luminosity profile of the accretion disk to estimate the rate of mass accretion as a function of radius. We find that this rate decreases with decreasing distance from the nucleus, as the material becomes organized into a cool and thin classical accretion disk in the inner regions. In the outer disk, the accretion rate (~4 M⊙ yr-1) is comparable to that determined for the X-ray-emitting cooling flow, showing that a large fraction of the cooling gas can find its way into the nuclear regions. The accretion rate near the nucleus (~3 × 10-2 M⊙ yr-1) is consistent with the properties of the relativistic jet and its associated radio emission. Over the lifetime of the jets, about 107 M⊙ of cool material may have accumulated in the nuclear regions, allowing the formation of a disk that is optically thick to Thomson scattering where it becomes ionized close to the nucleus. We speculate that LINER emission is a general property of the shocked dissipative regions of accretion disks in active galaxies with strongly sub-Eddington accretion and may therefore be used as a diagnostic of these dissipative accretion flows.

  14. Revisiting the "Flip-Flop" Instability of Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Blondin, John M.; Pope, T. Chris

    2009-07-01

    We revisit the flip-flop instability of two-dimensional planar accretion using high-fidelity numerical simulations. By starting from an initially steady-state axisymmetric solution, we are able to follow the growth of this overstability from small amplitudes. In the small-amplitude limit, before any transient accretion disk is formed, the oscillation period of the accretion shock is comparable to the Keplerian period at the Hoyle-Lyttleton accretion radius (Ra ), independent of the size of the accreting object. The growth rate of the overstability increases dramatically with decreasing size of the accretor, but is relatively insensitive to the upstream Mach number of the flow. We confirm that the flip-flop does not require any gradient in the upstream flow. Indeed, a small density gradient as used in the discovery simulations has virtually no influence on the growth rate of the overstability. The ratio of specific heats does influence the overstability, with smaller γ leading to faster growth of the instability. For a relatively large accretor (a radius of 0.037 Ra ) planar accretion is unstable for γ = 4/3, but stable for γ >= 1.6. Planar accretion is unstable even for γ = 5/3 provided the accretor has a radius of < 0.0025 Ra . We also confirm that when the accretor is sufficiently small, the secular evolution is described by sudden jumps between states with counter-rotating quasi-Keplerian accretion disks.

  15. Damage segregation at fissioning may increase growth rates

    PubMed Central

    Evans, Steven N.; Steinsaltz, David

    2007-01-01

    A fissioning organism may purge unrepairable damage by bequeathing it preferentially to one of its daughters. Using the mathematical formalism of superprocesses, we propose a flexible class of analytically tractable models that allow quite general effects of damage on death rates and splitting rates and similarly general damage segregation mechanisms. We show that, in a suitable regime, the effects of randomness in damage segregation at fissioning are indistinguishable from those of randomness in the mechanism of damage accumulation during the organism’s lifetime. Moreover, the optimal population growth is achieved for a particular finite, non-zero level of combined randomness from these two sources. In particular, when damage accumulates deterministically, optimal population growth is achieved by a moderately unequal division of damage between the daughters, while too little or too much division is sub-optimal. Connections are drawn both to recent experimental results on inheritance of damage in protozoans, and to theories of aging and resource division between siblings. PMID:17442356

  16. 75 FR 81003 - Rate Increase Disclosure and Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...) section 1251 of the Affordable Care Act (relating to status as a grandfathered health plan) (75 FR 34538... implementing PHS Act section 2718 (regarding medical loss ratio (75 FR 74864 (December 1, 2010)). HHS... unreasonable premium increases under section 2794 of the Public Health Service Act. The proposed rule...

  17. Three-dimensional Hydrodynamic Simulations of Accretion in High-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Raymer, Eric John

    Wind accretion in high-mass X-ray binaries (HMXBs) often results in highly variable X-ray behavior, the nature of which is not well understood. Most models of wind accretion are based on the analytical predictions of Hoyle-Lyttleton accretion (HLA), which assumes a steady axisymmetric flow. Surprisingly little is known about the structure, stability, and time-evolution of HLA in three dimensions, particularly in the presence of non-uniform winds. This work describes hydrodynamic simulations of idealized HLA in three-dimensions, then applies these simulations to two HMXB subclasses that exhibit unexplained X-ray behavior. Our idealized HLA models show that the accretion flow remains steady and stable in two-dimensional axisymmetric and three dimensional grid geometries, assuming a uniform upstream flow. We test the stability of the model with linear upstream density gradients and find that they are able to induce rotational flow around the accretor that reduces the mass accretion rate by up to an order of magnitude. We apply our 3D model to accretion in the context of Be/X-ray binaries, in which the accreting neutron star is immersed in the dense decretion disk of the Be donor star. These systems have traditionally been described with 2D models that exhibit the flip-flop instability. This instability results in the formation and destruction of transient accretion disks with accompanying bursts of mass accretion. Our 3D models show no sign of the flip-flop instability, but instead display rotation about the neutron star directed primarily out of the plane of the decretion disk. This rotation generates large-scale asymmetries in the bow shock and suppresses mass accretion by up to two orders of magnitude. The accretion of a clumped stellar wind is one of the primary mechanisms proposed to explain the high-luminosity X-ray flares of supergiant fast X-ray transients. We model clump accretion in 3D to determine whether the impact of a clump can produce flares with a

  18. Increasing response rates to postal questionnaires: systematic review

    PubMed Central

    Edwards, Phil; Roberts, Ian; Clarke, Mike; DiGuiseppi, Carolyn; Pratap, Sarah; Wentz, Reinhard; Kwan, Irene

    2002-01-01

    Objective To identify methods to increase response to postal questionnaires. Design Systematic review of randomised controlled trials of any method to influence response to postal questionnaires. Studies reviewed 292 randomised controlled trials including 258 315 participants Intervention reviewed 75 strategies for influencing response to postal questionnaires. Main outcome measure The proportion of completed or partially completed questionnaires returned. Results The odds of response were more than doubled when a monetary incentive was used (odds ratio 2.02; 95% confidence interval 1.79 to 2.27) and almost doubled when incentives were not conditional on response (1.71; 1.29 to 2.26). Response was more likely when short questionnaires were used (1.86; 1.55 to 2.24). Personalised questionnaires and letters increased response (1.16; 1.06 to 1.28), as did the use of coloured ink (1.39; 1.16 to 1.67). The odds of response were more than doubled when the questionnaires were sent by recorded delivery (2.21; 1.51 to 3.25) and increased when stamped return envelopes were used (1.26; 1.13 to 1.41) and questionnaires were sent by first class post (1.12; 1.02 to 1.23). Contacting participants before sending questionnaires increased response (1.54; 1.24 to 1.92), as did follow up contact (1.44; 1.22 to 1.70) and providing non-respondents with a second copy of the questionnaire (1.41; 1.02 to 1.94). Questionnaires designed to be of more interest to participants were more likely to be returned (2.44; 1.99 to 3.01), but questionnaires containing questions of a sensitive nature were less likely to be returned (0.92; 0.87 to 0.98). Questionnaires originating from universities were more likely to be returned than were questionnaires from other sources, such as commercial organisations (1.31; 1.11 to 1.54). Conclusions Health researchers using postal questionnaires can improve the quality of their research by using the strategies shown to be effective in this systematic review

  19. ACCRETION VARIABILITY OF HERBIG Ae/Be STARS OBSERVED BY X-SHOOTER HD 31648 AND HD 163296

    SciTech Connect

    Mendigutía, I.; Brittain, S.; Eiroa, C.; Meeus, G.; Montesinos, B.; Mora, A.; Muzerolle, J.; Oudmaijer, R. D.; Rigliaco, E.

    2013-10-10

    This work presents X-Shooter/Very Large Telescope spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of 12 ultraviolet, optical, and near-infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 × 10{sup –7} and 4.50 × 10{sup –7} M{sub ☉} yr{sup –1} for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ∼15 yr. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.

  20. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ∼ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ∼ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  1. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  2. Ordovician ocean plate stratigraphy and thrust duplexes of the Ballantrae Complex, SW Scotland: Implications for the pelagic deposition rate and forearc accretion in the closing Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Fujisaki, Wataru; Asanuma, Hisashi; Suzuki, Kazue; Sawaki, Yusuke; Sakata, Shuhei; Hirata, Takafumi; Maruyama, Shigenori; Windley, Brian F.

    2015-11-01

    The Ballantrae Complex (at Bennane Lea in SW Scotland) contains important ocean plate stratigraphy (basalt, chert, mudstone, sandstone) in an accretionary prism that is associated with a classic Ordovician ophiolite. We used the ocean plate stratigraphy to sub-divide the prism into 11 tectonic units. To determine the depositional age of bedded cherts, zircons were separated from 9 tuff beds from 6 different units. All the tuffs have early to middle Ordovician ages, even though their present positions are mutually distant. These ages are consistent with microfossil records of radiolaria and graptolites. The stratigraphic-structural relationships demonstrate that the ocean plate stratigraphy has been repeated by bedding-parallel thrusts; this is typical of a modern accretionary duplex. We calculated the sedimentation rate of Early to Middle Ordovician bedded cherts at Bennane Lea on the basis of U-Pb zircon ages obtained from several tuff beds; the data indicate that the depositional rate (0.6-3 m/myr) was as slow as that of Mesozoic-Cenozoic equivalents defined by radiolaria. The age spectra of detrital zircons from Ballantrae sandstones show prominent single peaks at ca. 467 and 478 Ma, and a lack of Precambrian zircons. Integration of our new zircon ages with published isotopic data and palaeo-geographic maps indicates that the sandstones were deposited near an intra-oceanic arc and far from any continent containing Precambrian rocks. The pelagic-to-clastic sediments at Bennane Lea were deposited in the closing Iapetus Ocean from ca. 477 Ma to ca. 464 Ma, when they were accreted with the intra-oceanic arc of Ballantrae.

  3. Increased rates of pregnancy complications in women with celiac disease

    PubMed Central

    Moleski, Stephanie M.; Lindenmeyer, Christina C.; Veloski, J. Jon; Miller, Robin S.; Miller, Cynthia L.; Kastenberg, David; DiMarino, Anthony J.

    2015-01-01

    Background Celiac disease is an immune-mediated small bowel disorder that develops in genetically susceptible individuals upon exposure to dietary gluten. Celiac disease could have extra-intestinal manifestations that affect women’s reproductive health. The aim of this study was to investigate fertility and outcomes of pregnancy among women with celiac disease. Methods In a retrospective cohort study, we analyzed information collected from patients at a tertiary care celiac center and from members of 2 national celiac disease awareness organizations. Women without celiac disease were used as controls. Women completed an anonymous online survey, answering 43 questions about menstrual history, fertility, and outcomes of pregnancy (329 with small bowel biopsy-confirmed celiac disease and 641 controls). Results Of the 970 women included in the study, 733 (75.6%) reported that they had been pregnant at some point; there was no significant difference between women with celiac disease (n=245/329, 74.5%) and controls (488/641, 76.1%; P=0.57). However, fewer women with celiac disease than controls (79.6% vs. 84.8%) gave birth following 1 or more pregnancies (P=0.03). Women with celiac disease had higher percentages of spontaneous abortion than controls (50.6% vs. 40.6%; P=0.01), and of premature delivery (23.6% vs. 15.9% among controls; P=0.02). The mean age at menarche was higher in the celiac disease group (12.7 years) than controls (12.4 years; P=0.01). Conclusions In a retrospective cohort analysis examining reproductive features of women with celiac disease, we associated celiac disease with significant increases in spontaneous abortion, premature delivery, and later age of menarche. PMID:25831067

  4. Autism Linked to Increased Oncogene Mutations but Decreased Cancer Rate

    PubMed Central

    Zimmerman, M. Bridget; Mahajan, Vinit B.; Bassuk, Alexander G.

    2016-01-01

    Autism spectrum disorder (ASD) is one phenotypic aspect of many monogenic, hereditary cancer syndromes. Pleiotropic effects of cancer genes on the autism phenotype could lead to repurposing of oncology medications to treat this increasingly prevalent neurodevelopmental condition for which there is currently no treatment. To explore this hypothesis we sought to discover whether autistic patients more often have rare coding, single-nucleotide variants within tumor suppressor and oncogenes and whether autistic patients are more often diagnosed with neoplasms. Exome-sequencing data from the ARRA Autism Sequencing Collaboration was compared to that of a control cohort from the Exome Variant Server database revealing that rare, coding variants within oncogenes were enriched for in the ARRA ASD cohort (p<1.0x10-8). In contrast, variants were not significantly enriched in tumor suppressor genes. Phenotypically, children and adults with ASD exhibited a protective effect against cancer, with a frequency of 1.3% vs. 3.9% (p<0.001), but the protective effect decreased with age. The odds ratio of neoplasm for those with ASD relative to controls was 0.06 (95% CI: 0.02, 0.19; p<0.0001) in the 0 to 14 age group; 0.35 (95% CI: 0.14, 0.87; p = 0.024) in the 15 to 29 age group; 0.41 (95% CI: 0.15, 1.17; p = 0.095) in the 30 to 54 age group; and 0.49 (95% CI: 0.14, 1.74; p = 0.267) in those 55 and older. Both males and females demonstrated the protective effect. These findings suggest that defects in cellular proliferation, and potentially senescence, might influence both autism and neoplasm, and already approved drugs targeting oncogenic pathways might also have therapeutic value for treating autism. PMID:26934580

  5. Bondi accretion onto cosmological black holes

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Malec, Edward

    2013-02-01

    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation era and after (roughly) 1012 years from the big bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—known as the Weyl curvature hypothesis—of the evolution of the Universe.

  6. Star formation sustained by gas accretion

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge; Elmegreen, Bruce G.; Muñoz-Tuñón, Casiana; Elmegreen, Debra Meloy

    2014-07-01

    Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.

  7. 45 CFR 154.225 - Determination by CMS or a State of an unreasonable rate increase.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... increase is an unreasonable rate increase. (1) CMS will post on its Web site its final determination and a... whether a rate increase is unreasonable and post on the CMS Web site the State's final...

  8. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  9. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  10. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  11. Accretion flows govern black hole jet properties

    NASA Astrophysics Data System (ADS)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  12. Jets from magnetized accretion disks

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  13. Review of Research Shows, Overall, Acupuncture Did Not Increase Pregnancy Rates with IVF

    MedlinePlus

    ... Y Z Review of Research Shows, Overall, Acupuncture Did Not Increase Pregnancy Rates With IVF Share: An ... in vitro fertilization (IVF) found that, overall, acupuncture did not increase pregnancy rates. However, acupuncture did seem ...

  14. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  15. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas

    NASA Technical Reports Server (NTRS)

    Hubickyj, Olenka

    1997-01-01

    Models were developed to simulate planet formation. Three major phases are characterized in the simulations: (1) planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted; (2) occurs when both solid and gas accretion rates are small and nearly independent of time; and (3) starts when the solid and gas masses are about equal and is marked by runaway gas accretion. The models applicability to planets in our Solar System are judged using two basic "yardsticks". The results suggest that the solar nebula dissipated while Uranus and Neptune were in the second phase, during which, for a relatively long time, the masses of their gaseous envelopes were small but not negligible compared to the total masses. Background information, results and a published article are included in the report.

  16. Hard apex transition in quasi-periodic oscillators - Closing of the accretion gap

    NASA Technical Reports Server (NTRS)

    Biehle, Garrett T.; Blandford, Roger D.

    1993-01-01

    We propose that the 'hard apex' transition in the X-ray two-color diagrams for low-mass X-ray binaries exhibiting quasi-periodic oscillation is associated with closure of a gap between the accretion disk and the star. At low accretion rates, gas crosses this gap intermittently. However, when the mass accretion rate increases, the disk thickens and its inner edge touches the star, thus forming a boundary layer through which the gas flows steadily. This explanation is viable provided that the equation of state of nuclear matter is not significantly harder than the Bethe-Johnson I prescription. Accretion gap scenarios are possibly distinguishable from models which invoke a small magnetosphere around the neutron star, in that they preclude large stellar magnetic fields and associate the high-frequency (horizontal-branch) oscillations with different sites.

  17. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  18. Theoretical Researches on Hot Accretion Flows around Black Holes

    NASA Astrophysics Data System (ADS)

    Xie, F. G.

    2010-10-01

    Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to

  19. Pressure gradient torque in highly supersonic nonaxisymmetric accretion

    NASA Technical Reports Server (NTRS)

    Ho, Cheng; Taam, Ronald E.; Fryxell, Bruce A.; Matsuda, Takuya; Koide, Hiroshi

    1989-01-01

    The contribution of a pressure gradient torque to the angular momentum transfer rate in highly supersonic nonaxisymmetric accretion flows is considered. This study takes into account the contribution due to the pressure variation in the postaccretion-shock region which is significant for high Mach number accretion. For the case of accretion flow with Mach (infinity) of not less than 5, the overall accretion torque is shown to approach a constant value.

  20. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  1. Parsec-scale Accretion and Winds Irradiated by a Quasar

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-03-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L\\gt 0.01 {L}{{Edd}}, where LEdd is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10-4-10-1{M}⊙ {{{yr}}}-1 through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L/{L}{{edd}} increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  2. Low-dosage clomiphene reduces premature ovulation rates and increases transfer rates in natural-cycle IVF.

    PubMed

    von Wolff, M; Nitzschke, M; Stute, P; Bitterlich, N; Rohner, S

    2014-08-01

    Natural-cycle IVF has been suggested as an alternative IVF treatment. However, efficacy is limited due to high premature ovulation rates, resulting in low transfer rates. This study investigates whether low dosages of clomiphene citrate reduce premature ovulation rate and increase transfer rate. Of 112 women included (aged 35.2 ± 4.5 years) 108 underwent one natural-cycle IVF cycle with human chorionic gonadotrophin (HCG) to induce ovulation and 103 underwent one natural-cycle IVF cycle with 25 mg/day clomiphene from about day 7 until HCG administration. Before retrieval, 1.2 monitoring consultations per cycle were required. Clomiphene reduced premature ovulation rate, from 27.8% without to 6.8% with clomiphene (P < 0.001) and increased transfer rate from 39.8% to 54.4% (P = 0.039). Clinical pregnancy rates without and with clomiphene were 27.9% versus 25.0% per transfer and 11.1% versus 13.6% per initiated cycle. Use of clomiphene resulted in mild hot flushes and headache in 5% of patients. Nausea and persisting ovarian cyst formation was not observed. In conclusion, clomiphene citrate led to very few side effects, required 1.2 monitoring consultations, significantly reduced premature ovulation rate and significantly increased transfer rate per initiated cycle, an effect which was not age dependent. PMID:24947066

  3. SIGNS OF MAGNETIC ACCRETION IN THE X-RAY PULSAR BINARY GX 301-2

    SciTech Connect

    Ikhsanov, Nazar R.; Finger, Mark H.

    2012-07-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B{sub CRSF} {approx} 4 Multiplication-Sign 10{sup 12} G. The same value has been derived in modeling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 B{sub CRSF} or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar can be explained in terms of the magnetically controlled accretion flow scenario provided the surface field of the neutron star is {approx}B{sub CRSF}.

  4. Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk

    NASA Astrophysics Data System (ADS)

    Krolik, Julian H.; Hawley, John F.; Hirose, Shigenobu

    2005-04-01

    This paper continues the analysis of a set of general relativistic three-dimensional MHD simulations of accreting tori in the Kerr metric with different black hole spins. We focus on bound matter inside the initial pressure maximum, where the time-averaged motion of gas is inward and an accretion disk forms. We use the flows of mass, angular momentum, and energy in order to understand dynamics in this region. The sharp reduction in accretion rate with increasing black hole spin reported in the first paper of this series is explained by a strongly spin-dependent outward flux of angular momentum conveyed electromagnetically; when a/M>=0.9, this flux can be comparable to the inward angular momentum flux carried by the matter. In all cases, there is outward electromagnetic angular momentum flux throughout the flow; in other words, contrary to the assertions of traditional accretion disk theory, there is in general no ``stress edge,'' no surface within which the stress is zero. The retardation of accretion in the inner disk by electromagnetic torques also alters the radial distribution of surface density, an effect that may have consequences for observable properties, such as Compton reflection. The net accreted angular momentum is sufficiently depressed by electromagnetic effects that in the most rapidly spinning black holes mass growth can lead to spin-down. Spinning black holes also lose energy by Poynting flux; this rate is also a strongly increasing function of black hole spin, rising to >~10% of the rest-mass accretion rate at very high spin. As the black hole spins faster, the path of the Poynting flux changes from being predominantly within the accretion disk to being predominantly within the funnel outflow.

  5. Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase

    SciTech Connect

    Stouffer, R.J.

    1999-08-01

    The influence of differing rates of increase of the atmospheric CO{sub 2} concentration on the climatic response is investigated using a coupled ocean-atmosphere model. Five transient integrations are performed each using a different constant exponential rate of CO{sub 2} increase ranging from 4% yr{sup {minus}1} to 0.25% yr{sup {minus}1}. By the time of CO{sub 2} doubling, the surface air temperature response in all the transient integrations is locally more than 50% and globally more than 35% of the equilibrium response. The land-sea contrast in the warming, which is evident in the equilibrium results, is larger in all the transient experiments. The land-sea difference in the response increases with the rate of increase in atmospheric CO{sub 2} concentration. The thermohaline circulation (THC) weakens in response to increasing atmospheric CO{sub 2} concentration in all the transient integrations, confirming earlier work. The results also indicate that the slower the rate of increase, the larger the weakening of the THC by the time of doubling. Two of the transient experiments are continued beyond the time of CO{sub 2} doubling with the CO{sub 2} concentration maintained at that level. The amount of weakening of the THC after the CO{sub 2} stops increasing is smaller in the experiment with the slower rate of CO{sub 2} increase, indicating that the coupled system has more time to adjust to the forcing when the rate of CO{sub 2} increase is slower. After a period of slow overturning, the THC gradually recovers and eventually regains the intensity found in the control integration, so that the equilibrium THC is very similar in the control and doubled CO{sub 2} integrations. Considering only the sea level changes due to the thermal expansion of seawater, the integration with the slowest rate of increase in CO{sub 2} concentration has the largest globally averaged sea level rise by the time of CO{sub 2} doubling. However, only a relatively small fraction of the

  6. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  7. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  8. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  9. Super-Eddington wind scenario for the progenitors of type Ia supernovae: Accreting He-rich matter onto white dwarfs

    NASA Astrophysics Data System (ADS)

    Wang, B.; Li, Y.; Ma, X.; Liu, D.-D.; Cui, X.; Han, Z.

    2015-12-01

    Context. Supernovae of type Ia (SNe Ia) are believed to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs). However, the mass accretion process onto CO WDs is still not completely understood. Aims: In this paper, we study the accretion of He-rich matter onto CO WDs and explore a scenario in which a strong wind forms on the surface of the WD if the total luminosity exceeds the Eddington limit. Methods: Using a stellar evolution code called modules for experiments in stellar astrophysics (MESA), we simulated the He accretion process onto CO WDs for WDs with masses of 0.6-1.35 M⊙ and various accretion rates of 10-8-10-5 M⊙ yr-1. Results: If the contribution of the total luminosity is included when determining the Eddington accretion rate, then a super-Eddington wind could be triggered at relatively lower accretion rates than those of previous studies based on steady-state models. The super-Eddington wind can prevent the WDs with high accretion rates from evolving into red-giant-like He stars. We found that the contributions from thermal energy of the WD are non-negligible, judging by our simulations, even though the nuclear burning energy is the dominating source of luminosity. We also provide the limits of the steady He-burning regime in which the WDs do not lose any accreted matter and increase their mass steadily, and calculated the mass retention efficiency during He layer flashes for various WD masses and accretion rates. These obtained results can be used in future binary population synthesis computations.

  10. Morphodynamics of Accreting Beaches

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Gelfenbaum, G.; Sherwood, C. R.; Kaminsky, G. M.

    2002-12-01

    Beaches along the Pacific Northwest coast of the US have been shown to have large seasonal variability in shoreline position with several 10's of meters of recession occurring during the winter (high-energy waves) and typically similar scales of beach recovery during the summer (low-energy waves). However, many beaches along the Columbia River littoral cell (northwest Oregon and southwest Washington) have exhibited net residual progradation of several meters per year over decades, resulting in significant shoreline realignment. This historical shoreline advance has been primarily due to the dispersal of sand from the flanks of the ebb-tidal deltas following jetty construction at the entrances to the Columbia River and Grays Harbor. The installation of jetties removed the shallow shoals from the influence of tidal currents, resulting in a shoreface profile that was too shallow for the inherent wave energy. Onshore transport of large quantities of sand occurred over the next several decades, decreasing through time. While much of the original source material is now exhausted, many beaches today are still rapidly accreting on inter-annual time scales. Gradients in alongshore sediment transport, net onshore directed cross-shore sediment transport within the surf zone, and cross-shore feeding from a shoreface out of equilibrium with forcing conditions may each be partially responsible for this continued accretion. The primary morphodynamic mechanism for sub-aerial beach growth, and shoreline progradation on a seasonal scale, is hypothesized to be the development, onshore migration, and welding of inter-tidal (swash) bars to the upper beach face. To investigate the processes and morphodynamics associated with accreting beaches we have completed two field experiments and are applying computational models that link measured sediment transport to wave and current forcing. Experiments completed in Spring 2001 and Summer 2002 combined process measurements with observations of

  11. Accreting pre-main-sequence models and abundance anomalies in globular clusters

    NASA Astrophysics Data System (ADS)

    Tognelli, E.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2015-12-01

    We investigated the possibility of producing helium-enhanced stars in globular clusters by accreting polluted matter during the pre-main-sequence phase. We followed the evolution of two different classes of pre-main-sequence accreting models, one which neglects and the other that takes into account the protostellar evolution. We analysed the dependence of the final central helium abundance, of the tracks position in the HR diagram and of the surface lithium abundance evolution on the age at which the accretion of polluted material begins and on the main physical parameters that govern the protostellar evolution. The later is the beginning of the late accretion and the lower are both the central helium and the surface lithium abundances at the end of the accretion phase and in Zero Age Main Sequence (ZAMS). In order to produce a relevant increase of the central helium content the accretion of polluted matter should start at ages lower than 1 Myr. The inclusion of the protostellar evolution has a strong impact on the ZAMS models too. The adoption of a very low seed mass (i.e. 0.001 M⊙) results in models with the lowest central helium and surface lithium abundances. The higher is the accretion rate and the lower is the final helium content in the core and the residual surface lithium. In the worst case - i.e. seed mass 0.001 M⊙ and accretion rate ≥10-5 M⊙ yr-1 - the central helium is not increased at all and the surface lithium is fully depleted in the first few million years.

  12. LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates?

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2004-05-01

    Accumulation rates of terrestrial sediment have increased in the past few million years both on and adjacent to continents, although not everywhere. Apparently, erosion has increased in elevated terrain regardless of when last tectonically active or what the present-day climate. In many regions, sediment coarsened abruptly in late Pliocene time. Sparser data suggest increased sedimentation rates at 15 Ma, approximately when oxygen isotopes in benthic foraminifera imply high-latitude cooling. If climate change effected accelerated erosion, understanding how it did so remains the challenge. Some obvious candidates, such as lowered sea level leading to erosion of continental shelves or increased glaciation, account for increased sedimentation in some, but not all, areas. Perhaps stable climates that varied slowly allowed geomorphic processes to maintain a state of equilibrium with little erosion until 34 Ma, when large oscillations in climate with periods of 20,00040,000 years developed and denied the landscape the chance to reach equilibrium.

  13. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  14. Rising Tide II: Do Black Students Benefit as Grad Rates Increase?

    ERIC Educational Resources Information Center

    Nichols, Andrew Howard; Eberle-Sudré, Kimberlee; Welch, Meredith

    2016-01-01

    "Rising Tide II: Do Black Students Benefit as Grad Rates Increase?" looks at a decade of graduation rates for African American students at four-year, public institutions that improved student success during the past decade. It shows that while a majority (almost 70 percent) of institutions we examined improved graduation rates for black…

  15. Heart rates increase after hatching in two species of natricine snakes

    PubMed Central

    Aubret, Fabien

    2013-01-01

    Experimental studies have shown heart rates to decrease from embryo to hatchling stage in turtles, remain steady in skinks, and increase in birds. However, no snake species has been studied in this regard. I recorded heart rate evolution trajectories from embryo to juvenile stage in 78 eggs from two species of European Natricine snakes. Unexpectedly, snakes behaved more like birds than turtles or lizards: heart rates increased after hatching in both N. maura and N. natrix, respectively by 43.92 ± 22.84% and 35.92 ± 24.52%. Heart rate shift was not related to an abrupt elevation of metabolism per se (snakes that increased their heart rates the most sharply grew the least after birth), but rather due to a number of smaller eggs that experienced lower than normal heart rates throughout the incubation and recovered a normal heart rate post-birth. This finding is discussed in the light of hatching synchrony benefits. PMID:24287712

  16. Accretion of Ghost Condensate by Black Holes

    SciTech Connect

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  17. 75 FR 55942 - Avocados Grown in South Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Agricultural Marketing Service 7 CFR Part 915 Avocados Grown in South Florida; Increased Assessment Rate AGENCY... increases the assessment rate established for the Avocado Administrative Committee (Committee) for the 2010... avocados handled. The Committee locally administers the marketing order which regulates the handling...

  18. 75 FR 51956 - Dried Prunes Produced in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 993 Dried Prunes Produced in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This rule would increase the assessment rate established for the Prune Marketing Committee (Committee)...

  19. ACCRETION OF ROCKY PLANETS BY HOT JUPITERS

    SciTech Connect

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-11-01

    The observed population of Hot Jupiters displays a stunning variety of physical properties, including a wide range of densities and core sizes for a given planetary mass. Motivated by the observational sample, this Letter studies the accretion of rocky planets by Hot Jupiters, after the Jovian planets have finished their principal migration epoch and become parked in {approx}4 day orbits. In this scenario, rocky planets form later and then migrate inward due to torques from the remaining circumstellar disk, which also damps the orbital eccentricity. This mechanism thus represents one possible channel for increasing the core masses and metallicities of Hot Jupiters. This Letter determines probabilities for the possible end states for the rocky planet: collisions with the Jovian planets, accretion onto the star, ejection from the system, and long-term survival of both planets. These probabilities depend on the mass of the Jovian planet and its starting orbital eccentricity, as well as the eccentricity damping rate for the rocky planet. Since these systems are highly chaotic, a large ensemble (N {approx} 10{sup 3}) of simulations with effectively equivalent starting conditions is required. Planetary collisions are common when the eccentricity damping rate is sufficiently low, but are rare otherwise. For systems that experience planetary collisions, this work determines the distributions of impact velocities-both speeds and impact parameters-for the collisions. These velocity distributions help determine the consequences of the impacts, e.g., where energy and heavy elements are deposited within the giant planets.

  20. Apparent climatically induced increase of tree mortality rates in a temperate forest.

    PubMed

    van Mantgem, Phillip J; Stephenson, Nathan L

    2007-10-01

    We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21,338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation. PMID:17845291

  1. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: evidence for a high accretion rate and warm outflow

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.; González Delgado, R. M.; Tzioumis, A.; Inskip, K. J.

    2006-08-01

    We use deep optical, infrared and radio observations to explore the symbiosis between nuclear activity and galaxy evolution in the southern compact radio source PKS 1549-79 (z = 0.1523). The optical imaging observations reveal the presence of tidal tail features which provide strong evidence that the host galaxy has undergone a major merger in the recent past. The merger hypothesis is further supported by the detection of a young stellar population (YSP), which, on the basis of spectral synthesis modelling of our deep Very Large Telescope (VLT) optical spectra, was formed 50-250 Myr ago and makes up a significant fraction of the total stellar mass (1-30 per cent). Despite the core-jet structure of the radio source, which is consistent with the idea that the jet is pointing close to our line of sight, our HI 21-cm observations reveal significant HI absorption associated with both the core and the jet. Moreover, the luminous, quasar-like active galactic nucleus (AGN) (MV < -23.5) is highly extinguished (Av > 6.4) at optical wavelengths and show many properties in common with narrow-line Seyfert 1 galaxies (NLS1), including relatively narrow permitted lines [full width at half-maximum (FWHM) ~ 1940 km s-1], highly blueshifted [OIII] λλ5007,4959 lines (ΔV ~ 680 km s-1) and evidence that the putative supermassive black hole is accreting at a high Eddington ratio (0.3 < Lbol/Ledd < 11). The results suggest that accretion at high Eddington ratio does not prevent the formation of powerful relativistic jets. Together, the observations lend strong support to the predictions of some recent numerical simulations of galaxy mergers in which the black hole grows rapidly through merger-induced accretion following the coalescence of the nuclei of two merging galaxies, and the major growth phase is largely hidden at optical wavelengths by the natal gas and dust. Although the models also predict that AGN-driven outflows will eventually remove the gas from the bulge of the host

  2. Disk accretion by magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Lamb, F. K.

    1978-01-01

    A model for disk accretion by a rotating magnetic neutron star is proposed which includes a detailed description of matter flow in the transition region between the disk and the magnetosphere. It is shown that the disk plasma cannot be completely screened from the stellar magnetic field and that the resulting magnetic coupling between the star and the disk exerts a significant torque on the star. On the assumption that the distortion of the residual stellar field lines threading the disk is limited by reconnection, the total accretion torque on the star is calculated. The calculated torque gives period changes in agreement with those observed in the pulsating X-ray sources and provides a natural explanation of why a fast rotator like Her X-1 has a spin-up rate much below the conventional estimate for slow rotators. It is shown that for such fast rotators, fluctuations in the mass-accretion rate can produce fluctuations in the accretion torque about 100 times larger. For sufficiently fast rotators or, equivalently, for sufficiently low accretion rates, the star experiences a braking torque even while accretion continues and without any mass ejection from its vicinity.

  3. Increasing The Number of Embryos Transferred from Two to Three, Does not Increase Pregnancy Rates in Good Prognosis Patients

    PubMed Central

    Ashrafi, Mahnaz; Madani, Tahereh; Movahedi, Mina; Arabipoor, Arezoo; Karimian, Leili; Mirzaagha, Elaheh; Chehrazi, Mohammad

    2015-01-01

    Background To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs) in women undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles. Materials and Methods This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each IVF/ICSI cycle, from September 2006 to June 2010. Patients were categorized into two groups according to the number of ET as follows: ET2 and ET3 groups, indicating two and three embryos were respectively transferred. Pregnancy outcomes were compared between ET2 and ET3 groups. Chi square and student t tests were used for data analysis. Results Clinical pregnancy and live birth rates were similar between two groups. The rates of multiple pregnancies were 27 and 45.2% in ET2 and ET3 groups, respectively. The rate of multiple pregnancies in young women was significantly increased when triple instead of double embryos were transferred. Logistic regression analysis indicated two significant prognostic variables for live birth that included number and quality of transferred embryos; it means that the chance of live birth following ICSI treatment increased 3.2-fold when the embryo with top quality (grade A) was transferred, but the number of ET had an inverse relationship with live birth rate; it means that probability of live birth in women with transfer of two embryos was three times greater than those who had three ET. Conclusion Due to the difficulty of implementation of the elective single-ET technique in some infertility centers in the world, we suggest transfer of double instead of triple embryos when at least one good quality embryo is available for transfer in women aged 39 years or younger. However, to reduce the rate of multiple pregnancies, it is recommended to consider the elective single ET strategy. PMID:26644851

  4. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  5. Asymmetric Accretion Flows within a Common Envelope

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2015-04-01

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle-Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  6. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  7. Accretion, winds and outflows in young stars

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  8. 12 CFR 226.55 - Limitations on increasing annual percentage rates, fees, and charges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Workout and temporary hardship arrangement exception. A card issuer may increase an annual percentage rate... to the consumer's completion of a workout or temporary hardship arrangement or the consumer's...

  9. Bondi accretion in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-05-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of an Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  10. Bondi accretion in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-08-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper, we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of a Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore, allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  11. Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat.

    PubMed

    Valenzuela B, Rodrigo; Barrera R, Cynthia; González-Astorga, Marcela; Sanhueza C, Julio; Valenzuela B, Alfonso

    2014-07-25

    Alpha-linolenic acid (ALA) is an essential n-3 PUFA; its n-3 LCPUFA derivatives EPA and DHA, which have diverse beneficial effects, are scarce in the human diet. In recent years nontraditional vegetable oils rich in ALA (up to 45%) have been developed as new alternatives to increase ALA consumption. This work evaluated the accretion of ALA, EPA and DHA into the phospholipids extracted from erythrocytes, liver, kidney, small intestine, heart, quadriceps and the brain in rats fed sunflower (SFO), canola (CO), Rosa canina (RCO), sacha inchi (Plukenetia volubilis, SIO) and chia (Salvia hispánica, ChO) oils. Five experimental groups (n = 12 per group) were fed for 21 days with SFO (1% ALA), CO (10% ALA), RCO (33% ALA), SIO (49% ALA), and ChO (64% ALA). SIO and ChO allowed higher ALA accretion in all tissues, except the brain, and a reduction in the content of arachidonic acid in all tissues except the brain. EPA was increased in erythrocytes, liver, kidney, small intestine, heart and quadriceps, but not in the brain. DHA was increased in the liver, small intestine and brain tissues. Our results demonstrate that ALA, when provided in significant amounts, can be converted into n-3 LCPUFA, mostly DHA in the liver and brain. It is suggested that oils rich in ALA, such as SIO and ChO, are good sources for obtaining higher tissue levels of ALA, also allowing its selective conversion into n-3 LCPUFA in some tissues of the rat. PMID:24855655

  12. The Effects of Increased Accountability Standards on Graduation Rates for Students with Disabilities

    ERIC Educational Resources Information Center

    Moore, Mitzi Lee

    2012-01-01

    This research sought to determine if unintended effects of increased accountability standards on graduation rates for students with disabilities existed. Data from one southeastern state were utilized in order to determine if graduation rates were impacted as a result of higher accountability standards. In addition, administrator attitudes on…

  13. Become a Survey Sophisticate: Learn How to Tweak Alumni Surveys to Increase Response Rates

    ERIC Educational Resources Information Center

    Pearson, Jerold

    2011-01-01

    The online survey is a popular tool for taking the pulse of an alumni body. However, response rates for these surveys have been declining over the years, making them potentially less useful. Are there easy ways to increase these rates? The author has conducted a number of experiments to try to find that out. He discusses surveys that explored…

  14. 78 FR 8047 - Onions Grown in South Texas; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Agricultural Marketing Service 7 CFR Part 959 Onions Grown in South Texas; Increased Assessment Rate AGENCY... rate established for the South Texas Onion Committee (Committee) for the 2012-13 and subsequent fiscal periods from $0.025 to $0.03 per 50-pound equivalent of onions handled. The Committee locally...

  15. Increasing College-Going Rate, Parent Involvement, and Community Participation in Rural Communities

    ERIC Educational Resources Information Center

    King, Stephanie B.

    2012-01-01

    This study examined the perceptions of leaders of grant-supported projects aimed at increasing the college-going rate of high school students in rural Appalachian counties in Mississippi to determine which factors they felt most influenced the college-going rate, parental participation in school activities, and community participation. Analysis of…

  16. Accretion onto Planetary Mass Companions of Low-mass Young Stars

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L.

    2014-03-01

    Measurements of accretion rates onto planetary mass objects may distinguish between different planet formation mechanisms, which predict different accretion histories. In this Letter, we use Hubble Space Telescope (HST)/WFC3 UVIS optical photometry to measure accretion rates onto three accreting objects, GSC 06214-00210 b, GQ Lup b, and DH Tau b, that are at the planet/brown dwarf boundary and are companions to solar mass stars. The excess optical emission in the excess accretion continuum yields mass accretion rates of 10-9-10-11 M ⊙ yr-1 for these three objects. Their accretion rates are an order of magnitude higher than expected from the correlation between mass and accretion rates measured from the UV excess, which is applicable if these wide planetary mass companions formed by protostellar core fragmentation. The high accretion rates and large separation from the central star demonstrate the presence of massive disks around these objects. Models for the formation and evolution of wide planetary mass companions should account for their large accretion rates. High ratios of Hα luminosity over accretion luminosity for objects with low accretion rates suggest that searches for Hα emission may be an efficient way to find accreting planets.

  17. The hard X-ray emission spectra from accretion columns in intermediate polars

    NASA Technical Reports Server (NTRS)

    Yi, Insu; Vishniac, Ethan T.

    1994-01-01

    We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass

  18. Response of fish to different simulated rates of water temperature increase

    SciTech Connect

    Wike, L.D.; Tuckfield, R.C.

    1992-08-01

    We initiated this study to define the limits of effluent-temperature rate increases during reactor restart, which will help minimize fish kills. We constructed an apparatus for exposing fish to various temperature-increase regimens and conducted two experiments based on information from system tests and scoping runs. In the rate experiment, we acclimated the fish to 20{degree}C, and then raised the temperature to 40{degree}C at varying rates. Because scoping runs and literature suggested that acclimation temperature may affect temperature-related mortality, we conducted an acclimation experiment. We acclimated the fish to various temperatures, then raised the temperatures to 39--40{degree}C at a rate of 2{degree}C every 12 hours. Based on the analysis of the data, we recommend temperature-increase rates during reactor restart of 2.5{degree}C every nine hours if ambient water temperatures are over 20{degree}C. If water temperatures are at or below 20{degree}C, we recommend temperature-increase rates of 2.5{degree}C every 12 hours. No regulation of temperature is required after effluent temperatures reach 40{degree}C. We recommend further studies, including expanded testing with the simulation system and behavioral and bioenergetic investigations that may further refine acceptable rates of effluent-temperature increases.

  19. A Celestial Show of the Century: Gas Cloud Accretion onto the SMBH SgrA*

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud, which is rapidly approaching the Galactic supermassive black hole (SMBH) Sgr A*, was discovered recently. In mid-2013, the cloud will be ~ 3,100 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit, and is predicted to interact with the accretion flow around the SMBH. Although it is very uncertain what will happen at the time of the cloud's pericentric passage, this event may presents a unique opportunity, that may never come again, to study the dynamics and properties of hot gas in the vicinity of the SMBH, and gas accretion onto it. From simulations, sudden increase of accretion rate onto the SMBH, and subsequent strong surge of emission from Sgr A* are expected. So we will carry out daily monitoring observations of Sgr A* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru, just after the beginning of the accretion event. Spectroscopic and imaging observations from 1.6 - 11 mu m will be conducted to understand processes responsible for near to mid-infrared emission during the accretion event. Using HiCIAO, polarimetric observations will be carried out to investigate the existence of jets/outflow which may be produced by the sudden mass accretion onto the SMBH.

  20. Does Global Warming Increase Establishment Rates of Invasive Alien Species? A Centurial Time Series Analysis

    PubMed Central

    Huang, Dingcheng; Haack, Robert A.; Zhang, Runzhi

    2011-01-01

    Background The establishment rate of invasive alien insect species has been increasing worldwide during the past century. This trend has been widely attributed to increased rates of international trade and associated species introductions, but rarely linked to environmental change. To better understand and manage the bioinvasion process, it is crucial to understand the relationship between global warming and establishment rate of invasive alien species, especially for poikilothermic invaders such as insects. Methodology/Principal Findings We present data that demonstrate a significant positive relationship between the change in average annual surface air temperature and the establishment rate of invasive alien insects in mainland China during 1900–2005. This relationship was modeled by regression analysis, and indicated that a 1°C increase in average annual surface temperature in mainland China was associated with an increase in the establishment rate of invasive alien insects of about 0.5 species year−1. The relationship between rising surface air temperature and increasing establishment rate remained significant even after accounting for increases in international trade during the period 1950–2005. Moreover, similar relationships were detected using additional data from the United Kingdom and the contiguous United States. Conclusions/Significance These findings suggest that the perceived increase in establishments of invasive alien insects can be explained only in part by an increase in introduction rate or propagule pressure. Besides increasing propagule pressure, global warming is another driver that could favor worldwide bioinvasions. Our study highlights the need to consider global warming when designing strategies and policies to deal with bioinvasions. PMID:21931837

  1. Fueling galaxy growth through gas accretion in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan Rubaloff

    Despite significant advances in the numerical modeling of galaxy formation and evolution, it is clear that a satisfactory theoretical picture of how galaxies acquire their baryons across cosmic time remains elusive. In this thesis we present a computational study which seeks to address the question of how galaxies get their gas. We make use of new, more robust simulation techniques and describe the first investigations of cosmological gas accretion using a moving-mesh approach for solving the equations of continuum hydrodynamics. We focus first on a re-examination of past theoretical conclusions as to the relative importance of different accretion modes for galaxy growth. We study the rates and nature of gas accretion at z=2, comparing our new simulations run with the Arepo code to otherwise identical realizations run with the smoothed particle hydrodynamics code Gadget. We find significant physical differences in the thermodynamic history of accreted gas, explained in terms of numerical inaccuracies in SPH. In contrast to previous results, we conclude that hot mode accretion generally dominates galaxy growth, while cold gas filaments experience increased heating and disruption. Next, we consider the impact of feedback on our results, including models for galactic-scale outflows driven by stars as well as the energy released from supermassive black holes. We find that feedback strongly suppresses the inflow of "smooth" mode gas at all redshifts, regardless of its temperature history. Although the geometry of accretion at the virial radius is largely unmodified, strong galactic-fountain recycling motions dominate the inner halo. We measure a shift in the characteristic timescale of accretion, and discuss implications for semi-analytical models of hot halo gas cooling. To overcome the resolution limitations of cosmological volumes, we simulate a suite of eight individual 1012 solar mass halos down to z=2. We quantify the thermal and dynamical structure of the gas in

  2. The lamppost model of accreting black holes

    NASA Astrophysics Data System (ADS)

    Zdziarski, A.

    2016-06-01

    Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.

  3. An Accretion Disk-outflow Model for Hysteretic State Transition in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2016-01-01

    We suggest a model of the advection-dominated accretion flow (ADAF) with magnetically driven outflows to explain the hysteretic state transition observed in X-ray binaries (XRBs). The transition from a thin disk to an ADAF occurs when the mass accretion rate is below a critical value. The critical mass accretion rate for the ADAF can be estimated by equating the equilibration timescale to the accretion timescale of the ADAF, which is sensitive to its radial velocity. The radial velocity of thin disks is very small, which leads to the advection of the external field in thin disks becoming very inefficient. ADAFs are present in the low/hard states of XRBs, and their radial velocity is large compared with the thin disk. The external field can be dragged inward efficiently by the ADAF, so a strong large-scale magnetic field threading the ADAF can be formed, which may accelerate a fraction of gas in the ADAF into the outflows. Such outflows may carry away a large amount of angular momentum from the ADAF, which significantly increases the radial velocity of the ADAF. This leads to a high critical mass accretion rate, below which an ADAF with magnetic outflows can survive. Our calculations show that the critical luminosity of the ADAF with magnetic outflows can be one order of magnitude higher than that for a conventional ADAF, if the ratio of gas to magnetic pressure β ∼ 4 in the disk. This can naturally explain the hysteretic state transition observed in XRBs.

  4. 12 CFR 227.24 - Unfair acts or practices regarding increases in annual percentage rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Consumer Credit Card Account Practices Rule § 227.24 Unfair acts or practices regarding increases in annual... will apply to each category of transactions on the consumer credit card account. A bank must not increase the annual percentage rate for a category of transactions on any consumer credit card...

  5. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  6. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  7. 75 FR 31275 - Nectarines and Peaches Grown in California; Increased Assessment Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... Federal Register on April 5, 2010 (75 FR 17072). Copies of the proposed rule were also mailed or sent via... Agricultural Marketing Service 7 CFR Parts 916 and 917 Nectarines and Peaches Grown in California; Increased... increases the assessment rates established for the Nectarine Administrative Committee and the...

  8. The Paradox of Increasing Both Enrollment and Graduation Rates: Acknowledging Elephants in the Ivory Tower

    ERIC Educational Resources Information Center

    Mulvenon, Sean W.; Robinson, Daniel H.

    2014-01-01

    The argument is made that increasing enrollments and graduation rates cannot occur while maintaining academic standards. Several U.S. universities are attempting to increase their enrollments to counter the financial difficulties created by a reduction in state support. These same universities are also under growing pressure from their state…

  9. 75 FR 51924 - Apricots Grown in Designated Counties in Washington; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... published in the Federal Register on June 30, 2010 (FR 75 37740). Copies of the proposed rule were also made... Agricultural Marketing Service 7 CFR Part 922 Apricots Grown in Designated Counties in Washington; Increased... increases the assessment rate established for the Washington Apricot Marketing Committee (Committee) for...

  10. Accretion onto the first stellar mass black holes

    SciTech Connect

    Alvarez, Marcelo A.; Wise, John H.; Abel, Tom

    2009-08-05

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M{sub {circle_dot}} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the two hundred million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation - stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx} 10{sup 4} K, facilitating intermediate mass black hole formation at their centers.

  11. Variable accretion processes in the young binary-star system UY Aur

    SciTech Connect

    Stone, Jordan M.; Eisner, J. A.; Kulesa, Craig; McCarthy, Don; Salyk, Colette E-mail: jeisner@as.arizona.edu E-mail: dmccarthy@as.arizona.edu

    2014-09-01

    We present new K-band spectroscopy of the UY Aur binary star system. Our data are the first to show H{sub 2} emission in the spectrum of UY Aur A and the first to spectrally resolve the Brγ line in the spectrum of UY Aur B. We see an increase in the strength of the Brγ line in UY Aur A and a decrease in Brγ and H{sub 2} line luminosity for UY Aur B compared to previous studies. Converting Brγ line luminosity to accretion rate, we infer that the accretion rate onto UY Aur A has increased by 2 × 10{sup –9} M {sub ☉} yr{sup –1} per year since a rate of zero was observed in 1994. The Brγ line strength for UY Aur B has decreased by a factor of 0.54 since 1994, but the K-band flux has increased by 0.9 mag since 1998. The veiling of UY Aur B has also increased significantly. These data evince a much more luminous disk around UY Aur B. If the lower Brγ luminosity observed in the spectrum of UY Aur B indicates an intrinsically smaller accretion rate onto the star, then UY Aur A now accretes at a higher rate than UY Aur B. However, extinction at small radii or mass pile-up in the circumstellar disk could explain decreased Brγ emission around UY Aur B even when the disk luminosity implies an increased accretion rate. In addition to our scientific results for the UY Aur system, we discuss a dedicated pipeline we have developed for the reduction of echelle-mode data from the ARIES spectrograph.

  12. Variable Accretion Processes in the Young Binary-star System UY Aur

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.; Eisner, J. A.; Salyk, Colette; Kulesa, Craig; McCarthy, Don

    2014-09-01

    We present new K-band spectroscopy of the UY Aur binary star system. Our data are the first to show H2 emission in the spectrum of UY Aur A and the first to spectrally resolve the Brγ line in the spectrum of UY Aur B. We see an increase in the strength of the Brγ line in UY Aur A and a decrease in Brγ and H2 line luminosity for UY Aur B compared to previous studies. Converting Brγ line luminosity to accretion rate, we infer that the accretion rate onto UY Aur A has increased by 2 × 10-9 M ⊙ yr-1 per year since a rate of zero was observed in 1994. The Brγ line strength for UY Aur B has decreased by a factor of 0.54 since 1994, but the K-band flux has increased by 0.9 mag since 1998. The veiling of UY Aur B has also increased significantly. These data evince a much more luminous disk around UY Aur B. If the lower Brγ luminosity observed in the spectrum of UY Aur B indicates an intrinsically smaller accretion rate onto the star, then UY Aur A now accretes at a higher rate than UY Aur B. However, extinction at small radii or mass pile-up in the circumstellar disk could explain decreased Brγ emission around UY Aur B even when the disk luminosity implies an increased accretion rate. In addition to our scientific results for the UY Aur system, we discuss a dedicated pipeline we have developed for the reduction of echelle-mode data from the ARIES spectrograph. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  13. A recent increase in the rate of Indian Ocean sea level change

    NASA Astrophysics Data System (ADS)

    Thompson, P. R.; Merrifield, M. A.

    2014-12-01

    Decadal rates of sea surface height (SSH) change measured by satellites (1993-present) north of 20°S in the Indian Ocean increase substantially after the turn of the century. In contrast, the increase in the sea surface temperature of the region is approximately linear. This increase in Indian Ocean rates of SSH change appears to be thermosteric in origin, but it is not accounted for variability in Pacific climate indices. We find the GECCO2 simulation (1948-2011) reproduces the SSH variability in this region to good approximation, and we use the model fields to diagnose the origin of the increase in the rate of Indian Ocean SSH change and to place the recent variability in historical context.

  14. Can early breastfeeding support increase the 6-8 week breastfeeding prevalence rate?

    PubMed

    Price, Linda

    2014-05-01

    Breastfeeding has significant health benefits for mothers and babies and is an important strategy to reduce health inequalities (UNICEF, 2010). The Baby Friendly Initiative, a strategy to increase breastfeeding rates, has been adopted by the trust. In line with the trust's priorities, the health visiting team initiated a project to increase the 6-8 breastfeeding prevalence rates. Breastfeeding mothers in a defined project area were offered breastfeeding support in their homes within the first postnatal week. Although the results after six months did demonstrate an overall increase in the 6-8 week prevalence rate of 5%, the monthly figures where disappointingly inconsistent and it was difficult to attribute the rise to the increased support offered. Nevertheless, the feedback from mothers who received support demonstrated that it was valued and had a positive impact on their confidence to continue to breastfeed. PMID:24881195

  15. [Effect of temperature and salinity on intrinsic increasing rate of Moina mongolica Daddy (Cladocera: Moinidae) population].

    PubMed

    Wang, Y; He, Z

    2001-02-01

    The intrinsic increasing rate of Moina mongolica Daddy, a euryhaline cladocera species isolated from inland brackish lakes of northwestern China, was studied at 20 degrees C-33 degrees C and 5-40 ppt, respectively. The results showed that its intrinsic increasing rate (rm) increased with increasing temperature from 20 degrees C-30 degrees C, and sharply dropped with further increasing temperature up to 33 degrees C. The rm of M. mongolica was relatively high at low salinity, the highest at 10 ppt, but no significant difference at 20-40 ppt. Therefore, 25 degrees C-30 degrees C and 10 ppt could be optimal for the development of M. mongolica population, and its increasing potential would not be affected significantly by rearing this cladocera species in seawater for a long period. PMID:11813443

  16. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites

  17. Adaptation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval competitive ability without increased larval feeding rate.

    PubMed

    Nagarajan, Archana; Natarajan, Sharmila Bharathi; Jayaram, Mohan; Thammanna, Ananda; Chari, Sudarshan; Bose, Joy; Jois, Shreyas V; Joshi, Amitabh

    2016-06-01

    The standard view of adaptation to larval crowding in fruitflies, built on results from 25 years of multiple experimental evolution studies on Drosophila melanogaster, was that enhanced competitive ability evolves primarily through increased larval feeding and foraging rate, and increased larval tolerance to nitrogenous wastes, at the cost of efficiency of food conversion to biomass. These results were at odds from the predictions of classical K-selection theory, notably the expectation that selection at high density should result in the increase of efficiency of conversion of food to biomass, and were better interpreted through the lens of α-selection. We show here that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolve greater competitive ability and pre-adult survivorship at high density, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater time efficiency of food conversion to biomass and increased pupation height, with a relatively small role of increased urea/ammonia tolerance, if at all. This is a very different suite of traits than that seen to evolve under similar selection in D. melanogaster, and seems to be closer to the expectations from the canonical theory of K-selection. We also discuss possible reasons for these differences in results across the three species. Overall, the results reinforce the view that our understanding of the evolution of competitive ability in fruitflies needs to be more nuanced than before, with an appreciation that there may be multiple evolutionary routes through which higher competitive ability can be attained. PMID:27350686

  18. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1993-01-01

    Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared.

  19. Increasing Recruitment Rates in an Inpatient Clinical Research Study Using Quality Improvement Methods

    PubMed Central

    Sauers, Hadley S.; Beck, Andrew F.; Kahn, Robert S.; Simmons, Jeffrey M.

    2015-01-01

    Objective One important benefit of successful patient recruitment is increased generalizability of findings. We sought to optimize enrollment of children admitted with asthma as part of a population-based, prospective, observational cohort study with the goal of enrolling at least 60% of all eligible and staffed patients. Methods Quality improvement methods were used to improve cohort recruitment. Weekly meetings with study staff and study leadership were held to plan and discuss how to maximize recruitment rates. Significant initial variability in recruitment success prompted the team to use small-scale tests of change to increase recruitment numbers. A number of tests were trialed, focusing primarily on reducing patient refusals and improving recruitment process efficiency. Recruitment rates were calculated by dividing eligible by enrolled patients and displayed using annotated Shewhart control charts. Control charts were used to illustrate week-to-week variability while also enabling differentiation of common-cause and special-cause variation. Results The study enrolled 774 patients, representing 54% of all eligible and 59% of those eligible for whom staff were available to enroll. Our mean weekly recruitment rate increased from 55% during the first 3 months of the study to a statistically significant sustained rate of 61%. This was sustained given numerous obstacles, such as departing and hiring of staff and adding a second recruitment location. Conclusions Implementing quality improvement methods within a larger research study led to an increase in the rate of recruitment as well as the stability in recruitment rates from week-to-week. PMID:25362074

  20. The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014

    PubMed Central

    Betrán, Ana Pilar; Ye, Jianfeng; Moller, Anne-Beth; Zhang, Jun; Gülmezoglu, A. Metin; Torloni, Maria Regina

    2016-01-01

    Background Caesarean section (CS) rates continue to evoke worldwide concern because of their steady increase, lack of consensus on the appropriate CS rate and the associated additional short- and long-term risks and costs. We present the latest CS rates and trends over the last 24 years. Methods We collected nationally-representative data on CS rates between 1990 to 2014 and calculated regional and subregional weighted averages. We conducted a longitudinal analysis calculating differences in CS rates as absolute change and as the average annual rate of increase (AARI). Results According to the latest data from 150 countries, currently 18.6% of all births occur by CS, ranging from 6% to 27.2% in the least and most developed regions, respectively. Latin America and the Caribbean region has the highest CS rates (40.5%), followed by Northern America (32.3%), Oceania (31.1%), Europe (25%), Asia (19.2%) and Africa (7.3%). Based on the data from 121 countries, the trend analysis showed that between 1990 and 2014, the global average CS rate increased 12.4% (from 6.7% to 19.1%) with an average annual rate of increase of 4.4%. The largest absolute increases occurred in Latin America and the Caribbean (19.4%, from 22.8% to 42.2%), followed by Asia (15.1%, from 4.4% to 19.5%), Oceania (14.1%, from 18.5% to 32.6%), Europe (13.8%, from 11.2% to 25%), Northern America (10%, from 22.3% to 32.3%) and Africa (4.5%, from 2.9% to 7.4%). Asia and Northern America were the regions with the highest and lowest average annual rate of increase (6.4% and 1.6%, respectively). Conclusion The use of CS worldwide has increased to unprecedented levels although the gap between higher- and lower-resource settings remains. The information presented is essential to inform policy and global and regional strategies aimed at optimizing the use of CS. PMID:26849801

  1. Proposed modifications to ice accretion/icing scaling theory

    NASA Technical Reports Server (NTRS)

    Bilanin, Alan J.

    1988-01-01

    The difficulty of conducting full-scale icing tests has long been appreciated. Testing in an icing wind tunnel has been undertaken for decades. While aircraft size and speeds have increased, tunnel facilities have not, thus making subscale geometric tests a necessity. Scaling laws governing these tests are almost exclusively based on analysis performed over 30 years ago and have not been rigorously validated. The following work reviews past scaling analyses and suggests revision to these analyses based on recent experimental observation. It is also suggested, based on the analysis contained herein, that current ice accretion predictive technologies, such as LEWICE when utilized in the glaze ice accretion regime, may need upgrading to more accurately estimate the rate of ice build-up on aerodynamic surfaces.

  2. Self-gravity in neutrino-dominated accretion disks

    SciTech Connect

    Liu, Tong; Yu, Xiao-Fei; Gu, Wei-Min; Lu, Ju-Fu

    2014-08-10

    We present the effects of self-gravity on the vertical structure and neutrino luminosity of the neutrino-dominated accretion disks in cylindrical coordinates. It is found that significant changes of the structure appear in the outer region of the disk, especially for high accretion rates (e.g., ≳ 1 M{sub ☉} s{sup –1}), and thus cause the slight increase in the neutrino luminosity. Furthermore, the gravitational instability of the disk is reviewed by the vertical distribution of the Toomre parameter, which may account for the late-time flares in gamma-ray bursts and the extended emission in short-duration gamma-ray bursts.

  3. Active states and structure transformations in accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  4. Understanding accretion beyond the Eddington limit: NGC 5204 X-1

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew

    2013-10-01

    It has been suggested that ULXs are in a new super-Eddington `ultraluminous' accretion state, and that they progress through a sequence of three spectral regimes with increasing accretion rate. However, our recent results (Sutton et al. 2013) indicate that inclination is also critical in determining the observed X-ray properties. These properties can broadly be explained by a massive radiatively-driven wind that emerges as the Eddington limit is exceeded, and forms a funnel around the black hole axis. Previous observations show NGC 5204 X-1 straddling the boundary between two ultraluminous regimes, marking it as a critical source in testing this scenario. Here we propose to obtain a further four 20 ks XMM-Newton EPIC observations, which will allow us to probe the validity of the proposed model.

  5. Apparent climatically induced increase of tree mortality rates in a temperate forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2007-01-01

    We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21 338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation. ?? 2007 Blackwell Publishing Ltd/CNRS.

  6. Torque Reversals in Disk Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Li, Jianke; Wickramasinghe, Dayal T.

    1998-07-01

    X-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10-13 Hz s-1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque-mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.

  7. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  8. Variability of Phyllochron, Plastochron and Rate of Increase in Height in Photoperiod-sensitive Sorghum Varieties

    PubMed Central

    Clerget, B.; Dingkuhn, M.; Gozé, E.; Rattunde, H. F. W.; Ney, B.

    2008-01-01

    Background and Aims West African sorghum (Sorghum bicolor) varieties are generally highly photoperiod-sensitive, which is a necessary adaptation to the variable onset date of the rainy season and the variable dates of sowing in the savannah zone. Depending on sowing date, plants can produce from 12 to >40 leaves on the main culm, with height varying from 1 m to more than 5 m. The present study aimed to better understand the complex phenology of these variables. Methods A 2-year series of monthly sowings of three West African sorghum varieties was conducted near Bamako, Mali. Drought stress was avoided by supplemental irrigation. Rate of initiation of primordia at the stem apex was recorded, together with rate of leaf emergence and increase in plant height. Key Results Leaf initiation and appearance rates (plastochron−1 and phyllochron−1) were constant for a given sowing date in cases where less than 20 leaves were produced (generally observed with late sowing dates). In contrast, rates were bilinear for early sowing dates, for which plants produced more than 20 leaves. The secondary rates, which occurred from the 20th leaf onwards, were only half of the initial rate. Plastochron and phyllochron showed large variations among sowing dates, and were correlated with the rate of plant height increase. The initial plastochron and phyllochron were positively correlated with soil temperature and negatively correlated with both day length and day-to-day change of day length prevailing at plant emergence, but these factors explained only half of the variation observed. Conclusions Although they belong to different genetic groups and have different height and photoperiod sensitivity, the three varieties studied exhibited similar response patterns of development rates among phenological phases and seasons, with the local landrace showing the greatest variation due to its longer vegetative phase and longer stem internodes. The possible adaptive advantages in African

  9. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    PubMed

    Barenholz, Uri; Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  10. The influence of fatigue-induced increase in relative work rate on temperature regulation during exercise.

    PubMed

    Kacin, Alan; Golja, Petra; Tipton, Michael J; Eiken, Ola; Mekjavic, Igor B

    2008-05-01

    Heat-loss responses during steady-load exercise are affected by an increase in relative work rate induced by muscle ischaemia or hypoxaemia. The present study investigated whether progressive increases in perception of exertion and relative oxygen uptake %VO2peak which occur during prolonged steady-load exercise as a result of progressively increased peripheral fatigue, might also affect the regulation of heat loss responses and hence the exercise-induced increase in mean body temperature. Ten male subjects first performed a ramp-test to exhaustion on a cycle ergometer to evaluate their initial peak oxygen uptake (Control VO2peak). On a separate day, 120 min of cycling at constant power output corresponding to 60% of Control VO2peak was performed in thermoneutral environment (Ta = 23 degrees C, RH = 50%, wind speed = 5 m s(-1)). This was immediately followed by another maximal performance test (Fatigue VO2peak). During prolonged exercise, median (range) rating of perceived exertion for whole-body (RPEwb) increased (P < 0.01) from initial 3.5 (1-5) to 5.5 (5-9) at the end of exercise. Fatigue VO2peak and peak power output were 9 (5) and 10 (5)% lower (P < 0.01) when compared to control values. At the onset of exercise, heat production, mechanical efficiency, heat loss and mean body temperature increased towards asymptotic values, thereafter remained constant throughout the 120 min exercise, despite the concomitant progressive increase in relative work rate, as reflected in increased RPEwb and relative oxygen uptake. It is thus concluded that the increase in relative work rate induced predominantly by peripheral muscle fatigue affects neither the level of increase in mean body temperature nor the regulation of heat loss responses during prolonged steady-load exercise. PMID:18202847

  11. Increasing the Number of Organ Transplants in the United States by Optimizing Donor Authorization Rates.

    PubMed

    Goldberg, D S; French, B; Abt, P L; Gilroy, R K

    2015-08-01

    While recent policies have focused on allocating organs to patients most in need and lessening geographic disparities, the only mechanism to increase the actual number of transplants is to maximize the potential organ supply. We conducted a retrospective cohort study using OPTN data on all "eligible deaths" from 1/1/08 to 11/1/13 to evaluate variability in donor service area (DSA)-level donor authorization rates, and to quantify the potential gains associated with increasing authorization rates. Despite adjustments for donor demographics (age, race/ethnicity, cause of death) and geographic factors (rural/urban status of donor hospital, statewide participation in deceased-donor registries) among 52 571 eligible deaths, there was significant variability (p < 0.001) in donor authorization rates across the 58 DSAs. Overall DSA-level adjusted authorization rates ranged from 63.5% to 89.5% (median: 72.7%). An additional 773-1623 eligible deaths could have been authorized, yielding 2679-5710 total organs, if the DSAs with authorization rates below the median and 75th percentile, respectively, implemented interventions to perform at the level of the corresponding reference DSA. Opportunities exist within the current organ acquisition framework to markedly improve DSA-level donor authorization rates. Such initiatives would mitigate waitlist mortality while increasing the number of transplants. PMID:26031323

  12. Two-dimensional numerical simulations of supercritical accretion flows revisited

    SciTech Connect

    Yang, Xiao-Hong; Yuan, Feng; Bu, De-Fu; Ohsuga, Ken E-mail: fyuan@shao.ac.cn

    2014-01-01

    We study the dynamics of super-Eddington accretion flows by performing two-dimensional radiation-hydrodynamic simulations. Compared with previous works, in this paper we include the T {sub θφ} component of the viscous stress and consider various values of the viscous parameter α. We find that when T {sub θφ} is included, the rotational speed of the high-latitude flow decreases, while the density increases and decreases at the high and low latitudes, respectively. We calculate the radial profiles of inflow and outflow rates. We find that the inflow rate decreases inward, following a power law form of M-dot {sub in}∝r{sup s}. The value of s depends on the magnitude of α and is within the range of ∼0.4-1.0. Correspondingly, the radial profile of density becomes flatter compared with the case of a constant M-dot (r). We find that the density profile can be described by ρ(r)∝r {sup –p} and the value of p is almost same for a wide range of α ranging from α = 0.1 to 0.005. The inward decrease of inflow accretion rate is very similar to hot accretion flows, which is attributed to the mass loss in outflows. To study the origin of outflow, we analyze the convective stability of the slim disk. We find that depending on the value of α, the flow is marginally stable (when α is small) or unstable (when α is large). This is different from the case of hydrodynamical hot accretion flow, where radiation is dynamically unimportant and the flow is always convectively unstable. We speculate that the reason for the difference is because radiation can stabilize convection. The origin of outflow is thus likely because of the joint function of convection and radiation, but further investigation is required.

  13. The role of temperature increase rate in combinational hyperthermia chemotherapy treatment

    NASA Astrophysics Data System (ADS)

    Tang, Yuan; McGoron, Anthony J.

    2010-02-01

    Hyperthermia in combination with chemotherapy has been widely used in cancer treatment. Our previous study has shown that rapid rate hyperthermia in combination with chemotherapy can synergistically kill cancer cells whereas a sub-additive effect was found when a slow rate hyperthermia was applied. In this study, we explored the basis of this difference. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. P-glycoprotein (P-gp) expression, Caspase 3 activity, and heat shock protein 70 (HSP 70) expression following the two different modes of heating were measured. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. Slow rate hyperthermia was provided by a cell culture incubator. Two sets of thermal doses were delivered by either slow rate or rapid rate hyperthermia. HSP70 expression was highly elevated under low dose slow rate incubator hyperthermia while maintained at the baseline level under the other three treatments. Caspase3 level slightly increased after low dose slow rate incubator hyperthermia while necrotic cell death was found in the other three types of heat treatment. In conclusion, when given at the same thermal dose, slow rate hyperthermia is more likely to induce thermotolerance. Meanwhile, hyperthermia showed a dose dependent capability in reversing P-gp mediated MDR; when MDR is reversed, the combinational treatment induced extensive necrotic cell death. During this process, the rate of heating also played a very important role; necrosis was more dramatic in rapid rate hyperthermia than in slow rate hyperthermia even though they were given at the same dose.

  14. What is the maximum rate at which entropy of a string can increase?

    SciTech Connect

    Ropotenko, Kostyantyn

    2009-03-15

    According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.

  15. The feedback of type-I bursts to the corona and the accretion process in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, S.; Torres, D.; Chen, Y.; Ji, L.

    2014-07-01

    We discuss the interaction between the soft X-ray photons and the corona / accretion disk during type-I X-ray bursts. Up to date, a hard X-ray shortage and fast recovery during the evolution of bursts have been found in 6 sources. These observations promote a plausible interpretation based on the position and origin of the corona. We also note that type-I X-ray bursts embedded in the banana state of an outburst seem to deviate from a blackbody spectrum, which may hint for a temporary increased accretion rate in the accretion disk during type-I X-ray bursts. These results could be consistently explained by the feedback of type-I X-ray bursts to the accretion process.

  16. Medicare program; physician performance standard rates of increase for federal fiscal year 1991--HCFA. Notice.

    PubMed

    1990-12-28

    This notice announces the Federal fiscal year (FY) 1991 physician performance standard rates of increase for expenditures and volume of physician services under the Medicare Supplementary Medical Insurance (part B) Program as required by section 1848(f)(2)(C) of the Social Security Act as added by section 4105(d) of the Omnibus Budget Reconciliation Act of 1990. The physician performance standard rates of increase for FY 1991 are the following: 7.3 percent for all physician services, 3.3 percent for surgical services, and 8.6 percent for nonsurgical services. PMID:10108587

  17. A Low-fat Liquid Diet Increases Protein Accretion and Alters Cellular Signaling for Protein Synthesis in 10-day-old Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research shows that neonatal pigs respond to decreases in energy density of liquid diets with increased feed intake, resulting in similar performance to pigs fed a more energy dense diet. The objective of this experiment was to determine if a high-(25%, HF) or low-fat (2%, LF) liquid diet ...

  18. ACCRETION ONTO INTERMEDIATE-MASS BLACK HOLES REGULATED BY RADIATIVE FEEDBACK. I. PARAMETRIC STUDY FOR SPHERICALLY SYMMETRIC ACCRETION

    SciTech Connect

    Park, Kwang Ho; Ricotti, Massimo E-mail: ricotti@astro.umd.edu

    2011-09-20

    We study the effect of radiative feedback on accretion onto intermediate-mass black holes (IMBHs) using the hydrodynamical code ZEUS-MP with a radiative transfer algorithm. In this paper, the first of a series, we assume accretion from a uniformly dense gas with zero angular momentum and extremely low metallicity. Our one-dimensional (1D) and 2D simulations explore how X-ray and UV radiation emitted near the black hole regulates the gas supply from large scales. Both 1D and 2D simulations show similar accretion rates and periods between peaks in accretion, meaning that the hydro-instabilities that develop in 2D simulations do not affect the mean flow properties. We present a suite of simulations exploring accretion across a large parameter space, including different radiative efficiencies and radiation spectra, black hole masses, density, and temperature, T{sub {infinity}}, of the neighboring gas. In agreement with previous studies, we find regular oscillatory behavior of the accretion rate, with duty cycle {approx}6%, mean accretion rate 3% (T{sub {infinity}}/10{sup 4} K){sup 2.5} of the Bondi rate and peak accretion {approx}10 times the mean for T{sub {infinity}} ranging between 3000 K and 15, 000 K. We derive parametric formulae for the period between bursts, the mean accretion rate, and the peak luminosity of the bursts and thus provide a formulation of how feedback-regulated accretion operates. The temperature profile of the hot ionized gas is crucial in determining the accretion rate, while the period of the bursts is proportional to the mean size of the Stroemgren sphere, and we find qualitatively different modes of accretion in the high versus low density regimes. We also find that a softer radiation spectrum produces a higher mean accretion rate. However, it is still unclear what the effect of a significant time delay is between the accretion rate at our inner boundary and the output luminosity. Such a delay is expected in realistic cases with non

  19. Increased Earthquake Rates in the Central and Eastern US Portend Higher Earthquake Hazards

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Rubinstein, J. L.; Ellsworth, W. L.; Mueller, C. S.; Michael, A. J.; McGarr, A.; Petersen, M. D.; Weingarten, M.; Holland, A. A.

    2014-12-01

    Since 2009 the central and eastern United States has experienced an unprecedented increase in the rate of M≥3 earthquakes that is unlikely to be due to natural variation. Where the rates have increased so has the seismic hazard, making it important to understand these changes. Areas with significant seismicity increases are limited to areas where oil and gas production take place. By far the largest contributor to the seismicity increase is Oklahoma, where recent studies suggest that these rate changes may be due to fluid injection (e.g., Keranen et al., Geology, 2013; Science, 2014). Moreover, the area of increased seismicity in northern Oklahoma that began in 2013 coincides with the Mississippi Lime play, where well completions greatly increased the year before the seismicity increase. This suggests a link to oil and gas production either directly or from the disposal of significant amounts of produced water within the play. For the purpose of assessing the hazard due to these earthquakes, should they be treated differently from natural earthquakes? Previous studies suggest that induced seismicity may differ from natural seismicity in clustering characteristics or frequency-magnitude distributions (e.g., Bachmann et al., GJI, 2011; Llenos and Michael, BSSA, 2013). These differences could affect time-independent hazard computations, which typically assume that clustering and size distribution remain constant. In Oklahoma, as well as other areas of suspected induced seismicity, we find that earthquakes since 2009 tend to be considerably more clustered in space and time than before 2009. However differences between various regional and national catalogs leave unclear whether there are significant changes in magnitude distribution. Whether they are due to natural or industrial causes, the increased earthquake rates in these areas could increase the hazard in ways that are not accounted for in current hazard assessment practice. Clearly the possibility of induced

  20. Increased cesarean section rate in Central Saudi Arabia: a change in practice or different maternal characteristics

    PubMed Central

    Al-Kadri, Hanan M; Al-Anazi, Sultana A; Tamim, Hani M

    2015-01-01

    Background Cesarean section (CS) rate has shown an alarming increase. We aimed in this work to identify factors contributing to the increasing rate of CS in central Saudi Arabia. Methods A retrospective cohort study was conducted at King Abdulaziz Medical City. Two groups of women were included (G1 and G2). G1 had delivered by CS during the year 2002 (CS rate 12%), and G2 had delivered by CS during the year 2009 (CS rate 20%). We compared the included women’s characteristics, neonates, CS indications, and complications. Data were analyzed using SPSS version 15 program. Odds ratios and confidence intervals were calculated to report precision of categorical data results. A P-value of ≤0.05 was considered significant. Results A total of 198 women were included in G1 and 200 in G2. Both groups had comparable maternal and fetal characteristics; however, absence of antenatal care has resulted in 70% increase in CS deliveries for G2, P=0.008, OR =0.30, CI 0.12–0.76. Previous vaginal surgeries have contributed to tenfold increase in CS deliveries for G2, P=0.006, OR =10.37, CI 1.32–81.78. G2 had eight times increased CS deliveries than G1 due to intrauterine growth restriction, P=0.02, OR =8.21, CI 1.02–66.25, and 80% increased risk of CS was based on maternal demand, P=0.02, OR =0.20, CI 0.02–1.71. Decision taken by less-experienced staff was associated with 2.5-fold increase in CS deliveries for G2, P=0.002, OR =2.62, CI 1.39–4.93. There was a significant increase in CS deliveries under regional analgesia and shorter duration of hospital stay for G2, P=0.0001 and P=0.001, respectively. G2 women had 2.75-fold increase in neonatal intensive care unit admission, P=0.03, OR =2.75, CI 1.06–7.15. Conclusion CS delivery rate significantly increased within the studied population. The increased rate of CS may be related to a change in physician’s practice rather than a change in maternal characteristics, and it appears to be reducible. PMID:26203285

  1. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  2. Accretion of Gas onto Gap-opening Planets and Circumplanetary Flow Structure in Magnetized Turbulent Disks

    NASA Astrophysics Data System (ADS)

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an α-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is αMHD = 10-3, we find the accretion rate onto the planet to be \\dot{M}\\approx 2\\times 10^{-6}M_{{J}}\\,yr^{-1} for a gap surface density of 12 g cm-2. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent α parameter.

  3. Supernova Light Curves Powered by Fallback Accretion

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  4. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect

    Dexter, Jason; Kasen, Daniel

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  5. A closer look at the Neogene erosion and accumulation rate increase

    NASA Astrophysics Data System (ADS)

    Willenbring, J.; von Blanckenburg, F.

    2008-12-01

    Glacial erosion and Quaternary cold-stage warm-stage climate cycling have been cited as mechanisms to explain observations of increased Neogene marine sedimentation rates. Quantification of long-term glacial erosion rates from cosmogenic radionuclides from large areas mostly covered by cold-based ice during the Quaternary show very low erosion rates over several glacial cycles. In addition, isotope ratio proxies of dissolved metals in seawater, measured in chemical ocean sediments, lack clear evidence for an increase in terrigenous denudation. In particular, the stable isotope 9Be, derived from continental erosion, shows no change in its ratio to meteoric cosmogenic nuclide 10Be, derived from rain over the past 10 My. Radiogenic Pb and Nd isotopes, mainly show a change in the style of denudation from more chemical to more physical processes in the Quaternary. These data are at odds with a suggested increase in marine sedimentation rates during the late Cenozoic. In order to resolve this contradiction we have scrutinized these sedimentation rate calculations from ocean cores to identify whether they might show only apparent increases in the Neogene sections. Potential explanations are that in some cases, measured sediment thicknesses for different time intervals lack corrections for sediment compaction. Compaction of the lower portions of the cores drastically increases the apparent thickness of the more recent (Quaternary) sediment. In addition, sedimentation rates often only appear higher for recent sections in cores due to an artifact of an averaging timescale that decreases up-core. Such an averaging time scale decrease arises from better chronological resolution in recent times (Sadler et al., 1999). Cannibalization of older sediment might add to this effect. Together, these data question a clear, global-scale Quaternary climate-erosion connection that would be unique in Earth's history.

  6. Thermal history of chondrites - Hot accretion vs. metamorphic reheating

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Taylor, G. J.; Scott, E. R. D.; Keil, Klaus

    1992-01-01

    The thermal evolution of chondrules is investigated for the stages including primary heating through accretion to parent-body processing to determine whether the chondrules could be hot during accretion. Theoretical attention is given to whether chondrites of different petrologic types could have originated by means of hot accretion or metamorphic reheating. Data are presented from cooling-rate experiments and from calculations of heat retention required for the hot-accretion scenario. The accretion of chondrules hotter than 800 C is shown to be inconsistent with constraints on chondrule thermal evolution, in particular the slow cooling environment of chondrules vs the apparent cooling of chondrites in cold environments. It is argued that petrologic chondrites are formed by cold accretion and subsequently by metamorphic heating.

  7. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  8. Increase in the embedding dimension in the heart rate variability associated with left ventricular abnormalities

    NASA Astrophysics Data System (ADS)

    Andrés, D. S.; Irurzun, I. M.; Mitelman, J.; Mola, E. E.

    2006-10-01

    In the present study, the authors report evidence that the existence of premature ventricular contractions increases the embedding dimension of the cardiac dynamics. They also analyze patients with congestive heart failure, a severe clinical condition associated with abnormal left ventricular function. Results also show an increase in the embedding dimension of the heart rate variability. They used electrocardiograms collected by themselves with quality standards that make them comparable with other databases.

  9. Increases in leach rate due to possible cracking in silicate glasses

    SciTech Connect

    Sang, J.C.; Barkatt, A.; Talmy, I.G.; Norr, M.K.

    1993-12-31

    Comparative studies of two multi-component silicate glasses have confirmed the observation that glasses with a relatively low SiO{sub 2} + AlO{sub 3/2} content may exhibit temporary increases in leach rate during the initial stages of their exposure to water. SEM studies of the leached glass surfaces strongly support the assumption that this phenomenon is due to cracking of the leached glass and a consequent increase of the exposed surface area.

  10. The role of hermaphrodites in the experimental evolution of increased outcrossing rates in Caenorhabditis elegans

    PubMed Central

    2014-01-01

    Background Why most organisms reproduce via outcrossing rather than selfing is a central question in evolutionary biology. It has long ago been suggested that outcrossing is favoured when it facilitates adaptation to novel environments. We have previously shown that the experimental evolution of increased outcrossing rates in populations of the male-hermaphrodite nematode Caenorhabditis elegans were correlated with the experimental evolution of increased male fitness. However, it is unknown whether outcrossing led to adaptation, and if so, which fitness components can explain the observed increase in outcrossing rates. Results Using experimental evolution in six populations with initially low standing levels of genetic diversity, we show with head-to-head competition assays that population-wide fitness improved during 100 generations. Since outcrossing rates increased during the same period, this result demonstrates that outcrossing is adaptive. We also show that there was little evolution of hermaphrodite fitness under conditions of selfing or under conditions of outcrossing with unrelated tester males. We nonetheless find a positive genetic correlation between hermaphrodite self-fitness and population-wide fitness, and a negative genetic correlation between hermaphrodite mating success and population-wide fitness. These results suggest that the several hermaphrodite traits measured are fitness components. Tradeoffs expressed in hermaphrodites, particularly noticed between self-fitness and mating success, may in turn explain their lack of change during experimental evolution. Conclusions Our findings indicate that outcrossing facilitates adaptation to novel environments. They further indicate that the experimental evolution of increased outcrossing rates depended little on hermaphrodites because of fitness tradeoffs between selfing and outcrossing. Instead, the evolution of increased outcrossing rates appears to have resulted from unhindered selection on males

  11. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  12. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  13. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    PubMed

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  14. Accretion disks in luminous young stellar objects

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; de Wit, W. J.

    2016-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  15. New insights: The accretion process and variable wind from TW Hya

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.

    2013-02-01

    For the first time in a classical T Tauri star, we are able to trace an accretion event signaled by an hour-long enhancement of X-rays from the accretion shock and revealed through substantial sequential changes in optical emission line profiles. Downflowing turbulent material appears in Hα and Hβ emission. He D3 (5876 Å) broadens, coupled with an increase in flux. Two hours after the X-ray accretion event, the optical veiling increases due to continuum emission from the hot splashdown region. The response of the stellar coronal emission to the heated photosphere follows about 2.4 hours later, giving direct evidence that the stellar corona is heated in part by accretion. Then, the stellar wind becomes re-established. A model that incorporates the dynamics of this sequential series of events includes: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates currently determined from emission line profiles. These results, coupled with the large heated coronal region revealed from X-ray diagnostics, suggest that current models are not adequate to explain the accretion process in young stars. Data were obtained with the Chandra satellite, the 6.5 m Magellan/Clay telescope at Las Campanas Observatory, and Gemini-S which is operated by the Association of Universities for Research in Astronomy, Inc. under a cooperative agreement with the US-NSF on behalf of the Gemini partnership.

  16. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study.

    PubMed

    Vestergaard, Mark B; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik Bw

    2016-06-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  17. Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

    PubMed Central

    Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik BW

    2015-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (p<10-6), glutamate increased by 4.7% (p<10-4) and creatine and phosphocreatine decreased by 15.2% (p<10-3). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  18. Sensitivity to violence measured by ratings of severity increases after nonviolence training.

    PubMed

    Collyer, Charles E; Johnson, Kathryn L; de Mesquita, Paul Bueno; Palazzo, Linda A; Jordan, Dustin

    2010-02-01

    It was hypothesized that training in nonviolence would increase participants' sensitivity to violence because such training emphasizes both the harm and the avoidability of many kinds of violence. This research built upon earlier studies, which had proposed that ratings of the severity of violent behaviors (e.g., murder, bullying, cursing) can be interpreted as measuring sensitivity to violence. Two quasi-experiments examined changes in ratings of severity obtained before and after nonviolence training. In Study 1, 28 college-age traffic offenders who received nonviolence training judged stimulus behaviors ranging from life-threatening physical harm to verbal disrespect as more violent after their training. An untrained comparison group did not show this change. In Study 2, 30 student teachers who received instruction in nonviolence also rated behaviors as more violent after training; an untrained comparison group did not. Results are interpreted as showing increased sensitivity to violence following exposure to nonviolence. PMID:20391869

  19. Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells.

    PubMed

    Ertych, Norman; Stolz, Ailine; Stenzinger, Albrecht; Weichert, Wilko; Kaulfuß, Silke; Burfeind, Peter; Aigner, Achim; Wordeman, Linda; Bastians, Holger

    2014-08-01

    Chromosomal instability (CIN) is defined as the perpetual missegregation of whole chromosomes during mitosis and represents a hallmark of human cancer. However, the mechanisms influencing CIN and its consequences on tumour growth are largely unknown. We identified an increase in microtubule plus-end assembly rates as a mechanism influencing CIN in colorectal cancer cells. This phenotype is induced by overexpression of the oncogene AURKA or by loss of the tumour suppressor gene CHK2, a genetic constitution found in 73% of human colorectal cancers. Increased microtubule assembly rates are associated with transient abnormalities in mitotic spindle geometry promoting the generation of lagging chromosomes and influencing CIN. Reconstitution of proper microtubule assembly rates by chemical or genetic means suppresses CIN and thereby, unexpectedly, accelerates tumour growth in vitro and in vivo. Thus, we identify a fundamental mechanism influencing CIN in cancer cells and reveal its adverse consequence on tumour growth. PMID:24976383

  20. Effect of Increased Academic Momentum on Transfer Rates: An Application of the Generalized Propensity Score

    ERIC Educational Resources Information Center

    Doyle, William R.

    2011-01-01

    Several studies have reported a positive impact of increased academic momentum on transfer from community colleges to four-year institutions. This result may be due to selection bias. Using data from the Beginning Postsecondary Students dataset, I test whether taking more credits in the first year has an impact on transfer rates among bachelor's…

  1. 78 FR 63128 - Dried Prunes Produced in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 993 Dried Prunes Produced in California; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This... Act (RFA) (5 U.S.C. 601-612), the Agricultural Marketing Service (AMS) has considered the...

  2. 12 CFR 1026.55 - Limitations on increasing annual percentage rates, fees, and charges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROTECTION TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...)(2)(iii), or (b)(2)(xii) on a credit card account under an open-end (not home-secured) consumer credit plan. (b) Exceptions. A card issuer may increase an annual percentage rate or a fee or...

  3. 12 CFR 1026.55 - Limitations on increasing annual percentage rates, fees, and charges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROTECTION TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...)(2)(iii), or (b)(2)(xii) on a credit card account under an open-end (not home-secured) consumer credit plan. (b) Exceptions. A card issuer may increase an annual percentage rate or a fee or...

  4. 12 CFR 1026.55 - Limitations on increasing annual percentage rates, fees, and charges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROTECTION TRUTH IN LENDING (REGULATION Z) Special Rules Applicable to Credit Card Accounts and Open-End...)(2)(iii), or (b)(2)(xii) on a credit card account under an open-end (not home-secured) consumer credit plan. (b) Exceptions. A card issuer may increase an annual percentage rate or a fee or...

  5. An Intervention Designed to Increase Participation and Completion Rates of Community College Students in Nontraditional Programs

    ERIC Educational Resources Information Center

    Straight, Carli A.

    2012-01-01

    One of the missions of California Community Colleges (CCCs) is to provide career and technical education (CTE) to students that will prepare them for the workforce. Major funding for CTE programs comes from grant monies that are tied to the condition that institutions must demonstrate an effort to increase the participation and completion rates of…

  6. The Effect of Increased Travel Reimbursement Rates on Health Care Utilization in the VA

    ERIC Educational Resources Information Center

    Nelson, Richard E.; Hicken, Bret; West, Alan; Rupper, Randall

    2012-01-01

    Purpose: The reimbursement rate that eligible veterans receive for travel to Department of Veterans Affairs (VA) facilities increased from 11 to 28.5 cents per mile on February 1, 2008. We examined the effect of this policy change on utilization of outpatient, inpatient, and pharmacy services, stratifying veterans based on distance from a VA…

  7. Increasing Completion Rates in Norwegian Doctoral Training: Multiple Causes for Efficiency Improvements

    ERIC Educational Resources Information Center

    Kyvik, Svein; Olsen, Terje Bruen

    2014-01-01

    This article examines changes in completion rates and time-to-degree in Norwegian doctoral training over the last 30 years. A steadily increasing share of doctoral candidates holding a fellowship have been awarded their doctoral degree within five years; from 30% of those admitted in 1980 to 60% of those admitted 25 years later. Furthermore, the…

  8. 76 FR 21620 - Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... February 9, 2011 (76 FR 7119). Copies of the proposed rule were also mailed or sent via facsimile to all... Agricultural Marketing Service 7 CFR Part 925 Grapes Grown in Designated Area of Southeastern California... rule increases the assessment rate established for the California Desert Grape Administrative...

  9. 78 FR 23671 - Onions Grown in South Texas; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... action was published in the Federal ] Register on February 5, 2013 (78 FR 8047). Copies of the proposed... / Monday, April 22, 2013 / Rules and Regulations#0;#0; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 959 Onions Grown in South Texas; Increased Assessment Rate AGENCY:...

  10. ORAL N-CARBAMYLGLUTAMATE (NCG) SUPPLEMENTATION INCREASES GROWTH RATE IN SOW-REARED PIGLETS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oral supplementation of NCG, an analogue of N-acetylglutamate, increases plasma arginine concentrations and growth rate in sow-reared piglets. To investigate the mechanism involved in this growth response, nursing piglets (n = 18; BW = 3.19 kg) were orally administered 0 or 50 mg/kg BW of NCG twice...

  11. 78 FR 28147 - Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ...This proposed rule would increase the assessment rate established for the California Desert Grape Administrative Committee (Committee) for the 2013 and subsequent fiscal periods from $0.0150 to $0.0165 per 18-pound lug of grapes handled. The Committee locally administers the marketing order that regulates the handling of grapes grown in a designated area of southeastern California. Assessments......

  12. The Use of Gap Analysis to Increase Student Completion Rates at Travelor Adult School

    ERIC Educational Resources Information Center

    Gil, Blanca Estela

    2013-01-01

    This project applied the gap analysis problem-solving framework (Clark & Estes, 2008) in order to help develop strategies to increase completion rates at Travelor Adult School. The purpose of the study was to identify whether the knowledge, motivation and organization barriers were contributing to the identified gap. A mixed method approached…

  13. Increasing Adult Learner Persistence and Completion Rates: A Guide for Student Affairs Leaders and Practitioners

    ERIC Educational Resources Information Center

    Culp, Marguerite McGann, Ed.; Dungy, Gwendolyn Jordan, Ed.

    2014-01-01

    More than a third of all undergraduate students are 25 or older, and their presence on college and university campuses is growing. However, institutions of higher learning are struggling to meet the needs of, and improve persistence and completion rates for, this significant student population. "Increasing Adult Learner Persistence and…

  14. 45 CFR 154.230 - Submission and posting of Final Justifications for unreasonable rate increases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... submitted in the Preliminary Justification supporting the rate increase; and (2) Prominently post on its Web... information available to the public on its Web site for at least three years. (d) CMS will post all Final Justifications on the CMS Web site. This information will remain available to the public on the CMS Web site...

  15. 78 FR 24327 - Oranges, Grapefruit, Tangerines, and Tangelos Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... January 15, 2013 (78 FR 2908). Copies of the proposed rule were also mailed or sent via facsimile to all... increases the assessment rate established for the Citrus Administrative Committee (Committee) for the 2012-13 and subsequent fiscal periods from $0.0072 to $0.008 per \\4/5\\ bushel carton of citrus...

  16. Using Norm-Based Appeals to Increase Response Rates in Evaluation Research: A Field Experiment

    ERIC Educational Resources Information Center

    Misra, Shalini; Stokols, Daniel; Marino, Anne Heberger

    2012-01-01

    A field experiment was conducted to test the effectiveness of norm-based persuasive messages for increasing response rates in online survey research. Participants in an interdisciplinary conference were asked to complete two successive postconference surveys and randomly assigned to one of two groups at each time point. The experimental group…

  17. Lingual Kinematic Strategies Used to Increase Speech Rate: Comparison between Younger and Older Adults

    ERIC Educational Resources Information Center

    Goozee, Justine V.; Stephenson, Dayna K.; Murdoch, Bruce E.; Darnell, Ross E.; Lapointe, Leonard L.

    2005-01-01

    The primary objective of this study was to assess the lingual kinematic strategies used by younger and older adults to increase rate of speech. It was hypothesised that the strategies used by the older adults would differ from the young adults either as a direct result of, or in response to a need to compensate for, age-related changes in the…

  18. 75 FR 56019 - Domestic Dates Produced or Packed in Riverside County, CA; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Riverside County, CA; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION... handling of dates grown or packed in Riverside County, California. Assessments upon date handlers are used..., as amended (7 CFR part 987), regulating the handling of dates grown or packed in Riverside...

  19. 75 FR 37740 - Apricots Grown in Designated Counties in Washington; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 922 Apricots Grown in Designated Counties...: Proposed rule. SUMMARY: This rule would increase the assessment rate established for the Washington Apricot... for Washington apricots. The Committee is responsible for local administration of the marketing...

  20. Insight into the Physical and Dynamical Processes that Control Rapid Increases in Total Flash Rate

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2015-01-01

    Rapid increases in total lightning (also termed "lightning jumps") have been observed for many decades. Lightning jumps have been well correlated to severe and hazardous weather occurrence. The main focus of lightning jump work has been on the development of lightning algorithms to be used in real-time assessment of storm intensity. However, in these studies it is typically assumed that the updraft "increases" without direct measurements of the vertical motion, or specification of which updraft characteristic actually increases (e.g., average speed, maximum speed, or convective updraft volume). Therefore, an end-to-end physical and dynamical basis for coupling rapid increases in total flash rate to increases in updraft speed and volume must be understood in order to ultimately relate lightning occurrence to severe storm metrics. Herein, we use polarimetric, multi-Doppler, and lightning mapping array measurements to provide physical context as to why rapid increases in total lightning are closely tied to severe and hazardous weather.

  1. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    SciTech Connect

    Matt, Sean P.; Greene, Thomas P.; Pudritz, Ralph E. E-mail: thomas.p.greene@nasa.gov E-mail: pudritz@physics.mcmaster.ca

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  2. Strong Artificial Selection in Domestic Mammals Did Not Result in an Increased Recombination Rate

    PubMed Central

    Muñoz-Fuentes, Violeta; Marcet-Ortega, Marina; Alkorta-Aranburu, Gorka; Linde Forsberg, Catharina; Morrell, Jane M.; Manzano-Piedras, Esperanza; Söderberg, Arne; Daniel, Katrin; Villalba, Adrian; Toth, Attila; Di Rienzo, Anna; Roig, Ignasi; Vilà, Carles

    2015-01-01

    Recombination rates vary in intensity and location at the species, individual, sex and chromosome levels. Despite the fundamental biological importance of this process, the selective forces that operate to shape recombination rate and patterns are unclear. Domestication offers a unique opportunity to study the interplay between recombination and selection. In domesticates, intense selection for particular traits is imposed on small populations over many generations, resulting in organisms that differ, sometimes dramatically, in morphology and physiology from their wild ancestor. Although earlier studies suggested increased recombination rate in domesticates, a formal comparison of recombination rates between domestic mammals and their wild congeners was missing. In order to determine broad-scale recombination rate, we used immunolabeling detection of MLH1 foci as crossover markers in spermatocytes in three pairs of closely related wild and domestic species (dog and wolf, goat and ibex, and sheep and mouflon). In the three pairs, and contrary to previous suggestions, our data show that contemporary recombination rate is higher in the wild species. Subsequently, we inferred recombination breakpoints in sequence data for 16 genomic regions in dogs and wolves, each containing a locus associated with a dog phenotype potentially under selection during domestication. No difference in the number and distribution of recombination breakpoints was found between dogs and wolves. We conclude that our data indicate that strong directional selection did not result in changes in recombination in domestic mammals, and that both upper and lower bounds for crossover rates may be tightly regulated. PMID:25414125

  3. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  4. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk; Bookhagen, Bodo; Wulf, Hendrik; Preusser, Frank; Strecker, Manfred R.

    2015-10-01

    The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and 10Be-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of ∼2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates.

  5. California Emergency Department Visit Rates For Medical Conditions Increased While Visit Rates For Injuries Fell, 2005–11

    PubMed Central

    Hsia, Renee Y.; Nath, Julia B.; Baker, Laurence C.

    2015-01-01

    The emergency department (ED) is the source of most hospital admissions, cares for patients with no other point of access to the health care system, receives advanced care referrals from primary care physicians, and provides surveillance data on injuries, infectious disease, violence, and adverse drug events. Understanding the changes in the profile of disease in the ED can inform emergency services administration and planning as well as provide insight into the public’s health. We analyzed the trends in the diagnoses seen in California EDs from 2005–11, finding that while the ED visit rate for injuries decreased by 0.7 percent, the rate of ED visits for non-injury diagnoses rose 13.4 percent. We also found a rise in symptom-related diagnoses, such as abdominal pain, along with nervous system disorders, gastrointestinal disease, and mental illness. These trends point out the increasing importance of EDs in providing care for complex medical cases, as well as the changing nature of illness in the population needing immediate medical attention. PMID:25847645

  6. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  7. Ringed Accretion Disks: Instabilities

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  8. Load Rate of Facet Joints at the Adjacent Segment Increased After Fusion

    PubMed Central

    Li, Hui; Pei, Bao-Qing; Yang, Jin-Cai; Hai, Yong; Li, De-Yu; Wu, Shu-Qin

    2015-01-01

    Background: The cause of the adjacent segment degeneration (ASD) after fusion remains unknown. It is reported that adjacent facet joint stresses increase after anterior cervical discectomy and fusion. This increase of stress rate may lead to tissue injury. Thus far, the load rate of the adjacent segment facet joint after fusion remains unclear. Methods: Six C2–C7 cadaveric spine specimens were loaded under four motion modes: Flexion, extension, rotation, and lateral bending, with a pure moment using a 6° robot arm combined with an optical motion analysis system. The Tecscan pressure test system was used for testing facet joint pressure. Results: The contact mode of the facet joints and distributions of the force center during different motions were recorded. The adjacent segment facet joint forces increased faster after fusion, compared with intact conditions. While the magnitude of pressures increased, there was no difference in distribution modes before and after fusion. No pressures were detected during flexion. The average growth velocity during extension was the fastest and was significantly faster than lateral bending. Conclusions: One of the reasons for cartilage injury was the increasing stress rate of loading. This implies that ASD after fusion may be related to habitual movement before and after fusion. More and faster extension is disadvantageous for the facet joints and should be reduced as much as possible. PMID:25881597

  9. Effect of increasing mining rate on longwall coal mining - Western donbass case study

    NASA Astrophysics Data System (ADS)

    Sdvyzhkova, Olena; Patyńska, Renata

    2016-03-01

    This paper presents the problems associated with the rapid change of the rock stress-strain state in terms of increasing the rate of coal mining. Parameters of the roof collapse are determined depending on the rate of a longwall advancing under conditions of poor rocks. Statistical data are processed to obtain a general trend concerning the mining rate impact on the roof collapse. The statistical strength theory is applied to explain the increase in mined-out space and the size of hanging roof behind a coal face. Numerical simulation is carried out to determine a critical size of mined-out space that provokes a roof collapse. The area of yielded rocks is outlined using the criterion developed taking into account the rate of longwall advancing. A general regularity is obtained to determine the roof collapse parameters. The developed technics gives a possibility to predict the moment of general roof collapse at the initial stage of longwalling to prevent the negative effect of the rapid stress redistribution provoking joints propagation and intensive gas release. The estimation of the rock stress-strain state considering the rate of mining operations can be useful for tasks related to a new technology implementation. The statistical strength theory and failure criterion applied together provides adequate planning of mining activities and the assessment of natural hazards.

  10. Rate increase disclosure and review: definitions of "individual market" and "small group market." Final rule.

    PubMed

    2011-09-01

    This final rule amends a May 23, 2011, final rule entitled "Rate Increase Disclosure and Review". The final rule provided that, for purposes of rate review only, definitions of "individual market" and "small group market" under State rate filing laws would govern even if those definitions departed from the definitions that otherwise apply under title XXVII of the Public Health Service Act (PHS Act). The preamble to the final rule requested comments on whether this policy should apply in cases in which State rate filing law definitions of "individual market" and "small group market" exclude association insurance policies that would be included in these definitions for other purposes under the PHS Act. In response to comments, this final rule amends the definitions of "individual market" and "small group market" that apply for rate review purposes to include coverage sold to individuals and small groups through associations even if the State does not include such coverage in its definitions of individual and small group market. This final rule also updates standards for health insurance issuers regarding disclosure and review of unreasonable premium increases under section 2794 of the Public Health Service Act. PMID:21894663

  11. Increase in Suicide Rates by Hanging in the Population of Tabasco, Mexico between 2003 and 2012

    PubMed Central

    Hernández-Alvarado, Mervyn Manuel; González-Castro, Thelma Beatriz; Tovilla-Zárate, Carlos Alfonso; Fresán, Ana; Juárez-Rojop, Isela E.; López-Narváez, María Lilia; Villar-Soto, Mario; Genis-Mendoza, Alma

    2016-01-01

    Background: Worldwide, the suicide rate is decreasing. To examine changes in the rates of completed suicide in the Mexican population from 2003 to 2012, we analyzed these changes according to: (i) the method of suicide; (ii) age group and (iii) gender. Methods: The data analyzed were obtained from governmental organizations from the State of Tabasco, Mexico. The data provided 1836 cases of subjects born and residing in Tabasco, who completed suicide in this state. Results: Suicide by hanging was a common choice of suicide method for Mexicans. The rate of suicide by hanging increased from 5.80 to 6.49 per 100,000 persons between 2003 and 2012, a rate percentage increase of 11.89%. Conclusions: Hanging was found to be the most common choice of suicide in the Mexican population, probably because the materials required are easily available and the method does not require complicated techniques, especially in the 55–64 age group. Strategies for prevention and intervention should be developed for the Mexican population considering suicide rates by age group and gender. PMID:27258292

  12. Increased dissolution rates of carbamazepine - gluconolactone binary blends processed by hot melt extrusion.

    PubMed

    Moradiya, Hiren G; Nokhodchi, Ali; Bradley, Michael S A; Farnish, R; Douroumis, Dennis

    2016-06-01

    Carbamazepine (CBZ) shows a poor dissolution, therefore, it is important to enhance its dissolution in GI tract to improve its bioavailability. In the present study, a new hydrophilic carrier, d-gluconolactone (GNL), was extruded with CBZ at various molar ratios to produce granules by using hot melt extrusion (HME) processing. The granular extrudates were characterised by X-ray powder diffraction, differential scanning calorimetry and hot stage microscopy to determine the solid state of CBZ. It was found that bulk CBZ (Form-III) transformed to the polymorphic Form-I during the HME processing. GNL was proved to be an efficient carrier for CBZ to enhance the dissolution rate. The increase in the dissolution rate was observed for both physical mixtures and the extrudates of CBZ-GNL. However, the extrudates showed faster dissolution rates compared to physical mixtures in an ascending order of 2:1 < 1:1 < 1.5:1 (CBZ:GNL). The increase in the dissolution rates was attributed to the transformation of CBZ III to Form-I and also to the increased drug wettability/solubilisation in the presence of the carrier. PMID:25757644

  13. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates.

    PubMed

    Jemielita, Thomas; Gerton, George L; Neidell, Matthew; Chillrud, Steven; Yan, Beizhan; Stute, Martin; Howarth, Marilyn; Saberi, Pouné; Fausti, Nicholas; Penning, Trevor M; Roy, Jason; Propert, Kathleen J; Panettieri, Reynold A

    2015-01-01

    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses. PMID:26176544

  14. Unconventional Gas and Oil Drilling Is Associated with Increased Hospital Utilization Rates

    PubMed Central

    Neidell, Matthew; Chillrud, Steven; Yan, Beizhan; Stute, Martin; Howarth, Marilyn; Saberi, Pouné; Fausti, Nicholas; Penning, Trevor M.; Roy, Jason; Propert, Kathleen J.; Panettieri, Reynold A.

    2015-01-01

    Over the past ten years, unconventional gas and oil drilling (UGOD) has markedly expanded in the United States. Despite substantial increases in well drilling, the health consequences of UGOD toxicant exposure remain unclear. This study examines an association between wells and healthcare use by zip code from 2007 to 2011 in Pennsylvania. Inpatient discharge databases from the Pennsylvania Healthcare Cost Containment Council were correlated with active wells by zip code in three counties in Pennsylvania. For overall inpatient prevalence rates and 25 specific medical categories, the association of inpatient prevalence rates with number of wells per zip code and, separately, with wells per km2 (separated into quantiles and defined as well density) were estimated using fixed-effects Poisson models. To account for multiple comparisons, a Bonferroni correction with associations of p<0.00096 was considered statistically significant. Cardiology inpatient prevalence rates were significantly associated with number of wells per zip code (p<0.00096) and wells per km2 (p<0.00096) while neurology inpatient prevalence rates were significantly associated with wells per km2 (p<0.00096). Furthermore, evidence also supported an association between well density and inpatient prevalence rates for the medical categories of dermatology, neurology, oncology, and urology. These data suggest that UGOD wells, which dramatically increased in the past decade, were associated with increased inpatient prevalence rates within specific medical categories in Pennsylvania. Further studies are necessary to address healthcare costs of UGOD and determine whether specific toxicants or combinations are associated with organ-specific responses. PMID:26176544

  15. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans

    PubMed Central

    2013-01-01

    Background Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. Methods Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314±38 μg/m3) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. Results Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. Conclusions Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease. Trial registration ClinicalTrials.gov, NCT01488500 PMID:23742058

  16. Increasing wrist fracture rates in children may have major implications for future adult fracture burden

    PubMed Central

    Jerrhag, Daniel; Englund, Martin; Petersson, Ingmar; Lempesis, Vasileios; Landin, Lennart; Karlsson, Magnus K; Rosengren, Bjorn E

    2016-01-01

    Background and purpose Childhood fractures are associated with lower peak bone mass (a determinant of osteoporosis in old age) and higher adult fracture risk. By examining time trends in childhood fracture epidemiology, it may be possible to estimate the vector of fragility fracture risk in the future. Patients and methods By using official inpatient and outpatient data from the county of Skåne in Sweden, 1999–2010, we ascertained distal forearm fractures in children aged ≤ 16 years and estimated overall and age- and sex-specific rates and time trends (over 2.8 million patient years) and compared the results to earlier estimations in the same region from 1950 onwards. Results During the period 1999–2010, the distal forearm fracture rate was 634 per 105 patient years (750 in boys and 512 in girls). This was 50% higher than in the 1950s with a different age-rate distribution (p < 0.001) that was most evident during puberty. Also, within the period 1999–2010, there were increasing fracture rates per 105 and year (boys +2.0% (95% CI: 1.5–2.6), girls +2.4% (95% CI: 1.7–3.1)). Interpretation The distal forearm fracture rate in children is currently 50% higher than in the 1950s, and it still appears to be increasing. If this higher fracture risk follows the children into old age, numbers of fragility fractures may increase sharply—as an upturn in life expectancy has also been predicted. The origin of the increase remains unknown, but it may be associated with a more sedentary lifestyle or with changes in risk behavior. PMID:26905618

  17. Increasing wrist fracture rates in children may have major implications for future adult fracture burden.

    PubMed

    Jerrhag, Daniel; Englund, Martin; Petersson, Ingmar; Lempesis, Vasileios; Landin, Lennart; Karlsson, Magnus K; Rosengren, Bjorn E

    2016-06-01

    Background and purpose - Childhood fractures are associated with lower peak bone mass (a determinant of osteoporosis in old age) and higher adult fracture risk. By examining time trends in childhood fracture epidemiology, it may be possible to estimate the vector of fragility fracture risk in the future. Patients and methods - By using official inpatient and outpatient data from the county of Skåne in Sweden, 1999-2010, we ascertained distal forearm fractures in children aged ≤ 16 years and estimated overall and age- and sex-specific rates and time trends (over 2.8 million patient years) and compared the results to earlier estimations in the same region from 1950 onwards. Results - During the period 1999-2010, the distal forearm fracture rate was 634 per 10(5) patient years (750 in boys and 512 in girls). This was 50% higher than in the 1950s with a different age-rate distribution (p < 0.001) that was most evident during puberty. Also, within the period 1999-2010, there were increasing fracture rates per 10(5) and year (boys +2.0% (95% CI: 1.5-2.6), girls +2.4% (95% CI: 1.7-3.1)). Interpretation - The distal forearm fracture rate in children is currently 50% higher than in the 1950s, and it still appears to be increasing. If this higher fracture risk follows the children into old age, numbers of fragility fractures may increase sharply-as an upturn in life expectancy has also been predicted. The origin of the increase remains unknown, but it may be associated with a more sedentary lifestyle or with changes in risk behavior. PMID:26905618

  18. 5-Azacytidine and RNA secondary structure increase the retrovirus mutation rate.

    PubMed Central

    Pathak, V K; Temin, H M

    1992-01-01

    A broad spectrum of mutations occurs at a high rate during a single round of retrovirus replication (V.K. Pathak and H. M. Temin, Proc. Natl. Acad. Sci. USA 87:6019-6023, 1990). We have now determined that this high rate of spontaneous mutation can be further increased by 5-azacytidine (AZC) treatment or by regions of potential RNA secondary structure. We found a 13-fold increase in the mutation rate after AZC treatment of retrovirus-producing cells and target cells. The AZC-induced substitutions were located at the same target sites as previously identified spontaneous substitutions. The concordance of the AZC-induced and spontaneous substitutions indicates the presence of reverse transcription "pause sites," where the growing point is error prone. An analysis of nucleotides that neighbored substitutions revealed that transversions occur primarily by transient template misalignment, whereas transitions occur primarily by misincorporation. We also introduced a 34-bp potential stem-loop structure as an in-frame insertion within a lacZ alpha gene that was inserted in the long terminal repeat (LTR) U3 region and determined whether this potential secondary structure increased the rate of retrovirus mutations. We found a threefold increase in the retrovirus mutation rate. Fifty-seven of 96 mutations were deletions associated with the potential stem-loop. We also determined that these deletion mutations occurred primarily during minus-strand DNA synthesis by comparing the frequencies of mutations in recovered provirus plasmids containing both LTRs and in provirus plasmids containing only one LTR. PMID:1373201

  19. Methods for increasing the rate of anammox attachment in a sidestream deammonification MBBR.

    PubMed

    Klaus, Stephanie; McLee, Patrick; Schuler, Andrew J; Bott, Charles

    2016-01-01

    Deammonification (partial nitritation-anammox) is a proven process for the treatment of high-nitrogen waste streams, but long startup time is a known drawback of this technology. In a deammonification moving bed biofilm reactor (MBBR), startup time could potentially be decreased by increasing the attachment rate of anammox bacteria (AMX) on virgin plastic media. Previous studies have shown that bacterial adhesion rates can be increased by surface modification or by the development of a preliminary biofilm. This is the first study on increasing AMX attachment rates in a deammonification MBBR using these methods. Experimental media consisted of three different wet-chemical surface treatments, and also media transferred from a full-scale mainstream fully nitrifying integrated fixed-film activated sludge (IFAS) reactor. Following startup of a full-scale deammonification reactor, the experimental media were placed in the full-scale reactor and removed for activity rate measurements and biomass testing after 1 and 2 months. The media transferred from the IFAS process exhibited a rapid increase in AMX activity rates (1.1 g/m(2)/day NH(4)(+) removal and 1.4 g/m(2)/day NO(2)(-) removal) as compared to the control (0.2 g/m(2)/day NH(4)(+) removal and 0.1 g/m(2)/day NO(2)(-) removal) after 1 month. Two out of three of the surface modifications resulted in significantly higher AMX activity than the control at 1 and 2 months. No nitrite oxidizing bacteria activity was detected in either the surface modified media or IFAS media batch tests. The results indicate that startup time of a deammonification MBBR could potentially be decreased through surface modification of the plastic media or through the transfer of media from a mature IFAS process. PMID:27386988

  20. Desensitization of Functional µ-Opioid Receptors Increases Agonist Off-Rate

    PubMed Central

    2014-01-01

    Desensitization of µ-opioid receptors (MORs) develops over 5–15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein–coupled K+ channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu5]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity. PMID:24748657

  1. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  2. Effect of increasing biochar application rate on soil hydraulic properties of an artificial sandy soil

    NASA Astrophysics Data System (ADS)

    Lopez, V.; Ghezzehei, T. A.

    2013-12-01

    Biochar, a product of the pyrolysis of biomass, has become an increasingly studied subject of interest as an agricultural soil amendment to address issues of carbon emission, population density, and food scarcity. Biochar has been reported to increase content and retention of nutrients, pH, cation-exchange capacity, vegetative growth, microbial community, and carbon sequestration. A number of studies addressing the usefulness of biochar as a soil amendment have focused on chemical and biological properties, disregarding the effects on soil physical properties of amended soil. Aside from biochar, lime (calcium carbonate) addition to soils has also been utilized in agricultural practices, typically to raise the pH value of acidic soils, increase microbial activity, and enhance soil stability and productivity as a result. Both biochar and lime amendments may be beneficial in increasing the soil physical properties, particularly through the formation of aggregates. In previous studies an increase in soil particle aggregates resulted in higher rates of biological activity, infiltration rates, pore space, and aeration, all of which are a measure of soil quality. While the effectiveness of biochar and lime as soil amendments has been independently documented, their combined effectiveness on soil physical properties is less understood. This study aims to provide a further understanding on the effect of increasing biochar application rate on soil particle aggregation and hydraulic properties of a low reactive pre-limed artificial sandy soil with and without microbial communities. Microbial communities are known to increase soil aggregates by acting as cementing agents. Understanding the impact of biochar addition on soil physical properties will have implications in the development of sustainable agricultural practices, especially in systems undergoing climate stress and intensive agriculture.

  3. Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta

    2015-08-01

    Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion

  4. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  5. Building trust: Heart rate synchrony and arousal during joint action increased by public goods game.

    PubMed

    Mitkidis, Panagiotis; McGraw, John J; Roepstorff, Andreas; Wallot, Sebastian

    2015-10-01

    The physiological processes underlying trust are subject of intense interest in the behavioral sciences. However, very little is known about how trust modulates the affective link between individuals. We show here that trust has an effect on heart rate arousal and synchrony, a result consistent with research on joint action and experimental economics. We engaged participants in a series of joint action tasks which, for one group of participants, was interleaved with a PGG, and measured their heart synchrony and arousal. We found that the introduction of the economic game shifted participants' attention to the dynamics of the interaction. This was followed by increased arousal and synchrony of heart rate profiles. Also, the degree of heart rate synchrony was predictive of participants' expectations regarding their partners in the economic game. We conclude that the above changes in physiology and behavior are shaped by the valuation of other people's social behavior, and ultimately indicate trust building process. PMID:26037635

  6. Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus

    PubMed Central

    2012-01-01

    Background Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). Results Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV

  7. Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites

    PubMed Central

    Kouznetsova, Maria; Huang, Xiaoyu; Ma, Jing; Lessner, Lawrence; Carpenter, David O.

    2007-01-01

    Background Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes. Objective The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes. Methods We determined the number of hospitalized patients 25–74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993–2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs (“POP” sites); ZIP codes containing hazardous waste sites but with wastes other than POPs (“other” sites); and ZIP codes without any identified hazardous waste sites (“clean” sites). Results Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and “other” sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15–1.32] and 1.25 (95% CI, 1.16–1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26–1.47) compared to clean sites. Conclusions After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites. PMID:17366823

  8. Slowly accreting neutron stars and the origin of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Blaes, O.; Blandford, R.; Madau, P.; Koonin, S.

    1990-11-01

    Old, isolated neutron stars accrete interstellar gas at a rate of about 10 to the 10th g/s. At this slow accretion rate, the interior temperature is too low for thermonuclear reactions to proceed, and the hydrogen burns by pycnonuclear reactions. The resulting helium then burns through pycnonuclear triple-alpha and (alpha, gamma) channels until it is exhausted. As the pressure increases under the weight of the accreted gas, the electron Fermi energy becomes large enough for electron capture to increase the neutron fraction in the nuclei. The layer of accreted gas can then become denser than the underlying crust, and the interface is susceptible to elastic Rayleigh-Taylor instability. A crust supported by relativistic electron degeneracy pressure is unstable when the fractional density decrease at the interface exceeds a critical value between 3 and 8 percent, depending upon the composition of the two layers. If the star has a magnetosphere, then this will be excited as well, producing a gamma-ray burst. If a substantial amount of the energy released is converted into heat locally, then the resulting temperature, roughly one billion K, may be hot enough to trigger thermonuclear reactions and raise the total energy release by a factor of about 30. Energetic and statistical implications of the model are critically examined, and some observable consequences are described. The model's sensitive dependence on poorly known pycnonuclear and thermonuclear reaction rates is emphasized.

  9. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae.

    PubMed

    Strich, R; Woontner, M; Scott, J F

    1986-09-01

    Autonomously replicating sequence (ARS) elements are DNA sequences that promote extrachromosomal maintenance of plasmids in yeast. Mutations generated in vitro in the ARS1 region were examined for their effect on plasmid maintenance in a yeast centromeric plasmid. Our data show that mutations in the regions surrounding the ARS1 consensus sequence cause increases in the frequency of simple loss (1:0) events without affecting the rate of nondisjunction (2:0). Removal of the consensus sequence itself causes a drastic increase in the rate of simple loss. Sequences sensitive to mutagenesis were identified in each flanking region and differ with respect to their location and importance to ARS function. These results suggest that the role ARS1 plays in plasmid maintenance deals with the replication and/or localization of the plasmid in yeast. PMID:3333306

  10. Techniques for increasing the update rate of real-time dynamic computer graphic displays

    NASA Technical Reports Server (NTRS)

    Kahlbaum, W. M., Jr.

    1986-01-01

    This paper describes several techniques which may be used to increase the animation update rate of real-time computer raster graphic displays. The techniques were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. The first technique involves pre-processing of the next animation frame while the previous one is being erased from the screen memory. The second technique involves the use of a parallel processor, the AGG4, for high speed character generation. The description of the AGG4 includes the Barrel Shifter which is a part of the hardware and is the key to the high speed character rendition. The final result of this total effort was a four fold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  11. Preparation of starch macrocellular foam for increasing the dissolution rate of poorly water-soluble drugs.

    PubMed

    Zhao, Ying; Wu, Chao; Zhao, Zongzhe; Hao, Yanna; Xu, Jie; Yu, Tong; Qiu, Yang; Jiang, Jie

    2016-09-01

    Starch macrocellular foam (SMF), a novel natural bio-matrix material, was prepared by the hard template method in order to improve the dissolution rate and oral bioavailability of poorly water-soluble drugs. Nitrendipine (NDP) was chosen as a model drug and was loaded into SMF by the solvent evaporation method. SMF and the loaded SMF samples (NDP-SMF) were characterized by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction and Fourier transform infrared spectroscopy. In vitro drug release studies showed that SMF significantly increased the dissolution rate of NDP. In vivo studies showed that the NDP-SMF tablets clearly increased the oral bioavailability of NDP in comparison with the reference commercial tablets. All the results obtained demonstrated that SMF was a promising carrier for the oral delivery of poor water-soluble drugs. PMID:26166407

  12. Applying compressive sensing to TEM video: A substantial frame rate increase on any camera

    DOE PAGESBeta

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-13

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integratedmore » into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.« less

  13. Age-related increase of resting metabolic rate in the human brain

    PubMed Central

    Peng, Shin-Lei; Dumas, Julie A.; Park, Denise C.; Liu, Peiying; Filbey, Francesca M.; McAdams, Carrie J.; Pinkham, Amy E.; Adinoff, Bryon; Zhang, Rong; Lu, Hanzhang

    2014-01-01

    With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51 years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age × sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern. PMID:24814209

  14. Applying compressive sensing to TEM video: A substantial frame rate increase on any camera

    SciTech Connect

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-13

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.

  15. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana

    SciTech Connect

    Hatton, R.S.; DeLaune, R.D.; Patrick, W.H. Jr.

    1983-05-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in cores collected from fresh water, intermediate, brackish, and salt marshes in the Barataria Basin, Louisiana. Vertical accretion rates vary from about 1.3 cm.yr/sup -1/ in levee areas to 0.7 in backmarshes. Mineral sediment content of the marsh soil profile decreased with distance from the coast. Except in natural levee areas, marsh accretion rates are less than subsidence measured by water level data, however this alone cannot account for observed land-loss patterns in the basin area.

  16. Significantly Increased Medical Expenditure on Breast Cancer Failing to Bring Down Its Mortality and Incidence Rate

    PubMed Central

    Ho, Ming-Lin; Liaw, Yung-Po; Lai, Chien-Hsu; Chen, Yen-Yu; Tsai, Horng-Der; Chou, Ming-Chih; Hsiao, Yi-Hsuan

    2013-01-01

    Background: The direct impact of medical expenses on breast cancer incidence and mortality rate has not been sufficiently addressed. The purpose of this study is to investigate the potential correlation between the incidence and mortality rate of breast cancer and the medical expenses in Taiwan. Materials and Methods: Breast cancer cases were identified from the National Health Insurance Research Database (NHIRD) with corresponding to International Classification of Diseases, and the Ninth Revision (ICD-9) code 174, 1740-1749, 175, 1750 and 1759 from January 1999 to December 2006. Age-specific incidences were estimated by population data obtained from the Department of Statistics, Ministry of the Interior. Medical expenses, including outpatient and inpatient services, were also retrieved from the NHIRD. Results: The incidence increased from 20.06 per 100,000 in 1999 to 30.34 per 100,000 in 2006; the total expenses increased from 1,449,333,521 in 1999 to 4,350,400,592 Taiwan dollars in 2006. The age-standardized mortality rate for female breast cancer remained essentially unchanged, while the age-standardized incidence increased steadily (except 2002-2003). Among the top 20 coexisting ICD-9 codes for expenses, four are directly on cancers, while 16 are on other diseases or symptoms, which are not necessarily caused by breast cancer. Conclusions: Significantly increased medical expenditure on breast cancer failed to bring down its mortality and incidence rate. The finding has implications for healthcare policy planners in proposing strategies for breast cancer control and allocating the resources. PMID:23983817

  17. [Voluntary alpha-power increasing training impact on the heart rate variability].

    PubMed

    Bazanova, O M; Balioz, N V; Muravleva, K B; Skoraia, M V

    2013-01-01

    In order to study the effect of the alpha EEG power increasing training at heart rate variability (HRV) as the index of the autonomic regulation of cognitive functions there were follow tasks: (1) to figure out the impact of biofeedback in the voluntary increasing the power in the individual high-frequency alpha-band effect on heart rate variability and related characteristics of cognitive and emotional spheres, (2) to determine the nature of the relationship between alpha activity indices and heart rate variability, depending on the alpha-frequency EEG pattern at rest (3) to examine how the individual alpha frequency EEG pattern is reflected in changes HRV as a result of biofeedback training. Psychometric indicators of cognitive performance, the characteristics of the alpha-EEG activity and heart rate variability (HRV) as LF/HF and pNN50 were recorded in 27 healthy men aged 18-34 years, before, during, and after 10 sessions of training of voluntary increase in alpha power in the individual high-frequency alpha band with eyes closed. To determine the biofeedback effect on the alpha power increasing training, data subjects are compared in 2 groups: experimental (14) with the real and the control group (13 people)--with mock biofeedback. The follow up effect of trainings was studied through month over the 10 training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, decreased anxiety and frontal EMG, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did change neither cognitive performance, nor HRV indices. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock

  18. Faster Heart Rate Recovery With Increased RPE: Paradoxical Responses After an 87-km Ultramarathon.

    PubMed

    Mann, Theresa N; Platt, Cathrin E; Lamberts, Robert P; Lambert, Michael I

    2015-12-01

    The aim of this study was to determine the relationship between heart rate recovery (HRR) and an acute training "overload" by comparing HRR responses before and after an ultramarathon road race. Ten runners completed a standardized laboratory protocol ∼7 days before and between 2 and 4 days after participating in the 87-km Comrades Marathon. The protocol included muscle pain ratings, a 5-bound test, and 20 minutes of treadmill exercise at 70% of maximal oxygen uptake followed by 15 minutes of recovery. Respiratory gases and heart rate measurements were used to calculate steady-state exercise responses, HRR, and excess postexercise oxygen consumption (EPOC), and participants also provided a rating of perceived exertion (RPE) during exercise. The RPE was significantly increased (13 ± 2 vs. 11 ± 1) (p < 0.01), and HRR was significantly faster (35 ± 5 beats vs. 29 ± 4 beats) (p < 0.01) following the postrace vs. prerace submaximal exercise bout, with no significant changes in respiratory or heart rate parameters during exercise or in EPOC. Although previous studies have shown that faster HRR reflected an "adapted" state with enhanced training status, the current findings suggest that this may not always be the case. It follows that changes in HRR should be considered in the context of other factors, such as recent training load and RPE during submaximal exercise. PMID:25970491

  19. Colorectal Cancer Screening Rates Increased after Exposure to the Patient-Centered Medical Home (PCMH)

    PubMed Central

    Green, Beverly B.; Anderson, Melissa L.; Chubak, Jessica; Baldwin, Laura Mae; Tuzzio, Leah; Catz, Sheryl; Cole, Alison; Vernon, Sally W.

    2016-01-01

    Objective The patient-centered medical home (PCMH) includes comprehensive chronic illness and preventive services, including identifying patients who are overdue for colorectal cancer screening (CRCS). The association between PCMH implementation and CRCS during the Systems of Support to Increase Colorectal Cancer Screening Trial (SOS) is described. Methods The SOS enrolled 4664 patients from 21 clinics from August 2008 to November 2009. Patients were randomized to usual care, mailed fecal kits, kits plus brief assistance, or kits plus assistance and navigation. A PCMH model that included a workflow for facilitating CRCS was implemented at all study clinics in late 2009. Patients enrolled early had little exposure to the PCMH, whereas patients enrolled later were exposed during most of their first year in the trial. Logistic regression models were used to assess the association between PCMH exposure and CRCS. Results Usual care patients with ≥8 months in the PCMH had higher CRCS rates than those with ≤4 months in the PCMH (adjusted difference, 10.1%; 95% confidence interval, 5.7–14.6). SOS interventions led to significant increases in CRCS, but the magnitude of effect was attenuated by exposure to the PCMH (P for interaction = .01). Conclusion Exposure to a PCMH was associated with higher CRCS rates. Automated mailed and centrally delivered stepped interventions increased CRCS rates, even in the presence of a PCMH. (J Am Board Fam Med 2016;29:191–200.) PMID:26957375

  20. The accretion column of AE Aqr

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Costa, D. Joaquim; Luna, Gerardo; Lima, Isabel J.; Silva, Karleyne M. G.; De Araujo, Jose Carlos N.; Coelho, Jaziel

    2016-07-01

    AE Aqr is a magnetic cataclysmic variable, whose white dwarf rotates at the very fast rate of 33 s modulating the flux from high-energies to optical wavelengths. There are many studies of the origin of its emission, which consider emission from a rotating magnetic field or from an accretion column. Recently, MAGIC observations have discarded AE Aqr emission in very high energy gamma-rays discarding non-thermal emission. Furthermore, soft and hard X-ray data from Swift and NuSTAR were fitted using thermal models. Here we present the modelling of AE Aqr X-ray spectra and light curve considering the emission of a magnetic accretion column using the Cyclops code. The model takes into consideration the 3D geometry of the system, allowing to properly represent the white-dwarf auto eclipse, the pre-shock column absorption, and the varying density and temperature of a tall accretion column.

  1. Exploring the disk accretion in DI Cep

    NASA Astrophysics Data System (ADS)

    Parihar, Padmakar Singh; Shantikumar, N. S.

    The low mass young stellar objects of class-II, popularly known as classical T Tauri stars (CTTS) supposed to be surrounded by thick flared disk and accretes disk material through strong stellar dipolar magnetic field. The disk accretion rate and its variation with time is poorly know. DI Cep is an interesting object, found to have unexpected hump around 5300 Å in the continuum excess emission spectrum, which cannot be explained by current models of YSOs. Over the last six years this object is being spectroscopically as well as photometrically monitored using HCT. The data have been analyzed and modeled using a simple modeling technique developed by us. In this paper, we report for the first time our results related to the disk accretion phenomena in DI Cep.

  2. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  3. Nitrogen Isotope Fractionation Increases with the Cell-Specific Dissimilatory Nitrate Reduction Rate

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Sigman, D. M.; Granger, J.

    2009-12-01

    The use of the nitrogen (N) isotopes to estimate the impacts and rates of different N transformations depends on knowledge of their extent of isotope fractionation under environmentally relevant physico-chemical conditions. Though the extent of N isotope fractionation during denitrification by pure cultures of bacteria has been determined in the past, relatively large variation in the isotope effect during apparently replicate experiments has been perplexing and the values that should be most relevant for environmental applications have not been clear. We measured the extent of N and O isotope fractionation during nitrate reduction by two bacterial denitrifiers, Pseudomonas chlororaphis ATCC 43928 and Paracoccus denitrificans ATCC 19367 that were grown in 1L batch reactors in the presence of differing carbon sources that included complex organic (e.g, bactopeptone and casein) or defined (e.g., glucose and acetate) carbon compounds and varying concentrations of dissolved oxygen (0 - 4 mM) and nitrate (25 - 800 mM) in the assay medium. For P. denitrificans and P. Chlororaphis , the total range of the N isotope effect (15ɛ) varied from 22.3 to 9.3 ‰ and 34.3 to 15.6 ‰, respectively. Despite this large variation, the O-to-N isotope effect ratio centered around 1, consistent with our previous work. A systematic pattern that has emerged from these studies is that the N and O isotope effect during denitrification increases with increasing cell specific nitrate reduction (CSNR) rate. This sense of variation runs counter to expectations from studies of carbon and sulfur isotope effects during methanogenesis and sulfate reduction, respectively, in which higher substrate consumption rates are associated with lower isotope effects. As with many multi-step microbial processes, variability in the dissimilatory nitrate reduction isotope effect may arise from variation in the “relative” rate and reversibility of (1) nitrate uptake into the denitrifying cell, and/or (2

  4. MODELING THE STAR-FORMING UNIVERSE AT z = 2: IMPACT OF COLD ACCRETION FLOWS

    SciTech Connect

    Khochfar, Sadegh; Silk, Joseph

    2009-07-20

    We present results of a semianalytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low V/{sigma} seen in various massive disk or disk-like galaxies, if we allow 18% of the accretion energy from cold flows to drive turbulence in gaseous disks at z = 2. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the number density of M-dot{sub *}>120 M{sub odot} yr{sup -1} galaxies in our model. In addition, it is necessary to increase the star formation efficiency. This can be achieved naturally in the porosity model, where star formation efficiency scales {proportional_to}{sigma}, which scales as cloud velocity dispersion. As cold accretion is the main driver for gas velocity dispersion in our model, star formation efficiency parallels cold accretion rates and allows fast conversion into stars. At z {approx} 2, we find a space density 10{sup -4} Mpc{sup -3} in star-forming galaxies with M-dot{sub *}>120 M{sub odot} yr{sup -1}, in better agreement than earlier estimates from SAMs. However, the fundamental relation between M-dot{sub *} and M {sub *} is still offset from the observed relation, indicating the need for possibly more efficient star formation at high-z perhaps associated with a role for active galactic nucleus (AGN) triggering.

  5. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases?

    PubMed

    Colaco, Rovel J; Martin, Pierre; Kluger, Harriet M; Yu, James B; Chiang, Veronica L

    2016-07-01

    OBJECT Radiation necrosis (RN), or its imaging equivalent, treatment-related imaging changes (TRIC), is an inflammatory reaction to high-dose radiation in the brain. The authors sought to investigate the hypothesis that immunotherapy increases the risk of developing RN/TRIC after stereotactic Gamma Knife (GK) radiosurgery for brain metastases. METHODS A total of 180 patients who underwent GK surgery for brain metastases between 2006 and 2012 were studied. The systemic therapy they received was classified as cytotoxic chemotherapy (CT), targeted therapy (TT), or immunotherapy (IT). The timing of systemic therapy in relation to GK treatment was also recorded. Logistic regression was used to calculate the odds of developing RN according to type of systemic therapy received. RESULTS The median follow-up time was 11.7 months. Of 180 patients, 39 (21.7%) developed RN/TRIC. RN/TRIC rates were 37.5% (12 of 32) in patients who received IT alone, 16.9% (14 of 83) in those who received CT only, and 25.0% (5 of 20) in those who received TT only. Median overall survival was significantly longer in patients who developed RN/TRIC (23.7 vs 9.9 months, respectively). The RN/TRIC rate was increased significantly in patients who received IT alone (OR 2.40 [95% CI 1.06-5.44]; p = 0.03), whereas receipt of any CT was associated with a lower risk of RN/TRIC (OR 0.38 [95% CI 0.18-0.78]; p = 0.01). The timing of development of RN/TRIC was not different between patients who received IT and those who received CT. CONCLUSIONS Patients who receive IT alone may have an increased rate of RN/TRIC compared with those who receive CT or TT alone after stereotactic radiosurgery, whereas receiving any CT may in fact be protective against RN/TRIC. As the use of immunotherapies increases, the rate of RN/TRIC may be expected to increase compared with rates in the chemotherapy era. PMID:26544782

  6. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Torrey, Paul; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2016-05-01

    We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ˜0.1-100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ˜0.03-1 M⊙ yr-1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ˜LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ˜100 pc. AGN winds suppress the nuclear SFR by factors ˜10-30 and BH accretion rate by factors ˜3-30. They increase the outflow rate from the nucleus by factors ˜10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A `torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.

  7. Coronal accretion: the power of X-ray emission in AGN

    NASA Astrophysics Data System (ADS)

    Liu, B.-F.; Taam, R. E.; Qiao, E.; Yuan, W.

    2016-02-01

    The optical/UV and X-ray emissions in luminous AGN are commonly believed to be produced in an accretion disk and an embedded hot corona respectively. We explore the possibility that a geometrically thick coronal gas flow, which is supplied by gravitational capture of interstellar medium or stellar wind, condenses partially to a geometrically thin cold disk and accretes via a thin disk and a corona onto the supermassive black hole. We found that for mass supply rates less than about 0.01 (expressed in Eddington units), condensation does not occur and the accretion flow takes the form of a corona/ADAF. For higher mass supply rates, corona gas condenses to the disk. As a consequence, the coronal mass flow rate decreases and the cool mass flow rate increases towards the black hole. Here the thin disk is characterized by the condensation rate of hot gas as it flows towards the black hole. With increase of mass supply rate, condensation becomes more efficient, while the mass flow rate of the coronal gas attains values of order 0.02 in the innermost regions of the disk, which can help to elucidate the production of strong X-ray with respect to the optical and ultraviolet radiation in high luminosity AGN.

  8. Erythrocyte storage increases rates of NO- and Nitrite scavenging: Implications for transfusion related toxicity

    PubMed Central

    Stapley, Ryan; Owusu, Benjamin Y.; Brandon, Angela; Cusick, Marianne; Rodriguez, Cilina; Marques, Marisa B.; Kerby, Jeffrey D.; Barnum, Scott R.; Weinberg, Jordan A.; Lancaster, Jack R.; Patel, Rakesh P.

    2013-01-01

    Synopsis Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to the RBC. It has been suggested that these changes have a potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion related toxicities. However, mechanisms linking RBC storage and toxicity remain unclear. In this study we tested the hypothesis that storage of leukodepleted RBC result in cells that inhibit nitric oxide (NO)-signaling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from hemolysis or microparticles, our data indicate that NO-consumption rates increased ~40-fold and NO-dependent vasodilation was inhibited 2-4 fold with 42d old vs. 0d RBC. These results are likely due to the formation of smaller RBC with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBC to affect NO-formation via deoxygenated RBC mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBC did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBC stored for >25d, but not with younger RBC. Collectively, these data suggest that increased rates of reactions between intact RBC and NO and nitrite may contribute to mechanisms that lead to storage lesion-related transfusion risk PMID:22720637

  9. Erythrocyte storage increases rates of NO and nitrite scavenging: implications for transfusion-related toxicity.

    PubMed

    Stapley, Ryan; Owusu, Benjamin Y; Brandon, Angela; Cusick, Marianne; Rodriguez, Cilina; Marques, Marisa B; Kerby, Jeffrey D; Barnum, Scott R; Weinberg, Jordan A; Lancaster, Jack R; Patel, Rakesh P

    2012-09-15

    Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25 days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk. PMID:22720637

  10. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  11. Human actuarial aging increases faster when background death rates are lower: a consequence of differential heterogeneity?

    PubMed

    Hawkes, Kristen; Smith, Ken R; Blevins, James K

    2012-01-01

    Many analyses of human populations have found that age-specific mortality rates increase faster across most of adulthood when overall mortality levels decline. This contradicts the relationship often expected from Williams' classic hypothesis about the effects of natural selection on the evolution of senescence. More likely, much of the within-species difference in actuarial aging is not due to variation in senescence, but to the strength of filters on the heterogeneity of frailty in older survivors. A challenge to this differential frailty hypothesis was recently posed by an analysis of life tables from historical European populations and traditional societies that reported variation in actuarial aging consistent with Williams' hypothesis after all. To investigate the challenge, we reconsidered those cases and aging measures. Here we show that the discrepancy depends on Ricklefs' aging rate measure, ω, which decreases as mortality levels drop because it is an index of mortality level itself, not the rate of increase in mortality with age. We also show unappreciated correspondence among the parameters of Gompertz-Makeham and Weibull survival models. Finally, we compare the relationships among mortality parameters of the traditional societies and the historical series, providing further suggestive evidence that differential heterogeneity has strong effects on actuarial aging. PMID:22220868

  12. Recombinant HCG for triggering ovulation increases the rate of mature oocytes in women treated for ICSI

    PubMed Central

    Farrag, A.; Manna, C.; Grimaldi, G.

    2008-01-01

    Purpose To conduct a prospective randomized study in order to investigate the effect of recombinant HCG (rHCG) on oocyte nuclear and cytoplasm maturity compared to urinary HCG (uHCG), for inducing ovulation in women treated with ICSI for male factor infertility. Materials and Methods We compared 89 patients randomly assigned to one of the two study groups. Group A consisted of 42 women who received a subcutaneous (s.c.) injection of 250 μg rHCG and group B consisted of 47 patients receiving an intramuscular (i.m.) injection of 10,000 IU uHCG. Results Patients treated with rHCG showed a rate of metaphase II oocytes, a number of metaphase II oocytes with mature cytoplasm and a rate of metaphase II oocytes with mature cytoplasm calculated from total MII oocytes statistically higher than in patients treated with uHCG. However this differences were not associated with a significantly better clinical outcome. Conclusion Our data show that in women treated with ICSI for male factor infertility, rHCG increases the rate of metaphase II oocytes, the number and the rate of MII oocytes with mature cytoplasm compared to uHCG. A larger study comparing transfer cycles of embryos all derived from oocytes with mature cytoplasm and transfer cycles of embryos all derived from oocytes with immature cytoplasm may be needed to clarify clinical correlations. PMID:18925430

  13. Pebble Accretion and the Diversity of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2016-07-01

    This paper examines the standard model of planet formation, including pebble accretion, using numerical simulations. Planetary embryos that are large enough to become giant planets do not form beyond the ice line within a typical disk lifetime unless icy pebbles stick at higher speeds than in experiments using rocky pebbles. Systems like the solar system (small inner planets and giant outer planets) can form if icy pebbles are stickier than rocky pebbles, and if the planetesimal formation efficiency increases with pebble size, which prevents the formation of massive terrestrial planets. Growth beyond the ice line is dominated by pebble accretion. Most growth occurs early, when the surface density of the pebbles is high due to inward drift of the pebbles from the outer disk. Growth is much slower after the outer disk is depleted. The outcome is sensitive to the disk radius and turbulence level, which control the lifetime and maximum size of pebbles. The outcome is sensitive to the size of the largest planetesimals because there is a threshold mass for the onset of pebble accretion. The planetesimal formation rate is unimportant, provided that some large planetesimals form while the pebbles remain abundant. Two outcomes are seen, depending on whether pebble accretion begins while the pebbles are still abundant. Either multiple gas-giant planets form beyond the ice line, small planets form close to the star, and a Kuiper-belt-like disk of bodies is scattered outward by the giant planets; or no giants form and the bodies remain an Earth-mass or smaller.

  14. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France

    USGS Publications Warehouse

    Vittecoq, Marion; Elguero, Eric; Lafferty, Kevin D.; Roche, Benjamin; Brodeur, Jacques; Gauthier-Clerc, Michel; Missé, Dorothée; Thomas, Frédéric

    2012-01-01

    The incidence of adult brain cancer was previously shown to be higher in countries where the parasite Toxoplasma gondii is common, suggesting that this brain protozoan could potentially increase the risk of tumor formation. Using countries as replicates has, however, several potential confounding factors, particularly because detection rates vary with country wealth. Using an independent dataset entirely within France, we further establish the significance of the association between T. gondii and brain cancer and find additional demographic resolution. In adult age classes 55 years and older, regional mortality rates due to brain cancer correlated positively with the local seroprevalence of T. gondii. This effect was particularly strong for men. While this novel evidence of a significant statistical association between T. gondii infection and brain cancer does not demonstrate causation, these results suggest that investigations at the scale of the individual are merited.

  15. Increase in the rate and uniformity of coastline erosion in Arctic Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, Kenneth M.; Schmutz, J.A.; Flint, P.L.

    2009-01-01

    Analysis of a 60 km segment of the Alaskan Beaufort Sea coast using a time-series of aerial photography revealed that mean annual erosion rates increased from 6.8 m a-1 (1955 to 1979), to 8.7 m a-1 (1979 to 2002), to 13.6 m a-1 (2002 to 2007). We also observed that spatial patterns of erosion have become more uniform across shoreline types with different degrees of ice-richness. Further, during the remainder of the 2007 ice-free season 25 m of erosion occurred locally, in the absence of a westerly storm event. Concurrent arctic changes potentially responsible for this shift in the rate and pattern of land loss include declining sea ice extent, increasing summertime sea surface temperature, rising sea-level, and increases in storm power and corresponding wave action. Taken together, these factors may be leading to a new regime of ocean-land interactions that are repositioning and reshaping the Arctic coastline. Copyright 2009 by the American Geophysical Union.

  16. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  17. Exam anxiety induces significant blood pressure and heart rate increase in college students.

    PubMed

    Zhang, Zhihong; Su, Hai; Peng, Qiang; Yang, Qing; Cheng, Xiaoshu

    2011-01-01

    To investigate the relationship between the anxiety and blood pressure (BP) and heart rate (HR) increase in peri-exam period. Sixty-four college students(20.0 ± 0.1 year old) were included in this study. The BP and HR were measured in the morning and in the evening for 3 days during the prereview (ba), review, and exam periods. The BP and HR increase amplitudes (HRIA) of review and exam periods were from the difference of corresponding values and basic values, and the BPIA/baBP and HRIA/baHR were calculated. All of the students completed the Self-Rating Anxiety score (SAS) questionnaire the first day of the exam period. Scores over 50 points were used as the standard for anxiety. From the prereview to exam periods, the BP and HR increased gradually. The exam SBPIA (4.3 ± 1.3 vs. 0.3 ± 0.5 mmHg, P < 0.05) and DBPIA (4.4 ± 1.5 vs. 1.0 ± 0.5 mmHg, P < 0.05) were significantly higher in the anxiety group than in the no-anxiety group. The SBPIA/DBPIA and HRIA showed a similar profile also(9.7 ± 2.1 vs. 1.9 ± 0.9 bpm, P < 0.05). Strong positive correlations were found between the SAS score and BPIA and HRIA both in the review and exam period. The smoking group and family hypertension group had higher anxiety score; meanwhile, their exam BPIAs and HRIAs were significantly higher than their corresponding group. The BP and HR increase in the review and exam period, anxiety is an important factor of BP and HR increase. PMID:21787237

  18. Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession.

    PubMed

    Yurkewycz, Raymond P; Bishop, John G; Crisafulli, Charles M; Harrison, John A; Gill, Richard A

    2014-12-01

    Fossorial mammals may affect nutrient dynamics and vegetation in recently initiated primary successional ecosystems differently than in more developed systems because of strong C and N limitation to primary productivity and microbial communities. We investigated northern pocket gopher (Thomomys talpoides) effects on soil nutrient dynamics, soil physical properties, and plant communities on surfaces created by Mount St. Helens' 1980 eruption. For comparison to later successional systems, we summarized published studies on gopher effects on soil C and N and plant communities. In 2010, 18 years after gopher colonization, we found that gophers were active in ~2.5% of the study area and formed ~328 mounds ha(-1). Mounds exhibited decreased species density compared to undisturbed areas, while plant abundance on mound margins increased 77%. Plant burial increased total soil carbon (TC) by 13% and nitrogen (TN) by 11%, compared to undisturbed soils. Mound crusts decreased water infiltration, likely explaining the lack of detectable increases in rates of NO3-N, NH4-N or PO4-P leaching out of the rooting zone or in CO2 flux rates. We concluded that plant burial and reduced infiltration on gopher mounds may accelerate soil carbon accumulation, facilitate vegetation development at mound edges through resource concentration and competitive release, and increase small-scale heterogeneity of soils and communities across substantial sections of the primary successional landscape. Our review indicated that increases in TC, TN and plant density at mound margins contrasted with later successional systems, likely due to differences in physical effects and microbial resources between primary successional and older systems. PMID:25260998

  19. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park

    USGS Publications Warehouse

    Smoak, Joseph M.; Breithaupt, Joshua L.; Smith, Thomas J., III; Sanders, Christian J.

    2013-01-01

    The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr−1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr−1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m−2 yr−1 within the storm deposit compared to 151 and 168 g m−2 yr−1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

  20. Biosynthetic growth hormone increases the collagen deposition rate in rat aorta and heart.

    PubMed

    Brüel, A; Oxlund, H

    1995-02-01

    Disorders of the cardiovascular system often are associated with alterations in the metabolism of the collagens of these tissues. A method for in vivo determination of collagen deposition rate in small tissue samples is delineated and used for assessment of the effect of biosynthetic growth hormone (GH) injections on the collagen deposition rate in rat aorta and cardiac musculature. Rats were injected with GH, and the controls with saline, twice daily for 7 days. The in vivo collagen deposition rate was measured by injecting iv a large dose of [3H]-proline with a flooding dose of "cold" proline, followed by determination of the production of [3H]-hydroxyproline during a 4-h labelling period. Extractable collagens that were not bound in the tissue and therefore do not contribute mechanical strength to it were removed from the samples. 3H-Labelled- and "cold" amino acids were assessed by reversed-phase HPLC combined with simultaneous flow scintillation detection on the same sample. In the control group the deposition per hour was 0.13 +/- 0.02% (mean +/- SEM) in aortic intima media and 0.72 +/- 0.09% in cardiac left ventricular musculature. Growth hormone induced a threefold increase (p < 0.001 and p < 0.01, respectively) in the collagen deposition rate: 0.45 +/- 0.06% in aortic intima media and 2.43 +/- 0.45% in cardiac left ventricular musculature. The method described enables a rapid and sensitive determination of collagen deposition per hour in small tissue samples from experimental animals. The collagen deposition rate of cardiac musculature is fivefold higher compared with that of aortic intima media.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858738

  1. Is high-rate injection causing the increase in U.S. mid-continent seismicity?

    NASA Astrophysics Data System (ADS)

    Weingarten, M.; Ge, S.

    2014-12-01

    An unprecedented increase in earthquakes in the central and eastern US (CEUS) began in 2009. Many of these earthquakes have been documented as likely induced by wastewater injection. To better understand the likelihood of an induced seismic event from a given injection well, we compare the location and timing of earthquakes and injection operational parameters across the CEUS. We compiled a database of more than 187,000 injection wells in the CEUS, both active and inactive. In combination with the Advanced National Seismic System's (ANSS) comprehensive earthquake catalog from 1973 to mid-2014, we use spatial and temporal filtering methods to discriminate injection wells that may be associated with earthquakes from those that are not. Our goal was to understand whether or not well operational parameters such as injection rate, cumulative injected volume, injection pressure and injection depth affect the likelihood that a well is spatiotemporally associated with an earthquake. We found more than 14,000 injection wells (~8% of all wells) that may be associated with earthquakes in the CEUS. Our spatiotemporal filter succeeded in capturing every suspected case of induced seismicity that we are aware of. We also found that the likelihood of an injection well being associated with an earthquake increased with increasing injection rate and cumulative injected volume. This phenomenon was observed over a wide range of geologic and hydrogeologic provinces in states such as Oklahoma, Colorado, New Mexico and Arkansas. Operational parameters such as injection pressure and injection depth do not show a clear trend towards an increased likelihood of spatiotemporal association with an earthquake. In all, the cumulative number of CEUS earthquakes potentially associated with injection has risen sharply from 112 out of 545 in year 2000 (~19%) to more than 732 out of 1325 by May 2014 (~55%). This increase in earthquakes spatiotemporally associated with wells accounts for the vast

  2. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    PubMed Central

    Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213

  3. Hoyle-Lyttleton Accretion from a Planar Wind

    NASA Astrophysics Data System (ADS)

    Raymer, Eric

    2014-01-01

    Two-dimensional hydrodynamic simulations of Hoyle-Lyttleton accretion have informed predictions about the evolution of wind-driven accretion systems for over two decades. These simulations frequently exhibit dramatic nonlinear behavior such as the flip-flop instability and the formation of transient accretion disks. During disk accretion, the mass accretion rate is suppressed and angular momentum accretion occurs at quasi-Keplerian rates. These results have been used to interpret neutron star accretion from the equatorially enhanced wind of a Be star in Be/X-ray Binaries. We employ large-scale hydrodynamic simulations to investigate whether the flip-flop instability is possible in three dimensions or is simply a consequence of the restrictions on a 2D flow. We do not observe the flip-flop instability in 3D for any values of the wind scale height or density. Moreover, the angular momentum vector of the accreting gas is typically found to be in the plane of the disk wind rather than perpendicular to it as one might expect based on the results of 2D planar simulations. We measure large-scale asymmetries about the plane of the disk wind that arise due to rotational flow near the accretor. Gas is driven above and below the plane, where it interacts with the bow shock and results in a time-varying shock structure. Winds with scale heights of 0.25 Ra enter locked rotation modes that remain stable for the duration of our computational runs. During this phase, the mass accretion rate is suppressed by up to two orders of magnitude below the analytical prediction and angular momentum accretion occurs at sub-Keplerian values.

  4. Accretion disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  5. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  6. Intraventricular filling under increasing left ventricular wall stiffness and heart rates

    NASA Astrophysics Data System (ADS)

    Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif

    2015-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  7. Efficacy of trap modifications for increasing capture rates of aquatic snakes in floating aquatic funnel traps

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2013-01-01

    Increasing detection and capture probabilities of rare or elusive herpetofauna of conservation concern is important to inform the scientific basis for their management and recovery. The Giant Gartersnake (Thamnophis gigas) is an example of a secretive, wary, and generally difficult-to-sample species about which little is known regarding its patterns of occurrence and demography. We therefore evaluated modifications to existing traps to increase the detection and capture probabilities of the Giant Gartersnake to improve the precision with which occurrence, abundance, survival, and other demographic parameters are estimated. We found that adding a one-way valve constructed of cable ties to the small funnel opening of traps and adding hardware cloth extensions to the wide end of funnels increased capture rates of the Giant Gartersnake by 5.55 times (95% credible interval = 2.45–10.51) relative to unmodified traps. The effectiveness of these modifications was insensitive to the aquatic habitat type in which they were deployed. The snout-vent length of the smallest and largest captured snakes did not vary among trap modifications. These trap modifications are expected to increase detection and capture probabilities of the Giant Gartersnake, and show promise for increasing the precision with which demographic parameters can be estimated for this species. We anticipate that the trap modifications found effective in this study will be applicable to a variety of aquatic and semi-aquatic reptiles and amphibians and improve conservation efforts for these species.

  8. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumrates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ-value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were

  9. Increase of the deposition rate in reactive sputtering of metal oxides using a ceramic nitride target

    SciTech Connect

    Severin, D.; Wuttig, M.; Kappertz, O.; Nyberg, T.; Berg, S.; Pflug, A.

    2009-05-01

    We present a method to eliminate hysteresis effects and to increase the deposition rate for the reactive sputtering of metal oxides. This is achieved by using a ceramic nitride target in an argon-oxygen atmosphere. Although the use of a ceramic nitride target leads to pronounced changes of the processing characteristics, incorporation of nitrogen into the growing film is very small. These observations can be theoretically predicted using an extension of Berg's model [S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005)] to two different reactive gases and a compound target.

  10. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1990-01-01

    Based on previous observations of glaze ice accretion, a 'Multi-Zone' model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: to determine the laminar to turbulent transition location and to calculate the turbulent heat transfer coefficient. A two zone version of the Multi-Zone model is implemented in the LEWICE code, and compared with experimental heat transfer coefficient and ice accretin results. The analysis of the boundary layer transition, surface roughness, and viscous flow field effects significantly increased the accuracy in predicting heat transfer coefficients. The Multi-Zone model was found to greatly improve the ice accretion prediction for the cases compared.

  11. Thermal structure of the accreting earth

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Pflugrath, J. C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper the existence of a global magma ocean is postulated and calculations are carried out of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. It is found that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. It is concluded that the core segregated and an atmosphere was formed during accretion.

  12. Thermal structure of the accreting earth

    SciTech Connect

    Turcotte, D.L.; Pflugrath, J.C.

    1985-02-15

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion.

  13. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  14. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  15. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates

    SciTech Connect

    Kroener, A. ); Eyal, M.; Eyal, Y. )

    1990-06-01

    The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodes elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.

  16. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses.

    PubMed

    Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F X; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A; Roffler, Stefan

    2016-01-01

    DNA (class 2) transposons are mobile genetic elements which move within their 'host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761

  17. Innovative additives can increase the drilling rates of water-based muds

    SciTech Connect

    Growcock, F.B.; Sinor, L.A.; Reece, A.R.; Powers, J.R.

    1994-12-31

    Several types of organic compounds were tested as rate of penetration (ROP) enhancers for a simple gel/water mud. Experiments conducted in a full-size drilling apparatus with both rollercone and PDC bits at wellbore pressures of 1,100 and 2,000 psi indicate that a paraffin/ester mixture, several terpenes and a mixture of insoluble poly(propylene glycols), or PPGs, can all increase the ROP by 5 to 20% when added at levels of 2--4% by volume. Complementary lubricity and shale recovery studies suggest that the paraffin and terpenes function by making the steel surfaces less water-wetting, thereby reducing the tendency of partially hydrated sticky shales to adhere. The PPG mixture, on the other hand, may function primarily by interacting directly with the shales to reduce their tendency to form a sticky mass. In either case, the additives increased ROP to levels comparable to the ROP observed with pure water.

  18. Pneumocystis jirovecii genotype associated with increased death rate of HIV-infected patients with pneumonia.

    PubMed

    Rabodonirina, Meja; Vaillant, Laetitia; Taffé, Patrick; Nahimana, Aimable; Gillibert, René-Pierre; Vanhems, Philippe; Hauser, Philippe M

    2013-01-01

    Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations have been associated with failure of sulfa prophylaxis; their effect on the outcome of patients with P. jirovecii pneumonia (PCP) remains controversial. P. jirovecii DHPS polymorphisms and genotypes were identified in 112 cases of PCP in 110 HIV-infected patients by using PCR single-strand conformation polymorphism. Of the 110 patients observed, 21 died; 18 of those deaths were attributed to PCP. Thirty-three percent of the PCP cases involved a P. jirovecii strain that had 1 or both DHPS mutations. The presence or absence of DHPS mutations had no effect on the PCP mortality rate within 1 month, whereas P.jirovecii type 7 and mechanical ventilation at PCP diagnosis were associated with an increased risk of death caused by PCP. Mechanical ventilation at PCP diagnosis was also associated with an increased risk of sulfa treatment failure at 5 days. PMID:23260763

  19. T3 acutely increases GH mRNA translation rate and GH secretion in hypothyroid rats.

    PubMed

    Silva, F Goulart da; Giannocco, G; Luchessi, A D; Curi, R; Nunes, M T

    2010-04-12

    Cytoskeleton controls the stability of transcripts, by mechanisms that involve mRNAs and eEF1A attachment to it. Besides, it plays a key role in protein synthesis and secretion, which seems to be impaired in somatotrophs of hypothyroid rats, whose cytoskeleton is disarranged. This study investigated the: eEF1A and GH mRNA binding to cytoskeleton plus GH mRNA translation rate and GH secretion, in sham-operated and thyroidectomized rats treated with T3 or saline, and killed 30min thereafter. Thyroidectomy reduced: (a) pituitary F-actin content, and eEF1A plus GH mRNA binding to it; (b) GH mRNA recruitment to polysome; and (c) liver IGF-I mRNA expression, indicating that GH mRNA stability and translation rate, as well as GH secretion were impaired. T3 acutely reversed all these changes, which points toward a nongenomic action of T3 on cytoskeleton rearrangement, which might contribute to the increase on GH mRNA translation rate and GH secretion. PMID:20015464

  20. New Approach and Stem Increased Femoral Revision Rate in Total Hip Arthroplasty.

    PubMed

    Panichkul, Phonthakorn; Parks, Nancy L; Ho, Henry; Hopper, Robert H; Hamilton, William G

    2016-01-01

    This study compared the femoral stem revision and loosening rates in primary total hip arthroplasty between 2 different approaches and stem designs. Recent reports comparing the direct anterior approach with either the posterior or lateral approach showed that patients undergoing the direct anterior approach have less pain and an accelerated functional recovery in the early postoperative period. After converting to an anterior approach, the authors observed an increased rate of femoral stem revision. From 2003 to 2009, a posterior or lateral approach was used to insert 514 stems of 2 designs. These cases included the use of an extensively coated cobalt-chrome stem (n=232) or a straight, dual-tapered, proximally porous-coated titanium stem (n=282). In the following years, from 2009 to 2012, 594 short, proximally coated, titanium tapered-wedge stems were inserted through a direct anterior approach. The revision rates of femoral stems inserted through a posterior approach or a lateral approach were compared with those inserted via a direct anterior approach. No stem revisions occurred in the posterior approach group or the lateral approach group, and 5 stems were revised in the anterior approach group for periprosthetic fracture or aseptic loosening (0.8%). Significantly more stem revisions occurred after the use of the new stem design and a direct anterior approach (P=.04). PMID:26726989

  1. Increase of SiC sublimation growth rate by optimizing of powder packaging

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Cai, Dang; Zhang, Hui

    2007-07-01

    In this paper, a comprehensive model for silicon carbide (SiC) sublimation crystal growth considering powder packaging is presented. This model is based on heat and mass transfer of porous powder charge with different sizes of the particle and accounts for induction heating, powder charge sublimation, vapor transport, and porosity evolution in a SiC sublimation crystal growth system. The mechanism of vapor transport is proposed by introducing a driving force arising from temperature difference between powder charge and seed in the growth system. Powder porosity evolution and sublimation rate variations are predicted based on vapor transport mechanism. Effects of powder geometry, such as particle sizes, volume and size ratios of different particles, and driving forces on the sublimation rate are studied. In addition, simulation results for powder sublimation with and without a central hole are presented. The results indicate that the sublimation rate can be increased by optimizing the powder packaging, or by creating a hole in the center of packed powder.

  2. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart. PMID:25784543

  3. Somatostatin analogue, octreotide, reduces increased glomerular filtration rate and kidney size in insulin-dependent diabetes

    SciTech Connect

    Serri, O.; Beauregard, H.; Brazeau, P.; Abribat, T.; Lambert, J.; Harris, A.; Vachon, L. Sandoz Canada Inc., Dorval, Quebec )

    1991-02-20

    To determine whether treatment with a somatostatin analogue can reduce kidney hyperfiltration and hypertrophy in insulin-dependent diabetes mellitus, the authors studied 11 patients with insulin-dependent diabetes mellitus and glomerular hyperfiltration. The patients were assigned randomly to receive continuous subcutaneous infusion of either octreotide, 300 {mu}g/24 h (five patients) or placebo (six patients) for 12 weeks. At baseline, mean glomerular filtration rate and mean total kidney volume were not significantly different in the two groups. However, after 12 weeks of treatment, the mean glomerular filtration rate was significantly lower in the octreotide group than in the placebo group. Furthermore, the mean total kidney volume was significantly lower after treatment in the octreotide group than in the placebo group. Glycemic control did not change significantly in either group. They conclude that subcutaneous infusion of octreotide for 12 weeks reduces increased glomerular filtration rate and kidney size in patients with insulin-dependent diabetes mellitus despite the fact that glycemic control remains unchanged.

  4. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation.

    PubMed

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate.This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2  g/kg), a single dose of rituximab (375  mg/m), and 4 doses of bortezomib (1.3  mg/m). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients.There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83  ±  16.0 (14952  ±  5820) and 63  ±  36.0 (10321  ±  7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468-634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group.In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients. PMID:26844479

  5. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation

    PubMed Central

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-01-01

    Abstract Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate. This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2 g/kg), a single dose of rituximab (375 mg/m2), and 4 doses of bortezomib (1.3 mg/m2). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients. There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83 ± 16.0 (14952 ± 5820) and 63 ± 36.0 (10321 ± 7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468–634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group. In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients. PMID:26844479

  6. Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum.

    PubMed

    Ha, Eun-Mi

    2016-05-28

    Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium. PMID:27012237

  7. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  8. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants. PMID:24590204

  9. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  10. HBV Outreach Programs Significantly Increase Knowledge and Vaccination Rates Among Asian Pacific Islanders.

    PubMed

    Zacharias, Tresa; Wang, Winnie; Dao, Doan; Wojciechowski, Helena; Lee, William M; Do, Son; Singal, Amit G

    2015-08-01

    Hepatitis B virus (HBV) testing and vaccination rates remain low among Asian-American/Pacific Islanders (APIs) despite high rates of HBV infection. The aim of our study was to assess the effectiveness of an outreach campaign to increase HBV knowledge, testing, and vaccination among a cohort of APIs. Vietnamese Americans were invited to participate in a free HBV screening and vaccination outreach program though pubic service announcements. Attendees completed a survey to assess barriers to vaccination and HBV-related knowledge before and after a 30-min education session by a bilingual board-certified gastroenterologist. Among 98 participants, 100% (22/22) of HBV naïve patients were provided a HBV vaccination series at no cost and over 75% (14/18) of HBV-infected patients were connected to further medical care. Notable reported barriers to prior testing and/or vaccination were cost of the vaccine, concern about missing work for evaluation, and lack of provider recommendation. Knowledge levels about HBV risk factors, potential consequences, and treatment options were poor at baseline but significantly increased after the education session (49 vs. 64%, p < 0.001). Outreach campaigns linked with education can successfully address several barriers to HBV testing and offer an approach to improve HBV awareness and prevention among difficult-to-reach populations. PMID:25476035

  11. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy

    PubMed Central

    Na, Han-Heom; Noh, Hee-Jung; Cheong, Hyang-Min; Kang, Yoonsung; Kim, Keun-Cheol

    2016-01-01

    The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243] PMID:26949019

  12. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  13. Ethical analyses of institutional measures to increase health care worker influenza vaccination rates.

    PubMed

    Zimmerman, Richard K

    2013-12-16

    Health care worker (HCW) influenza vaccination rates are modest. This paper provides a detailed ethical analysis of the major options to increase HCW vaccination rates, comparing how major ethical theories would address the options. The main categories of interventions to raise rates include education, incentives, easy access, competition with rewards, assessment and feedback, declination, mandates with alternative infection control measures, and mandates with administrative action as consequences. The aforementioned interventions, except mandates, arouse little ethical controversy. However, these efforts are time and work intensive and rarely achieve vaccination rates higher than about 70%. The primary concerns voiced about mandates are loss of autonomy, injustice, lack of due process, and subsuming the individual for institutional ends. Proponents of mandates argue that they are ethical based on beneficence, non-maleficence, and duty. A number of professional associations support mandates. Arguments by analogy can be made by mandates for HCW vaccination against other diseases. The ethical systems used in the analyses include evolutionary ethics, utilitarianism, principalism (autonomy, beneficence, non-maleficence, and justice), Kantism, and altruism. Across these systems, the most commonly preferred options are easy access, assessment and feedback, declinations, and mandates with infection control measures as consequences for non-compliance. Given the ethical imperatives of non-maleficence and beneficence, the limited success of lower intensive interventions, and the need for putting patient safety ahead of HCW convenience, mandates with additional infection control measures as consequences for non-compliance are preferred. For those who opt out of vaccination due to conscience concerns, such mandates provide a means to remain employed but not put patient safety at risk. PMID:24188752

  14. Adenoma detection rates decline with increasing procedural hours in an endoscopist’s workload

    PubMed Central

    Almadi, Majid A; Sewitch, Maida; Barkun, Alan N; Martel, Myriam; Joseph, Lawrence

    2015-01-01

    BACKGROUND: Operator fatigue may negatively influence adenoma detection (AD) during screening colonoscopy. OBJECTIVE: To better characterize factors affecting AD, including the number of hours worked, and the number and type of procedures performed before an index screening colonoscopy. METHODS: A retrospective cohort study was conducted involving individuals undergoing a screening colonoscopy at a major tertiary care hospital in Montreal, Quebec. Individuals were identified using an endoscopic reporting database; AD was identified by an electronic chart review. A hierarchical logistic regression analysis was performed to determine the association between patient- and endoscopist-related variables and AD. RESULTS: A total of 430 consecutive colonoscopies performed by 10 gastroenterologists and two surgeons were included. Patient mean (± SD) age was 63.4±10.9 years, 56.3% were males, 27.7% had undergone a previous colonoscopy and the cecal intubation rate was 95.7%. The overall AD rate was 25.7%. Age was associated with AD (OR 1.06 [95% CI 1.03 to 1.08]), while female sex (OR 0.44 [95% CI 0.25 to 0.75]), an indication for average-risk screening (OR 0.47 [95% CI 0.27 to 0.80]) and an increase in the number of hours during which endoscopies were performed before the index colonoscopy (OR 0.87 [95% CI 0.76 to 0.99]) were associated with lower AD rates. On exploratory univariable analysis, a threshold of 3 h of endoscopy time performed before the index colonoscopy was associated with decreased AD. CONCLUSION: The number of hours devoted to endoscopies before the index colonoscopy was inversely associated with AD rate, with decreased performance possibly as early as within 3 h. This metric should be confirmed in future studies and considered when optimizing scheduling practices. PMID:25996612

  15. Translocation of threatened New Zealand falcons to vineyards increases nest attendance, brooding and feeding rates.

    PubMed

    Kross, Sara M; Tylianakis, Jason M; Nelson, Ximena J

    2012-01-01

    Anthropogenic landscapes can be rich in resources, and may in some cases provide potential habitat for species whose natural habitat has declined. We used remote videography to assess whether reintroducing individuals of the threatened New Zealand falcon Falco novaeseelandiae into a highly modified agricultural habitat affected the feeding rates of breeding falcons or related breeding behavior such as nest attendance and brooding rates. Over 2,800 recording hours of footage were used to compare the behavior of falcons living in six natural nests (in unmanaged, hilly terrain between 4 km and 20 km from the nearest vineyard), with that of four breeding falcon pairs that had been transported into vineyards and nested within 500 m of the nearest vineyard. Falcons in vineyard nests had higher feeding rates, higher nest attendance, and higher brooding rates. As chick age increased, parents in vineyard nests fed chicks a greater amount of total prey and larger prey items on average than did parents in hill nests. Parents with larger broods brought in larger prey items and a greater total sum of prey biomass. Nevertheless, chicks in nests containing siblings received less daily biomass per individual than single chicks. Some of these results can be attributed to the supplementary feeding of falcons in vineyards. However, even after removing supplementary food from our analysis, falcons in vineyards still fed larger prey items to chicks than did parents in hill nests, suggesting that the anthropogenic habitat may be a viable source of quality food. Although agricultural regions globally are rarely associated with raptor conservation, these results suggest that translocating New Zealand falcons into vineyards has potential for the conservation of this species. PMID:22719921

  16. Rayleigh-Taylor-Unstable Accretion and Variability of Magnetized Stars: Global Three-Dimensional Simulations

    SciTech Connect

    Kulkarni, A. K.; Romanova, M. M.

    2008-10-29

    We present results of 3D simulations of MHD instabilities at the accretion disk-magnetosphere boundary. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It produces tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, {theta} < or approx. 30 deg., between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hot spots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems.

  17. Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors.

    PubMed

    Siebenmann, C; Rasmussen, P; Sørensen, H; Bonne, T C; Zaar, M; Aachmann-Andersen, N J; Nordsborg, N B; Secher, N H; Lundby, C

    2015-06-15

    Hypoxia increases the heart rate response to exercise, but the mechanism(s) remains unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate, but not combined, inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise to exhaustion in normoxia and hypoxia (fraction of inspired O2 = 12%) after intravenous administration of 1) no drugs (Cont), 2) propranolol (Prop), 3) glycopyrrolate (Glyc), or 4) Prop + Glyc. HR increased with exercise in all drug conditions (P < 0.001) but was always higher at a given workload in hypoxia than normoxia (P < 0.001). Averaged over all workloads, the difference between hypoxia and normoxia was 19.8 ± 13.8 beats/min during Cont and similar (17.2 ± 7.7 beats/min, P = 0.95) during Prop but smaller (P < 0.001) during Glyc and Prop + Glyc (9.8 ± 9.6 and 8.1 ± 7.6 beats/min, respectively). Cardiac output was enhanced by hypoxia (P < 0.002) to an extent that was similar between Cont, Glyc, and Prop + Glyc (2.3 ± 1.9, 1.7 ± 1.8, and 2.3 ± 1.2 l/min, respectively, P > 0.4) but larger during Prop (3.4 ± 1.6 l/min, P = 0.004). Our results demonstrate that the tachycardic effect of hypoxia during exercise partially relies on vagal withdrawal. Conversely, sympathoexcitation either does not contribute or increases heart rate through mechanisms other than β-adrenergic transmission. A potential candidate is α-adrenergic transmission, which could also explain why a tachycardic effect of hypoxia persists during combined β-adrenergic and muscarinic receptor inhibition. PMID:25888515

  18. Sponge biomass and bioerosion rates increase under ocean warming and acidification.

    PubMed

    Fang, James K H; Mello-Athayde, Matheus A; Schönberg, Christine H L; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie

    2013-12-01

    The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future. PMID:23893528

  19. Formation of Jupiter's Core and Early Stages of Envelope Accretion

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Weidenschilling, S.; Lissauer, J. J.; Bodenheimer, P.; Hubickyj, O.

    2012-12-01

    We are performing calculations of the formation of Jupiter via core nucleated accretion and gas capture. The core starts as a seed body of a few hundred kilometers in radius and orbits within a swarm of planetesimals whose initial size distribution ranges from ~10 m to ~100 km. The planetesimals are immersed in a gaseous disk, representative of an early solar nebula. The evolution of the swarm of planetesimals accounts for collisions and gravitational stirring due to mutual interactions among bodies, and for migration and velocity damping due to interactions with the nebula gas. Collisions among planetesimals lead to growth and/or fragmentation, altering the size distribution of the swarm over time. Collisions of planetesimals with the seed body lead to its growth, resulting in the formation of a planetary core. Gas capture by the core leads to the accumulation of a tenuous atmosphere, which later becomes a massive envelope, increasing the size-dependent effective cross-section of the planet for planetesimals' accretion. Planetesimals that travel through the core's envelope release energy, affecting the thermal budget of the envelope, and deliver mass, affecting the opacity of the envelope. The calculation of dust opacity, which is especially important for envelope contraction, is performed self-consistently, accounting for coagulation and sedimentation of dust and small particles that are released in the envelope as passing planetesimals are ablated. We find that, in a disk of planetesimals with a surface density of about 10 g/cm2 at 5.2 AU, a one Earth mass core accumulates in less than 1e5 years, and that it takes over 1.5e6 years to accumulate a core of 3 Earth masses, when the core's geometrical cross-section is used for the accretion of planetesimals. Gas drag in the core's envelope increases the ability of the planet to accrete planetesimals. Smaller planetesimals are affected to a greater extent than are larger planetesimals. We find that the effective

  20. STABILITY OF A SPHERICAL ACCRETION SHOCK WITH NUCLEAR DISSOCIATION

    SciTech Connect

    Fernandez, Rodrigo; Thompson, Christopher

    2009-06-01

    We examine the stability of a standing shock wave within a spherical accretion flow onto a gravitating star, in the context of core-collapse supernova explosions. Our focus is on the effect of nuclear dissociation below the shock on the linear growth, and nonlinear saturation, of nonradial oscillations of the shocked fluid. We combine two-dimensional, time-dependent hydrodynamic simulations using FLASH2.5 with a solution to the linear eigenvalue problem, and demonstrate the consistency of the two approaches. Previous studies of this 'standing accretion shock instability' (SASI) have focused either on zero-energy accretion flows without nuclear dissociation, or made use of a detailed finite-temperature nuclear equation of state and included strong neutrino heating. Our main goal in this and subsequent papers is to introduce equations of state of increasing complexity, in order to isolate the various competing effects. In this work, we employ an ideal gas equation of state with a constant rate of nuclear dissociation below the shock, and do not include neutrino heating. We find that a negative Bernoulli parameter below the shock significantly lowers the real frequency, growth rate, and saturation amplitude of the SASI. A decrease in the adiabatic index has similar effects. The nonlinear development of the instability is characterized by an expansion of the shock driven by turbulent kinetic energy at nearly constant internal energy. Our results also provide further insight into the instability mechanism: the rate of growth of a particular mode is fastest when the radial advection time from the shock to the accretor overlaps with the period of a standing lateral sound wave. The fastest-growing mode can therefore be modified by nuclear dissociation.

  1. Atrial systole enhances intraventricular filling flow propagation during increasing heart rate.

    PubMed

    Santhanakrishnan, Arvind; Okafor, Ikechukwu; Kumar, Gautam; Yoganathan, Ajit P

    2016-02-29

    Diastolic fluid dynamics in the left ventricle (LV) has been examined in multiple clinical studies for understanding cardiac function in healthy humans and developing diagnostic measures in disease conditions. The question of how intraventricular filling vortex flow pattern is affected by <